
Control Laboratory: a.a. 2015/2016

Lezione 27 — 12 May
Instructor: Luca Schenato Scribes: Matteo Iovino, Simone Rampon, Nicoló Scarabottolo

27.1 Design of R(jω) and Q(jω)
Given the usual expression of the quadratic cost function:∫ +∞

0

x̄(t)T Q̄x̄(t) + ū(t)T R̄ū(t) dt

where ˙̄x(t) = (Ā− B̄ReqN)x̄(t) + B̄v(t), we have the following hypothesis:

1. (F, B̄) is reachable;

2. (F, Q̄
1
2 ) is observable;

3. R̄ is strictly positive: R̄ > 0;

Tipically the first and the second assumptions are satisfied unless there are some zero/pole
cancellations between P (s), Q(s) and between P (s) and R(s). For the third hypothesis, if it
cannot be satisfied, the we can set R̄ = εI with ε small, so that the solution of this problem
is very similar to the solution of the problem with R̄ = 0.
Applying the Parseval Theorem it can be written:

1

2π

∫ +∞

0

X(jω)∗Q(jω)X(jω) + U(jω)∗R(jω)U(jω) dω

So, how to design Q(s) and R(s) in order to force the optimal control to have some charac-
terizations of u(t) and x(t) in frequency domain?

As an example, consider Figure 27.1 which describes a mechanical system with a resonance.
Any small input with frequency near ωr will be amplified. Besides the input is used also to
estimate the state, so resonances can generate some problems in the estimation of the state
of the system.
There can be specific oscillations around ωr, so they have to be predicted: in order to do
that the output has to be passed throught a filter Py(s), as it is showed in the figure below.
Considering these equations:

• ỹ(t) = Py(s)y(t) where the usual abuse of notation stands;

• y(t) = Cx(t);
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Figura 27.1. Scheme of the KLQ controller and Bode plot of the collocated system.

Figura 27.2. First way to reduce the effect of resonances.

⇒ ỹ(t) = Py(s)Cx(t).
Looking back at the form of integral 27.1, it follows:∫ +∞

0

ỹ(t)2 + ru(t)2 dt =

∫ +∞

0

x(t)TCTPy(s)
TPy(s)Cx(t) + ru(t)2 dt

Parseval
=⇒ 1

2π

∫ +∞

0

X(jω)∗CTPy(jω)∗Py(jω)CX(jω) + rU(jω)∗U(jω) dω =

=
1

2π

∫ +∞

0

X(jω)∗CTPy(−jω)Py(jω)C︸ ︷︷ ︸
Q(jω)

X(jω) + rU(jω)∗U(jω) dω

If Q(jω) =


|Py(jω)|2 0 · · · 0

0 0 · · · 0
...

... . . . ...
0 0 · · · 0

 ≥ 0,

Py(s) has to be chosen in order to penalize the frequency peak of the output at the reso-
nance frequency ωr; for example the magnitude of the frequency responce, |Py(jω)|, can be
increased in a neighborhood of ωr.
Giving some examples:

1. Py(s) = a2

s2+ω2
r
, in this case a large frequency range around ωr is penalized
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2. Py(s) = a2

s2+2ξωrs+ω2
r
, in this case there is a little bit of dumping and the range of

frequencies that are penalized is larger;
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Figura 27.3. Effect of a variation of the damping factor on Py(s).

In order to penalize the frequencies at input that are in a neighborhood of ωr, we can filter
the input rather than the output:

Figura 27.4. Second way to reduce the effect of resonances.

So there are two ways to reduce the effects of the resonances in the plant P (s).

If instead there is high frequency noise produced by the sensor and tr, ts are fixed by spe-
cifications, also ωC ' ωB can be derived, where ωB is the angular bandwidth of the closed
loop system.
The purpose is to trace every signal with bandwidth ωB, and to penalize any ouput frequency
ωO > ωB, with the choice of ωC , in order to obtain the closed loop transfer function in figure
(27.5).
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Figura 27.5. Bode plot of the desired closed loop tranfer function.

In ored to achieve that, a suitable Py(s) could be Py(s) = 1+αs
1+βs

where 1
α
' ωB and

1
β
' (3÷ 10)ωB.
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Figura 27.6. Bode plot of a suitable Py(s).

Eventually also the steady-state error can be modified, penalizing the frequency that are
very small. A suitable Py(s) for this kind of problems is the integrator (27.7): Py(s) = 1

s
,

that filters constant disturbances.
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Figura 27.7. Bode plot of an integrator.

So how to design Py(s) and Pu(s)? It depends on the situation, in particular on the type
of disturbances or the transfer functions of sensors one has to deal with. Suitable weights ha-
ve to be chosen, for example the well known R(s), Q(s) are squares of the magnitude of some
filters. Remindig the factorization, Q(jω) = Q∗1(jω)Q1(jω) where Q1(jω) ∈ Cn is the Bo-
de representation of the weighting filter and Q(jω) is the matrix power spectrum of the filter.

Considering this special case: Q(jω) is a block matrix, so:

Q(jω) ∈ Cn×n, Q(jω) =

[
Q′(jω) 0

0 Q′′(jω)

]
, Q′(jω) ∈ Cn1×n1 , Q′′(jω) ∈ R(n−n1)×(n−n1)

The inputs can be penalized separately!
It’s also assumed that Q(jω) is obtained through a filter HQ(jω): Q(jω) = H∗Q(jω)HQ(jω),
where HQ(jω) is the filter associated to Q(jω) (i.e. the factorization of Q(jω)).

HQ(jω) =

[
H ′Q(jω) 0

0 H ′′Q

]
, H ′Q(jω) ∈ Cn1×n1 , H ′′Q ∈ R(n−n1)×(n−n1)

where H ′′Q does not depend on frequency.
Being HQ(s) a filter, it can be represented in state-space, with input x(t):{

ẋQ(t) = AQxQ(t) +BQx(t)

yQ(t) = CQxQ(t) +DQx(t)

where xQ(t) = H(s)x(t).
It follows:

BQ =
[
B′Q 0

]
, CQ =

[
C ′Q
0

]
, DQ =

[
D′Q 0

0 H ′′Q

]
.
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The structure is such that (AQ, B
′
Q, C

′
Q, D

′
Q) are associated to the dynamical part H ′Q(jω),

while the other blocks are associated to the static part.
For R(jω) there is the same structure:

R(jω) ∈ C, R(jω) =

[
R′(jω) 0

0 R′′(jω)

]
, R′(jω) ∈ Cm1×m1 , R′′(jω) ∈ R(m−m1)×(m−m1)

and R(jω) = H∗R(jω)HR(jω), where HR(jω) is the filter associated to R(jω) (i.e. the
factorization of R(jω)). Being also HR(s) a filter, it can be represented in state-space, with
input x(t): {

ẋR(t) = ARxR(t) +BRu(t)

yR(t) = CRxR(t) +DRu(t)

It follows:
BR =

[
B′R 0

]
, CR =

[
C ′R
0

]
, DR =

[
D′R 0
0 H ′′R

]
.

27.2 Examples of weighting filters
Design of Q(jω):

Q(jω) =

[
Q′(jω) 0

0 Q′′(jω)

]
, ⇒ Q′(jω) =


a1

(ω2−ω2
1)

2 0 · · · 0

0
. . . . . . ...

... . . . . . . 0
0 · · · 0

an′
(ω2−ω2

n′ )
2


where ω1, ..., ωn′ are the natural resonances of the original system that have to be penalized
and ai is the specific weight of for the state entry xi(t). The associated filter HQ(jω), has
the diagonal elements in the form hi(s) = 1

s2+ω2
i
, whose state-space representation is:

[
ẋ1

ẋ2

]
=

[
0 1

−ω2
i 0

][
x1

x2

]
+

[
0

1

]
u(t)

y(t) =
[
ai 0

] [ x1

x2

]
+ 0u(t)

So there are n′ state-spaces, one for every element of the diagonal of the matrix:

H ′Q(jω) =


a1

((jω)2+ω2
1)

2 0 · · · 0

0
. . . . . . ...

... . . . . . . 0
0 · · · 0

an′
((jω)2+ω2

n′ )
2


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Having the state-space (AQ, BQ, CQ, DQ), it follows:

AQ =


0 I

−ω2
1

. . . 0
−ω2

n

 , BQ =

[
0 0
I 0

]
, CQ


−a1

. . . 0
−an

0 0

 , DQ =

[
0 0
0 H ′′

]
.
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