Control Laboratory:

InstructorScFibrea:SBlettixtA, Bragagnolo F, Mazzetto J, Normani N, Sanvido M, Scariot A

23.1 Hamiltonian and optimal control problem

Recalling the previous lectures, optimal LQ control problem is associated with the solution of Riccati equation:

$$
-\dot{P}=A^{T} P(t)+P(t) A+Q-P(t) B R^{-1} B^{T} P(t)
$$

which has final condition $P(T, T)=Q_{T}$.
We have also shown the following results:

- $V_{o}^{*}\left(x_{0}\right)=x_{o}^{T} P(0) x_{0}$, where $x(0)=x_{0}$;
- $P(t, T)=g\left(e^{\Lambda_{1}(t-T)}, e^{\Lambda_{2}(t-T)}, W\right)$, where W comes from decomposition of Hamiltonian matrix $\mathrm{H}=\left[\begin{array}{ll}W_{11} & W_{12} \\ W_{21} & W_{22}\end{array}\right]\left[\begin{array}{cc}\Lambda_{1} & 0 \\ 0 & \Lambda_{2}\end{array}\right]\left[\begin{array}{ll}W_{11} & W_{12} \\ W_{21} & W_{22}\end{array}\right]^{-1}$;
- $\lim _{T-t \rightarrow+\infty} P(t, T)=\lim _{T \rightarrow+\infty} P(0, T)=\bar{P}=W_{21} W_{11}^{-1}$, where W_{21} and W_{11} are blocks of W;

We are up to find a proper feedback gain for the system,

$$
K(t, T)=R^{-1} B^{T} P(t, T)
$$

with is sued to compute the optimal input $u^{*}(t)=-K(t, T) x(t)$.
To solve the optimal control problem, we see that if we consider \bar{P}, solution of Riccati equation in infinte horizon, then we obtain the time-invariant gain

$$
K_{L Q}=R^{-1} B^{T} \bar{P}
$$

and input becomes

$$
\lim _{T \rightarrow+\infty} u^{*}(t)=-K_{L Q} x(t)
$$

It is now necessary for this procedure to make two hypotheses:

- $\left(A, Q^{\frac{1}{2}}\right)$ observable;
- (A, B) reachable.

These hypotheses guarantee that:

1. \bar{P} exists on infinite horizon;
2. \bar{P} is unique and does not depend on the particular Q_{T} we choose;
3. $A-B K_{L Q}$ is asymptotically stable, i.e. the controller will stabilize the closed loop system;
4. the eigenvalues of $A_{c}=A-B K_{L Q}$ coincide with stable eigenvalues of H .

Hypotheses made on observability and reachability directly imply points 1 and 2 .

23.1.1 F asymptotically stable

We give a proof for point 3 . Re-writing F as $F=A-B K_{L Q}$, we obtain

$$
\begin{aligned}
F^{T} \bar{P}+\bar{P} F^{T} & =\left(A-B R^{-1} B^{T} \bar{P}\right)^{T} \bar{P}+\bar{P}\left(A-B R^{-1} B^{T} \bar{P}\right)= \\
& =A^{T} \bar{P}-\bar{P} B R^{-1} B^{T} \bar{P}+\bar{P} A-\bar{P} B R^{-1} B^{T} \bar{P}= \\
& =-Q-\bar{P} B R^{-1} B^{T} \bar{P}
\end{aligned}
$$

using the equivalence given by the fact that $\lim _{T \rightarrow+\infty} \dot{P}(t)=0$, and so

$$
A^{T} \bar{P}+A \bar{P}+Q-\bar{P} B R^{-1} B^{T} \bar{P}=0
$$

Let us now suppose $a b$ absurdum that it exists $v \in \mathbb{C}^{n}$, eigenvector of F for eigenvalue $\lambda \in \mathbb{C}$, such that $v \neq 0$ and $\Re(\lambda)>0$. We can write the expression above as:

$$
\begin{aligned}
v^{*} F^{T} \bar{P} v+v^{*} \bar{F} F v & =-v^{*} Q v-v^{*} \bar{P} B R^{-1} B^{T} \bar{P} v= \\
\bar{\lambda} v^{*} \bar{P} v+\lambda v^{*} \bar{P} v & =-\left\|Q^{\frac{1}{2}} v\right\|^{2}-\left\|R^{-\frac{1}{2}} B^{T} \bar{P} v\right\|^{2} \\
(\bar{\lambda}+\lambda)\left\|\bar{P}^{-\frac{1}{2}} v\right\|^{2} & =-\left\|Q^{\frac{1}{2}} v\right\|^{2}-\left\|R^{-\frac{1}{2}} B^{T} \bar{P} v\right\|^{2} \\
2 \Re(\lambda)\left\|\bar{P}^{-\frac{1}{2}} v\right\|^{2} & =-\left\|Q^{\frac{1}{2}} v\right\|^{2}-\left\|R^{-\frac{1}{2}} B^{T} \bar{P} v\right\|^{2}
\end{aligned}
$$

Quantity on the right hand side of the expression is surely ≤ 0, but quantity on the left hand side is ≥ 0 because $\bar{P} \geq 0$, so this implies that to satisfy the equivalence all terms must be equal to zero and in particular:

$$
Q^{\frac{1}{2}} v=0, \quad B^{T} \bar{P} v=0
$$

We can express F as

$$
F v=\left(A-B R^{-1} B^{T} \bar{P}\right) v=A v-B R^{-1} B^{T} \bar{P} v=A v=\lambda v
$$

but since $Q^{\frac{1}{2}} v=0$ this implies that PBH test is violated since this could imply that $\left(A, Q^{\frac{1}{2}}\right)$ is not observable. So matrix F must be asymptotically stable.

23.1.2 Coincidence of eigenvalues

We said on point 4 that eigenvalues of matrix $F=A-B K_{L Q}$, obtained with the application of optimal control input $u^{*}=-R^{-1} B^{T} \bar{P} x$, coincide with the stable eigenvalues of matrix H . To prove that, we must choose a full-rank matrix T such that it is possible a change of basis for H :

$$
T=\left[\begin{array}{cc}
I & 0 \\
-\bar{P} & I
\end{array}\right], T^{-1}=\left[\begin{array}{cc}
I & 0 \\
\bar{P} & I
\end{array}\right]
$$

Knowing that the eigenvalues are invariant to change of basis, we can compute:

$$
\begin{gathered}
T H T^{-1}=\left[\begin{array}{cc}
I & 0 \\
-\bar{P} & I
\end{array}\right]\left[\begin{array}{cc}
A & -B R^{-1} B^{T} \\
-Q & -A^{T}
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
\bar{P} & I
\end{array}\right]= \\
=\left[\begin{array}{cc}
\bar{P} A-B R^{-1} B^{T} \bar{P} & -B R^{-1} B^{T} \\
-\bar{P} A-Q+\bar{P} B R^{-1} B \bar{P}-A^{T} \bar{P} & -A^{T}+\bar{P} B R^{-1} B^{T}
\end{array}\right]=\left[\begin{array}{cc}
F & -B R^{-1} B^{T} \\
0 & -F^{T}
\end{array}\right]
\end{gathered}
$$

Last matrix is upper triangular, so eigenvalues are all contained in diagonal blocks, in particular F contains all stable eigenvalues, while $-F^{T}$ has their opposite values (unstable). In Matlab there is a specifical function that given the weights Q, R and the matrices A, B returns the gain for optimal control, $K_{L Q}:\left[\mathrm{K} _\mathrm{LQ}\right]=\operatorname{lqr}(\mathrm{A}, \mathrm{B}, \mathrm{Q}, \mathrm{R})$.

23.2 LQ design: Root locus approach

In a SISO system, the eigenvalues of the closed-loop resulting matrix $F=A-B K_{L Q}$ can be also computed through a suitable root locus approach. Let us consider the LTI system:

$$
\left\{\begin{array}{lr}
\dot{x}=A x(t)+B u(t), & x \in \mathbb{R}^{n} \tag{23.1}\\
y(t)=C x(t), & u, y \in \mathbb{R}
\end{array}\right.
$$

and the infinite-horizon cost:

$$
\int_{0}^{+\infty} y(t)^{2}+r u(t)^{2} d x
$$

where $r \geq 0$ is the control weight. We could further distinguish two different behaviours of the controller, based on the structure of the cost:

$$
\begin{aligned}
r \rightarrow 0 & \Rightarrow \quad \text { cheap }- \text { control } \\
r \rightarrow+\infty & \Rightarrow \quad \text { expensive }- \text { control } .
\end{aligned}
$$

Thanks to the optimal control cost-function $\int_{0}^{+\infty}\left(x(t)^{T} Q x(t)+u(t)^{T} R u(t)\right) d x$, we can relate Q and C through the following formulation:

$$
y^{2}(t)=y^{T}(t) y(t)=x^{T}(t) C^{T} C x(t) \Rightarrow Q=C^{T} C \quad(\operatorname{rank}=1)
$$

For this reason, the only free parameter which can be chosen in the LQ design is $R=r$. The Hamiltonian system associated to 23.1 is defined as follows:

$$
\left[\begin{array}{cc}
A & -\frac{1}{r} B B^{T} \tag{23.2}\\
-C^{T} C & -A^{T}
\end{array}\right]
$$

where the spectrum of $F=A-B K_{L Q}$ coincides with the stable eigenvalues of (23.2); $\lambda(F)$ corresponds to the poles of the closed-loop transfer function.

Figure 23.1. Closed-loop system: LQ control

$$
Y(s)=C(s I-F)^{-1} B U_{e x t}(s)=\frac{n_{c}(s)}{d_{c}(s)} U_{e x t}(s)
$$

where $P_{c}(s)=C(s I-F)^{-1} B$, and $\lambda(F)=$ poles of $P_{c}(s)$. Under the formulation $\lambda(H)=$ $\operatorname{det}(s I-H)=0=d_{c}(s) d_{c}(-s)$, we show these preliminary results.

23.2.1 Preliminary results

1. $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$;
2. $\operatorname{det}\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]=\operatorname{det}(A) \operatorname{det}\left(D-C A^{-1} B\right)$;
3. $\operatorname{trace}(A B)=\operatorname{trace}(B A)$;
4. $\operatorname{trace}(A)=\sum_{i} \lambda_{i} \Rightarrow \lambda_{i}$ is eigenvalue of A (possibly with repetition according to the Jordan diagonalization)

PROOF:

if $\exists T$ such that $J=T A T^{-1} \quad \Rightarrow \quad \operatorname{trace}(A)=\operatorname{trace}\left(T^{-} 1 J T\right)=\operatorname{trace}\left(J T T^{-1}\right)=$ trace (J)
5. $x, y \in \mathbb{R}^{n}, \quad E=x y^{T} \in \mathbb{R}^{n \times n}$ which is a rank-1 matrix, therefore there are $n-1$ eigenvalues in 0

$$
\begin{aligned}
& \Lambda(E)=\left\{\lambda_{1} \neq 0, \lambda_{2}=\ldots \ldots \ldots=\lambda_{n}=0\right\} \\
& \Lambda(I+E)=\left\{\lambda_{1}+1, \lambda_{2}=\ldots \ldots \ldots=\lambda_{n}=1\right\} \\
& \operatorname{trace}(E)=\lambda_{1}=\operatorname{trace}\left(x y^{T}\right)=\operatorname{trace}\left(y^{T} x\right)=y^{T} x \\
& \operatorname{det}(I+E)=\prod_{i} \bar{\lambda}_{i}=1+\lambda_{1}=1+\operatorname{trace}(E) ; \quad \bar{\lambda}_{i} \in \Lambda(I+E)
\end{aligned}
$$

Now we determine the characteristic polynomial of the Hamiltonian about the system $\operatorname{det}\left(\left[\begin{array}{cc}s I & 0 \\ 0 & s I\end{array}\right]-\left[\begin{array}{cc}A & -\frac{1}{r} B B^{T} \\ -C^{T} C & -A^{T}\end{array}\right]\right)=\operatorname{det}\left(\left[\begin{array}{cc}s I-A & \frac{1}{r} B B^{T} \\ C^{T} C & s I+A^{T}\end{array}\right]\right) \stackrel{(2)}{=}$ $\stackrel{(2)}{=} \operatorname{det}(s I-A) \operatorname{det}\left(s I+A^{T}-C^{T} C(s I-A)^{-1} \frac{1}{r} B B^{T}\right)=$
remembering that $P(s)=C(s I-A)^{-1} B=\frac{n(s)}{d(s)}$, where are open loop poles and zeros
$=\operatorname{det}(s I-A) \operatorname{det}\left(s I+A^{T}-\frac{P(s)}{r} C^{T} B^{T}\right)=$
$=\operatorname{det}(s I-A) \operatorname{det}\left(\left(s I+A^{T}\right)\left(I-\frac{P(s)}{r}\left(s I+A^{T}\right)^{-1} C^{T} B^{T}\right)\right) \stackrel{(1)}{=}$
$=\operatorname{det}(s I-A) \operatorname{det}\left(s I+A^{T}\right) \operatorname{det}(I-\frac{P(s)}{r} \underbrace{\left(s I+A^{T}\right)^{-1} C^{T} B^{T}}_{\text {rank-1 }}) \stackrel{(5)}{=} \quad A$ and A^{T} have the same eigenvalues

$$
\begin{aligned}
& =\operatorname{det}(s I-A) \operatorname{det}(s I+A) \operatorname{det}\left(1-\frac{P(s)}{r} \operatorname{trace}\left(\left(s I+A^{T}\right)^{-1} C^{T} B^{T}\right)\right) \stackrel{(3)}{=} \\
& =\operatorname{det}(s I-A) \operatorname{det}(s I+A) \operatorname{det}(1-\frac{P(s)}{r} \operatorname{trace}(\underbrace{B^{T}\left(s I+A^{T}\right)^{-1} C^{T}}_{\text {scalar }}))= \\
& =\operatorname{det}(s I-A) \operatorname{det}(s I+A) \operatorname{det}\left(1-\frac{P(s)}{r} B^{T}\left(s I+A^{T}\right)^{-1} C^{T}\right)= \\
& =\operatorname{det}(s I-A) \operatorname{det}(s I+A) \operatorname{det}\left(1-\frac{P(s)}{r}\left(B^{T}\left(s I+A^{T}\right)^{-1} C^{T}\right)^{T}\right)= \\
& =\operatorname{det}(s I-A) \operatorname{det}(s I+A) \operatorname{det}\left(1-\frac{P(s)}{r} C(s I+A)^{-1} B\right)=
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{det}(s I-A) \operatorname{det}(-(-s I-A)) \operatorname{det}\left(1+\frac{P(s)}{r} C(-s I-A)^{-1} B\right)= \\
& =d(s)(-1)^{n} d(-s)\left(1+\frac{1}{r} P(s) P(-s)\right)= \\
& =d(s) d(-s)\left(1+\frac{n(s)}{d(s) r} \frac{n(-s)}{d(-s)}\right)=0
\end{aligned}
$$

$d(s) d(-s)+\frac{1}{r} n(s) n(-s)=0$ Poles of closed loop system

