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InstructoiSctibes: SBe¢tiatd, Bragagnolo F, Mazzetto J, Normani N, Sanvido M, Scariot A

23.1 Hamiltonian and optimal control problem

Recalling the previous lectures, optimal LQ control problem is associated with the solution
of Riccati equation:

—P=ATP(t) + P(t)A+ Q — P(t)BR'B"P(t),

which has final condition P(T,T") = Q.
We have also shown the following results:

o V*(xg) = I P(0)zg, where z(0) = xo;

o P(t,T) = g(eMt=T) A2t=T) 1}/) where W comes from decomposition of Hamiltonian

Wn le] |:A1 0} {Wn W12}_1,

mafrix H = [Wm Wl | 0 Ao| |War Was

o limy_;,yoo P(t,T) = limp_ oo P(0,T) = P = Wy, W;;", where Wy, and Wy, are blocks
of W;
We are up to find a proper feedback gain for the system,
K(t,T)=R'BTP(t,T),

with is sued to compute the optimal input u*(t) = —K (¢, T)x(t).

To solve the optimal control problem, we see that if we consider P, solution of Riccati
equation in infinte horizon, then we obtain the time-invariant gain

Kig=R'B"P,
and input becomes

Tgrfoou (t) = —Kprox(t).

It is now necessary for this procedure to make two hypotheses:
o (A, Q%) observable;
e (A, B) reachable.
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These hypotheses guarantee that:

1. P exists on infinite horizon;
2. P is unique and does not depend on the particular Q7 we choose;

3. A — BK is asymptotically stable, i.e. the controller will stabilize the closed loop
system;

4. the eigenvalues of A, = A — BK|, coincide with stable eigenvalues of H.
Hypotheses made on observability and reachability directly imply points 1 and 2.

23.1.1 F asymptotically stable
We give a proof for point 3. Re-writing F as F' = A — BK[, we obtain

F'P+ PF' =(A—-BR'B"P)"P+ P(A— BR'B"P) =
=A"P-PBR'B"P+ PA—-PBR'B"P=
= —-Q - PBR'B'P

using the equivalence given by the fact that limy_, . P(t) = 0, and so
ATP+ AP+ Q- PBR'BTP =0.
Let us now suppose ab absurdum that it exists v € C", eigenvector of F for eigenvalue A € C,
such that v # 0 and R(A) > 0. We can write the expression above as:
vV FTPy 4+ v*FFv = —v*"Qu — v*PBR BT Pv =
Av*Po + Av*Pv = —||Q2v||> — |R™2 BT Pul?
A+ NP2l = —|Q2v|* — |R~2B" Pu|f
2R)[IP20]]* = ~Qzv|]* — |R2 B Po|]?

Quantity on the right hand side of the expression is surely < 0, but quantity on the left hand
side is > 0 because P > 0, so this implies that to satisfy the equivalence all terms must be
equal to zero and in particular:

Q%v =0, BTPv=0
We can express F as
Fv=(A-BR'B"P)v=Av— BR'B"Pv = Av=\v
but since Q%v = 0 this implies that PBH test is violated since this could imply that (A, Q%)

is not observable. So matrix F must be asymptotically stable.
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23.1.2 Coincidence of eigenvalues

We said on point 4 that eigenvalues of matrix F' = A— BKj, obtained with the application
of optimal control input u* = —R~'BT Pz, coincide with the stable eigenvalues of matrix H.
To prove that, we must choose a full-rank matrix T such that it is possible a change of basis

for H:
I 0 4 |10
= A= ]

Knowing that the eigenvalues are invariant to change of basis, we can compute:

L [T o][A —-BR'BTI[I 0] _
THT = [_p I|-Q —ar ||P 1]~
B A—BR'BTP —BR'BT _[F —BR™'BT
“ |-PA-Q+PBR'BP - ATP — AT + PBR'BT 0 —FT

Last matrix is upper triangular, so eigenvalues are all contained in diagonal blocks, in par-
ticular I contains all stable eigenvalues, while —F7 has their opposite values (unstable).
In Matlab there is a specifical function that given the weights ), R and the matrices A, B
returns the gain for optimal control, Kro: [K_LQ] = 1qr(A,B,Q,R).

23.2 LQ design: Root locus approach

In a SISO system, the eigenvalues of the closed-loop resulting matrix /' = A — BKg can
be also computed through a suitable root locus approach. Let us consider the LTI system:

(23.1)

{:'E = Ax(t) + Bu(t), reR”
y(t) = Cx(t), u,y € R

and the infinite-horizon cost: .
/ y(t)? + ru(t)’dz,
0

where r > 0 is the control weight. We could further distinguish two different behaviours of
the controller, based on the structure of the cost:

r—0 = cheap — control

r— 400 = expensive — control.

Thanks to the optimal control cost-function [, (x(t)"Qx(t) +u(t)” Ru(t))dx, we can relate
Q and C through the following formulation:

y?(t) = y" ()y(t) = 27 (1) CTC2(t) = Q = CTC  (rank =1)
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For this reason, the only free parameter which can be chosen in the LQ design is R = r. The
Hamiltonian system associated to 23.1 is defined as follows:

{ A —%BBT]

oo ot (23.2)

where the spectrum of F' = A — BK ¢ coincides with the stable eigenvalues of (23.2); A\(F')
corresponds to the poles of the closed-loop transfer function.

test(1) f@ 1 P Ax(t) + Bu(t) gy y(t) = C(t) iU

u*(t) = Krqz(t)

Figure 23.1. Closed-loop system: LQ control

Y (s) = C(sI — F) ' BU.p(s) = Ueat(5),

where P.(s) = C(sI — F)"'B, and A(F) = poles of P.(s). Under the formulation \(H) =
det(s] — H) = 0 = d.(s)d.(—s), we show these preliminary results.

23.2.1 Preliminary results
1. det(AB) = det(A)det(B):

2. det {A B] = det(A)det(D — CA™'B);

C D
3. trace(AB) = trace(BA);

4. trace(A) = >, \; = \; is eigenvalue of A (possibly with repetition according to the
Jordan diagonalization)

PROOF

if 37 such that J = TAT™' = trace(A) = trace(T~1JT) = trace(JTT ') =
trace(J)

5. 7,y € R*, E = zy’ € R™™ which is a rank-1 matrix, therefore there are n — 1
eigenvalues in 0
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A(E) = {>‘1 7é 07>\2 =

AI+E)={M+1L X x=...

trace(E) = A\, = trace(zy?) = trace(y’z) = y'x

det(/ + FE)

=11, Ai =1+ ) =1+ trace(E);

i € AM(I + E)

Now we determine the characteristic polynomial of the Hamiltonian about the system

i ([T 01_] A —iBBT
“\lo I _CTC  —AT

|) = (e

Ddet(sI — A)det(sI + AT — CTC(sI — A)"'LBBT) =

remembering that P(s)
= det(s] — A)det(sI + AT —

— det(s] — A)det ((sf + A7) <I -

= det(s] — A)det(sI +AT)det | I —

eigenvalues

= det(s] — A)det(s] + A)det (1

= det(sI — A)det(sI + A)det (

= det(s] — A)det(s] + A)det (1 —

= det(s] — A)det(sI + A)det (1
= det(s] — A)det(sI + A)det (1

Pl T BT =

N

S)(Sf—i-AT) 1CTBT>> -y

—~
ot
=

P (s + AT)1CTBY
rar:gfl

s)trace ((sI +AT)~ 1CTBT)> ©

)trace BT (sI + ATy | =
SC:I?GT

S)BT SI+AT) 10T> _

(sI + A7)~ 1CT)T) —

C(sI + A)™1 >:
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Control Laboratory Lecture 23 — 3 May a.a. 2015/2016

— det(s] — A)det(—(—sI — A))det (1 + PO C(—sT - A)-lB) _

— d(s)(—1)"d(—s) (1 + LP(s)P(~s)) =
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