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23.1 Hamiltonian and optimal control problem

Recalling the previous lectures, optimal LQ control problem is associated with the solution
of Riccati equation:

−Ṗ = ATP (t) + P (t)A+Q− P (t)BR−1BTP (t),

which has final condition P (T, T ) = QT .
We have also shown the following results:

• V ∗o (x0) = xTo P (0)x0, where x(0) = x0;

• P (t, T ) = g(eΛ1(t−T ), eΛ2(t−T ),W ), where W comes from decomposition of Hamiltonian

matrix H =
[
W11 W12

W21 W22

] [
Λ1 0
0 Λ2

] [
W11 W12

W21 W22

]−1

;

• limT−t→+∞ P (t, T ) = limT→+∞ P (0, T ) = P̄ = W21W
−1
11 , whereW21 andW11 are blocks

of W;

We are up to find a proper feedback gain for the system,

K(t, T ) = R−1BTP (t, T ),

with is sued to compute the optimal input u∗(t) = −K(t, T )x(t).

To solve the optimal control problem, we see that if we consider P̄ , solution of Riccati
equation in infinte horizon, then we obtain the time-invariant gain

KLQ = R−1BT P̄ ,

and input becomes
lim

T→+∞
u∗(t) = −KLQx(t).

It is now necessary for this procedure to make two hypotheses:

• (A,Q
1
2 ) observable;

• (A,B) reachable.
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These hypotheses guarantee that:

1. P̄ exists on infinite horizon;

2. P̄ is unique and does not depend on the particular QT we choose;

3. A − BKLQ is asymptotically stable, i.e. the controller will stabilize the closed loop
system;

4. the eigenvalues of Ac = A−BKLQ coincide with stable eigenvalues of H.

Hypotheses made on observability and reachability directly imply points 1 and 2.

23.1.1 F asymptotically stable

We give a proof for point 3. Re-writing F as F = A−BKLQ, we obtain

F T P̄ + P̄F T = (A−BR−1BT P̄ )T P̄ + P̄ (A−BR−1BT P̄ ) =

= AT P̄ − P̄BR−1BT P̄ + P̄A− P̄BR−1BT P̄ =

= −Q− P̄BR−1BT P̄

using the equivalence given by the fact that limT→+∞ Ṗ (t) = 0, and so

AT P̄ + AP̄ +Q− P̄BR−1BT P̄ = 0.

Let us now suppose ab absurdum that it exists v ∈ Cn, eigenvector of F for eigenvalue λ ∈ C,
such that v 6= 0 and <(λ) > 0. We can write the expression above as:

v∗F T P̄ v + v∗F̄Fv = −v∗Qv − v∗P̄BR−1BT P̄ v =

λ̄v∗P̄ v + λv∗P̄ v = −‖Q
1
2v‖2 − ‖R−

1
2BT P̄ v‖2

(λ̄+ λ)‖P̄−
1
2v‖2 = −‖Q

1
2v‖2 − ‖R−

1
2BT P̄ v‖2

2<(λ)‖P̄−
1
2v‖2 = −‖Q

1
2v‖2 − ‖R−

1
2BT P̄ v‖2

Quantity on the right hand side of the expression is surely ≤ 0, but quantity on the left hand
side is ≥ 0 because P̄ ≥ 0, so this implies that to satisfy the equivalence all terms must be
equal to zero and in particular:

Q
1
2v = 0, BT P̄ v = 0

We can express F as

Fv = (A−BR−1BT P̄ )v = Av −BR−1BT P̄ v = Av = λv

but since Q
1
2v = 0 this implies that PBH test is violated since this could imply that (A,Q

1
2 )

is not observable. So matrix F must be asymptotically stable.
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23.1.2 Coincidence of eigenvalues

We said on point 4 that eigenvalues of matrix F = A−BKLQ, obtained with the application
of optimal control input u∗ = −R−1BT P̄ x, coincide with the stable eigenvalues of matrix H.
To prove that, we must choose a full-rank matrix T such that it is possible a change of basis
for H:

T =

[
I 0
−P̄ I

]
, T−1 =

[
I 0
P̄ I

]
Knowing that the eigenvalues are invariant to change of basis, we can compute:

THT−1 =

[
I 0
−P̄ I

] [
A −BR−1BT

−Q −AT

] [
I 0
P̄ I

]
=

=

[
A−BR−1BT P̄ −BR−1BT

−P̄A−Q+ P̄BR−1BP̄ − AT P̄ −AT + P̄BR−1BT

]
=

[
F −BR−1BT

0 −F T

]
Last matrix is upper triangular, so eigenvalues are all contained in diagonal blocks, in par-
ticular F contains all stable eigenvalues, while −F T has their opposite values (unstable).
In Matlab there is a specifical function that given the weights Q,R and the matrices A,B
returns the gain for optimal control, KLQ: [K_LQ] = lqr(A,B,Q,R).

23.2 LQ design: Root locus approach

In a SISO system, the eigenvalues of the closed-loop resulting matrix F = A − BKLQ can
be also computed through a suitable root locus approach. Let us consider the LTI system:{

ẋ = Ax(t) +Bu(t), x ∈ Rn

y(t) = Cx(t), u, y ∈ R
(23.1)

and the infinite-horizon cost: ∫ +∞

0

y(t)2 + ru(t)2dx,

where r ≥ 0 is the control weight. We could further distinguish two different behaviours of
the controller, based on the structure of the cost:

r → 0 ⇒ cheap− control

r → +∞ ⇒ expensive− control.

Thanks to the optimal control cost-function
∫ +∞

0
(x(t)TQx(t) +u(t)TRu(t))dx, we can relate

Q and C through the following formulation:

y2(t) = yT (t)y(t) = xT (t)CTCx(t)⇒ Q = CTC (rank = 1)
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For this reason, the only free parameter which can be chosen in the LQ design is R = r. The
Hamiltonian system associated to 23.1 is defined as follows:[

A −1
r
BBT

−CTC −AT

]
(23.2)

where the spectrum of F = A−BKLQ coincides with the stable eigenvalues of (23.2); λ(F )
corresponds to the poles of the closed-loop transfer function.

ẋ = Ax(t) +Bu(t) y(t) = Cx(t)
x(t)

u∗(t) = KLQx(t)

+uext(t) u(t) y(t)

−

Figure 23.1. Closed-loop system: LQ control

Y (s) = C(sI − F )−1BUext(s) =
nc(s)

dc(s)
Uext(s),

where Pc(s) = C(sI − F )−1B, and λ(F ) = poles of Pc(s). Under the formulation λ(H) =
det(sI −H) = 0 = dc(s)dc(−s), we show these preliminary results.

23.2.1 Preliminary results

1. det(AB) = det(A)det(B);

2. det

[
A B
C D

]
= det(A)det(D − CA−1B);

3. trace(AB) = trace(BA);

4. trace(A) =
∑

i λi ⇒ λi is eigenvalue of A (possibly with repetition according to the
Jordan diagonalization)

PROOF :

if ∃T such that J = TAT−1 ⇒ trace(A) = trace(T−1JT ) = trace(JTT−1) =
trace(J)

5. x, y ∈ Rn, E = xyT ∈ Rn×n which is a rank-1 matrix, therefore there are n − 1
eigenvalues in 0
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Λ(E) = {λ1 6= 0, λ2 = .......... = λn = 0}

Λ(I + E) = {λ1 + 1, λ2 = .......... = λn = 1}

trace(E) = λ1 = trace(xyT ) = trace(yTx) = yTx

det(I + E) =
∏

i λ̄i = 1 + λ1 = 1 + trace(E); λ̄i ∈ Λ(I + E)

Now we determine the characteristic polynomial of the Hamiltonian about the system

det

([
sI 0
0 sI

]
−
[

A −1
r
BBT

−CTC −AT

])
= det

([
sI − A 1

r
BBT

CTC sI + AT

])
(2)
=

(2)
=det(sI − A)det(sI + AT − CTC(sI − A)−1 1

r
BBT ) =

remembering that P (s) = C(sI − A)−1B = n(s)
d(s)

, where are open loop poles and zeros

= det(sI − A)det(sI + AT − P (s)
r
CTBT ) =

= det(sI − A)det
(

(sI + AT )
(
I − P (s)

r
(sI + AT )−1CTBT

))
(1)
=

= det(sI−A)det(sI+AT )det

I − P (s)
r

(sI + AT )−1CTBT︸ ︷︷ ︸
rank−1

 (5)
= A and AT have the same

eigenvalues

= det(sI − A)det(sI + A)det
(

1− P (s)
r

trace
(
(sI + AT )−1CTBT

)) (3)
=

= det(sI − A)det(sI + A)det

1− P (s)
r

trace(BT (sI + AT )−1CT︸ ︷︷ ︸
scalar

)

 =

= det(sI − A)det(sI + A)det
(

1− P (s)
r
BT (sI + AT )−1CT

)
=

= det(sI − A)det(sI + A)det
(

1− P (s)
r

(
BT (sI + AT )−1CT

)T)
=

= det(sI − A)det(sI + A)det
(

1− P (s)
r
C(sI + A)−1B

)
=
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= det(sI − A)det(−(−sI − A))det
(

1 + P (s)
r
C(−sI − A)−1B

)
=

= d(s)(−1)nd(−s)
(
1 + 1

r
P (s)P (−s)

)
=

= d(s)d(−s)
(

1 + n(s)
d(s)r

n(−s)
d(−s)

)
= 0

d(s)d(−s) + 1
r
n(s)n(−s) = 0 Poles of closed loop system
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