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25.1 Weight Design for Optimal Control: R, Q
At this point in the study of the optimal control the question we want to answer is: how to
design the weights represented by the matrices R and Q?

As introduced in the last lecture, we consider an alternative measurement ỹ(t), which
can be seen as a virtual sensor, in order to design the feedback of the state x(t).

Figura 25.1. Block representation with optimal control system and virtual oputput

The control cost
∫∞
0
ỹ2 + ru2(t)dt will be based on ỹ(t), although what we are really

interested in is controlling y(t). Considering different ỹ(t) is not an issue as far as stability
is concerned, because, as seen in the more general problem of tracking, first we want to
make sure that the closed-loop system is stable and then you track the signal, either using
feed-forward control (nominal tracking) or extending the dynamics of the system by adding
an integrator and applying integral control (robust tracking).

Of course the conditions (A,B) reachable and (A, C̃) observable are necessary in order
for the closed-loop system to be asymptotically stable.

Adding the virtual sensor is useful because with this strategy is possible to force n-1 poles
of the closed-loop system to be close to n-1 specific locations, for r → 0.

Let us clarify this statement with an example. P (s) = n(s)
d(s)

represents the original system
and P̃ (s) = ñ(s)

d(s)
the transfer function associated to the the virtual sensor.

While is obvious that the two share the same denominator having both the same dyna-
mics, we will see that the location of the zeros of P̃ (s) can be determined by C̃.
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Let’s assume that the original system P(s) has got three poles and a zero. We can apply
optimal control and the result is illustrated in the following figures.

Figura 25.2. (On the left) Zeros and poles of the original system. (On the right) Zeros and poles of the
system with optimal control

The squares in the figure represent desired locations where for some reason you would
like the three poles to be. So the natural question is: can we move the poles in closed-loop,
if not on the exact desired locations, at least near them?

In this case we cannot move all three poles where we want to because we can place only
n-1 poles. So we design C̃ such that the zeros of P̃ (s) will correspond exactly to two of the
desired locations.

These zeros can be seen as virtual zeros that do not exist in the real system, but we
pretend they do. Now if I use the LQ control with C̃ the result will be as represented in
figure 25.3.

The LQ control will not place the poles exactly on the desired location, but the smaller
r is, the closer the closed-loop poles are to the "virtual" zeros.

So we have seen an alternative way to proceed and try to get a better performance,
according to some other specifications.

Using optimal control the poles will not be exactly as desired and the shape of the root
locus will depend on the specific system.

So one could think about using the pole placement approach to place the closed-loop po-
les exactly in the desired locations, but this method will not take into account the possibility
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Figura 25.3. Root locus of the optimal control system with zeros of P̃ (s) placed in desired locations

that some locations can be difficult to reach or will generate some difficulty in the control.
Instead the optimal control is more robust and will take care of that while trying to satisfy
the location requests.

Now we want to find out how to fix the zeros with C̃. To do this let’s consider a strictly
rational transfer function

P̃ (s) =
bn−1s

n−1 + ...+ b0
sn + an−1sn−1 + ...+ a0

,

and try to obtain C̃ from {bi}i=1..n.
We can rewrite the numerator of the transfer function as follows:

bn−1s
n−1 + ...+ b0 = bn−1(s

n−1 +
bn−2
bn−1

sn−2 + ..+
b0
bn−1

) = bn−1

n−1∏
i=1

(s− zi),

where zi are known.
Then, being P̃ (s) = C̃(sI−A)−1B = ñ(s)

d(s)
, we get ñ(s) as a linear polynomial in {C̃i}i=1..n.

Finally, with the notation:

b =
[
bn−1 .. b0

]T ∈ Rn,

C̃ =
[
C̃1 .. C̃n

]
∈ R1×n;

the final result is a linear system of equations:

b = FC̃T =⇒ C̃ = (F−1b)T ,

where F is a suitable invertible matrix which is a function of the system parameters.
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25.2 Closed loop poles inside a specific half plane
We would like to force the contoller to have certain properties.
For example we want a desired rising time tr, obtained by forcing the poles of the closed
loop system to be in a certein half plane which is on the left of the imaginary axis.

Figura 25.4. Dominant poles approximation region of desired tr

Can we modify our control problem such that the poles of the close loop are in the half
plane in figure? We want an LQ optimal control where the eigenvalues of the closed loop
system have the additional constrain:

Re[λ(A−BKLQ)] < −α, (25.1)

A possible solution to enforce this additional property is by solving the optimal LQ control
on the following modified dynamical systems:

ẋ(t) = (A+ σI)x(t) +Bu(t)

= A′x(t) +Bu(t)
(25.2)

This fictitious system (A′, B) and our original weights Q, R still preserve the required
reachability/observability properties:
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{
(A′, B) reachable
(A′, Q1/2) observable

(25.3)

With this two hypothesis we can apply optimal control and obtain the guarantee that the
closed loop system poles respect

λ(A′ −BKLQ)] < −σ, (25.4)

By replacing A′ = (A+ σI) in (25.4) we obtain

λ(A′ −BKLQ) = λ(A′ + σI −BKLQ)

= σ + λ(A−BKLQ)
, (25.5)

so basically the eigenvalues of (A′−BKLQ) are exactly the same of (A−BKLQ), but shifted
to the left by an amount −α, while the eigenvectors remain the same.

If we want a desired overshoot Mp, we need to guarantee that the poles of the close loop
are are in a certain region of the plane, for example by forcing them to be in a circle centered
in −α and with desired radius ρ.

With this choose of the region of the plane in figure 25.5 we will guarantee a desired
rising time tr given by α and a desired overshoot Mp gived by ρ.

How do we force the system to have this additional property? If we want to solve that
problem we have to talk about discrete time optimal LQ control.

25.3 Discrete time optimal control
We have the discrete time linear system{

xk+1 = Axk +Buk
yk = Cxk

(25.6)

and the cost

JT (x0, u) =
1

T

T−1∑
k=0

(xTkQxk + uTkRuk) + xTTQTxT (25.7)

where u = (u0, . . . , uT−1). The optimal control problem consists in optimizing the signal u
to minimize this cost, so we want to

u∗ = argmin
u

JT (x0, u) (25.8)

where u∗ = (u∗0, . . . , uT−1). Even in this case we can define optimal cost-to-go function

V ∗(xk, k) = argmin
uk,...,uT−1

T−1∑
h=k

(xThQxh + uThRuh) + xTTQTxT (25.9)
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Figura 25.5. Dominant poles approximation region of desired Mp and tr

which can be seen to have the following quadratic expression:

V ∗(xk, k) = xTkPkxk (25.10)

where
Pk = APk+1A

T +Q− ATPk+1B(BTPk+1B +R)−1BTPk+1A (25.11)
It is also possible to show that the optimal control is given by:

u∗k = −Kkxk (25.12)
where

Kk = (R +BTPkB)−1BTPk (25.13)
If 

T −→ +∞
(A,B) reachable
(A,Q1/2) observable

(25.14)

we can show that
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• P0 −→ P (unique) ∀ QT (initial condition)

• Kk −→ KLQ = (R +BTPB)−1BTP where | λ(A−BKLQ) |< 1

Now, we want to use this property to solve the countinous time problem where we have the
system 

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)
u(t) = −KLQx(t)

(25.15)

with the addition property such that the eigenvalues λ(A − BKLQ) belong to a circle with
center in −α and radius ρ.

Consider, now, this discrete time system

zk+1 =
1

ρ
Azk +

1

ρ
Buk = Adzk +Bduk (25.16)

It is easy to verify that we still have{
(Ad, Bd) reachable
(Ad, Q

1/2) observable
(25.17)

So, if now we apply discrete time LQ control, we find KLQ such that

| λ(Ad −BdKLQ) |< 1 =⇒| λ(
A

ρ
− 1

ρ
BKLQ) |< 1

=⇒| λ(
1

ρ
(A−BKLQ)) |< 1 =⇒ 1

ρ
| λ(A−BKLQ) |< 1

=⇒| λ(A−BKLQ) |< ρ

(25.18)

In this case, the eigenvalues of this matrix are inside the circle of radius ρ centered in the
origin, however we want to center the circle in −α. We can do so by considering the following
fictitious system:

zk+1 =
1

ρ
(A+ αI)︸ ︷︷ ︸

A′d

zk +
1

ρ
B︸︷︷︸

Bd

uk = A′dzk +Bduk (25.19)

and, once again, {
(A′d, Bd) reachable
(A′d, Q

1/2) observable
(25.20)

Then, we apply the discrete time optimal control to this dynamical system with the original
Q and R system and we obtain that | λ(Ad − BdKLQ) | will be inside the circle with center
in −α and radius ρ, as seen before in figure 25.5.
In principle we can place the circle also taking into consideration the desired raising time
and overshoot for the system.
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Figura 25.6. Possible choises of circles centered in alpha with radius ρ where to place the poles of the
closed loop system

So, we must choose ρ and α such that the circle is inside the specification region and it
is as large as possible, as we can see in the figure 25.6.

25.4 Selection of Q and R
Next step is to determine R = r and Q ∈ Rn×n. We have to consider physically meaningful
state and control variables to select Q and R. In particular, there are different choices for Q:

1. Q = CTC. The latter expression allows us to write:

x(t)TQx(t) = x(t)TCTCx(t) = yT (t)y(t) = y2(t).

Therefore, the quadratic cost function to minimize is the following:

J(u, x0) =

∫ ∞
0

y2(t) + ru2(t)dt

The choice Q = CTC is useful when there is a specific output y(t) = Cx(t) that needs
to be kept small.
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2. Q = C̃T C̃. In this way we can force n− 1 poles of the closed-loop system to be close
to some locations (the zeros of P̃ (s) = C̃(sI − A)−1B).

3. Q = I. Similarly to the first case, we have that the related quadratic cost function is
given by:

J(u, x0) =

∫ ∞
0

∑
i

x2i (t) + ru2(t)dt =

∫ ∞
0

‖x‖2 + ru2(t)dt

4. Choose Q (and R) to be diagonal in the absence of information about coupling. For
instance, let us define:

Q =

q1 . . . 0
... . . . ...
0 . . . qn

 qi > 0

This choice leads us to have:

x(t)TQx(t) =
∑
i

qi x
2
i (t)

We want to obtain acceptable excursions among the components of the signal:

|xi(t)| < xi,max ∀i ⇒
∣∣∣∣ xi(t)xi,max

∣∣∣∣ < 1

where we are normalizing the state.
A good idea is to use the following choice for the weights qi:

qi =
1

x2i,max

The purpose is to chose the qis so that all entries equally contribute to the cost to be
minimized.
For example, if we want to bring the position of the load connected to a motor from
x1(0) = θl(0) = 0◦ to x1(0.1) = θl(0.1) = 100◦ in 0.1 seconds (we denote the mean
position as x̄1 = 50◦), we have that the (mean) velocity of the load must be:

x2 = θ̇l =
100

0.1
= 1000◦/sec

Thus, a possible Q is given by:

Q =

[
q1 0
0 q2

]
with q1 =

1

x̄21
=

1

502
and q2 =

1

x22
=

1

10002

We do not know which is the best option among the 4 choices of Q and this, normally,
requires some trial-and-error procedures.

25-9



Control Laboratory Lecture 25 — 5th May a.a. 2015/2016

25.5 Frequency shaping for LQ optimal control
Let us consider the system shown in Figure 25.7

Figura 25.7. A generic linear system.

The LQ optimal control is bounded to minimize the following cost function in the time
domain:

J(u, x0) =

∫ ∞
0

xT (t)Qx(t) + uT (t)Ru(t)dt.

In many situations, it is more advantageous to specify the criteria in frequency domain. For
example, it might be useful to penalize control inputs that excites some resonances of the
plant at a specific frequency or to reduce some high-frequency noise at the output. (figure
25.8 ) .

Figura 25.8. A generic linear system with additional disturbances.

If we want to reduce noises with high frequencies we can introduce a low-pass filter and
consider ỹ as output (figure 25.9 ) .

Figura 25.9. A linear system influenced by disturbances with low-pass filter
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However, the insertion of the low-pass filter involves the slowing down of the overall system.
If the system is characterized by some natural resonances, we would like to have an input
which does not amplify the inout noises around the resonance frequency. To do that, we can
introduce another dynamical systems with transfer functions Px(s), Pu(s) and Py(s). The
outputs of the latter systems are filtered versions of x(t), u(t) and y(t) respectively (figure
25.10 ).

Figura 25.10. A linear system with additional dynamical systems Pu(s), Py(s) and Px(s)

We wonder what happens if we consider ũ(t) = Pu(s)u(t). The new LQ optimal control
that penalizes ũ is given by:

J(u, x0) =

∫ ∞
0

xT (t)Qx(t) + ũT (t)Rũ(t)dt.

The controller will be forced by the system to have high frequencies at natural frequencies.
This is clear by using the Parseval’s theorem.

25.6 Parseval’s theorem
Parseval’s theorem has the following form:∫ ∞

−∞
ũT (t)ũ(t)dt =

1

2π

∫ ∞
−∞

Ũ∗(jω)Ũ(jω)dω =

∫ ∞
−∞

U∗(jω)P ∗u (jω)Pu(jω)U(jω)dω

If the signal is causal, i.e. u(t) = 0, t < 0, we have:∫ ∞
0

ũT (t)ũ(t)dt =

∫ ∞
−∞

U∗(jω)P ∗u (jω)Pu(jω)U(jω)dω

This is stating that the integral of the signal in the time domain is exactly equal to the
integral of the square of the signal in the frequency domain shaped by the transfer function
Pu(jω).
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In this way, we are going to penalize the components of the original input u at some
specific frequencies. This is a way to enforce frequency domain requirements into time
domain specifications. This can be done also for the output, using Py(s). So that, we want
to penalize ũ and ỹ and what we do is to take our original system, with some input and some
output and shape them differently. Actually, we not only can shape the output, but we can
shape the all state itself. We assume that we can access the state and we can pass through
some linear system and obtain x̃(t). This is what we optimize, i.e. we try to minimize the
cost not on the original state and the original input, but there will be a frequency shaped
version of both state and input.
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