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20.1 Optimal linear quadratic control (LQ control)
The LQ control is a state space control design technique which aims to solve the problem of
pole placement. Given the system (A,B,C,D), we assume it to be observable and reachable
and we want to design the feedback matrices K ∈ Rm×n and L ∈ Rn×l so that the eigenvalues
Λ(A+BK), Λ(A− LC) can be placed in a specific region of the complex plain, in order to
have a desidered system dynamics. Up to now we have determined this performance region
using the dominant pole approximation which

- is based on second order systems,

- does not take into account the zeros of the transfer function that we have to approxi-
mate.

Except special cases, the dynamics of the system (A,B,C,D) is not similar to that of a
second order system so the dominant pole approximation does not ensure to meet the project
specifics. Another way to solve the problem is to us the optimal control which turn the
designing problem into an optimization task.

20.1.1 Optimization problem (finite horizon senario)

Consider a linear continuous time MIMO system{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

Given an horizon T > 0 and a control input u(t), t ∈ [0, T ], we define the following quadratic
cost function

J(u,x0) =

∫ T

0

xT (t)Qx(t) + uT (t)Ru(t) dt+ xT (T )QTx(T ), (20.1)

where Q, QT ∈ Rn×n are positive semidefinite matrices and R ∈ Rm×m is a positive definite
marix1.

1A matrix F ∈ Rk×k is said to be positive semidefinite if it is symmetric and the scalar vTFv ≥ 0 for all
v ∈ Rk. F is said to be positive definite if it is positive definite and vTFv = 0 if and only if v = 0.
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Example 1. Let us consider a SISO system (m = l = 1). Given the marices

Q = CTC, QT = 0, R = rI,

for some real number r > 0, and matrix C (positive semidefinite) of suitable dimensions, the
quadratic cost function (20.1) becomes

J(u,x0) =

∫ T

0

||y(t)||2 + r||u(t)||2 dt. (20.2)

The optimization problem will be

u∗(t) = argmin
u(t)

J(u,x0), t ∈ [0, T ].

Supposing we want just to stabilize the system ( y(t) → 0, t → ∞), from (20.2), it is easy
to see that very likely it will be

r → 0 =⇒ y(t)→ 0 fast, but we need a large u(t),

r →∞ =⇒ y(t)→ 0 slowly, but we need a small u(t).

The problem is shifted to the design of the weights Q,R ≥ 0 and we will see that the solution
of the optimization problem will provide us the feedback matrices K. Moreover we will see
that the optimal control law will be a static state feedback. Once solved this problem, we
will check where the closed loop system poles are placed by the LQ control.

Example 2. Consider the following scalar system{
ẋ(t) = ax(t) + u(t)

y(t) = x(t)

and we assume that the optimal control is linear with respect to the system state, i.e.
u∗(t) = −Kx(t). We consider the infinite horizon T , T →∞ and we want to determine the
cost function J under the assumption QT = 0, Q = 1 and R = r, therefore we obtain:

J(K, x0) =

∫ +∞

0

y2(t) + ru2(t) dt. (20.3)

With the control input, the dynamics of the system becomes:{
ẋ(t) = ac x(t)

y(t) = x(t)
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where we define ac = a−K. We can also obtain the expression of x(t) as a function of the
initial state, x0, and the system matrices, such that:

x(t) = e(a−K)tx0 (20.4)

Using this expression in (20.3) we get:

J(K, x0) =

∫ +∞

0

y2(t) + ru2(t) dt

=

∫ +∞

0

x2(t) + rK2x2(t) dt

= (1 + rK2)

∫ +∞

0

x2(t) dt

= x20 (1 + rK2)

∫ +∞

0

e2(a−K)t dt

=


+∞, (a−K) > 0

x20(1 + rK2)
[

1
2(a−K)

e2(a−K)t
]+∞
0

, (a−K) < 0

=


+∞, (a−K) > 0

x20(1+rK
2)

2(K−a) , (a−K) < 0

Relying on this result we have to find K∗ in order to minimize the cost function, such that:

K∗ = argmin
K

J(K, x0) = argmin
K

[
x20(1 + rK2)

2(K − a)

]
(20.5)

If we study the asymptotes of J(K, x0) we find that it has a vertical one, K = a, and an
oblique one J(K, x0) =

rx20
2
K. With this information we can represent easily the cost function

as in figure 20.1.
Now, if we consider the same figure we see that J(K, x0) admits a minimum value; in order
to find an expression for K∗ we have to consider ∂J(K,x0)

∂K
= 0. We get:

2rK(K − a)− (1 + rK2)

(K − a)2
= 0

2rK2 − 2rKa− 1− rK2 = 0

rK2 − 2rKa− 1 = 0.

Finally, we can extract the expression of K∗, i.e.:

K∗ =
ra+
√
r2a2 + r

r
= a+

√
a2 +

1

r
(20.6)
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a K∗

J(K∗)

K
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Figure 20.1. Cost function

where we did not take account of the unfeasible solution. If we remember that ac = a−K,
where in this case K = K∗, we obtain

ac = a− a−
√
a2 +

1

r
= −

√
a2 +

1

r

We have found that the closed loop pole ac, is a function of the matrix (in this case it is
a scalar value) a. In particular, as we can see in figure 20.2, if we consider the case when
r → +∞ the closed loop pole will be placed in −|a|. Moreover, we can see that in both cases
ac → −∞ when r → 0.

Re

Im

Re

Ima > 0 a < 0

×
a

×
ac = −a

×
ac = a

r ↘ r ↘

Figure 20.2.

Therefore, if a < 0, and we want to use the smallest effort to stabilize the system, then
the solution is not to apply any feedback (K∗ = 0), since the system is already stable. In
general, when r → ∞ we are dealing with expensive control scenario, while r → 0 is called
cheap control scenario. It also interesting to notice that if the system is unstable and we
would like to minimize the cost using as little input energy as possible, we would expect that
placing the closed loop poles just on the left of the real axis might be the best solution, in
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order to require very little energy. Instead, this is not a good position for the closed loop
poles and the reason is given by the cost function:∫ +∞

0

y2(t) + ru2(t)dt = x20(1 + rK2)

∫ +∞

0

x2(t)dt (20.7)

we see that, due to the presence of the quadratic terms x2(t) and x20 (the initial condition),
the result of this integral would be very large if x(t) converges to zero too slowly. Optimal
control tells us that the minimum energy location for the closed loop poles is exactly the
symmetrical of the original open loop.

20.1.2 Optimal control problem: Hamilton-Jacobi-Bellman equa-
tion

Let us consider the generical continuos time system:

ẋ(t) = f(x(t), u(t), t) (20.8)

with x(0) = x0 and u(τ), τ∈[t, T ].
We define the cost-to-go function at time t:

V (x(t), t) =

∫ T

t

`(x(τ), u(τ), τ)dτ +m(x(T )) (20.9)

where the term `(x(τ), u(τ), τ) and the term m(x(τ)) are called, respectively, instanta-
neous cost and terminal cost and they are such that ` : Rn×Rm×R→ R+ andm : Rn → R+.
Therefore, with this definition, we see that:

J(x0, u) = V (x(0), 0) (20.10)

with u∈[0, T ]. Once defined the cost-to-go function we can determine the optimal one:

V ∗(x(t, )t) = min
u[t,T ]

V (x(t), t) (20.11)

We are looking at all possible inputs which can minimize the cost function: V ∗ is the
optimal cost function and does not depend on the input u. If we assume to start from an
initial condition x(0) and to end up at x(T ) and if we assume it to be the optimal trajectory,
we have, basically, minimized the cost function by choosing u∗ among all possible inputs and
we can find the trajectory ẋ(t) = f(x(t), u∗(t), t). Now, it is interesting to notice that for
the Optimality principle, if the trajectory from x(0) to x(T ) is optimal, also the one from
x(t1) to x(T ) is optimal, with t < t1 < T . Therefore, in general, if the input is optimal from
t to T , it would also be optimal from t1 to T , with t1 > t.

Thanks to these observations we can split the optimal cost function in this way:
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V ∗(x(t), t) = min
u(τ),τ∈[t,T ]

V (x(t), t) (20.12)

= min
u(τ),τ∈[t,t1]

[
min

u(τ),τ∈[t1,T ]

∫ t1

t

`(x(τ), u(τ), τ)dτ +

∫ T

t1

`(x(τ), u(τ), τ)dτ +m(x(T ))

]
(20.13)

= min
u(τ),τ∈[t,t1]

∫ t1

t

`(x(τ), u(τ), τ)dτ + min
u(τ),τ∈[t1,T ]

∫ T

t1

`(x(τ), u(τ), τ)dτ +m(x(T ))

(20.14)

where:

V ∗(x(t1), t1) = min
u(τ),τ∈[t1,T ]

∫ T

t1

`(x(τ), u(τ), τ)dτ +m(x(T )) (20.15)

We would like to understand what happens if we take t1 very small, in the sense that t1
is just a little bit larger than t. What we get is:

V ∗(x(t), t) = min
u(τ),τ∈[t,t+ε]

[∫ t+ε

t

`(x(τ), u(τ), τ)dτ + V ∗(x(t+ ε), t+ ε)

]
(20.16)

Let focus now on what happens when ε → 0. In order to do that we apply the Taylor
expansion with respect to ε:

V ∗(x(t+ ε), t+ ε) = V ∗(x(t), t) + ε ·
[
∂V ∗

∂x

∂x

∂ε

]
ε=0

+ ε ·
[
∂V ∗

∂t

]
ε=0

+ o(ε) (20.17)

and∫ t+ε

t

`(x(τ), u(τ), τ)dτ =

∫ t

t

`(x(τ), u(τ), τ)dτ︸ ︷︷ ︸
=0

+ε ·
[
∂x

∂ε

∫ t+ε

t

`(x(τ), u(τ), τ)dτ

]
ε=0︸ ︷︷ ︸

=`(x(t),u(t),t)

+o(ε)

(20.18)
and the expression becomes:

V ∗(x(t), t) = min
u(τ),τ∈[t,t+ε]

[
ε `(x(t), u(t), t) + V ∗(x(t), t) +

∂V ∗

∂x

∂x

∂ε
ε+

∂V ∗

∂t
ε+ o(ε)

]
. (20.19)

Simplifying:

0 = min
u(τ),τ∈[t,t+ε]

[
`(x(t), u(t), t)ε+

∂V ∗

∂x

∂x

∂t
ε+

∂V

∂ε
ε+ +

∂V ∗

∂t
ε+ o(ε)

]
. (20.20)
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If we take the limit for ε→ 0, the expression becomes:

min
u(t)

[
`(x(t), u(t), t) +

[
∂V ∗

∂x

]
t

f(x(t), u(t), t) +
∂V ∗

∂t

]
= 0 (20.21)

finally, we get the Hamilton Jacobi Bellman equation:

∂V ∗

∂t
(x(t), t) = −min

u(t)

[
`(x(t), u(t), t) +

∂V ∗

∂x
(x(t), t) · f(x(t), u(t), t)

]
(20.22)

In general, this is a formidable partial non-linear differential equation which is extremely
hard to solve, even simply numerically. However, in the very special case where we pick `(·)
as a quadratic function, i.e. `(x(t), u(t), t) = xT (t)Qx(t)+uT (t)Ru(t) and a linear dynamical
system {

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

we are able to compute V ∗(x(t), t) and u∗(t) in closed form.
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