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12.1 Reachability
Let us begin by summarizing all the equivalent conditions for the reachability of a system
in the state space representation:

Def. The system (A,B,C,D) is reachable if and only if, for any x(0) ∈ Rn, x(T ) ∈ Rn,
T ∈ R positive, there exists u(t), t ∈ [0, T ], that drives x(t) from x(0) to x(T).

m

Prop. 1 rank(C) = rank
[
B AB .. An−1B

]
= n, where

[
B AB .. An−1B

]
∈ Rn×np.

m

Prop. 2 rank(H) = rank
[
sI − A B

]
= n, ∀s ∈ Λ(A), where

[
sI − A B

]
∈ Rn×(n+p).

m

Prop. 3 ∃K ∈ Rp×n such that eigenvalues of AC = A − BK are in any arbitrary
configuration {λ1, .., λn} ∈ C.

12.2 Observability
Now we introduce another major concept of modern control system theory, which is the
observability of a system. This property describes whether the internal state variables of
the system x(t), which are not directly observable, can be externally measured from the
knowledge of the control u(t) and the output y(t).

The observability conditions for a system in state space representation are expressed as
follows:

Def. A system (A,B,C,D) is observable if ∀x(0) ∈ Rn, ∀T > 0, ∀ u(t) (control sequen-
ce), t ∈ [0, T ], there exists a procedure such that from u(t), y(t), t ∈ [0, T ] we can obtain
x(T). Moreover the property is even stronger, infact I can obtain the value x(t), t ∈ [0, T ].

m
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Prop. 1 rank


C
CA
..

CAn−1

 = n, where


C
CA
..

CAn−1

 ∈ Rnl×n.

m

Prop. 2 rank
[
sI − A
C

]
= n , ∀s ∈ Λ(A), where

[
sI − A
C

]
∈ R(n+l)×n.

m

Prop. 3 ∃K ∈ Rn×l such that eigenvalues of AL = A−LC are in any arbitrary configu-
ration {λ1, .., λn} ∈ C.

From the display of the definition and conditions of observability is easy to recognize that
are very similar to the properties of a reachable system.

This similarity is expressed in the property of duality that exists between the concepts
of observability and reachability:

Proposition (A,B,C,D) is observable ⇐⇒ (AT , CT , BT , DT ) is reachable.

Note: This result is very useful when you want to compute the L matrix that gives you
a certain selection of complex eigenvalues, as said in Proposition 3. In Matlab there is no
function that computes L, but that’s not a problem: you can compute K using the function
place or acker, with arguments (AT , CT , {λ1, .., λn}) and then find the desired matrix as
L = KT .

12.3 Zeros of a system
We say that s ∈ C is a zero of a system (A,B,C,D) if the following matrix

Z =

[
sI − A −B
C D

]
∈ R(n+l)x(n+p)

has:

rank(Z) < min(n+ l, n+ p) (12.1)

For SISO system (l = p = 1), Z ∈ R(n+1)x(n+1) is a square matrix. So, the condition
(12.1) is equivalent to say:

rank(Z) < n+ 1⇐⇒ det(Z) = 0 (12.2)
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The determinant of a block matrix can be decomposed as follows:

det

[
sI − A −B
C D

]
= det(sI − A) · det[D + C(sI − A)−1B] = d(s) · n(s)

d(s)
= n(s) = 01

where

det[D+C(sI−A)−1B] = D+C(sI−A)−1B = P (s) =
n(s)

d(s)
∈ C =⇒ det

[
sI − A −B
C D

]
= n(s) = 0

12.4 Property of asymptotically stable system
Consider a system (A, B, C, D) strictly stable

Figura 12.1. I/O model of a system in state space representation

For this system, we have that:

Re [λi(A)] < 0, ∀i (12.3)

where λi(A) indicates the spectrum of A.
We know that x(t) is given by:

x(t) = x0(t) + xf (t)

where

{
x0(t) = eAtx(0)

xf (t) =
∫ t
0
eA(t−τ)Bu(τ)dτ

(12.4)

1We know that:
det

[
F G
H J

]
= det(F ) · det(J −HF−1G).
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Suppose, now, to apply a constant signal u(t) = uDC1(t) to the input of the system.
For t −→∞, we have that:

x0(t) → 0, ∀x(0)

xf (t) → xDC ∈ Rn (constant)

x(t) → xDC ⇒ y(t) → yDC (constant)

ẋ(t) → 0

If we apply these results to the system of Figura(12.1), we get:

{
0 = AxDC + BuDC
yDC = CxDC + DuDC

=⇒
{

xDC = −A−1BuDC
yDC = (D − CA−1B)uDC

(12.5)

where we used the fact that A being asymptotically stable implies that there is no eigenvalue
in zero and therefore it is invertible. So, if the input of a strictly stable system is constant,
also the steady state output will be constant.
For SISO systems, we have:

P (s) = D + C(sI − A)−1B

P (0) = D − CA−1B

=⇒ yDC = (D − CA−1B)uDC = P (0)uDC

12.5 Control design in state space
What’s the approach for the control of a state space represented system?
We take the output y(t) and we design, based on the observation of y(t), a control input
uc(t) that will go into the plant. We still want to have the freedom to choose the external
input uext(t), so the input of the plant will be u(t) = uext(t)− uc(t).

How do we design the F, G, H, J matrix of the dynamical system to stabilize the close
loop system and sadisfie the requirements in terms of performance?

In reality the dynamical system is a little more complex, because we would like to use all
the information that we have. That is why, in general, the inputs of the Dynamical System
are three: the reference signal r(t), the input u(t) and the output y(t).
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Figura 12.2. Feedback control system in state space representation

Figura 12.3. General state space representation

12.5.1 State Feedback

If we concentrate only on SISO system we have that uext(t) ∈ R, u(t) ∈ R, x(t) ∈ Rn,
y(t) ∈ R and uc(t) ∈ R. The state x(t) is not accessible, i.e. it is not known. However, if
we pretend that an estimate can be computed, then we can apply a linear feedback to it,
as showed in Figure 12.5, where K ∈ R1×n is a row vector. Now we want to find what is
the equivalent system in terms of external input uext(t) and output y(t), and we want to
stabilize it.
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Figura 12.4. State space representation of a system with PID controller

Figura 12.5. State feedback control system

The system is described by the following equations:

ẋ(t) = Ax(t) +By(t), (12.6a)
u(t) = uext(t)− uc(t), (12.6b)
uc(t) = Kx(t), (12.6c)
y(t) = Cx(t) +Dy(t). (12.6d)

By substituting the (12.6b) and (12.6c) equations in the (12.6a) equation, we can rewrite
the dynamics of the state x(t) as:
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ẋ(t) = Ax(t) +Buext(t)−Buc(t)
= Ax(t) +Buext(t)−BKx(t)

= (A−BK)x(t) +Buext(t)

= ACx(t) +Buext(t).

(12.7)

Along the same lines we obtain the output y(t):

y(t) = Cx(t) +Duext(t)−Duc(t)
= Cx(t) +Duext(t)−DKx(t)

= (C −DK)x(t) +Duext(t)

= CCx(t) +Duext(t).

(12.8)

So we have a system in state space representation described by the equations (12.9a) and
(12.10), and by the block diagram at Figure 12.6

ẋ(t) = ACx(t) +Buext(t), (12.9a)
y(t) = CCx(t) +Duext(t). (12.9b)

Figura 12.6. State space representation of the closed loop system

If the original system (A,B,C,D) is reachable, then there exist matrices K for which we
have Re[λi(AC)] < 0. Actually reachability is a stronger notion since it allows us to choose
a matrix K such that the locations of the eigenvalues of AC placeable are arbitrary. As so,
an important question is to decide where to place the eigenvalues of K if we want to track
a reference signal and to take care of performance too?

Basically we want to know what happens to the output y(t) of the system if we apply a
constant step function to the input uext. As seen before, we know that if we apply a constant
input, we get a constant output, as equations 12.9a and 12.11 show us

uext(t) = uDC1(t) (12.10)

yDC = (D − CCA−1
C B)uDC (12.11)

Once we fix K, (D − CCA−1
C B) will be equal to a scalar N ∈ R.

So, if we want yDC to track a reference signal rDC , we find

rDC = yDC = NuDC (12.12)
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That give us

uDC =
1

N
rDC (12.13)

Basically we got that once we design K than we can compute the controller in such a way
that if we applay the step function, as given by equation 12.10, we will reach zero stady state
error.

What we have done can be seen as a feedforward control, because we are trying to
manipulate the reference signal r(t) in a way to get the desired output y(t). If we want we
can see 1

N
as the simplest approximation of the dynamical system.

Figura 12.7. Feedforward control (nominal tracking) for reference tracking (Typo: α in the figure has to
be replaced with N).

12.5.2 State feedback by pole placement

At this point we have been able to design the closed loop in order to stabilize the system and
we solved one problem in term of performance, which is the steady state error. The other
problems are related to the transient and typically they include overshoot, settling time and
rise time.

We know that the eigenvalues of matrix AC correspond to the poles of the transfer
function in closed loop and the performance metrics left are related to the eigenvalues of the
system, which, under reachability assumption, we can place wherever I want. So now the
question is: where should I place the eigenvalues in closed loop to take care of performance?
One possible choice is to use the approximation of II order systems with dominant poles.
This approach is based on the fact that, being the constraints on overshoot, settling time and
rise time associated to a certain region in the complex plain, if I have a second order system
and I place the poles in the region then I expect to satisfy the specifics on the transient.

Rarely I have a second order system, normally I have a much larger system, but the idea
is to place the eigenvalues in closed loop in the desired region and hopefully the system will
satisfy the specifications on s, ts and tr.

In practice it is a little more complicated because is not obvious where to place the poles
in the region; this is the limitation of this approach, but in the next lectures we will see how
optimal control will take care of the problem.
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Figura 12.8. Pole placement region
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