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16.1 Observers and regulators
The dynamics of the overall systems composed by the original plant and the regulator with
its observer and state-feedback controller:

Figura 16.1. Observer/Regulator

Suppose that uin(t) = 0:



ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) where :
˙̂x(t) = Ax̂(t) +Bu(t) + L(ey(t))← first and second equation concerning the physical model (Plant),
ŷ(t) = Cx̂(t) third and fourth equation concerning estimator (Observer),
u(t) = uc(t) the last two equations concerning the Controller and feedback.
uc(t) = −Kx̂(t)
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16.2 Transfer function of regulators
Since uin = 0 we have the situation shown below:

Figura 16.2. Regulator/Plant

where the Regulator (Observer+Controller), in state space, is modelized by the follow equa-
tions:

˙̂x(t) = (A−BK − LC)x̂(t) + Ly(t) = Fx̂(t) + Ly(t)
uc(t) = −Kx̂(t) = u(t)
ŷ(t) = Cx̂(t)

So, the representation of the regulator by its transfer function is:

C(s) = −K(sI − (A−BK − LC))−1L = −K(sI − F )−1L

paying attention about these warnings:

(A,B) reachable
(A,C) observable

⇒ ∃ regulator that stabilizes the closed loop system and
that can place the closed loop eigenvalues arbitrarily.

A−BK
A− LC

}
asymptotically stable 6⇒ F asymptotically stable

16.3 Tracking of signals reference
How should we choose L and K values to obtain the best performances of the system? How
should we choose λ(A− LC)? Requiring x̂(t)→ x(t) faster implies that we must to choose
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λ(A − LC) more negative (faster) with respect to λ(A − BK). However, it is important is
to know that L should not be too “big” because this amplifies measurement noise, as shown
by the following expression:

x̂(t) = (A− LC)x(t) +Bu(t) + L(y(t) + dy(t))

where dy measurement noise.
Moreover a large “L” would give rise to large error signal ex(t) which in turns would give
rise to high control signals during the transients.
One approximative rule to choose eigenvalues of the observer matrix (A−LC) around 3−10
times faster with respect to the eigenvalues of the control matrix (A − BK). Therefore, in
order to have a good compromise between tracking speed and rejection noise at the output
a possible rule-of-thumb is the following

|λ(A− LC)| ' 3− 4|λ(A−BK)|

16.4 Tracking with observers
Let us consider this plant-regulator block scheme shown below:

Figura 16.3. Plant/Observer/Controller+feedback

The state equations can be resume as follows:


[
ẋ
ėy

]
=

[
A−BK BK

0 A− LC

] [
x
ex

]
+

[
B
0

]
um

y =
[
C 0

] [ x
ex

]
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Figura 16.4. Blocks system scheme

As we already shown in pure state-feedback control, tracking of a step input r(t) = 1(t) ⇒
y(t)→ r(t) = 1(t) can be achieved as follows:

1) nominal tracking (feedforward control).
2) robust tracking (integral control).

1) Nominal tracking: in this case the problem is how to pick N̄ :
First of all, N must be chosen such that:

• yDC = rDC

• um = N̄rDC

If x→ xDC and ex → eDC
x ⇒ ẋ→ 0 and ėx → 0

So:

(A− LC)eDC
x = 0⇒ eDC

x = 0⇔ x̂DC = xDC

(A−BK)xDC +BN̄rDC = 0 since that ẋ→ 0 and ex → 0
xDC = −(A−BK)−1BN̄rDC

where we used the fact that (A− LC) and (A−KB) are invertible since they are assumed
to be asymptotically stable. As a consequence, the output yDC is:

yDC = CxDC = −C(A−BK)−1BN̄rDC = rDC

with:

N̄ = − 1

C(A−BK)−1B

So the feedforward control scheme in dynamic state-feedback is equal to the static state-
feedback and does not depend on the observer gain L. Similar considerations also hold for
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the integral control scheme, only paying attention to use in the observer the same input
signal that enters the process, including possible saturations or non-linear functions.

16.5 Reduced order observers
We are now interested in deriving observers whose dynamics can be represented by fewer
states in the scenario that some of the state variables are directly observable and the corre-
sponding measurement noise is negligible. In other works, the objective is to estimate only
the component of the whole state x that are not directly observable. Let as assume that

x ∈ Rn, x =

[
x1
x2

]
, x1 ∈ Rm, x2 ∈ Rn−m, y = x1

Our objective is to estimate only x2 since our global observer we be given by

x̂ =

[
y
x̂2

]
The state x2 will be indirectly estimated via an additional state variable z ∈ Rn−m defined
as follows

z(t) = x2(t)− Lx1(t) ∈ Rn−m

where L ∈ R(n−m)×m is a matrix that will be designed later. Even this variable z is not
directly observable, but if we can find an observer ẑ such that ẑ(t) → z(t), then we can
design an observer for x2 as follows:

x̂2(t) = ẑ(t) + Ly(t)

since

ẑ(t)→ z(t) =⇒ x̂2(t) = ẑ(t)+Ly(t) = ẑ(t)+Lx1(t)→ z(t)+Lx1(t) = x2(t)−Lx1(t)+Lx1(t) = x2(t)

Note that we can partition the matrices A,B as follows:[
ẋ1
ẋ2

]
=

[
A11 A12

A21 A22

] [
x1
x2

]
+

[
B1

B2

]
u

Now we can write:

z(t) = ẋ2(t)− Lẋ1 = A21x1(t) + A22x2(t) +B2u(t)− L[A11x1(t) + A12x2(t) +B1u(t)]

= (A22 − LA12)x2(t) + (A21 − LA11)x1(t) + (B2 − LB1)u(t)

= (A22 − LA12)(z(t) + Lx1(t)) + (A21 − LA11)y(t) + (B2 − LB1)u(t)

= (A22 − LA12)︸ ︷︷ ︸
Ar

z(t) + (A21 − LA11 − LA12L+ A22L)y(t) + (B2 − LB1)u(t)︸ ︷︷ ︸
u′(t)

(16.1)
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OBSERVER

u(t)

y(t)

  𝑧(t)

 𝑥2(t)

𝑥2(t)

which can be summarized by
ż(t) = Arz(t) + u′(t)

where the “virtual input” u′(t) is a known signal for the observer while z(t) is not measurable
directly. Recall that the standard approach to derive an observer for the variable z(t) is
given by:

˙̂z(t) = Arẑ(t) + u′(t) +H(y − ŷ)

However, we have also seen that if Ar is asymptotically stable, the correcting term H(y− ŷ)
is not needed. As so the problem that we haev to solve is to verify if there exists an L such
that Ar = A22 − LA12 is A.S. This is equivalent to determine whether the pair (A22, A12) is
observable. Let us assume that this is the case, then by setting H = 0, the overall reduced
observer can be written as the output of an LTI system of dimension (n−m) that requires
as input the input to the plant u(t) and the measurement vector y:


˙̂z(t) = (A22 − LA12)ẑ(t) + [B2 − LB1 | A21 − LA11 − LA12L+ A22L]

[
u(t)

y(t)

]

x̂2(t) = [ I ]ẑ(t) + [ 0 | L ]

[
u(t)

y(t)

] (16.2)

We now want to show that the pair (A22, A12) is observable is and only if the pair (A,C)
is observable, i.e. if the original system is observable. In this scenario, since y = x1, then
the observability matrix can be written as C = [ Im | 0 ]. We now prove the equivalence
between observability of (A22, A12) and (A,C) via the PBH test. The PBH test for the pair
(A,C) is given by:
rank

[
C

sI−A

]
= n ∀s which can be expanded as follows;

rank

 Im 0
sI − A11 −A12

−A21 sI − A22

 = n⇔ rank

 0
−A12

sI − A22

 = rank

[
A12

sI − A22

]
= n−m

that is exactly the PHB for observability of the pair (A22, A12).
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OBSERVER

u(t)

y(t)

 𝑥(t)

The previous scenario can be generalized to

{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

where D is different from 0 and rank(C) = m.

16.6 Example
I could try to apply the reduce order observer to our motor:[
θ̇c
θ̈c

]
=

[
0 1
0 −a

] [
θc
θ̇c

]
+

[
0
b

]
u

y = [ 1 0 ]

[
θc
θ̇c

]
where a, b > 0.
In this case, the reduced observer matrix L ∈ R since n−m = 1, i.e. it is just a scalar.


˙̂z = (−a− L)ẑ + (−aL− L2)y(t) + bu(t) = −(a+ L)ẑ + [ b | − L(a+ L)]

[
u(t)

y(t)

]

x̂2 =
˙̂
θc = ẑ + Ly(t) = ẑ + [ 0 | L ]

[
u(t)

y(t)

]
(16.3)

which can be written also in terms of the transfer functions:

X̂2(s) = Pu(s)U(s) + Py(s)Y (s) =
b

s+ a+ L
U(s) +

(
− L(a+ L)

s+ a+ L
+ L

)
Y (s)

=
b

s+ a+ L
U(s) +

sL

s+ a+ L
Y (s)

16-7


