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6.1 Control design in frequency domain
This design method can be used only for systems with no poles on right-half of the complex
plane, i.e. with <[pi] ≤ 0.

6.1.1 Analysis of second order system WII(s)

In the frequency domain a second order system can be described as

WII(s) =
ω2
n

s2 + 2ξωns+ ω2
n

where 0 ≤ ξ ≤ 1 is the damping coefficient and ωn is the natural frequency.
From this description we can plot the poles in the complex plane:

=[p1] = −=[p2] = ωd = ωn
√
1− ξ2

<[p1] = <[p2] = σ = ξωn

sin θ = ξ
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Figura 6.1. Poles in the complex plane

Figura 6.2. Step response of a second order system with raising time (tr), settling time (ts,1%) and overshoot
(Mp)

For this kind of systems the step response looks like 6.2, where we can define:

• tr, the time that the step response takes to change from 10% to 90% of the reference
signal, called raising time;

• ts,1%, the time that the step response takes to enter and remain within ± 1% of the
reference signal, called settling time;

• Mp, the the maximum peak value of the step response measured from the reference
signal, called overshoot.
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6.1.2 Relationship between the time domain specs and the frequen-
cy domain parameters

The relationship between the raising time, the settling time and the overshoot with the
natural frequency and the damping coefficient are:

• tr =
1.8
ωn

• ts,1% = 4.6
ξωn

• Mp = e
−π ξ√

1−ξ2

Figura 6.3. Overshoot Mp as a function of damping coefficient ξ

Given a set of required specifications tmaxr , tmaxs,1% and Mmax
p , we can use these formulas to

derive an area in the complex plane where to place the poles in order to satisfy the required
specifications:

• tr ≤ tmaxr ⇒ ωn ≥ 1.8
tmaxr

= ωmin

• ts,1% ≤ tmaxs,1% ⇒ σ ≥ 4.6
tmax
s,1%

= σmin

• Mp ≤Mmax
p ⇒ ξ ≥ ξmin (as we can inferred from Fig. 6.3) ⇒ θ ≥ θmin

By considering all these conditions simultaneously, we can identify the performance area
as the orange area in figure 6.4. We can see that:

• all points outside the circle of radius ωminn have natural frequency grater than ωminn and
so the systems is sufficiently fast;

• all points at the left at vertical line in −σmin have real part in absolute value greater
than −σmin and then the settling time is small enough;
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Figura 6.4. Area where we can place the poles to obtain the desired raising time, settling time and overshoot

• all points in the cone between −θmin and θmin satisfy the conditions on overshoot.

The position of the poles changes the resonance peak Mr and resonance frequency ωr (see
figure 6.5). In fact the resonance frequency is ωr = ωn

√
1− 2ξ2 and so, if we increase ωn,

we move the peak of resonance to the right. The height of the peak depends on ξ. If ξ ≥
√
2
2

there is no resonant peak, while the peak Mr tends to infinity as ξ tends to 0.
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Figura 6.5. Bode plot of second order system
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6.1.3 From conditions on closed-loop transfer function to conditions
on open-loop transfer function

The second order system WII(s) is the system that is obtained from the feedback on system
G(s), the open-loop system, which includes the plant and the controller.

WII(s) =
GII(s)

1 +GII(s)
⇒ GII(s) =

ω2
n

s(s+ 2ξωn)

The conditions on ωn and ξ of system WII(s) can be expressed as condition on the phase
margin ϕm and crossing frequency ωc of the system GII(s). Using a change of variable
s→ s′ = s

2ξωn
⇒ s = 2ξωns

′ we obtain

GII(s
′) =

ω2
n

2ξ2ωns′(s′ + 1)
=

1

2ξ2s′(s′ + 1)

Nyquist plots of GII(s) and GII(s
′) are the same, so ϕm is the same for both transfer

functions. The relationship between ϕm and ξ is

ϕm = atan

(
2ξ√

1 + 4ξ4 − 2ξ2

)

as depicted in Fig. 6.6.
For what concern the crossing coefficient we will consider the approximation ωc ' ωn.

Figura 6.6. Damping coefficient ξ as a function of phase margin ϕm
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Figura 6.7. Approximate dependence of overshoot Mp as a function of the phase margin ϕm

6.1.4 Conclusions

The damping coefficient ξ as a function of ϕm of GII(s) is monotonically increasing, so we
have to achieve a sufficiently great ϕm in order to get ξ and ts,1% for the closed-loop system
that satisfy the specifics.
As we have seen, raising time and natural frequency satisfy tr = 1.8

ωn
and, assuming ωn = ωc,

tr =
1.8
ωc
; therefore the bigger is the crossing frequency the faster is the response of closed-loop

system.
For the overshoot, we know thatMp is monotonically decreasing with ξ and ξ is monotonically
increasing as a function of ϕm of GII(s), therefore Mp is monotonically decreasing with ϕm
(see picture 6.7). As so the larger the phase margin is, the smaller the overshoot is.

6.2 Design of a PID controller
The open-loop transfer function is G(s) = C(s)P (s) and we want C(s) such that ωc and ϕm
of G(s) are as desired.
The PID controller has a proportional part, an integral part and a derivative part (see picture
6.8); the transfer function is C(s) = KP + KI

s
+KDs.

The design’s purpose is to determine the gains (KP , KI , KD) such that the closed-loop system
satisfies the required specifics (tr, ts,1%,Mp), from which we can derive, as written before,
(ω∗c , ϕ

∗
m). In order to change the ωc we will change the magnitude of C(s) while in order to

change ϕm we will change the phase of C(s). Magnitude and phase of G(s) con be expressed
as:

• |G(jω)|dB = |C(jω)|dB|P (jω)|dB

• G(jω) = C(jω) + P (jω)
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Figura 6.8. PID’s scheme

The three components of the PID are:

• C(s) = KP (see figure 6.9);

• C(s) = KI
s

(see figure 6.10);

• C(s) = KDs (see figure 6.11);

Each component of a PID modifies in a different way the magnitude and the phase of
the open-loop system. In the following table we can see the pros ant the cons for using one
of the components.

PROS CONS
Proportional - choose ωc - no control on ϕm
Integral - guarantees zero steady state

error
- reduces ϕm

- removes possible constant
input disturbances

Derivative - augment ϕm - amplifies measurement noise
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Figura 6.9. Bode plot of a proportional controller
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Figura 6.10. Bode plot of a integrative controller
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Figura 6.11. Bode plot of a derivative controller
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