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19.1 Process’s discretizing P(s)

Figura 19.1. Process’s discretizing

We consider P(s) writter in space state:{
˙x(t) = Ax(t) +Bu(t)

y = Cx(t) +Du(t)

then we can write x(t) as:

x(t) = eA(t−t)x(t) +

∫ t

t

eA(t−τBu(τ)dτ (19.1)

Applying the sostitution t = (k + 1)T e t̄ = kT

x((k + 1)T ) = eATx(kT ) +

∫ (K+1)T

KT

eA(t−τ)Bu(τ)dτ (19.2)
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we know that u(t)=u(kT) for kT ≤ t ≤ (k + 1)T we have:

x((k + 1)T ) = eATx(kT ) + (

∫ (K+1)T

KT

eA(t−τ)Bdτ)u(kT ) (19.3)

result that:

x((k + 1)T ) = eATx(kT ) + (

∫ T

0

eAτBdτ)u(kT ) (19.4)

The following equations are provided:

Ad = eAT (19.5)

Bd =

∫ T

0

eAτBdτ (19.6)

Cd = C (19.7)

Dd = D (19.8)

This transformation make the following systems equivalent:

in this way, we have y(K) = ỹ(kT ).

The exact disctretization method can be applied directly also to transfer functions in the
z -domain using the following transformation:

P (z) = (1− z−1)Z

[
P (s)

s

]
(19.9)
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Continuous Forward Euler Backward Euler Tustin Exact
A Ad = I + TA (I − TA)−1 (I + AT

2 )(I − AT
2 )−1 eAT

B Bd = TB T (I − TA)−1B (I − AT
2 )−1B

√
T

∫ T
0 eAτBdτ

C Cd = C C(I − TA)−1
√
TC(I − AT

2 )−1 C

D Dd = D D + C(I − TA)−1BT D + C(I − AT
2 )−1B T

2 D

P (s) s = 1
T (z − 1) s = 1

T
(z−1)
z s = 2

T
(z−1)
(z+1) (1− z−1)Z[P (s)

s ]

Tabella 19.1. Summarizing table for different discretization methods

or equivalently as:
P (z) = Cd(zI − Ad)−1Bd +Dd (19.10)

The previous table provide different discretization methods that can be applied both in
the transfer function domain as well as in the state space domain to pass from a continuous
process P(s) to its discrete process P(z) to have a good approximation on the outputs.

Figura 19.2.

The equivalent block diagram with a discrete controller is shown in Figure 19.31.
This isn’t the only approach to control design, we can also implement the controller digitally.

1Note that in SIMULINK it is not necessary to insert the ’zoh’-block and the ’sampler’ block, since
SIMULINK automatically performs those steps with the ’C(z)’ block.
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Figura 19.3.

Figura 19.4.

19.1.1 Controller design in discrete time using state space approach

{
ẋ(t) = Ax(t) +Bu(t)
y = Cx(t) +Du(t)
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And the exact approximation is: {
xk+1 = Adxk +Bduk
yk = Cdxk +Dduk

With:

Ad = eAT Bd =

∫ T

0

eAτBdτ

Cd = C Dd = D

Note: The properties (A, B) reachable and (A, C) observable might not be preserved
after the discretization process, in fact (Ad, Bd) and (Ad, Cd) may lose reachability and
observability unless the sample period T is sufficiently small.

19.1.2 State feedback, nominal tracking, integral control

u(k) = −kdx(k)

xk+1
I = xk

I + ek

Figura 19.5.

In the scheme below we can observe that the estimated state has the same evolution of the
nominal state except for the term L(yk − ŷk). In the next lines we will see that the matrix
L will be essential to control the dynamics error.{

x̂k+1 = Adx̂k +Bduk + L(yk − ŷk)
ŷk = Cdx̂k +Dduk
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Figura 19.6.

ek = xk − x̂k x̂k = xk − ek

z =

[
xk
ek

]
The regulator: [

xk+1

ek+1

]
=

[
Ad −BdK BdK

0 Ad − LCd

] [
xk
ek

]
+

[
Bd

0

]
uink

ek+1 = xk+1 − x̂k+1 = Adxk +Bduk − (Adx̂k +Bduk + L(yk − ŷk))
= Adek − L(Cdxk − Cdx̂k)
= (Ad − LCd)ek

We note that the dynamics of the error does not depend on the matrix Bduk
ek = x+ k − x̂k ⇒ x̂k = xk − ek

xk+1 = Adxk +Bduk

uk = uink − uck
uck = kx̂k = kxk − kek

xk+1 = Adxk +Bdu
in
k −BdKxk +BdKek (19.11)

= (Ad −BdK)xk +BdKek +Bdu
in
k (19.12)

y =
[
Cd 0

] [ xk
ek

]
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As we can see, the estimated state is pushed into the feedback block and used to stabilized
the system. So we must find K and L to stabilize Ack.

uink = constant = uDC ⇒ xk → xDC

yk → yDC

zk → zDC ⇒ ek → eDC

eDC = (Ad − LCd)eDC ⇒ eDC = 0

this is true because (Ad − LCd) is invertible.

xDC = (Ad −BdK)xDC +BdKeDC +BDuDC ⇒ xDC = (I − (Ad −BdK))−1Bd

yDC = Cd(I − (Ad −BdK))−1Bd

N̄ =
1

Cd(I − (Ad −BdK)−1Bd

The corresponding transfer function of the close loop is:

Pcc(s) =
P (s)C(s)

1 + P (s)C(s)
=

nc(s)∏
i=0(s− pci)

(19.13)

For simplicity of discussion and notation, let us assume that the poles pi are distinct and
inside the unit circle(i.e. R[pci ] < 0); if we apply the step function the forced output looks
like:

r(t) = 1(t)

yf (t) = α0 +
n∑
i=1

αie
pci t

Where αi are be the coefficients associated to the modes of the system ep
c
i t.

After the discretization we obtain

Pcc(z) =
P (z)C(z)

1 + P (z)C(z)
=

nd(z)∏
i=0(z − pi)

(19.14)

with the |pdi | < 1 , and with αi ' βi

yk = β0 +
n∑
i=1

βi(p
d
i )
k

' α0 +
n∑
i=1

αi(p
d
i )
k
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so the forced output will be approximately:

yf (kT ) ≈ α0 +
n∑
i=1

αie
pcikT

= α0 +
n∑
i=1

αi(e
pciT )k

so if we set pdi = ep
c
iT we should expect a similar output between the continuous systems and

the corresponding discretized system, at least on the sampling instants t = kT .

So we find the relationship between poles in continuos time and in descrete time. If we
have C(s), and we know where we would like to place the poles of the closed loop system on
s-plane, we can design directly the controller in discete time throught the map pdi = ep

c
iT .

We have to pay attention to the fact that a too large T provide poor performances while a
to small one may forces some poles out of the unit circle. The following relation provides a
guidance for the choice of the sampling period (whenever possible) and guarantees a good
compromise between numerical robustness and approximation fidelity:

1

1000
tr ≤ T ≤ 1

20 ∼ 30
tr

where tr is the desired raising time.
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