11.1 State space control (modern control)

In modern control theory, we give a different representation of the dynamics as follows:

$$
\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \tag{11.1}\\
y(t)=C x(t)+D u(t)
\end{array}\right.
$$

where $x \in \mathbb{R}^{n}, u \in \mathbb{R}^{p}, y \in \mathbb{R}^{l}$. For $p=l=1$ we have LTI SISO systems, but this representation is suitable also for general LTI MIMO systems where $p \geq 1$ and $l \geq 1$.

Figura 11.1. State Space representation
As mention previously, there are infinite state space representation for the same dynamical system, therefore a natural question is how to derive A, B, C, D ? There are different ways to do that:

1. Directly from basic physical equations

Example 11.1: Consider the physics of a DC motor (without the gears):

$$
\left\{\begin{array}{l}
u(t)=R i_{a}(t)+K_{e} \dot{\theta}_{m} \tag{11.2}\\
\tau_{m}(t)=K_{t} i_{a}(t) \\
J_{m} \ddot{\theta}_{m}(t)=-b_{m} \dot{\theta}_{m}(t)+\tau_{m}(t) \\
u_{m}(t)=K_{\theta} \theta_{m}(t)
\end{array}\right.
$$

where

- $u(t)$ is the input voltage of the motor
- τ_{m} is the torque applied to the motor
- J_{m} is the rotor moment of inertia
- u_{m} is the measured voltage at the potentiometer
- b_{m} is the friction coefficient
- K_{θ} is the transducer constant.

In the associated state space representation we can easily figure out which are the inputs and the outputs:

- $y(t)=u_{m}(t)$
- $u(t)=u(t)$
- $x(t)=\left[\begin{array}{ll}\theta_{m}(t) & \dot{\theta}_{m}(t)\end{array}\right]^{T} \Rightarrow \dot{x}(t)=\left[\begin{array}{ll}\dot{\theta}_{m}(t) & \ddot{\theta}_{m}(t)\end{array}\right]^{T}$

Note that different representations can be considered, but this one is straight-forward. From the equations of 11.1 we have:

$$
\begin{gathered}
J_{m} \ddot{\theta}_{m}(t)=-b_{m} \dot{\theta}_{m}(t)+K_{t} i_{a}(t) \\
i_{a}(t)=\frac{u(t)}{R}-\frac{K_{e}}{R} \dot{\theta}_{m}(t) \\
\Rightarrow J_{m} \ddot{\theta}_{m}(t)=-b_{m} \dot{\theta}_{m}(t)+K_{t} \frac{u(t)}{R}-K_{t} \frac{K_{e}}{R} \dot{\theta}_{m}(t) \\
\Rightarrow \ddot{\theta}_{m}(t)=-\left(\frac{b_{m} R+K_{t} K_{e}}{R J_{m}}\right) \dot{\theta}_{m}(t)+\frac{K_{t}}{R J_{m}} u(t)
\end{gathered}
$$

Therefore, we obtain the following state space equations:

$$
\left\{\begin{array}{l}
\dot{x}(t)=\left[\begin{array}{l}
\dot{\theta}_{m}(t) \\
\ddot{\theta}_{m}(t)
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
0 & 1 \\
0 & -\frac{b_{m} R+K_{t} K_{e}}{R J_{m}}
\end{array}\right]}_{A}\left[\begin{array}{c}
\theta_{m}(t) \\
\dot{\theta}_{m}(t)
\end{array}\right]+\underbrace{\left[\begin{array}{c}
0 \\
\frac{K_{t}}{R J_{m}}
\end{array}\right]}_{B} u(t) \\
y(t)=\underbrace{\left[\begin{array}{ll}
K_{\theta} & 0
\end{array}\right]}_{C}\left[\begin{array}{c}
\theta_{m}(t) \\
\dot{\theta}_{m}(t)
\end{array}\right]+\underbrace{[0]}_{D} u(t)
\end{array}\right.
$$

2. Derive (A,B,C,D) from the transfer function $\mathbf{P}(\mathbf{s})$

If a transfer function $P(s)$ is instead given, in this case the problem is that the representation is not unique. Hence, there are infinite choices of (A,B,C,D), all related through a linear transformation. Assume to have (A,B,C,D); then, $\exists T \in \mathbb{R}^{n \times n}$ which is invertible, i.e. $\exists T^{-1}$, that maps:

$$
(A, B, C, D) \underset{T^{-1}}{\stackrel{T}{\rightleftarrows}}\left(A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}\right)
$$

In particular, consider the following two systems:

$$
\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \tag{11.3}\\
y(t)=C x(t)+D u(t)
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\dot{x}^{\prime}(t)=A^{\prime} x^{\prime}(t)+B^{\prime} u(t) \tag{11.4}\\
y(t)=C^{\prime} x^{\prime}(t)+D^{\prime} u(t)
\end{array}\right.
$$

characterized by the same input and output but different states. Then, there exists T such that:

$$
\begin{gathered}
z(t)=T x(t) \\
\begin{array}{|c}
\mathbb{\|} \\
x(t)=T^{-1} z(t)
\end{array}
\end{gathered} \Leftrightarrow \begin{gathered}
\dot{z}(t)=T \dot{x}(t) \\
\begin{array}{c}
\mathbb{x}(t)=T^{-1} \dot{z}(t)
\end{array}
\end{gathered}
$$

Thus, we have:

$$
\left\{\begin{array} { l }
{ T ^ { - 1 } \dot { z } (t) = A T ^ { - 1 } z (t) + B u (t) } \\
{ y (t) = C T ^ { - 1 } z (t) + D u (t) }
\end{array} \text { multiplying by T } \left\{\begin{array}{l}
\dot{z}(t)=\underbrace{T A T^{-1}}_{A^{\prime}} z(t)+\underbrace{T B}_{B^{\prime}} u(t) \\
y(t)=\underbrace{C T^{-1}}_{C^{\prime}} z(t)+\underbrace{D^{\prime}}_{D^{\prime}} u(t)
\end{array}\right.\right.
$$

Therefore, we obtain the following relations:

$$
A^{\prime}=T A T^{-1}, \quad B^{\prime}=T B, \quad C^{\prime}=C T^{-1}, \quad D^{\prime}=D
$$

Below, some of the more useful representations are listed:

- modal representation (Jordan form)
- observability canonical form
- controllability canonical form
- balanced realization.

11.1.1 Properties using state space represantation

The state space representation is characterized by the following properties:

1. it allows the analysis of MIMO systems
2. it describes the evolution of the system. The evolution of the state can be interpreted as the sum of two terms:

$$
x(t)=\underbrace{x_{0}(t)}_{\text {natural state dynamic }}+\underbrace{x_{f}(t)}_{\text {forced state dynamic }}
$$

computed as

$$
\begin{gathered}
x_{0}(t)=e^{A t} x(0) \\
x_{f}(t)=\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau
\end{gathered}
$$

where the exponential of a matrix is defined as:

$$
e^{A t}=\sum_{h=0}^{\infty} \frac{(A t)^{h}}{h!}
$$

Therefore, the evolution of the output is given by:

$$
\begin{aligned}
y(t) & =C\left(x_{0}(t)+x_{f}(t)\right)+D u(t) \\
& =\underbrace{C e^{A t} x(0)}_{y_{0}(t)}+\underbrace{\int_{0}^{t} C e^{A(t-\tau)} B u(\tau) d \tau+D u(t)}_{y_{f}(t)}
\end{aligned}
$$

Note that:

- x_{0} and y_{0} depend only on the initial conditions
- x_{f} and y_{f} depend only on the input.

3. It is possible to derive the transfer function $\mathrm{P}(\mathrm{s})$. Hence, to do so, it is sufficient to apply the Laplace transform:

$$
\left\{\begin{array}{l}
s X(s)=A X(s)+B U(s) \tag{11.5}\\
Y(s)=C X(s)+D U(s)
\end{array}\right.
$$

From the first equation we have that:

$$
(s I-A) X(s)=B U(s) \quad \Rightarrow \quad X(s)=(s I-A)^{-1} B U(s)
$$

and substituting into the second equation:

$$
Y(s)=\underbrace{\left[C(s I-A)^{-1} B+D\right]}_{=P(s) \in \mathbb{C}^{p \times l}} U(s)
$$

Recall that for SISO systems $p=l=1$ and, in particular, $\mathrm{P}(\mathrm{s})$ is the ratio between two polynomials:

$$
P(s)=\frac{n(s)}{d(s)}
$$

For MIMO systems, instead, we have that $P(s)$ is given by the following matrix:

$$
[P(s)]_{i, j}=\frac{n_{i j}(s)}{d(s)}
$$

where all the elements (indexed by the pairs of numbers (i,j)) have the same denominator $d(s)$, defined as:

$$
d(s)=\operatorname{det}(s I-A)
$$

4. it is possible to study the dynamic of the system through the analysis of the eigenvalues and eigenvectors. In particular, $\lambda \in \mathbb{C}$ is an eigenvalue of A if there exists a vector $v \in \mathbb{C}^{n}, v \neq 0$, such that $A v=\lambda v$. Moreover, if $\lambda \in \mathbb{C}$ is an eigenvalue of A , then also $\bar{\lambda} \in \mathbb{C}$ is an eigenvalue of A .
The eigenvalues of A are related to the poles of $\mathrm{P}(\mathrm{s})$. More specifically, if λ is eigenvalue, then $\operatorname{det}(\lambda I-A)=0=d(\lambda)$, which means that λ is a pole of $P(s)$. In general, the determinant of $(s I-A)$ is a polynomial of order n and we have that:

$$
\begin{gathered}
\# \text { (number) of distinct eigenvalues } \leq n \\
\operatorname{det}(s I-A)=\prod_{i=1}^{m}\left(s-\lambda_{i}\right)^{n_{i}} \quad \text { with } \quad \sum_{i=1}^{m} n_{i}=n
\end{gathered}
$$

The eigenvalues are also related to the natural response $(u(t)=0)$ of the system:

$$
\begin{aligned}
x(t)=x_{0}(t) & =e^{A t} x(0) \\
& =\sum_{i=1}^{m^{\prime}} \sum_{j=0}^{n_{i}^{\prime}-1} t^{j^{\prime}} e^{\lambda_{i} t} v_{j}
\end{aligned}
$$

If λ_{i} are all distinct, we have:

$$
x_{0}(t)=\sum_{i=1}^{n} e^{\lambda_{i} t} \alpha_{i} \bar{v}_{i}
$$

where $\left\{\bar{v}_{i}\right\}_{i=1}^{n}$ are the normalized eigenvectors and $\left\{\alpha_{i}\right\}_{i=1}^{n}$ are functions of $\left\{x_{i}(0)\right\}_{i=1}^{n}$. Thus, the (natural) output of the system is given by:

$$
\begin{aligned}
y_{0}(t) & =C x_{0}(t) \\
& =\sum_{i=1}^{n} \alpha_{i} e^{\lambda_{i} t} \underbrace{C \bar{v}_{i}}_{\beta_{i}} \\
& =\sum_{i=1}^{n} \alpha_{i} \beta_{i} \underbrace{e^{\lambda_{i} t}}_{\text {modes }}
\end{aligned}
$$

A system is asymptotically stable (AS) if and only if the eigenvalues of A have $\mathbb{R} e\left[\lambda_{i}\right]<$ $0, \quad \forall \lambda_{i}$. If a system is AS, then $y_{0}(t) \rightarrow 0$ as $t \rightarrow \infty$ for all initial conditions.
5. Controllability/Reachability of (A,B,C,D). Let us focus on reachability: the system (A,B,C,D) is reachable if $\forall x(0) \in \mathbb{R}^{n}, \forall x(T) \in \mathbb{R}^{n}, \forall T>0, T \in \mathbb{R}$, then there exists $u(t), t \in[0, T]$ that drives $\mathrm{x}(\mathrm{t})$ from $\mathrm{x}(0)$ to $\mathrm{x}(\mathrm{T})$.

Proposition 11.1. : A system (A, B, C, D) is reachable if and only if the matrix $\mathcal{C} \in$ $\mathbb{R}^{n \times(n p)}$ given by

$$
\mathcal{C}=\left[B|A B| \ldots \mid A^{n-1} B\right]
$$

has rank equal to n.

For SISO systems the latter condition implies that \mathcal{C} is invertible, hence $\operatorname{det}(\mathcal{C}) \neq 0$.
Proposition 11.2. (PBH TEST) : Let us define the matrix $H=\left[s I_{n}-A \mid B\right] \in$ $\mathcal{C}^{n \times(n+p)}, \forall s \in \mathcal{C}$. The system (A, B, C, D) is reachable if and only if $\operatorname{rank}(H)=n, \forall s \in \mathcal{C}$. In particular, if s is not an eigenvalue of A, then

$$
s \neq \lambda_{i} \quad \Rightarrow \quad \operatorname{rank}\left(\left[s I_{n}-A\right]\right)=n
$$

Therefore, we have to check that $\operatorname{rank}(H)=n, \forall s=\lambda_{i}$.
Proposition 11.3. : A system (A, B, C, D) is reachable if and only if $\forall\left\{\bar{\lambda}_{1}, \ldots, \bar{\lambda}_{n}\right\} \in$ $\mathcal{C}, \exists K \in \mathbb{R}^{p \times n}$ such that $A_{c}=A-B K \in \mathbb{R}^{n \times n}$ has eigenvalues equal to $\left\{\bar{\lambda}_{1}, \ldots, \bar{\lambda}_{n}\right\}$.

Summing up:

$$
\begin{aligned}
(A, B, C, D) \text { reachable } & \Rightarrow \exists u(t), t \in[0, T] \text { such that } x(t) \text { goes from } \mathrm{x}(0) \text { to } \mathrm{x}(\mathrm{~T}) \\
& \Leftrightarrow \operatorname{rank}\left[B|A B| \ldots \mid A^{n-1} B\right]=n \\
& \Leftrightarrow \operatorname{rank}([s I-A \mid B])=n, \forall s \in \lambda_{i}(A)
\end{aligned}
$$

$\Leftrightarrow \exists K$ such that the eigenvalues of $A_{c}=A-B K$ are in any arbitrary configuration.

