Control Laboratory: a.a. 2015/2016
Lezione 22 — 28th April

Instructor: Luca Schenato Scribes: Bastianello, Cristelli, Pezzutto, Picotti, Trentin, Viel

22.1 Properties of the Hamiltonian matrix

As we have seen in the previous lecture, we can solve the Riccati equation in continuos time
using the Hamiltonian matrix H given by:

A —BR'BT

In this lecture we will analyze some properties of this particular matrix.

Property 1: If we define a matrix J such as

0 I,
then we have

JHJ =HT.

The proof is simply done by inspection:

JHJ — 0 ILJ]|[A —-BR'BT 0 L, AT —Q
=1, 0| |-Q —AT -1, 0| |-BR'BT -A
which is of course the transpose of H.
Property 2: If A € A(H), then also —\ € A(H); in particular we will see that —\ €

A(HT) since H and H” have the same spectrum.
Let’s take v € C?"2" as an eigenvector for the eigenvalue A:

=[]
w— [—1}1’2] |

We will show now that HTw = —Aw. In fact, for the previous property we have:

so we have Hv = \w.
We can now define a new vector w as:
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wwsm- 8, a1, 5[0 ol

Then, by definition of eigenvector:

S R R o e P
-7 0 Vg —U1 U1

Property 3: If (A, B) is reachable and (A, Q'/?) is observable, if A\ € A(H) then R[\] # 0.
We will prove it by contradiction: we define a vector v # 0

U1
V= eC™
V2

and p € R such that Hv = juv. We also define a vector w as

V2
w = e C™.
U1

We can write

* *

—BR'BT _ pp-lpT
'UJ*HUI [Ul ’U2] [A BRB :| |:'01:| . [ % *] |:A’Ul BR B Vg

—Q —AT Vo - % —Q’Ul—AT'Ug

So we get:

w*Hv = v Avy — viBR™ B v, — v} Qu; — viA v,

Note that the last term is a complex number and its transpose is equal to the first term, so
we obtain:

w*Hv = —vsBR™'BTv; — v}Qu;

This is a negative real number because Q and R are positive semidefinite matrices. Decom-
posing these quadratic forms we obtain:

w Hv = —||R™V2BT w2 — |Q?u|> <0

Using now the fact that Hv = juv, we can write:

U1

02 = dutugon + vtva) = lugon + ) = el

w Hv = w*juv = ju ["U; vﬂ [

which is a purely imaginary number.
As we are equating an imaginary number with a real number, therefore the identity will
be satisfied if only if both terms are equal to 0. From this we can easily derive
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R™Y2BTyy =0 BTvy =0
{ QY2 = 0 = QY2y, = 0. (22.1)
Recalling that Hv = juv we can see
Ho — A —BR_IBT U1 _ A’Ul — BR_IBT’UQ _ AUl — V1
—Q —AT V2 —Q’Ul — ATU2 —AT’UQ JH V2 '
Finally we get:
Avy = juu,
{ Al = —J 2 (22:2)

this means that v; and vy are a right and left eigenvector of A for the eigenvalues ju and
—j 1, respectively.

Since we are proving the property by contadiction, we will show now that these two
conditions (22.1 — 22.2) will violate the PBH test. In fact, in order for the system to be
reachable, it has to be:

rank[sl — A|B] =n Vs
If this is not the case, i.e. the rank is smaller that n, then there exists a vector z € C", x # 0
such that
x'[sI — A|B] = 0.
If we take x = vy, which is vy # 0, and s = —ju, then we find that

vy [=jul — A|B] = [—jplvy — vy Aoy B] = [0]0] = 0

which contradicts the initial hypothesis.

So we have found that the eigenvalues of H will be split into stable eigenvalues (Re[A] < 0)
and unstable eigenvalues (Re[A] > 0), but they cannot be purely imaginary; since we showed
above that if A in the spectrum of H and also A is, this means that the eigenvalues in the
complex plane present a mirror symmetry with respect to both the imaginary and the real
axes.

22.2 Solution of the Riccati equation using the Hamilto-
nian

Given the properties of the Hamiltonian matrix derived in the first part of the lecture, we
can now find the explicit solution for the Riccati equation:
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—P(t) = P()A+ ATP(t) + Q — P(t)BR*BTP(t), P(T)= Qr (22.3)

It is standard linear algebra fact that there exists a the basis change matrix W € C?"*?»

such that: A
0
H= ! -
W { 0 A 1 W

where A; and A, are in Jordan canonical form and the spectrum of A; contains all the n
"stable" eigenvalues of H while Ay the "unstable" ones. Recall that, under the assumptions
of (A, B) reachable and (A, Q'/?) observable, we know, from property 3, that the Hamilto-
nian has no eigenvalues on the imaginary axis. Thus we can say that the eigenvalues of H
can be divided in "stable" and "unstable", i.e. with positive and negative real part respec-
tively. Moreover, from property 2, there is an equal number n of "stable" and "unstable"
eigenvalues: so A; and Ay have both dimension equals to n.

We now partition W as follows:

Wi Wi
W =
{ War Wa ] ’

where the four matrices are in R™*" and the first n columns are the eigenvectors (possibly
generalized) relative to the "stable" eigenvalues and the remaining columns are the eigen-
vectors relative to the "unstable" eigenvalues.

The natural evolution of the system

{X@) } _ l A —B_R;BT} {X(t) } g [ X(w] (22.4)

from initial time ¢ to final time T is:

{ if(((g } = { ?8 } (22.5)

thus, given that the exponential matrix is always invertible, we can write:

{ X(t) } _ ey { )Yf ((Q ] . (22.6)

Applying the basis change with matrix W to equation 22.6 and given that X (7') = I and
Y (T) = Qr, we derive:

L R A N
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instead of computing the inverse of W, we can use the following property that can be verified

by direct substitution:
1 I
wt = L 22.8
o) L5 ] @29

where L € C™*" invertible and S € C**"
S=—(Wa — QrWip) ™ (War — QrWiy). (22.9)

Equation 22.7 becomes:

Xt | [ Wiy W] [ eMtD
v )= [ ][0 len ][]
[ Wy eM=T) 7 ,ehe(=T)
[y W11,

i Wllelh(t—T) + Wme/\z(t—T)S I
| WMD) Wygehat=D g |

(22.10)

Recalling that the solution of the Riccati equation can be expressed as P(t) = Y ()X (¢) 7,
it is now possible to write:

P(t) = (Wye™ 0D £ Wiye2 =D 8) LL (WMD) 4 W™ g) e (22.11)

Aq (T—t) 6—1\1 (T—t)

now, given that e = I we derive

P(t) = (Wore 8T 4 Woge 22T0 G) eMT 0o =MlT=) (7, =M T 4 7 oA 6) !

— (W21 _'_ W226*A2(T*t) SeAl (T*t)) (Wll + W12€*A2(T7t) SeAl Tft))

We have found the solution to the Riccati equation (which is a non-linear differential equa-
tion) by simply computing eigenvalues and relative eigenvectors of the Hamiltonian matrix.
Recalling the example for the scalar case we note that there is an analogy between the ex-
pressions for P(t): in the scalar case P(t) is the ratio of two terms while here it is a product
between a matrix and the inverse of a second one.

Furthermore, if we are interested only in the steady-state value, i.e. for T'— oo, we see that
P(0) = Wy W{;", so we need to compute only the eigenvectors relative to "stable" eigenva-
lues. Given that the feedback matrix for the optimal control input is K(t) = R™*BT P(t),
the DC gain is equal to:

K(0)= R*'B'P(0) = R'BTWy,, W'
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