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3.1 Approximation of stable systems
Given a dynamical system which is assumed to be stable:

Figure 3.1. Dynamical systems assumed to be associated to a closed loop system

if P (s) = n(s)
d(s)

, the roots of the denominator d(s) are called poles, and have the property
that <[pi] < 0. The roots of numerator n(s) are called zeros. Both poles and zeros could be
rappresented in the complex plan as seen in figure 3.2

Figure 3.2. Example of zeros (circles) and poles (crosses) in the complex plan

Considering as input u(t) = 1(t), the step function, with Laplace trasformation L{u(t)} =
U(s) = 1

s
, then the corrispective force output will be Yf (s) = P (s)U(s). The inverse Laplace

transform of the force output (considering it strictly proper) will be:

yf (t) = α01(t) +
n∑
i=1

αit
li−1epit (3.1)
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with αi that depends of both poles and zeros (the coefficients of n(s) and d(s)). NB (αi and
epit are complex number, but y(t) ∈ R)

In a stable system,
∑n

i=1 αit
li−1epit → 0 for t→∞, but all the therms of the series will go

to 0 with different rates, depending how negative is pi in the complex plan: given two poles pi
and pj if Re[pi] < Re[pi] then αiepit will go to zero faster then αjepjt. The pole(s) associated
with the slowest rate of convergence it is(are) called dominant pole(s). The purpose is to
simplify the entire system using the dominant pole approximation.

3.1.1 Dominant pole approximation

The idea behind this approximation is to reduce the system using only the two dominant
poles and removing the other poles or zeros of the function. Let us consider the two dominant
poles: p1 = p̄2 = σ + jω with σ < 0, then we can write equation (3.1) as:

yf (t) = α01(t) + α1e
p1t + α2e

p2t +
n∑
i=3

αit
li−1epit ' α01(t) + α1e

p1t + α2e
p2t

this approximation coincide with a second order system with a transfer function like

PII(s) = α0
ω2
n

s2 + 2ξωns+ ω2
n

where ωn is the natural frequency, ξ is the damping ratio, and α0 is the DC gain.

3.1.2 Example: approximation of a transfer function

Given a transfer function in explicit form, it can be written using Bode form:

P (s) = KB

(1 + τ z1 s)(1 + 2ξz2
s
ωz2

+ s
ωz2

2)(1 + ...)

(1 + 2ξp1
s
ωp1

+ s
ωp1

2)(1 + 2ξp2
s
ωp2

+ s2

ωp2

2
)(1 + ...)

considering the dominant pole in the first term of the denominator, and approximating:

P (s) ' KE
1

(1 + 2ξp1
s
ωp1

+ s
ωp1

2)

The rationale behind this approximation is that the components dues to the faster modes
will quickly become negligible as compared to the slowest ones. A simulation between a full
order system and his dominant poles approximation system, shows that the approximated
system in addition to being simpler also has similar performance since the neglected poles
and zeros are substantially far away from the dominant poles.
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Figure 3.3. Comparison between a full order model and a dominant pole approximation

3.1.3 Frequency representation

In order to simplify the analysis we will consider

KE = 1, 0 ≤ ξ ≤ 1

since KE simply corresponds to a scaling of the output, and ξ is restricted in order to have
stable complex dominant poles. To analyze the second order system performance, it can be
useful to plot the transfer function in its frequency domain, by using the Bode plot. Figure
3.4 shows magnitude in dB and phase of the second order transfer function PII(jω). The
magnitude is given by:

| PII(jω) |= ω2
n

| −ω2 + 2jξωn + ω2
n |

=
ω2
n√

(ω2 − ω2
n)2 + 4ξ2ω2

n

By computing its derivative, it is straightforward to show that the magnitude presents a
resonant peak Mr at the so called resonant frequency ωr for ξ2 < 1/2:

Mr := max
ω
| PII(jω) |= 1

2ξ
√

1− ξ2
, ξ2 <

1

2
(3.2)

ωr := arg max
ω
| PII(jω) |= ωn

√
1− 2ξ2 (3.3)

If ξ2 ≥ 1/2, then no peak is present and the magnitude is monotonically decreasing. Note
that for small ξ, then the resonant frequency is close to the natural frequency:

ξ � 1⇒ ωr ≈ ωn, | PII(ωr) |≈
1

2ξ
=| PII(ωn) |
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Figure 3.4. Bode plot of PII(jωn)

The only thing which is relevant looking at the Bode plot of a second order transfer
function is the behavior of the system for values of ω up to a certain frequency. This fact
can be explained by referring to two different systems which differ only at the high frequencies
and observing that they will react in a similar way when they are connected in close loop.

3.1.4 Step response

Another approach to analyze the performances of a system is through three parameters
defined in the time domain, which are raising time, settling time and overshoot.
Considering the input u(t) = 1(t), we can easily compute the forced response yf (t) of the
system using the inverse Laplace tranformation:

yf (t) = L−1[Yf (s)] = L−1[PII(s)U(s)]

yf (t) = L−1

[
ω2
n

(s2 + 2ξωn + ω2
n)
· 1

s

]
= 1 + [a sin(ωdt) + b cos(ωdt)] e

−σt

where σ = ωnξ and ωd = ωn
√

1− ξ2.
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Figure 3.5. Step response of a second order system

In figure 3.5 are shown three parameters that are useful to give a complete description
of the system’s performances: ta, ts and Mp.

• ta is called ”raising time“ and it indicates the time needed to the signal to go from 10%
to 90% of its final value. The lowest is the value of ta and the quickest is the system’s
response.

• ts is called ”settling time“ and it represents the time spent to have the signal fully
confined into a range of ±1% with refence to the final value. A small ts means few
fluctuations near the reference value.

• the last parameter is the ”overshoot“ Mp, which denotes the maximum percentage of
error between the signal and the reference. A large overshoot reflects in a first large
deflection of the signal from the final value.

For a second order system we can find a relation between the system parameters (ωn, ξ) and
the performance specifications (ta, ts, Mp):

tr ≈
1.8

ωn
, ts ≈

4.8

ωnξ
, Mp ≈ e

−πξ√
1−ξ2

The first two parameters depend mostly on the frequency ωn, instead Mp depends only on the
coefficient ξ. They are all monotonically decreasing functions and in particular Mp, which is
defined only for 0 ≤ ξ ≤ 1, takes value from 0 to 1 because it represents a percentage.
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3.1.5 Modeling of sensors and actuators

Let’s consider the model of a plant (Pphy) affected by an actuator (A) and measured through
a sensor (S) represented in Figure 3.6:

Figure 3.6. Model of a process with actuator (A), plant (Pphy) and sensor (S).

u = control signal (voltage, current,etc.)
û= physical dimension affecting the process (force, valve opening, etc.)
y = dimension of interest (temperature, joint position, etc.)
ỹ= y translated dimension (voltage, current, etc.)
A = actuator block
Pphy = plant
S = sensor block

The whole feed-forward transfer function is P (s) = A(s)Pphy(s)S(s).

Sensors

A sensor or trasducer is a device that receives a physical signal as an inupt (for example the
angular position of a motor) and provides an electrical signal as an output according to the
input magnitude. The sensor can be modeled as a transfer function that receives continuous
signals y(t), and provides descrete quantized signals ym(kT ) according to the sampling time
T .

The output signal ym ' ksy(kT ) can assume a finite number of values depending on the
quantization width ∆ and the slope of the line to approximate ks. If we consider ks = 1 the
quantization error is |y(kT )− ym(kT )| ≤ ∆

2
.

The uncertanty introduced by the quantization error is modeled as a quantization noise
Vq(t), wich is approximated as a white noise and has the following properties: E[Vq(t)] = 0,
E[V 2

q (t)] = ∆2

12
.
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Figure 3.7. Sensor model on the left and quantizer on the right

Figure 3.8. Quantization noise
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The complete model of the sensor is represented by the following block diagram:

Figure 3.9. Sensor block diagram

The sensor takes some time to reach the reference value and produce the correct output,
introducing a measurement delay ta. A saturation block is placed in the model to bound the
input signal, this block is not linear and produces the output

y′(t) =


ymax y > ymax
y |y| < ymax
−ymax y < −ymax

The measurement noise Vm(t) represents the variations in measurement results due to exter-
nal disturbances and tools lack of precision.

Actuators

The actuator is a device that receives an electrical signal as an inupt and provides a physical
action as an output, wich operates on the process.

Figure 3.10. Actuator
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The whole model of the actuator is represented by the following block diagram:

Figure 3.11. Actuator block diagram

This model embodies a zero holder hold, which generates a continuous signal from the
samples, a saturation block, extenral disturbances W (t), that are typically constant but
unknown, and a delay ta.

Delay approximation

The described models introduce some delays caused by measurement and data transmission,
let’s derive the transfer function of a generic delay ta.

Figure 3.12. Delay

The Laplace transform of a signal with a time delay is the Laplace transform of the very
signal multiplied by the exponential of the delay. Concerning the block diagram, let the
Laplace transform of the input signal be Y (s) = L[y(t)], the delay block transfer function is
F (s) = e−sta :

L[y(t− ta)] = e−staY (s)
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The delay transfer function e−sta is a non rational function, then it’s necessary to aprox-
imate it to a more usable form. To do this we use the Taylor first order expansion:

F (s) = e−sta =
1

esta
≈ 1

1 + sta

This approximation is also known as Pade’ approximation (0-1) where the two numbers
stands for the degrees of the numerator and the denominator. Another used approximation
is the Pade’ approximation (1-1) wich takes to the following delay transfer function:

F (s) = e−sta =
e−

sta
2

e
sta
2

≈
1− sta

2

1 + sta
2
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