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What is left to do is how to design the low pass pole τL for the derivative term. In
practice we need to design a proper transfer function, so we add a high frequency pole to the
derivative term. To understand the role of τL, consider a simple PD controller which has a
transfer function given by

CPD(s) = KP +
KDs

1 + τLs
= KP

(
1 +

τDs

1 + τLs

)
= KP

(
1 + (τD + τL) s

1 + τLs

)
which is approximated by (assuming τL � τD):

CPD(s) ' KP

(
1 + τDs

1 + τLs

)
=: C ′PD(s)

Now, plotting the Bode diagram of our transfer function we can notice the differences between
the fransfer function with and without the high frequency pole. As we can see in figure 9.1,
before the crossing frequency the two plots are almost the same, they differ only in high
frequency. If we move log10

1
τL

to the right side sufficiently far away from τD and ωc, then the
differences between the ideal transfer function and minimal in range defined by the closed
loop bandwidth. The phase margin of the open loop transfer function G′(s) = P (s)C ′PD(s)
at the desired crossing frequency, it’s approximately equal to the phase margin obtained by
considering the real transfer function G(s) = P (s)CPD(s) :

ϕGPM (w∗c )
∼= ϕG

′

PM (w∗c )

so, now what we want is that

1

τL
� w∗c or, equally τL �

1

w∗c

Tipically the range of values used for τL are:

1

10w∗c
< τL <

1

4w∗c

where ω∗c is the desired crossing frequency. Note that we cannot put the pole too far away
since the controller will amplify any output noise present at high frequency.
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Figura 9.1: Bode Plot for non-proper PD (light blue) and proper PD controller (dark blue)

Figura 9.2: Wire coil from different viewpoints
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(a) (b)

Figura 9.3: Directions of ~n

9.1 DC MOTOR MODELLING
In a DC Motor there are basically 2 components: the rotor and the stator. The rotor is
a component rolled up an with electric wire that spins thanks to the current flowing in it,
whereas the stator is a fixed component and it is basically composed of a big magnet which
creates the magnetic field. As we can see in figure 9.2, the magnetic field given by the
magnet on the stator and the current flow through the wire produce a force F that spins the
rotor clockwise, and if the current flow is inverted the force will be opposite and it will make
the rotor spin anticlockwise. The force is given by:

~F = L~i× ~B ⇒ τ = 2lLiB sinα = AiB sinα

where A = 2lL is the area of the coil and τ is the total torque.
The maximum force is then obtained when α = 90◦. This force creates a rotating moment

that is equal to the force times the distance from the rotation point times the angle between
the point where the force is applied.

When a coil is rotating inside a magnetic field due to a current flow, this creates an
effect known as the Back-Electromotive Force (BEMF), a voltage that basically counter acts
the motion of the current. In this way when the motor is spinning at high velocity it will
consume less power.

The Back-Electromotive Force is given by:

ue(t) = − d

dt
Φ(t)

where Φ(t) is the magnetic flux:

Φ(α(t)) = A~n · ~B = AB(− cosα(t))

and ~n is a vector perpendicular to the area with the direction given by the current flow as
in figure 9.3.

If α(t) is constant there is no BEMF, because the derivative of a constant is 0. In reality
we have Φ(t) which is a function of time and α(t) itself is a function of time. So the BEMF
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is given by:

ue(t) = −AB(− sinα)
dα(t)

dt
= ABω(t) sinα(t)

where ω(t) is the angular velocity of the motor.
Now suppose we are making the motor rotating at costant velocity in the magnetic field,

i.e. ω(t) = ω, then we have:
τ(t) = ABi sin(ωt)

Figura 9.4: Motor torque

When τ starts going negative, we reverse the current flux using a commutator in order
to obtain a torque that is always positive, as in figure 9.4, but we would like to have a
constant torque. The solution of this problem is to put multiple coils, as actually happens in
DC motors. The current flows through the coil that is passing on the commutator. We are
trying to push current only when we are on the maximum but since we have a finite number
of coils, the result will be like in figure 9.5, where we can observe a current ripple.

Figura 9.5: Current ripple

If α = 90◦ → sinα = 1 and we can write the expression for the mechanical interaction

τ ' kti

where kt is the torque constant. In addition we can consider the electrical interaction:

ue = keω

where ke is the electric constant.
So, we can find 2 effects of having a DC motor:
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• in order to have a torque we need to apply a voltage;

• there is an effect (the BEMF) that reduce the current flow when the motor is spinning.

DC Motor scheme

Figura 9.6: DC Motor scheme

As we can see in figure 9.6, we have a voltage to apply to the driver, u(t), which we
can regulate. Summarizing, the electrical and the mechanical part are related by these two
expressions:

ue = keωm (9.1)
τm = ktia (9.2)

In the motor design:

• Rs is the shunt resistance;

• La is the armature inductance;

• Ra is the armature resistance;

• ia is the current going through the armature;

• Jm is the motor inertia;
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• Jl is the load inertia.

Jl is the result of two terms:
Jl = Jd + 3J72

as we consider the load made up of a mass with inertia Jd and of three 72-tooth gears,
each with inertia J72. Of the three wheels just mentioned, the one in the middle is where
we actually measure the angle or the velocity, the one on top is necessary to transmit the
rotation, and the last one is connected to the encoder, that is the sensor count the number
of rotations of the load. When we buy a motor, we will find all the values for R, C, La, ke,
kt, etc... in the data sheet.
Connected to the motor, on the right, there is a Planetary Gearbox, basically composed of a
smaller and a bigger wheel, which transmits the rotation from the motor to the load with a
ratio 1÷N . In our case N = 14, that means that to have 1 rotation at the load, the motor
has to do 14 rotations. In formula:

ωm = Nωl. (9.3)

9.2 How to find the transfer function P (s)

What we want now is to find the transfer function P (s) from the voltage applied, u(t), to
the angular velocity of the load, ωl:

ωl(t) = P (s)u(t)

We also define:

θl: the load angle. If we derive it, we obtain: θ̇l = ωl

θm: the motor angle. As before: θ̇m = ωm

We can decompose the problem and try to derive the total transfer function P (s) as the
product of different transfer functions. So let’s define first the transfer function from the
voltage at the input to the voltage at the output of the driver:

udrv(t) = Pdrv(s)u(t) (9.4)

Assuming to have an ideal amplifier, we get that Pdrv(s) is a first order transfer function
with the following expression:

Pdrv(s) =
Kdrv

1 + Tdrvs

where Kdrv and Tdrv can be obtained by the values of resistances and capacity.

The next step is to find the transfer function from the voltage of the driver to the angular
velocity of the load:

ωl = P ′(s)udrv(t) (9.5)
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If we substitute (9.4) in (9.5), we get the overall transfer function:

ωl(t) = Pdrv(s)P ′(s)u(t)

and we can define:
P (s) = Pdrv(s)P ′(s)

Now we need to compute P ′(s).

9.2.1 Model of the electrical part

From the dynamics of the electrical parte we have:

La
dia
dt

+Raia(t) +Rsia(t) = udrv(t)− ue(t) (9.6)

and we can see that the effect of the Back-Electromotive Force is to reduce the voltage
applied. If we substitute (9.1) in (9.6) and if we gather Ra with Rs in order to define the
equivalent resistance Req = Ra +Rs, we get:

La
dia
dt

+Reqia(t) = udrv(t)− keωm(t) (9.7)

9.2.2 Model of the mechanical part

If we have a torque τl at the load, and since there is a 1÷N gearbox, τl is transferred as it is
at the external gears. For Newton’s Law, there is a counter torque τ ′l at the motor output.
In order to compute τ ′l , we have to assume perfect power transmission, that means that the
power applied by the motor is transferred with no loss to the load:

Pm
W = τ ′lωm (9.8)
P l
W = τlωl (9.9)

So, from the equivalence of (9.8) and (9.9), and from (9.3) we obtain the expression for τ ′l :

τ ′l =
1

N
τl (9.10)

from which we see that the torque applied by the motor is N times smaller than the torque
transferred to the load.

We can now write the mechanical equation for the motor:

Jmω̇m = −Bmωm + τm − τ ′l (9.11)

where Bmωm is the friction at the motor, proportional to velocity. By the substitution of
(9.10) and (9.2) in (9.11), we get:

Jmω̇m = −Bmωm + ktia −
1

N
τl (9.12)
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With regard to the load the equation is:

Jlω̇l = −Blωl + τl − τd (9.13)

where similarly as before Blωl is the friction at the load, and τd is a counter torque generated
from an external disturbance.
From equations (9.7), (9.12) and (9.13), by the application of the Laplace Transform, we
will derive an expression for P ′(s) and then for P (s).
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