Lezione 21 - 27 April

Instructor: Luca Schena\&oribes: Marsella, Bevilacqua, Farronato; Amadio, Modolo, Rocco

21.1 Riccati equation in continuous time

Let us solve the HJB equation considering the following LTI 1 system:

$$
\begin{equation*}
\dot{x}(t)=A x(t)+B u(t), x(0)=x_{0} \tag{21.1}
\end{equation*}
$$

with:

$$
\begin{gather*}
\ell(x(t), u(t), t)=x^{T}(t) Q x(t)+u^{T}(t) R u(t), Q, R \geq 0 \tag{21.2}\\
m(x(t))=x^{T}(t) Q_{T} x(t), Q_{T} \geq 0 \tag{21.3}
\end{gather*}
$$

We guess the cost function to be a quadratic cost function:

$$
\begin{equation*}
V^{*}(x(t), t)=x^{T}(t) P(t) x(t) \tag{21.4}
\end{equation*}
$$

where $P(t) \in \mathbb{R}^{n \times n}$ such that $P(t) \geq 0$ and $P(t)=P^{T}(t)$ without any loss of generality. Now we try to compute the optimal input $u^{*}(t)$ and the matrix $P(t)$. To simplify the notation, computations will be done using matrixes constant in the time, however they can be generalized to time-varying matrices $A(t), B(t), Q(t), R(t)$. Starting from:

$$
\begin{equation*}
\frac{\partial V^{*}}{\partial t}=x^{T} \dot{P}(t) x=-\min _{u}\left\{x^{T} Q x+u^{T} R u+2 x^{T} P(A x+B u)\right\} \tag{21.5}
\end{equation*}
$$

using the fact that $\frac{\partial}{\partial x}\left(x^{T} A x\right)=2 x^{T} A$, we obtain

$$
\begin{equation*}
x^{T} \dot{P}(t) x=-\min _{u}\left\{x^{T}(Q+2 P A) x+u^{T} R u+2 x^{T} P B u\right\} . \tag{21.6}
\end{equation*}
$$

To find the minimum we can derive with respect to u and set it equal to zero:

$$
\left.\frac{\partial}{\partial u}\left(x^{T}(Q+2 P A) x+u^{T} R u+2 x^{T} P B u\right)\right)=0
$$

recalling that $\frac{\partial}{\partial x}\left(b^{T} x\right)=b^{T}$, we obtain

$$
2 u^{T} R+2 x^{T} P B=0
$$

[^0]now doing the transpose and pre-multiply R^{-1} we get
$$
R^{-1}\left(u^{T} R+x^{T} P B\right)^{T}=0 \quad \Rightarrow \quad R^{-1}\left(R u+B^{T} P x\right)=0
$$
so the optimal input $u^{*}(t)$ is given by a linear function of the state
$$
u^{*}(t)=-R^{-1} B^{T} P(t) x(t)
$$

Replacing it in the equation (21.5):

$$
\begin{align*}
x^{T} \dot{P}(t) x & =-\left\{x^{T}(Q+2 P A) x+x^{T}\left(P B R^{-1} R R^{-1} B^{T} P\right) x-2 x P B R^{-1} B P x\right\} \\
& =-x Q x-2 x^{T} P A x+x^{T} P B R^{-1} B^{T} P x . \tag{21.7}
\end{align*}
$$

As mentioned before, we are looking for a symmetric matrix $\mathrm{P}(\mathrm{t})$, so we observe that

$$
2 x^{T} P A x=x^{T} P A x+\left(x^{T} P A x\right)^{T}=x^{T} P A x+x^{T} P A^{T} x
$$

and therefore we get that $\mathrm{P}(\mathrm{t})$ must satisfy the following differential equation:

$$
-\dot{P}(t)=Q+P(t) A+A^{T} P(t)-P(t) B R^{-1} B^{T} P(t)
$$

this equation is called Riccati differential equation. It is possible to get $\mathrm{P}(\mathrm{t})$ from the final condition $\mathrm{P}(\mathrm{T})$, integrating backward.

21.2 Riccati equation solution in scalar case

$$
\begin{align*}
x(t) & =a x(t)+b u(t) \quad x(0)=x_{0} \\
\ell(x, u, t) & =q x^{2}(t)+r u^{2}(t) \tag{21.8}\\
p(T) & =q_{T}
\end{align*}
$$

with $x, u \in \mathbb{R}, p \in \mathbb{R}, n=1$. If we call $\tilde{u}(t)=b u(t)$ then we obtain from 21.8:

$$
\ell(x, u, t)=q x^{2}(t)+\frac{r}{b^{2}} \tilde{u}^{2}(t)
$$

In the Riccati equation we consider $b=1, q=1$ without loss in generality:

$$
\begin{equation*}
-\dot{p}=2 a p(t)+q-\frac{b^{2}}{r} p^{2}(t)=2 a p(t)+1-\frac{1}{r} p^{2}(t)=2 a p(t)+1-\rho p^{2}(t) \tag{21.9}
\end{equation*}
$$

where $\rho=\frac{1}{r}$. Solving in the explicit form

$$
\begin{equation*}
\frac{d p}{d t}=-2 a p(t)-1+\rho p^{2}(t)=\rho\left(p^{2}(t)-\frac{2 a}{\rho} p(t)-\frac{1}{\rho}\right) \tag{21.10}
\end{equation*}
$$

that gives a second order equation with two roots, λ_{1} and λ_{2}

$$
\begin{equation*}
\frac{d p}{d t}=\rho\left(p(t)-\lambda_{1}\right)\left(p(t)-\lambda_{2}\right) \quad \lambda_{1,2}=\frac{a}{\rho} \pm \sqrt{\frac{a^{2}}{\rho}+\frac{1}{\rho}} \tag{21.11}
\end{equation*}
$$

Since $-\frac{1}{\rho}=\lambda_{1} \lambda_{2}$, the roots must be real, one positive and the other negative, $\lambda_{1}<0, \lambda_{2}>0$. We order the differential form to semplify the integration,

$$
\begin{equation*}
\frac{d p}{\left(p-\lambda_{1}\right)\left(p-\lambda_{2}\right)}=\rho d t \tag{21.12}
\end{equation*}
$$

and calculating the integral

$$
\begin{equation*}
\int_{p(t)}^{p(T)} \frac{d p}{\left(p-\lambda_{1}\right)\left(p-\lambda_{2}\right)}=\int_{t}^{T} \rho d \tau \tag{21.13}
\end{equation*}
$$

The rigth part of the equation is instantly resolvable

$$
\begin{equation*}
\int_{t}^{T} \rho d \tau=\rho(T-t) \tag{21.14}
\end{equation*}
$$

For the left part we have to use partial fraction decomposition:

$$
\begin{aligned}
\frac{1}{\left(p-\lambda_{1}\right)\left(p-\lambda_{2}\right)} & =\frac{\alpha}{\left(p-\lambda_{1}\right)}+\frac{\beta}{\left(p-\lambda_{2}\right)} \\
& =\frac{\alpha p-\alpha \lambda_{2}+\beta p-\beta \lambda_{1}}{\left(p-\lambda_{1}\right)\left(p-\lambda_{2}\right)} \\
\left\{\begin{array}{c}
(\alpha+\beta)=0 \\
\lambda_{1} \beta+\lambda_{2} \alpha=-1
\end{array}\right. & \rightarrow \quad\left\{\begin{array}{l}
\alpha=\frac{-1}{\lambda_{2}-\lambda_{1}} \\
\beta=\frac{1}{\lambda_{2}-\lambda_{1}}
\end{array}\right.
\end{aligned}
$$

And now we can put this result in the integral 21.13

$$
\begin{align*}
\rho(T-t) & =\int_{p(t)}^{p(T)}\left(\frac{-1}{\lambda_{2}-\lambda_{1}} \frac{1}{p-\lambda_{1}}+\frac{1}{\lambda_{2}-\lambda_{1}} \frac{1}{p-\lambda_{2}}\right) d p \\
& =\frac{1}{\lambda_{1}-\lambda_{2}} \int_{p(t)}^{p(T)}\left(\frac{1}{p-\lambda_{1}}-\frac{1}{p-\lambda_{2}}\right) d p \tag{21.15}
\end{align*}
$$

and solving the integral

$$
\begin{align*}
\rho(T-t) & =\frac{1}{\lambda_{1}-\lambda_{2}}\left(\left.\ln \left(p-\lambda_{1}\right)\right|_{p=p(t)} ^{p(T)}-\left.\ln \left(p-\lambda_{2}\right)\right|_{p=p(t)} ^{p(T)}\right) \\
& =\left.\frac{1}{\lambda_{1}-\lambda_{2}} \ln \frac{p-\lambda_{1}}{p-\lambda_{2}}\right|_{p=p(t)} ^{p(T)}=\frac{1}{\lambda_{1}-\lambda_{2}} \ln \frac{\left(p(T)-\lambda_{1}\right)\left(p(t)-\lambda_{2}\right)}{\left(p(T)-\lambda_{2}\right)\left(p(t)-\lambda_{1}\right)} \tag{21.16}
\end{align*}
$$

and calling $q_{T}=p(T)$

$$
\begin{gather*}
\rho(T-t)=\frac{1}{\lambda_{1}-\lambda_{2}} \ln \frac{\left(q_{T}-\lambda_{1}\right)\left(p(t)-\lambda_{2}\right)}{\left(q_{T}-\lambda_{2}\right)\left(p(t)-\lambda_{1}\right)} \tag{21.17}\\
e^{\left(\lambda_{1}-\lambda_{2}\right) \rho(T-t)}=\frac{\left(q_{T}-\lambda_{1}\right)\left(p(t)-\lambda_{2}\right)}{\left(q_{T}-\lambda_{2}\right)\left(p(t)-\lambda_{1}\right)} \tag{21.18}
\end{gather*}
$$

Now let $g(t)=e^{\left(\lambda_{1}-\lambda_{2}\right) \rho(T-t)}$

$$
\begin{aligned}
\left(q_{T}-\lambda_{1}\right) p(t)-\lambda_{2}\left(q_{T}-\lambda_{1}\right) & =g(t)\left(\left(q_{T}-\lambda_{2}\right) p(t)-\lambda_{1}\left(q_{T}-\lambda_{2}\right)\right) \\
p(t)\left[g(t)\left(q_{T}-\lambda_{2}\right)-\left(q_{T}-\lambda_{1}\right)\right] & =g(t) \lambda_{1}\left(q_{T}-\lambda_{2}\right)-\lambda_{2}\left(q_{T}-\lambda_{1}\right)
\end{aligned}
$$

and finally

$$
\begin{equation*}
p(t)=\frac{e^{\left(\lambda_{1}-\lambda_{2}\right) \rho(T-t)} \lambda_{1}\left(q_{T}-\lambda_{2}\right)-\left(q_{T}-\lambda_{1}\right) \lambda_{2}}{e^{\left(\lambda_{1}-\lambda_{2}\right) \rho(T-t)}\left(q_{T}-\lambda_{2}\right)-\left(q_{T}-\lambda_{1}\right)} \tag{21.19}
\end{equation*}
$$

We can verify that $p(T)=q_{T}$

$$
\begin{equation*}
p(T)=\frac{\lambda_{1}\left(q_{T}-\lambda_{2}\right)-\lambda_{2}\left(q_{T}-\lambda_{1}\right)}{\left(q_{T}-\lambda_{2}\right)-\left(q_{T}-\lambda_{1}\right)}=q_{T} \tag{21.20}
\end{equation*}
$$

Now we compute $p(0)$

$$
\begin{equation*}
p(0)=\frac{e^{\left(\lambda_{1}-\lambda_{2}\right) \rho T} \lambda_{1}\left(q_{T}-\lambda_{2}\right)-\left(q_{T}-\lambda_{1}\right) \lambda_{2}}{e^{\left(\lambda_{1}-\lambda_{2}\right) \rho T}\left(q_{T}-\lambda_{2}\right)-\left(q_{T}-\lambda_{1}\right)} \tag{21.21}
\end{equation*}
$$

and we take te limit for $T \longrightarrow+\infty$

$$
\begin{equation*}
\lim _{x \rightarrow \infty} p(0)=\frac{-\left(q_{T}-\lambda_{1}\right) \lambda_{2}}{-\left(q_{T}-\lambda_{1}\right)}=\lambda_{2}>0 \tag{21.22}
\end{equation*}
$$

So we see that this limit does not depend on q_{T}.
In general we observe that we get the solution $p(t)$ solving two linear systems associated to the roots of the Riccati equation. The fact that it is possible to compute the evolution of $P(t)$ from the solution of a linear system of dimension twice that of $P(t)$ is a structural feature of the Riccati equation, true also in multivariable case.

21.3 Riccati equation solution for MIMO systems

Now we consider the following MIMO system and the associated Riccati equation:

$$
\begin{equation*}
\dot{x}(t)=A x(t)+B u(t) \tag{21.23}
\end{equation*}
$$

Figura 21.1. Riccati equation solution $p(t)$ for two different values of q_{T}.

$$
\begin{equation*}
-\dot{P(t)}=P(t) A+A^{T} P(t)+Q-P(t) B R^{-1} B^{T} P(T) \tag{21.24}
\end{equation*}
$$

where $x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}, R>0$ and $P(T)=Q_{T}$.
Let us now consider the following system:

$$
\binom{\dot{X}(t)}{\dot{Y}(t)}=\left(\begin{array}{c|c}
A & -B R^{-1} B^{T} \\
\hline-Q & -A^{T}
\end{array}\right)\binom{X(t)}{Y(t)}
$$

$X(t), X(t) \in \mathbb{R}^{n \times n}, X(T)=I$ and $X(T)=Q_{T}$.
The matrix is called Hamiltonian of $(A, B, Q, R), H \in \mathbb{R}^{2 n \times 2 n}$.
This system can be solved in closed form, for example with the Jordan decomposition:

$$
\left[\begin{array}{c}
X(t) \\
Y(t)
\end{array}\right]=e^{H(t-T)}\left[\begin{array}{c}
X(Y) \\
Y(T)
\end{array}\right]
$$

[^0]: ${ }^{1}$ the following equations are the same in the case of linear time variant systems using the substitutions $A=A(t), B=B(t), R=R(t)$.

