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22.1 Properties of the Hamiltonian matrix
As we have seen in the previous lecture, we can solve the Riccati equation in continuos time
using the Hamiltonian matrix H given by:

H =

[
A −BR−1BT

−Q −AT

]
.

In this lecture we will analyze some properties of this particular matrix.

Property 1: If we define a matrix J such as

J =

[
0 In
−In 0

]
,

then we have

JHJ = HT .

The proof is simply done by inspection:

JHJ =

[
0 In
−In 0

] [
A −BR−1BT

−Q −AT

] [
0 In
−In 0

]
=

[
AT −Q

−BR−1BT −A

]
which is of course the transpose of H.

Property 2: If λ ∈ Λ(H), then also −λ ∈ Λ(H); in particular we will see that −λ ∈
Λ(HT ) since H and HT have the same spectrum.
Let’s take v ∈ C2n×2n as an eigenvector for the eigenvalue λ:

v =

[
v1

v2

]
so we have Hv = λv.
We can now define a new vector w as:

w =

[
−v2

v1

]
.

We will show now that HTw = −λw. In fact, for the previous property we have:

22-1



Control Laboratory Lecture 22 — 28th April a.a. 2015/2016

HTw = JHJw =

[
0 In
−In 0

]
H

[
0 In
−In 0

] [
−v2

v1

]
=

[
0 I
−I 0

]
H

[
v1

v2

]
Then, by definition of eigenvector:

HTw =

[
0 I
−I 0

]
λ

[
v1

v2

]
= λ

[
v2

−v1

]
= −λ

[
−v2

v1

]
= −λw.

Property 3: If (A,B) is reachable and (A,Q1/2) is observable, if λ ∈ Λ(H) then R[λ] 6= 0.
We will prove it by contradiction: we define a vector v 6= 0

v =

[
v1

v2

]
∈ C2n

and µ ∈ R such that Hv = jµv. We also define a vector w as

w =

[
v2

v1

]
∈ C2n.

We can write

w∗Hv =
[
v∗1 v∗2

] [ A −BR−1BT

−Q −AT

] [
v1

v2

]
=
[
v∗1 v∗2

] [Av1 −BR−1BTv2

−Qv1 − ATv2

]
So we get:

w∗Hv = v∗2Av1 − v∗2BR−1BTv1 − v∗1Qv1 − v∗1ATv2

Note that the last term is a complex number and its transpose is equal to the first term, so
we obtain:

w∗Hv = −v∗2BR−1BTv1 − v∗1Qv1

This is a negative real number because Q and R are positive semidefinite matrices. Decom-
posing these quadratic forms we obtain:

w∗Hv = −‖R−1/2BTv2‖2 − ‖Q1/2v1‖2 ≤ 0

Using now the fact that Hv = jµv, we can write:

w∗Hv = w∗jµv = jµ
[
v∗2 v∗1

] [v1

v2

]
= jµ(v∗2v1 + v∗1v2) = jµ(v∗2v1 + v∗2v1) = jµRe[v∗2v1]

which is a purely imaginary number.
As we are equating an imaginary number with a real number, therefore the identity will

be satisfied if only if both terms are equal to 0. From this we can easily derive
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{
R−1/2BTv2 = 0
Q1/2v1 = 0

⇒

{
BTv2 = 0
Q1/2v1 = 0.

(22.1)

Recalling that Hv = jµv we can see

Hv =

[
A −BR−1BT

−Q −AT

] [
v1

v2

]
=

[
Av1 −BR−1BTv2

−Qv1 − ATv2

]
=

[
Av1

−ATv2

]
= jµ

[
v1

v2

]
.

Finally we get: {
Av1 = jµv1

ATv2 = −jµv2
(22.2)

this means that v1 and v2 are a right and left eigenvector of A for the eigenvalues jµ and
−jµ, respectively.

Since we are proving the property by contadiction, we will show now that these two
conditions (22.1 − 22.2) will violate the PBH test. In fact, in order for the system to be
reachable, it has to be:

rank[sI − A|B] = n ∀s

If this is not the case, i.e. the rank is smaller that n, then there exists a vector x ∈ Cn, x 6= 0
such that

xT [sI − A|B] = 0.

If we take x = v2, which is v2 6= 0, and s = −jµ, then we find that

vT2 [−jµI − A|B] = [−jµIvT2 − vT2 A|vT2 B] = [0|0] = 0

which contradicts the initial hypothesis.
So we have found that the eigenvalues of H will be split into stable eigenvalues (Re[λ] < 0)

and unstable eigenvalues (Re[λ] > 0), but they cannot be purely imaginary; since we showed
above that if λ in the spectrum of H and also λ is, this means that the eigenvalues in the
complex plane present a mirror symmetry with respect to both the imaginary and the real
axes.

22.2 Solution of the Riccati equation using the Hamilto-
nian

Given the properties of the Hamiltonian matrix derived in the first part of the lecture, we
can now find the explicit solution for the Riccati equation:
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−Ṗ (t) = P (t)A+ ATP (t) +Q− P (t)BR−1BTP (t), P (T ) = QT (22.3)

It is standard linear algebra fact that there exists a the basis change matrix W ∈ C2n×2n

such that:
H = W

[
Λ1 0
0 Λ2

]
W−1,

where Λ1 and Λ2 are in Jordan canonical form and the spectrum of Λ1 contains all the n
"stable" eigenvalues of H while Λ2 the "unstable" ones. Recall that, under the assumptions
of (A,B) reachable and (A,Q1/2) observable, we know, from property 3, that the Hamilto-
nian has no eigenvalues on the imaginary axis. Thus we can say that the eigenvalues of H
can be divided in "stable" and "unstable", i.e. with positive and negative real part respec-
tively. Moreover, from property 2, there is an equal number n of "stable" and "unstable"
eigenvalues: so Λ1 and Λ2 have both dimension equals to n.

We now partition W as follows:

W =

[
W11 W12

W21 W22

]
,

where the four matrices are in Rn×n and the first n columns are the eigenvectors (possibly
generalized) relative to the "stable" eigenvalues and the remaining columns are the eigen-
vectors relative to the "unstable" eigenvalues.

The natural evolution of the system[
Ẋ(t)

Ẏ (t)

]
=

[
A −BR−1BT

−Q −AT

] [
X(t)
Y (t)

]
= H

[
X(t)
Y (t)

]
(22.4)

from initial time t to final time T is:[
X(T )
Y (T )

]
= eH(T−t)

[
X(t)
Y (t)

]
(22.5)

thus, given that the exponential matrix is always invertible, we can write:[
X(t)
Y (t)

]
= e−H(T−t)

[
X(T )
Y (T )

]
. (22.6)

Applying the basis change with matrix W to equation 22.6 and given that X(T ) = I and
Y (T ) = QT , we derive: [

X(t)
Y (t)

]
= We

[
Λ1 0
0 Λ2

]
(t−T )

W−1

[
I
QT

]
; (22.7)
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instead of computing the inverse ofW , we can use the following property that can be verified
by direct substitution:

W−1

[
I
QT

]
=

[
I
S

]
L (22.8)

where L ∈ Cn×n invertible and S ∈ Cn×n

S = − (W22 −QTW12)−1 (W21 −QTW11) . (22.9)

Equation 22.7 becomes:

[
X(t)
Y (t)

]
=

[
W11 W12

W21 W22

] [
eΛ1(t−T ) 0

0 eΛ2(t−T )

] [
I
S

]
L

=

[
W11e

Λ1(t−T ) W12e
Λ2(t−T )

W21e
Λ1(t−T ) W22e

Λ2(t−T )

] [
I
S

]
L

=

[
W11e

Λ1(t−T ) +W12e
Λ2(t−T )S

W21e
Λ1(t−T ) +W22e

Λ2(t−T )S

]
L.

(22.10)

Recalling that the solution of the Riccati equation can be expressed as P (t) = Y (t)X(t)−1,
it is now possible to write:

P (t) =
(
W21e

Λ1(t−T ) +W22e
Λ2(t−T )S

)
LL−1

(
W11e

Λ1(t−T ) +W12e
Λ2(t−T )S

)−1
; (22.11)

now, given that eΛ1(T−t)e−Λ1(T−t) = I we derive

P (t) =
(
W21e

−Λ1(T−t) +W22e
−Λ2(T−t)S

)
eΛ1(T−t)e−Λ1(T−t)

(
W11e

−Λ1(T−t) +W12e
−Λ2(T−t)S

)−1

=
(
W21 +W22e

−Λ2(T−t)SeΛ1(T−t)
) (
W11 +W12e

−Λ2(T−t)SeΛ1(T−t)
)−1

.

We have found the solution to the Riccati equation (which is a non-linear differential equa-
tion) by simply computing eigenvalues and relative eigenvectors of the Hamiltonian matrix.
Recalling the example for the scalar case we note that there is an analogy between the ex-
pressions for P (t): in the scalar case P (t) is the ratio of two terms while here it is a product
between a matrix and the inverse of a second one.

Furthermore, if we are interested only in the steady-state value, i.e. for T →∞, we see that
P (0) = W21W

−1
11 , so we need to compute only the eigenvectors relative to "stable" eigenva-

lues. Given that the feedback matrix for the optimal control input is K(t) = R−1BTP (t),
the DC gain is equal to:

K(0) = R−1BTP (0) = R−1BTW21W
−1
11 .
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