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Instructor: Luca Schenato Scribes: Nicola Bastianello, Matthias Pezzutto, Enrico Picotti

6.1 Control design in frequency domain

This design method can be used only for systems with no poles on right-half of the complex
plane, i.e. with R[p;] < 0.

6.1.1 Analysis of second order system Wj;(s)

In the frequency domain a second order system can be described as

w2

Wii(s) = 32+2§w7;s+w%

where 0 < € < 1 is the damping coefficient and w, is the natural frequency.
From this description we can plot the poles in the complex plane:
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Figura 6.1. Poles in the complex plane
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Figura 6.2. Step response of a second order system with raising time (¢,), settling time (¢, 19) and overshoot
(Mp)

For this kind of systems the step response looks like 6.2, where we can define:

e ., the time that the step response takes to change from 10% to 90% of the reference
signal, called raising time;

e t.19, the time that the step response takes to enter and remain within £+ 1% of the
reference signal, called settling time;

e M,, the the maximum peak value of the step response measured from the reference
signal, called overshoot.
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6.1.2 Relationship between the time domain specs and the frequen-
cy domain parameters

The relationship between the raising time, the settling time and the overshoot with the
natural frequency and the damping coefficient are:

groin E

Figura 6.3. Overshoot M), as a function of damping coefficient £

Given a set of required specifications ¢, ¢["ly and M"**, we can use these formulas to
derive an area in the complex plane where to place the poles in order to satisfy the required
specifications:

max 1.8 _ , min
o {, <M = w, > frar — W

4.6 j
o tS,l% S Z?f% i g 2 tmaz — O—mln

5,1%

o M, < M =& > £min (as we can inferred from Fig. 6.3) = 6 > g™

By considering all these conditions simultaneously, we can identify the performance area
as the orange area in figure 6.4. We can see that:

e all points outside the circle of radius w™™ have natural frequency grater than w™™" and

so the systems is sufficiently fast;

e all points at the left at vertical line in —o,,;, have real part in absolute value greater
than —a,,;, and then the settling time is small enough;
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Figura 6.4. Area where we can place the poles to obtain the desired raising time, settling time and overshoot

e all points in the cone between —@™" and ™" satisfy the conditions on overshoot.

The position of the poles changes the resonance peak M, and resonance frequency w, (see

figure 6.5). In fact the resonance frequency is w, = w,y/1 — 2£2 and so, if we increase w,,
we move the peak of resonance to the right. The height of the peak depends on . If € > g
there is no resonant peak, while the peak M, tends to infinity as £ tends to 0.
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Figura 6.5. Bode plot of second order system
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6.1.3 From conditions on closed-loop transfer function to conditions
on open-loop transfer function

The second order system Wy;(s) is the system that is obtained from the feedback on system
G(s), the open-loop system, which includes the plant and the controller.

Grr(s) w?
Wil = TG O T S o)

The conditions on w, and & of system Wy, (s) can be expressed as condition on the phase
margin @, and crossing frequency w,. of the system Gy;(s). Using a change of variable

s — § = %i = s = 2fw, s’ we obtain

w? 1

Gu(s) = 28%w,s'(s' + 1) - 26%5'(s' + 1)

Nyquist plots of Gr(s) and Gp/(s’) are the same, so ¢, is the same for both transfer
functions. The relationship between ¢, and & is

_ 2
Pm = atan (\/Tglgél — 252)

as depicted in Fig. 6.6.
For what concern the crossing coefficient we will consider the approximation w,. >~ w,.

g L

mPMmm ®
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Figura 6.6. Damping coefficient ¢ as a function of phase margin ¢y,
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Figura 6.7. Approximate dependence of overshoot M,, as a function of the phase margin ¢y,

6.1.4 Conclusions

The damping coefficient £ as a function of ¢, of G/(s) is monotonically increasing, so we
have to achieve a sufficiently great ¢,, in order to get { and ¢, 19 for the closed-loop system
that satisfy the specifics.

As we have seen, raising time and natural frequency satisfy ¢, = % and, assuming w,, = w,,
t, = i}—'f; therefore the bigger is the crossing frequency the faster is the response of closed-loop
system.

For the overshoot, we know that M), is monotonically decreasing with £ and £ is monotonically
increasing as a function of ¢, of Gy/(s), therefore M, is monotonically decreasing with ¢,,
(see picture 6.7). As so the larger the phase margin is, the smaller the overshoot is.

6.2 Design of a PID controller

The open-loop transfer function is G(s) = C(s)P(s) and we want C(s) such that w,. and ¢,,
of G(s) are as desired.

The PID controller has a proportional part, an integral part and a derivative part (see picture
6.8); the transfer function is C(s) = Kp + £ + Kps.

The design’s purpose is to determine the gains (Kp, K;, Kp) such that the closed-loop system
satisfies the required specifics (¢, s19%, M),), from which we can derive, as written before,
(W, @r). In order to change the w, we will change the magnitude of C(s) while in order to
change ¢,, we will change the phase of C(s). Magnitude and phase of G(s) con be expressed
as:

¢ |G(w)las = |C(jw)las| P(jw)las
o [Gljw) = /Cljw) + /P(jw)
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= #{}—V du/dt u
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Figura 6.8. PID’s scheme

The three components of the PID are:
e C(s) = Kp (see figure 6.9);

o C(s) = &L (see figure 6.10);

e C(s) = Kps (see figure 6.11);

Each component of a PID modifies in a different way the magnitude and the phase of
the open-loop system. In the following table we can see the pros ant the cons for using one
of the components.

PROS CONS
Proportional | - choose w, - no control on ¢,
Integral - guarantees zero steady state | - reduces ¢,

error

- removes possible constant
input disturbances
Derivative - augment ©,, - amplifies measurement noise
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Bode Diagram
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Figura 6.9. Bode plot of a proportional controller
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Figura 6.10. Bode plot of a integrative controller
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Figura 6.11. Bode plot of a derivative controller



