
Control Laboratory: a.a. 2015/2016

Lecture 8 — 23 March
Instructor: Luca Schenato Scribes: Bragagnolo F, Mazzetto J, Normani N.

8.1 PID Design

The closed loop specifications are typically given in time domain terms with respect to some
specific input signals (step, ramp, sinusoid). A typical request is that the closed-loop systems
has a forced output response to a reference step input with a settling time ts (or rising time
tr) smaller than a certain critical value t∗s (or t∗r in case of rising time), an overshoot s smaller
than a certain critical value s∗ and a steady state error e smaller than a certain critical value
e∗:

ts ≤ t∗s settling time

s ≤ s∗ overshoot [%] (s =Mp · 100)
e ≤ e∗ steady state error [%]

The purpose of this chapter consists on designing the PID control parameters that satisfy
the requested specifications

t∗r, s
∗, e∗ ⇒ (KP , KI , KD, τL).

Given a specific transfer function P (s) that describes the system’s plant, we define G(s) as
the transfer function of the open-loop control system (where C(s) represents the controller’s
transfer function)

G(s) = P (s)C(s),

and W(s) for the closed-loop one,

W (s) =
G(s)

1 +G(s)
.

Under the assumption that the closed-loop system W (s) is BIBO stable, we are going to
map the time domain specifications ts, s, e into the frequency domain of a II order system,
using the following approximations:

ts '
4, 6

ωc
⇒ ωc ≥ ω∗

c =
4, 6

t∗s
(8.1)

ϕGm ≥ ϕ∗
m (8.2)
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The Final Value Theorem is used to obtain the steady state error in term of percentage with
respect to the desired value as follows:

e =
r(∞)− y(∞)

r(∞)
· 100 [%] (8.3)

In the interesting case of a step function as input r(t) = 1(t), the steady state error assumes
this particular form:

e(∞) = (1− y(∞)) · 100 = |1−W (0)| · 100 [%], (8.4)

where y(∞) = W (0)r(∞).

From now on, the equivalent phase margin of P (s), at the crossing frequency ω∗
c , will be

written as ϕPm(ω∗
c ), whose definition is:

ϕPm(ω
∗
c ) := 180◦ + ∠P (jω∗

c ) (8.5)

In the next sections, we will refer our analysis to a specific transfer function P (s) = 1
(s+1)3

,
showing how the three terms P, I and D are related to the conditions mentioned at the
beginning of the chapter. (see Figure 8.1).
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Figure 8.1. Bode plot of P (s) = 1
(s+1)3
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In order to properly design a PID controller, we are going to fulfil these two constraints:{
ϕGm(jω

∗
c ) ≥ ϕ∗

m

|G(jω∗
c )| = 1

(8.6)

8.1.1 Integrator Controller

This section refers to the application of the integral term (I) only:

C(s) =
KI

s
,

whose magnitude and phase are:

|C(jω)| = KI

|ω|
, ∠C(jω) = −90◦ ∀ω.

Where ϕPm(ω∗
c ) ≥ ϕ∗

m + 90◦, the requirements on the phase margin is satisfied:

ϕGm(ω
∗
c ) = ϕPm(ω

∗
c )− 90◦ ≥ ϕ∗

m ⇒ s ≤ s∗.

Figure 8.2. Integrator controller: phase margin analysis
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In Figure (8.2), we are highlighting the area where all the specifics are fulfilled even by re-
ducing the phase margin by 90°, due to the integrator contribution.
As shown in the equation (8.6), we are designing KI to obtain the desired magnitude
|G(jω∗

c )| = 1:

|G(jω∗
c )| = |P (jω∗

c )| |C(jω∗
c )| = |P (jω∗

c )|
KI

ω∗
c

= 1 ⇒ KI =
ω∗
c

|P (jω∗
c )|
. (8.7)

According to the relation ts = 4,6
ωc
, the I controller are expected to guarantee the settling

time condition since:
ωGc = ω∗

c ⇒ ts = t∗s.

Finally, it has to be noticed that by adding an integral term (I), the requirement on the
steady state error is satisfied since e = 0, as long as P (0) 6= 0.

8.1.2 Proportional Controller

Figure 8.2 underlines a fundamental aspect: when the phase margin of P (s) is smaller than
ϕ∗
m+90◦, we can no longer use an integrative controller; the constraint on the phase margin

of G(s) would not be satisfied anymore.
A Proportional term should be used instead:

C(s) = KP

writing magnitude and phase as follows,

|C(jω)| = KP , ∠C(jω) = 0◦ ∀ω ⇒ ϕGm(ω
∗
c ) = mP

ϕ (ω
∗
c ).

As we can see in Figure (8.3), when ω∗
c belongs to the underlined gap, the inequality is valid:

ϕ∗
m ≤ ϕPm(ω

∗
c ) ≤ ϕ∗

m + 90◦, (8.8)

The (8.8) points out:
mG
ϕ (ω

∗
c ) ≥ ϕ∗

m.

As shown in the equations (8.6), we are designing KP to obtain the desired magnitude
|G(jω∗

c )| = 1:

1 = |G(jω∗
c )| = |P (jω∗

c )| |C(jω∗
c )| = |P (jω∗

c )|KP ⇒ KP =
1

|P (jω∗
c )|

(8.9)
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Figure 8.3. Proportional controller: phase margin analysis

The absence of Integrator term makes us wonder about the behaviour of the steady state
error,

e = (1−W (0)) · 100 =

(
1− C(0)P (0)

1 + C(0)P (0)

)
· 100 =

(
1

1 + C(0)P (0)

)
· 100 ≤ e∗

e =
100

1 +KPP (0)
=

100

1 +
P (0)

|P (jω∗
c )|

?

≤ e∗ [%] (8.10)

If this condition is not satisfied, then it is necessary to add also the integral term (I), and
re-design the controller as described in the following paragraph.

8.1.3 Proportional and Integrator Controller

PI controller has to be used in order to satisfy the constraint on the steady state error, when
the proportional contribution is not enough. The integrator term implies a phase margin
reduction, thus an overshoot rising:

C(s) = KP +
KI

s
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In the frequency domain, on the condition s = jω:

C(jω) = KP +
KI

jω
= KP −

KI

ω
j.

At the crossing frequency ω∗
c ,

C(jω∗
c ) = aejα = a cosα + ja sinα ⇒

⇒ Re[C(jω∗
c )] = a cosα = KP , Im[C(jω∗

c )] = a sinα = −KI

ω∗
c

.

In order to guarantee the requested steady state error, we’re modifying the conditions (8.6),
as follows: {

ϕGm = ϕ∗
m (1)

|G(jω∗
c )| = 1 (2)

(8.11)

Thus, (1) gives a,

|C(jω∗
c )| |P (jω∗

c )| = 1 ⇒ a = |C(jω∗
c )| =

1

|P (jω∗
c )|
,

(2) gives α,
ϕ∗
m − 180◦ = ∠P (jω∗

c ) + ∠C(jω∗
c ),

⇒ α = ∠C(jω∗
c ) = ϕ∗

m − 180◦ − ∠P (jω∗
c ) = ϕ∗

m − ϕPm(ω∗
c ) < 0.

The computed values a and α guarantee the fulfillment of all the specifications:

KP = a cosα > 0 (8.12)

KI = −ω∗
ca sinα > 0. (8.13)
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8.1.4 Proportional and Derivate Controller

A different controller is needed when ω∗
c is such that

ϕ∗
m − 90◦ ≤ ϕPm(ω

∗
c ) ≤ ϕ∗

m,

as shown in Figure (8.4).

Figure 8.4. Derivative controller: phase margin analysis

A PD controller should be used:

C(s) = KP +KDs

The aspect of this transfer function of being not proper, will be discussed in the further
lectures.
In the frequency domain for s = jω,

C(jω) = KP +KDjω

At the desired crossing frequency ω∗
c we have:

C(jω∗
c ) = aejα = a cosα + ja sinα ⇒

⇒ Re[C(jω∗
c )] = a cosα = KP , Im[C(jω∗

c )] = a sinα = KDω
∗
c
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As shown in the equations (8.6), we’re computing a and α:

a =
1

|P (jω∗
c )|

α = ϕ∗
m − 180◦ − ∠P (jω∗

c ) = ϕ∗
m − ϕPm(ω∗

c )

Using the relation between the real and imaginary part of the controller C(s) in order to
satisfy the requirements in term of rising time and overshoot, we obtain:

KP = a cosα > 0 (8.14)

KD =
a sinα

ω∗
c

> 0 (8.15)

As already described for the P controller, a check must be done on the steady state error:

e =
100

1 + P (0)C(0)
=

100

1 + P (0)KP

=
100

1 +
P (0) cosα

|P (jω∗
c )|

?

≤ e∗ (8.16)

Otherwise, we need to use also an integrator.

8.1.5 Proportional, Derivative and Integrative Controller

In this section we discuss about the design of PID controller.

C(s) = KP +KDs+
KI

s

In the frequency domain on the condition s = jω,

C(jω) = KP + jωKD +
KI

jω
= KP + j

(
ωKD −

KI

ω

)
At the desired crossing frequency ω∗

c ,

C(jω∗
c ) = aejα = a cosα + ja sinα ⇒

⇒ Re[C(jω∗
c )] = a cosα = KP , Im[C(jω∗

c )] = a sinα = ωKD −
KI

ω

As shown in the equations (8.11), we compute a and α as:

KP = a cosα (8.17)

ω∗
cKD −

KI

ω∗
c

= a sinα (8.18)
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By adding the integral term (I), the requirement on the steady state error is automatically
satisfied since e = 0, unless the plant P (s) has zero in the origin. While the previous
constraints in the frequency domain uniquely determine the value for proportional gain KP ,
the gains KI and KD are related by a single equation thus there is an infinite number of
possible solutions. In order to determine how to design the parameters KI and KD it is
convenient to rewrite the transfer function C(s) in terms of other parameters. As so, let us
define the following time constants:

τI =
KP

KI

, τD =
KD

KP

,

which are referred as the reset time and derivative time. The PID transfer function can be
approximated as

C(s) =
KI

s
(1 + τIs)(1 + τDs).

under the assumption that τI � τD, enforced by setting:

τI = bτD ⇒
KP

KI

= b
KD

KP

⇒ KDKI =
K2
P

b
, 4 ≤ b ≤ 10. (8.19)

Now if we multiply both terms of equation (8.18) by ω∗
cKI , using (8.19):

ω∗2
c KDKI −K2

I = ω∗
cKIa sinα⇒ K2

I + (ω∗
ca sinα)KI − ω∗2

c

K2
P

b
= 0,

whose solutions are:

KI =
−ω∗

ca sinα±
√
ω∗2a2 sin2 α +

4ω∗2K2
P

b
2

Due to the condition α > 0, we’re neglecting the negative solution, thus:

KI =
ω∗
ca

2

(√
sin2 α +

4 cos2 α

b
− sinα

)
.

Summarizing, the parameters of the PID controller can be obtained as follows:

KP = a cosα

KI =
ω∗
ca

2

(√
sin2 α +

4 cos2 α

b
− sinα

)
KD =

K2
P

bKI
If we further assume that b = 4, then the expression for the integral gain simplifies

further:
b = 4 =⇒ KI =

ω∗
ca

2
(1− sinα)
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