
Control Laboratory: a.a. 2015/2016

Lecture 14 — 12 April
Instructor: Luca Schenato Scribes: A. Scampicchio, S. Romagnolo, T. Donchev

14.1 Integral Control, Robust Tracking (continued)
The system we are analyzing is described by the following scheme:

Figura 14.1.

Below some relations involved in the system are recalled:

e(t) = y(t)− r(t) (14.1)

xI(t) =

∫
e(t)dt ⇔ ẋI(t) = e(t) (14.2)

uin(t) = −
[
KI K

] [ xI(t)
x(t)

]
︸ ︷︷ ︸

z(t)

= −KIxI(t)−Kx(t) = −Kzz(t) (14.3)

−KIxI(t) = −KI

∫
(y(t)− r(t))dt = KI

∫
(r(t)− y(t))dt
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Let us now focus on the dynamics of the extended state vector z(t) defined in 14.3,
in order to study the behaviour of the system with input reference signal r(t) and input
disturbance w(t) of the kind

r(t) = rDC1(t)

w(t) = wDC1(t)

where 1(t) is the unitary step function.

[
ẋI(t)
ẋ(t)

]
=

[
0 C
0 A

]
︸ ︷︷ ︸

Az

[
xI(t)
x(t)

]
︸ ︷︷ ︸

z(t)

+

[
0 0 −1
B B 0

] uin(t)
w(t)
r(t)

 (14.4)

= Azz(t) +

[
0 −1
B 0

][
w(t)
r(t)

]
+

[
0
B

]
︸ ︷︷ ︸
Bin

uin(t) (14.5)

The closed loop system is described by the following dynamics:[
ẋI(t)
ẋ(t)

]
=
[
Az −BinKz

]︸ ︷︷ ︸
Ac

[
xI(t)
x(t)

]
+

[
0 −1
B 0

][
w(t)
r(t)

]
As we have already seen, if Ac is asymptotically stable, then z(t) −→ zDC , which implies

ż(t) −→ 0: in particular ẋI −→ 0. Therefore e(t) −→ 0 by definition, so the signal tracking
at steady state is well performed.
Our aim is to determine under which conditions Ac is asymptotically stable: in
other words, we want to check when (Az, Bin) is reachable1. To do that, we refer to the PBH
test, which states that

The system (Az, Bin) is reachable ⇔ rank
[
sI − Ac Bin

]
= n+ 1 ∀ s ∈ C

Therefore we have to see when, ∀ s ∈ C,

rank

[
sIn+1 −

[
0 C
0 A

] [
0
B

] ]
= n+ 1

⇒ rank

[
s −C 0
0 sIn − A B

]
= n+ 1

At this point we see that two cases have to be taken into account:

1Actually it would hold also for a stabilisable system: we choose this stricter condition for the sake of
simplicity
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1. s 6= 0
Here the first row is surely independent from the others: therefore we have to impose
that

rank
[
sIn − A B

]
= n

We notice that this submatrix can be interpreted as a PBH matrix for the system
(A,B): then in this case (Az, Bin) is reachable ⇔ (A,B) is reachable.

2. s = 0
Now the first column has only zero elements. In this case we have to see when

rank

[
−C 0

sIn − A B

]
= n+ 1

As row and column permutations do not affect the matrix rank, by some operations
we get

rank

[
sIn − A B
−C 0

]
= n+ 1

Also changing the sign of some rows or columns does not affect the rank of a matrix,
therefore we have

rank

[
sIn − A −B

C D

]
= n+ 1

we know that, if ∃ s̄ such that the matrix above loses rank, then s̄ is a zero for the
system (A,B,C,D): then, in order to have (Az, Bin) reachable we must have that
s = 0 is not a zero for (A,B,C,D).

Let us consider the meaning of this last statement for a SISO system. If it is described by
the quadruple (A,B,C,D), then we know that its transfer function is:

P (s) = C(sI − A)−1B +D

The statement is equivalent to having P (0) 6= 0: a valid transfer function may then be

P (s) =
(s+ 1)

(s− 2)(s+ 3)

On the contrary, this next case would not allow to position the eigenvalues of Ac in any
arbitrary position:

P (s) =
s

(s− 2)(s+ 3)
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14.2 Feedforward Control: example for the DC motor
Now consider the DC motor seen in laboratory. We know that the relation that connects
Θl(s) to U(s) is

Θl(s) = P (s)U(s)

furthermore the transfer function is:

P (s) =
K

s(s+ p)

If we want to use a feed-forward control, we have to decide an input uin(t) where the
expression of x(t) is

x(t) =

[
θl(t)

θ̇l(t)

]
so we can write uin(t) as:

uin(t) = −Kx(t) +Nr(t) = −K1θl(t)−K2θ̇l(t) +N

where r(t) = 1(t). See Figure 14.2. We have to move the poles of the original plant in the
closed loop poles whatching to the specs. We must consider that a feed-forward approach
implies that disturbances cause a steady state error. Furthermore we can have steady state
errors also if we do not know exactly the system parameters, so even without a disturbance
we could have a steady state error using only feed-forward approach. To avoid steady state
error we can use an integrator.

Figura 14.2.

Using an integrator we’ll have uin(t) as:

uin(t) = KIxI(t)−Kx(t) = −K1θl(t)−K2θ̇l(t)−KI

∫
e(t)dt
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We will start from a different configuration compared to the previous; we will have two
poles in the origin and one in −p. The design region is the same because the specs are the
same2. With the last approach to eliminate steady state error with position control of the
motor we can see that robust tracking, in this case, corresponds to a I-PD control. In more
complicated systems we will have always the I term, but the “PD” term will be replaced by
something more complicated. This is a scenario which shows a direct link between classical
and modern control.

14.3 Internal Model Principle
Internal model principle is a generalization of integral control. Suppose to have a MISO
linear system with disturbance w(t):{

ẋ(t) = Ax(t) +Bu(t) +Gw(t)
y(t) = Cx(t)

Suppose that:

• u ∈ Rp

• x ∈ Rn

• w ∈ Rd

• r ∈ R

• y ∈ R

Very common cases are:

• r(t) e w(t) are constant signals (but not known), that is ṙ(t) = 0, ẇ(t) = 0, ∀t ≥ 0.
Note that these signals correspond to the modes of a dynamic system where poles are
given by the equation

s = 0

.

• r e w sinusoidal of frequency ω0, which of course must satisfy the differential equations
r̈(t) + ω2

0r(t) = 0, ẅ(t) + ω2
0w(t) = 0, ∀t ≥ 0. See that these signals correspond to the

modes of a dynamical system where the poles are given by the equation

s2 + ω2
0 = 0

2k1, k2 and kI are determined if we choose where to place the poles
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• It is possible to generalize the problem for periodic signals for which we do not know am-
plitude and phase. We can find the associated polynomial multiplying the polynomials
of the different frequencies, assuming that the signal is of the type

r(t) = a0 + a1 sin(ω1t+ φ1) + a2 sin(ω2t+ φ2)

where (a0, a1, a2, φ1, φ2) are not known and the polynomial is

s(s2 + ω2
1)(s2 + ω2

2) = s5 + (ω2
1 + ω2

2)s3 + ω2
1ω

2
2s = 0

equivalent to the differential equation:

r(5)(t) + (ω2
1 + ω2

2)r(3)(t) + ...+ ω2
1ω

2
2r(t) = 0

We want to analyse the generic problem and build a controller that guarantees y(t)→ r(t)
at steady state. We consider that the reference signals satisfy the next differential equations
where the parameters {αi}m−1i=0 are known:

r(m) + αm−1r
(m−1) + ...+ α0r = 0 (14.6)

w(m) + αm−1w
(m−1) + ...+ α0w = 0 (14.7)

where r(t) and w(t) have the same coefficients.

We define e = y − r = Cx− r as the tracking error.

So we find e(m) = Cx(m) − r(m) ∀m and so

r(m) = Cx(m) − e(m) (14.8)

From 14.6 e 14.8 we find that:

Cx(m) − e(m) + αm−1(Cx
(m−1) − e(m−1)) + ...+ α0(Cx− e) = 0

and so:
e(m) + αm−1e

(m−1) + ...+ α0 − C(x(m) + αm−1x
(m−1) + ...+ α0x︸ ︷︷ ︸
ξ∈Rn

) = 0

The new state is:
ξ
4
= x(m) + αm−1x

(m−1) + ...+ α0x

Whence:

14-6



Control Laboratory Lecture 14 — 12 April a.a. 2015/2016

ξ̇ = x(m+1) + αm−1x
(m) + ...+ α0x

(1)

= (Ax(m) +Bu(m) +Gw(m)) + ...+ α0(Ax+Bu+Gw)

= A(x(m) + αm−1x
(m−1) + ...+ α0x) +B(u(m) + αm−1u

(m−1) + ...+ α0u︸ ︷︷ ︸
uξ∈Rp

) +

+G(w(m) + αm−1w
(m−1) + ...+ α0w)

= Aξ +Buξ

Where we have used 14.7 in the last equation to eliminate the disturbance. Now we will
consider an augmented state where we add the error and its derivative up to its (m− 1)-th
order and ξ.

So the new state is z 4=


e
...

e(m−1)

ξ

 ∈ R(n+m)

Whence:

ż =


e(1)

...
e(m)

ξ̇

 =

Az︷ ︸︸ ︷

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 1 0
−α0 −α1 −α2 · · · −αm−1 C

0 0 0 · · · 0 A




e
...

e(m−1)

ξ

+

Bz︷ ︸︸ ︷

0
0
...
0
0
B


uξ

So ż = Azz+Bzuξ. See that in this new state representation the reference signal r(t) and
the input disturbance vector w(t) have disappeared. Now we want to find uξ(t) = −kzz(t)
that stabilizes the closed loop system. We’ll see it in the next lecture.
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