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26.1 Frequency shaping for LQ control: general case
We recall some notions about LQ optimal control. Given the dynamic system described by
the equations {

ẋ = Ax+Bu con x(0) = x0
y = Cx

we want to control this system such that we minimize the quadratic cost index

J(x0, u) =

∫ +∞

0

xT (t)QxT (t) + uT (t)Ru(t)dt

Now the question is if it is possible to define a cost function that can include some useful
considerations about the design in frequency domain. The fondamental result that allows us
to obtain that is the Parseval theorem. It says that the time domain signal and its Fourier
transform have the same energy. We have:∫ +∞

0

||y(t)||2dt =
1

2π

∫ +∞

−∞
||Y (jω)||2dω

Under the assumption that x(t) = 0 for t < 0, so, in the MIMO case we have:∫ +∞

0

xT (t)Qx(t)dt =
1

2π

∫ +∞

−∞
X∗(jω)QX(jω)dω

It is possible to penalize some frequencies choosing a different Q. If we have a resonance at
a determined frequency at ωr we will have a great amplification of the input components at
the output if we do nothing. The solution is to shape u(t) or the y(t), or even both of them,
in order to allow the LQ control to penalize these frequencies. We will try to design K that
doesn’t excite the resonance frequencies through the shaping of the input or the output of
the system using LQ control. We will minimize a cost function as:∫ +∞

0

||ỹ(t)||2 + r||ũ(t)||2dt

The system we are going to consider will be the following, where R1(s) and Q1(s) are called
shaping filters :
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Figura 26.1. Block scheme

For SISO system the classical LQ control design is equivalent of minimizing∫ +∞

0

||y(t)||2 + r||u(t)||2dt

which lead to the constant, i.e. independent of the frequency, weights:

Q(jω) = Q∗1(jω)Q1(jω) = CTC, (26.1)
R(jω) = R∗1(jω)R1(jω) = r (26.2)

So, suppose that we want to generalize this criteria by shaping the weights in the frequency
domain as:

1

2π

∫ +∞
−∞ X∗(jω)Q∗1(jω)Q1(jω)X(jω) + U∗(jω)R∗1(jω)R1(jω)U∗(jω)dw =∫ +∞
0

xT1 (t)x1(t) + uT1 (t)u1(t)dt =

where

X1(s) = Q1(s)X(s),

U1(s) = R1(s)U(s)

If we know the dynamics of x1 and u1 is the control input, then we can solve using the stan-
dard LQ technique. Now remember the relations (26.1) and (26.2). We begin by describing
the shaping filters in state space introducing the states z1 for Q(s) and z2 for R(s). The
dynamics of the two systems will be the following:[

ż1(t)
ẋ1(t)

]
=

[
AQ BQ

CQ DQ

][
z1(t)
x1(t)

]
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[
ż2(t)
u̇1(t)

]
=

[
AR BR

CR DR

][
z2(t)
u1(t)

]
We remark that it is possible to penalize some frequencies thanks to the choice of Q(s)

and R(s).
Now that we have these 3 dynamical systems, we would like to use a single system to

express the dynamics in order to achieve the global LQ control. We will now create an
extended system Σ̄ with variable extended state x̄:

Σ̄ :


˙̄x(t) = Āx̄(t) + B̄u(t)

u1(t) = C̄x̄(t) + D̄uu(t)

x1(t) = C̄xx̄(t) + D̄xu(t)

x̄ =

x(t)
z1(t)
z2(t)


 ˙x(t)

˙z1(t)
˙z2(t)

 =

 A 0 0
BQ AQ 0
0 0 AR

x(t)
z1(t)
z2(t)

+

 B0
BR

u(t)

u1(t) =
[
0 0 CR

]
x̄+Dru(t)

x1(t) =
[
DQ CQ 0

]
x̄

considering u1(t) and x1(t) as the output of this system (for evaluating the cost). The cost
expressed in this new state space becomes:∫ +∞

0

[
x̄T (t) uT (t)

] [Qeq NT

N Req

] [
x̄(t)
u(t)

]
dt

with:

Qeq =

DT
QDQ DQCQ 0

CT
QDQ CT

QCQ 0
0 0 CT

RCR

 , N =

 0
0

CT
RDR

 , Req = DT
RDR

This form is extremely inconvenient for computation purposes, so I rewrite the cost as∫ +∞

0

[
x̄T (t) vT (t)

] [Q̄ 0
0 R̄

] [
x̄(t)
v(t)

]
dt =

∫ +∞

0

x̄T (t)Q̄x̄(t) + vT (t)R̄v(t)dt

by introducing the new control input for the global system:

v(t) = u(t) +R−1eq Nx̄(t)

The new Q and R matrices becomes:

Q̄ = Qeq −NTReqN, R̄ = Req
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We have thus arrived to standard LQ control where the frequency dependence of the weights
Q̄ and R̄ has disappeared, since it has been included in the extended dynamics.
The equation for the state-space needs to be adjusted, since I want to write it in terms of the
virtual input v(t), but now the input is still u(t). If we substitute u(t) with the expression

u(t) = −R−1eq Nx̄(t) + v(t)

the equation for ˙̄x(t) becomes

˙̄x(t) = Āx̄(t) + B̄u(t) =

= Āx̄(t) + B̄v(t)− B̄R−1eq Nx̄(t) =

= (Ā− B̄R−1eq N)︸ ︷︷ ︸
F

x̄(t) + B̄v(t)

Now, we want to apply LQ control to the system with matrices F and B̄ and weights
Q̄ and R̄. These matrices will be bigger, since we extended the state with the state of the
filter.
Once we are done, we get that the control is

v(t) = −K̄LQx̄(t)

The real input we work with is actually u(t), which we can write as

u(t) = −R−1eq Nx̄(t)− K̄LQx̄(t) = −(R−1eq N + K̄LQ)x̄(t)

In order to implement the controller, we need the state x̄(t), so we need to implement in
software the two filters Q(s) and R(s) in state space to get z1(t) and z2(t).
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