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28.1 Structure property of LQ control
In this section we examine, with the frequency-domain analysis, the phase margin in the LQ
control. The LQ control scheme is display in Figure 28.1.

For the classical control we have the open-loop transfer function given by:

G(s) = C(s)P (s) G(jw) : R→ C

the close-loop transfer function is:

W (s) =
G(s)

1 +G(s)
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For a LQ-control these function are:{
ẋ(t) = Ax(t) +Bu(t)

uc(t) = KLQx(t)

If we consider the open-loop transfer function from u(t) ∈ R to uc(t) ∈ R we get:

GLQ(s) = KLQ(sI − A)−1B ∈ C

and the close-loop transfer function became:

WLQ(s) =
GLQ(s)

1 +GLQ

28.1.1 Nyquist diagram of GLQ(jw)

Property of the optimal LQ control:


u∗ = −uc = −KLQx(t)

KLQ = R−1BTP

PA+ ATP +Q− PBR−1BTP = 0

(28.1)

where:

1. BTP = RKLQ
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2. KT
LQ = PBR−1

3. PB = KT
LQR

We add and subtract sP in 28.1 obtaining:

PA+ ATP +Q− PBR−1BTP + sP − sP = 0⇔
PA+ ATP +Q−KT

LQRR
−1BTP + sPI + sPI = 0⇔

Q = KT
LQRKLQ + sPI − PA− ATP − sPI ⇔

Q = KT
LQRKLQ + P (sI − A) +

(
−AT − sI

)
P ⇔

BT
(
−sI − AT

)−1
Q (sI − A)−1B = BT

(
−sI − AT

)−1 [
KT
LQRKLQ + P (sI − A)+

+
(
−sI − AT

)
P
]
(sI − A)−1B

and after some steps we obtain:

R+BT
(
−sI − AT

)−1
Q (sI − A)−1B =

(
I +BT

(
−sI − AT

)
KT
LQ

)
R
(
I +KLQ (sI − A)−1B

)
the right part of the equation is semi-definite positive.

For a general MIMO system we have:

R+BT (−sI −AT )−1Q(sI −A)−1B = (I +BT (−sI −AT )−1KT
LQ)R(I +KLQ(sI −A)−1B).

Let’s now consider the case of a SISO system, so that R = r, is a scalar.
Evaluating the previous equation for s = jw we have:

r+BT (−jw−AT )−1Q(jw−A)−1B = (1+BT (−jw−AT )−1KT
LQ)r(1 +KLQ(jw−A)−1B).

We can see the term in the parenthesis are transpose complex conjugate of each other, so
we can rewrite the equation as :

r + ||(Q1/2(jw − A)−1B||2︸ ︷︷ ︸
square norm ≥ 0

= |1 +KLQ(jw − A)−1B|2︸ ︷︷ ︸
real number ≥ 0

r.

This imply |1 +KLQ(jw −A)−1B|2r ≥ r, and taking the square root, we have a simple and
important result:

|1 +GLQ(jw)| ≥ 1

which is a property of the open loop transfer function of the optimal LQ control.

In the Nyquist diagram, this property means that the function has to be outside the circle
of radius one centered in −1, so GLQ(jw) has, in the worst case scenario, a phase margin
equal or greater than 60◦ and a minimum gain margin of 1

2
.

In reality φLQPM ≥ 60◦ in LQ control is not always guaranteed, because the state is not
accessible. With the introduction of an observer, a dynamical system, the phase margin
typically decreases. So it has to be taken in consideration to design carefully the observer
to keep a good phase margin.
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Figura 28.1. Nyquist diagram of GLQ

Figura 28.2. The system with the introduction of the observer

28.2 Sensitivity function
Recalling that G(s) = C(s)P (s) and W (s) = 1

1+G(s)
are the open-loop and the closed-loop

transfer function, the sensitivity function is defined as:

S(s) =
1

1 +G(s)
.

So the sensitivity for the LQ control is:

SLQ(s) =
1

1 +GLQ(s)

with
GLQ(s) = KLQ(sI − A)−1B WLQ(s) =

GLQ(s)

1 +GLQ(s)
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Figura 28.3. The system with two added disturbances

28.3 Importance of the sensitivity function
In this section we examine the two main reasons for which it is important the study of the
sensitivity function. The first one is that it is a term that multiplies the external disturbances,
as we can see analysing the unitary feedback closed loop control scheme of figure 28.4.

−+
r(t)

C(s)
e(t)

P (s)
u(t) +

+
y(t)

+
+

d(t)

n(t)

Figura 28.4. Plant with external disturbances

From the block diagram we can rather straightforwardly derive the I/O relashionship
from r(t) to y(t) in presence of an external noise d(t) acting at the output of the plant of
t.f. P (s) and an additive noise n(t) entering in the feedback loop. For such a derivation we
can use the superposition principle. Assuming first r(t) 6= 0, n(t) 6= 0 and d(t) = 0 we can
write, in the Laplace domain:{

Yn(s) = C(s)P (s)E(s)

E(s) = R(s)− (Yn(s) +N(s))

which can be solved in Yn(s) obtaining

Yn(s) =
C(s)P (s)

1 + C(s)P (s)
[R(s)−N(s)]

Then assuming d(t) 6= 0 with n(t) = 0 and r(t) = 0 we have{
Y (s) = D(s) + C(s)P (s)E(s)

E(s) = −Y (s)
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that, once solved, gives

Yd(s) =
D(s)

1 + C(s)P (s)

Then in the general case (r(t) 6= 0, d(t) 6= 0 and n(t) 6= 0) we have that

Y (s) = Yn(s) + Yd(s) =
C(s)P (s)

1 + C(s)P (s)
[R(s)−N(s)] +

D(s)

1 + C(s)P (s)

= W (s)[R(s)−N(s)] + S(s)D(s)

(28.2)

where S(s) = 1
1+C(s)P (s)

is the sensitivity function and W (s) = C(s)P (s)
1+C(s)P (s)

is the closed loop
t.f. In a similar way, solving the algebraic system{

Y (s) = D(s) + C(s)P (s)E(s)

E(s) = R(s)− (Y (s) +N(s))

in E(s), we can also prove that, in the Laplace domain, the error e(t) is related to the control
system reference signal r(t) and to the noises d(t) and n(t) by the following relation:

E(s) =
1

1 + C(s)P (s)
[R(s)−D(s)−N(s)] = S(s)[R(s)−D(s)−N(s)] (28.3)

Finally, using the fact that U(s) = C(s)E(s), we also immediately find that, in the Laplace
domain, the control signal u(t) is related to the signals r(t), d(t) and n(t) by the equation:

U(s) = C(s)E(s) =
C(s)

1 + C(s)P (s)
[R(s)−D(s)−N(s)] =

= C(s)S(s)[R(s)−D(s)−N(s)]

(28.4)

From equation (28.2), (28.3) and (28.4) we see the importance of having a small sensitivity
function S(s) in the range of frequencies of the signal to be tracked if we want the output
not to be too much sensitive to the disturbance d(t) and if we want the error and the control
input signal to be small.

If we design the controller of t.f. C(s) in a proper way we should get a closed loop
t.f. whose Bode plot should look something like the one of figure 28.5 in which it has
been highlighted the angular bandwidth ωB (dashed vertical line) related to the bandwidth
frequency by the relation ωB = 2πfB. Notice that in the range of angular frequencies [0, ωB]
we can perfectly track the reference signal r(t) since |W (ω)|dB ≈ 1. In general we will
try to design C(s) so as to have a slope of the Bode plot of the module of W (ω) which is
sufficiently steep for ω > ωB since in the real system there might be resonance effects, not
modelled by P (s), which make the Bode diagram of the module of the real closed loop t.f.
more similar to the dashed one reported in figure 28.5.

Since for ω < ωB we want, for tracking porposes, W (ω) ≈ 1 then we see that we have
to design C(s) in order to have, for ω ∈ [0, ωB], that |C(ω)P (ω)| � 1. In this way we also
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Figura 28.5. Bode plot of the module of the closed loop transfer function W (ω)

see that in this range of frequencies S(s) = 1
1+C(s)P (s)

will be very small and approximable
as S(s) ≈ 1

C(s)P (s)
� 1 so that equation (28.4) can be rewritten as

U(s) = C(s)S(s)[R(s)−D(s)−N(s)] ≈
≈ C(s)(C(s)P (s))−1[R(s)−D(s)−N(s)] = (P (s))−1[R(s)−D(s)−N(s)]

(28.5)

A typical Bode plot of the module of the t.f P (ω) and its inverse (P (ω))−1 is that of figure
28.6. From figure 28.6 and equation (28.5) we see that if the angular bandwidth of the closed
loop t.f. ωB is made too large by the designed C(s) then we will amplify possible noises with
frequency components in the range of interest [0, ωB]. Moreover also some reference signal
armonics will be substantially amplified obtaining a very large control input u(t).

The ideal behaviour of the module of the Bode plot of the t.f S(s) is that of a monoto-
nically increasing function of log10(ω) which is as smaller as possible in the range of angular
frequenciees [0, ωB]. An acceptable behaviour for the module of the Bode plot of the t.f.
S(s) is anyway that of a function of log10(ω) which is sufficiently smaller than one in the
above mentioned range of angular frequencies. Two examples are reported in figure 28.7

The second, but not less important, reason for which the sensitivity function study is
fundamental is the presence of parameter uncertainties in almost every plant model we can
do. In general we have in fact a plant t.f. P (s) which depends on a certain number of
parameters which we can’t know exactly. Therefore in the design of C(s) we will use a
nominal plant t.f.

Pnom(s) = P (s, θnom) (28.6)
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Figura 28.6. Typical bode plot of the module of a plant t.f. P (ω)

Figura 28.7. Sensitivity t.f. S(ω)
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where θnom is the vector of nominal parameters. However the actual plant t.f. will be

P (s) = P (s, θ0) (28.7)

where θ0 is the vector of true parameters. The important thing to notice is that it will be
this last t.f. that will determine the effective performances of each controller designed based
on Pnom(s). We are therefore interested in evaluating the impact on the control system
performances of the very likely difference between θnom and θ0. Defined δθ := θ0 − θnom we
can compute δ[y(t)]

δθ
and it turns out that

δ[yc.l.t.f (t)]

δθ
= S(s)

δ[yo.l.t.f (t)]

δθ
(28.8)

Again we see the importance of having a small sensitivity function in order to have a closed
loop control system that is unsensible to parameter uncertainties. In the block schemes of
figures 28.8 and 28.9 are clarified the meanings of the quantities δ[yo.l.t.f ](t) = y(t)−yo.l.nom(t)
and δ[yc.l.t.f ](t) = y(t)− yc.l.nom(t).

Figura 28.8. y(t) versus yo.l.,nom(t)

Figura 28.9. y(t) versus yc.l.,nom(t)
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