Control Laboratory:

a.a. 2015/2016

Lezione $15-13~\mathrm{April}$

Instructor: Luca Schenato Scribes: Matteo Iovino, Simone Rampon, Nicoló Scarabottolo

15.1 Internal Model Principle (continued)

In the last lecture we have began to study the internal model principle, which is a generalization of the integral control. Our purpose is to track a certain signal $(y(t) \rightarrow r(t))$ and reject another signal (w(t)), which satisfy the following property:

$$r^{(m)} + \alpha_{m-1}r^{(m-1)} + \dots + \alpha_0 r = 0$$
(15.1)

$$w^{(m)} + \alpha_{m-1}w^{(m-1)} + \dots + \alpha_0 w = 0$$
(15.2)

,

,

where $\{\alpha_i\}_{i=0}^{m-1}$ are known.

We have introduced a new state:
$$z \stackrel{\triangle}{=} \begin{bmatrix} e \\ \vdots \\ e^{(m-1)} \\ \hline \xi \end{bmatrix} \in \mathbb{R}^{(n+m)}$$

ere

where

$$e^{(k)} = Cx^{(k)} - r^{(k)}$$
,
 $\xi \stackrel{\triangle}{=} x^{(m)} + \alpha_{m-1}x^{(m-1)} + \dots + \alpha_0 x$,

because with this new representation the reference signal and the input disturbance vector disappear. We found:

$$\dot{z} = \begin{bmatrix} e^{(1)} \\ \vdots \\ e^{(m)} \\ \hline \xi \end{bmatrix} = \overbrace{\left[\begin{array}{ccccc} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ \hline -\alpha_0 & -\alpha_1 & -\alpha_2 & \cdots & -\alpha_{m-1} & C \\ \hline 0 & 0 & 0 & \cdots & 0 & | A \end{bmatrix}} \overbrace{\left[\begin{array}{c} e \\ \vdots \\ e^{(m-1)} \\ \hline \xi \end{bmatrix}}^{B_z} + \overbrace{\left[\begin{array}{c} 0 \\ 0 \\ \vdots \\ 0 \\ \hline 0 \\ \hline B \end{bmatrix}}^{u_{\xi}} \quad ,$$

with

$$u_{\xi} \stackrel{\triangle}{=} u^{(m)} + \alpha_{m-1}u^{(m-1)} + \dots + \alpha_0 u,$$

so $\dot{z} = A_z z + B_z u_{\xi}$.

If we introduce a negative state feedback we obtain: $\left\{ \begin{array}{l} \dot{z}=A_zz+B_zu_\xi\\ u_\xi=-K_zz \end{array} \right..$

If (A_z, B_z) is reachable, then $\exists K_z \in \mathbb{R}^{(m+n) \times p} : (A_z - B_z K_z)$ is asymptotically stable, because it has eigenvalues that can be arbitrarily placed. So $z(t) \to 0$ for each initial condition of r and w that satisfy 15.1 e 15.2. Therefore $e(t) \to 0$, that is $y(t) \to r(t)$.

If we apply the PBH test for the reachability of (A_z, B_z) we find:

ſ	s	-1	0	•••	0	0	0	
	0	s	-1	• • •	0	0	0	
	÷	÷	÷	·	÷	:	:	
l	0	0	0	• • •	-1	0	0	,
	α_0	α_1	α_2	•••	$s + \alpha_{m-1}$	-C	0	
	0	0	0		0	sI - A	B	

that must have a rank equal to n+m.

The necessary and sufficient conditions which guarantee that (A_z, B_z) is reachable are:

- (A, B) reachable;
- zeroes of $(s^m + \alpha_{m-1}s^{m-1} + ... + \alpha_0)$ are not zeroes of the transfer function of the original system (A, B, C).

Indeed (A, B) is reachable, the first m-1 rows and the last n rows of the PBH matrix are always linearly independent for each $s \in \mathbb{C}$. But we have to verify when the m-th row is linearly independent from all others. If $s = \overline{z}$ is a zero of $s^m + \ldots \alpha_0 = 0$, then the first m components of the m-th row are linearly dependent from the first m-1rows. Besides if $s = \overline{z}$ is also a zero of the transfer function of the system (A, B, C), then the last n components of the m-th row are linearly dependent from the last nrows of the PBH matrix, and so the rank of the latter decreases to m + n - 1.

Now we want to describe the system with this new type of control as a function of x(t) and of the error signal e(t). Considering that:

$$u_{\xi} = -\underbrace{\left[\begin{array}{ccc} k_0 & \cdots & k_{m-1} \\ & & \\ \end{array}\right]}_{\in \Re^m} \underbrace{\left[\begin{array}{c} e \\ \vdots \\ e^{(m-1)} \\ \xi \end{array}\right]}_{\xi}$$

If we expand u_{ξ} :

$$u^{(m)} + \alpha_{m-1}u^{(m-1)} + \dots + \alpha_0 u = -k_0 e - \dots - k_{m-1}e^{(m-1)} - k_{\xi}(x^{(m)} + \alpha_{m-1}x^{(m-1)} + \dots + \alpha_0 x)$$

We can collect some terms in this way:

$$(u^{(m)} + k_{\xi}x^{(m)}) + \alpha_{m-1}(u^{(m-1)} + k_{\xi}x^{(m-1)}) + \dots + \alpha_0\underbrace{(u+k_{\xi}x)}_{\tilde{u}} = -k_0e - \dots - k_{m-1}e^{(m-1)}$$

So we obtain:

$$\widetilde{u}^{(m)} + \alpha_{m-1}\widetilde{u}^{(m-1)} + \dots + \alpha_0\widetilde{u} = -k_0e - \dots - k_{m-1}e^{(m-1)}$$

Applying the Laplace Transform:

$$s^{m}\widetilde{U}(s) + \alpha_{m-1}s^{m-1}\widetilde{U}(s) + \dots + \alpha_{0}\widetilde{U}(s) = -k_{0}E(s) - \dots - k_{m-1}s^{m-1}E(s)$$

So

$$\widetilde{U}(s) = -\underbrace{\frac{k_{m-1}s^{m-1} + \dots + k_0}{s^m + \alpha_{m-1}s^{m-1} + \dots + \alpha_0}}_{P_e(s)} E(s)$$
$$= -P_e(s)E(s)$$

The complete scheme of the overall system controlled by using the internal control principle is reported in Fig.15.1.

Figura 15.1. Scheme of the internal model control. (Typo: the error e(t) should be replaced with -e(t) in the figure)

We can notice that this is a generalization of the integral control in which we have assumed that the state x(t) is accessible. Indeed in the case of integral control we have:

$$P_e(s) = \frac{k_I}{s} = \frac{k_o}{s}.$$

15.1.1 Summarizing

- 1. Check if (A, B) is reachable.
- 2. Check that roots of $(s^m + \alpha_{m-1}s^{m-1} + \dots + \alpha_0)$ are not zeroes of $P(s) = C(sI A)^{-1}B$.
- 3. Build matrices ${\cal A}_z$, ${\cal B}_z.$
- 4. Decide where to place eigenvalues: using dominant pole approximation with performance region.
- 5. $K_z = [k_0 \dots k_{m-1} | k_z]$, so compute $P_e(s)$.

Considering the transfer function of the signal of the closed loop system:

$$Y(s) = P_{ry}(s)R(s)$$

If we are assume to track a sinusoidal signal $r(t) = a \sin(\omega_0 t + \phi)$, at steady state we will have $y(t) = a |P_{ry}(j\omega_0)| \sin(t + \phi + \angle P_{ry}(j\omega_0))$.

Instead if we have the disturbance signal $w(t) = a \sin(t\omega_0 + \phi)$ and r(t) = 0, the output will go to zero $(y(t) \to 0)$. So the transfer function $Y(s) = P_{wy}(s)W(s)$ must have a zero in ω_0 : $P_{wy}(j\omega_0) = 0$.

Figura 15.2. Module of the transfer function $P_{ry}(j\omega)$.

Figura 15.3. Phase of the transfer function $P_{ry}(j\omega)$.

Figura 15.4. Module of the transfer function $P_{wy}(j\omega)$

15.2 Observers and Regulators

$$\begin{cases} \dot{x} = Ax + Bu\\ y = Cx \end{cases}$$
$$\int \dot{x} = A\hat{x} + Bu$$

$$x = Ax + Bi$$
$$y = C\hat{x}$$

which are the state rappresentation of Plant and Observer.

Figura 15.5. Scheme of Plant and observer.

State error: $e_x = x - \hat{x}$ measuring error: $e_y = y - \hat{y} = C(x - \hat{x}) = Ce_x$ $\dot{e_x} = Ae_x \Rightarrow \begin{array}{c} e \to 0 \\ \hat{x} \to x \end{array} \Leftrightarrow A \text{ is stable}$ $\dot{e_x} = \dot{x} - \dot{\hat{x}} = Ax + Bu - (A\hat{x} + Bu + Le_y) = (A - LC)e_x$ If (A - LC) is strictly stable $\Rightarrow \hat{x}(t) \to x(t) \ \forall u(t), \forall A$

 \Rightarrow we can use the state feedback control.

Figura 15.6. Scheme of Plant, observer and controller.

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx \\ \dot{\hat{x}} = A\hat{x} + Bu + L(y - \hat{y}) \\ \hat{y} = C\hat{x} \\ u = u_{in} + u_c \\ u_c = -k\hat{x} \end{cases}$$
 equations of the system

$$\underbrace{\begin{array}{c} \mathbf{U}_{\mathrm{in}} \\ \mathbf{Y} = \mathbf{C}_{z} \mathbf{Z} \end{array}}_{\mathbf{Y} = \mathbf{C}_{z} \mathbf{Z}} \underbrace{\begin{array}{c} \mathbf{Y} \\ \mathbf{Y} = \mathbf{C}_{z} \mathbf{Z} \end{array}}_{\mathbf{Y} = \mathbf{C}_{z} \mathbf{Z}} \underbrace{\begin{array}{c} \mathbf{Y} \\ \mathbf{Z} \end{array}}_{\mathbf{Y} = \mathbf{C}_{z} \mathbf{Z}} \underbrace{\begin{array}{c} \mathbf{Z} \\ \mathbf{Z} \end{array}}_{\mathbf{Z} = \mathbf{Z}} \underbrace{\begin{array}{c} \mathbf{Z} \\ \mathbf{Z} \end{array}}_{\mathbf{Z} \mathbf{Z}} \underbrace{\begin{array}{c} \mathbf{Z} \\ \mathbf{Z} \end{array}}_{\mathbf{Z}} \underbrace{\begin{array}{c} \mathbf{Z} \\ \mathbf{Z} \end{array}}_{\mathbf{Z} \mathbf{Z}} \underbrace{\begin{array}{c} \mathbf{Z} \end{array}}_{\mathbf{Z} \mathbf{Z}} \underbrace{\begin{array}{c} \mathbf{Z} \\ \mathbf{Z} \end{array}}_{\mathbf{Z}} \underbrace{\begin{array}{c} \mathbf{Z} \end{array}}_{\mathbf{Z} \mathbf{Z}} \underbrace{\begin{array}{c} \mathbf{Z} \end{array}}_{\mathbf{Z}} \underbrace{\begin{array}{c} \mathbf{Z} \end{array}}_{\mathbf{Z} \mathbf{Z}} \underbrace{\begin{array}{c} \mathbf{Z} \end{array}}_{\mathbf{Z} \mathbf{Z}} \underbrace{\begin{array}{c} \mathbf{Z} \end{array}}_{\mathbf{Z} \mathbf{Z}} \underbrace{\begin{array}{c} \mathbf{Z} \end{array}}_{\mathbf{Z}} \underbrace{\end{array}}_{\mathbf{Z}} \underbrace{\begin{array}{c} \mathbf{Z} \end{array}}_{\mathbf{Z}} \underbrace{\end{array}}_{\mathbf{Z}} \underbrace{\end{array}}_{\mathbf{Z}} \underbrace{\begin{array}{c} \mathbf{Z} \end{array}}_{\mathbf{Z}} \underbrace{\end{array}}_{\mathbf{Z}} \underbrace{\end{array}}_{\mathbf{Z}$$

from the equations we obtain: $\dot{x} = Ax + Bu_{in} - Bk\hat{x} = Ax + Bu_{in} - Bk(x - e_x)$ $\dot{e_x} = Ax + Bu_{in} - Bk\hat{x} - (A\hat{x} + Bu_{in} - Bk\hat{x} + LCe_x) = (A - LC)e_x$

15.2.1 Dynamical system

The state space representation with the more useful state z is:

$$\dot{z} = \begin{bmatrix} \dot{x} \\ \dot{e_x} \end{bmatrix} = \begin{bmatrix} A - BK & BK \\ 0 & A - LC \end{bmatrix} \begin{bmatrix} x \\ e_x \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} u_{in}$$
$$y = \begin{bmatrix} C & 0 \end{bmatrix} \begin{bmatrix} x \\ e_x \end{bmatrix}$$

The stability of these system depends on the eigenvalues of A_z :

$$\Re[\lambda(A_z)] < 0 \Leftrightarrow Stable$$

The matrix is upper triangular so we can, by using the separation principle, divide the eigenvalues of A_z in the union between the eigenvalues of the controller and the eigenvalues of the observer:

$$\lambda(A_z) = \lambda(A - BK) \bigcup \lambda(A - LC)$$

 $\begin{cases} (A,B), REACHABLE \Rightarrow \\ (A,C), OBSERVABLE \Rightarrow \end{cases}$ Exists K, L such that eigenvalues can be placed arbitrarily.

We will choose, in order to stabilize the system, eigenvalues with $Re[\lambda(A_z)] < 0$.

15.2.2 Tracking of a reference signal

How can be the matrices L and K chosen in order to achieve the best performance possible? How can be $\lambda(A - LC)$ chosen?

In order that $\hat{x} \to x$ as fast as possible, $\lambda(A - LC)$ has to be chosen more negative (faster) than $\lambda(A - BK)$.

It is important to notice that L cannot be chosen too big because it amplifies the measure noise and because in that case the error e_x can have high peaks in the initial phase of the transitory. This peaks can force the controller to have high control signals.

$$\dot{x}(t) = (A - LC)x(t) + Bu(t) + L(y(t) + d_y(t))$$

with $d_{u}(t)$ representing the measurement noise.

A rule of thumb for the design is to choose the eigenvalues of the observer matrix 3-10 times faster than the ones of the controller, in order to have a good compromise between the velocity of the tracking and the rejection of the output disturbances:

$$|\lambda(A - LC)| \simeq \beta |\lambda(A - BK)|$$

with $3 \leq \beta \leq 10$.