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11.1 State space control (modern control)
In modern control theory, we give a different representation of the dynamics as follows:{

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(11.1)

where x ∈ Rn, u ∈ Rp, y ∈ Rl. For p = l = 1 we have LTI SISO systems, but this
representation is suitable also for general LTI MIMO systems where p ≥ 1 and l ≥ 1.

Figura 11.1. State Space representation

As mention previously, there are infinite state space representation for the same dynami-
cal system, therefore a natural question is how to derive A,B,C,D? There are different ways
to do that:

1. Directly from basic physical equations
Example 11.1 : Consider the physics of a DC motor (without the gears):

u(t) = Ria(t) +Keθ̇m
τm(t) = Ktia(t)

Jmθ̈m(t) = −bmθ̇m(t) + τm(t)
um(t) = Kθθm(t)

(11.2)

where

• u(t) is the input voltage of the motor

• τm is the torque applied to the motor

• Jm is the rotor moment of inertia

• um is the measured voltage at the potentiometer
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• bm is the friction coefficient

• Kθ is the transducer constant.

In the associated state space representation we can easily figure out which are the
inputs and the outputs:

• y(t) = um(t)

• u(t) = u(t)

• x(t) =
[
θm(t) θ̇m(t)

]T
⇒ ẋ(t) =

[
θ̇m(t) θ̈m(t)

]T
Note that different representations can be considered, but this one is straight-forward.
From the equations of 11.1 we have:

Jmθ̈m(t) = −bmθ̇m(t) +Ktia(t)

ia(t) =
u(t)

R
− Ke

R
θ̇m(t)

⇒ Jmθ̈m(t) = −bmθ̇m(t) +Kt
u(t)

R
−Kt

Ke

R
θ̇m(t)

⇒ θ̈m(t) = −
(
bmR +KtKe

RJm

)
θ̇m(t) +

Kt

RJm
u(t)

Therefore, we obtain the following state space equations:

ẋ(t) =

[
θ̇m(t)

θ̈m(t)

]
=

[
0 1
0 − bmR+KtKe

RJm

]
︸ ︷︷ ︸

A

[
θm(t)

θ̇m(t)

]
+

[
0
Kt

RJm

]
︸ ︷︷ ︸

B

u(t)

y(t) =
[
Kθ 0

]︸ ︷︷ ︸
C

[
θm(t)

θ̇m(t)

]
+ [0]︸︷︷︸

D

u(t)

2. Derive (A,B,C,D) from the transfer function P(s)
If a transfer function P (s) is instead given, in this case the problem is that the re-
presentation is not unique. Hence, there are infinite choices of (A,B,C,D), all related
through a linear transformation. Assume to have (A,B,C,D); then, ∃T ∈ Rn×n which
is invertible, i.e. ∃T−1, that maps:

(A,B,C,D)
T

�
T−1

(A′, B′, C ′, D′)

In particular, consider the following two systems:{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(11.3)
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and {
ẋ′(t) = A′x′(t) +B′u(t)
y(t) = C ′x′(t) +D′u(t)

(11.4)

characterized by the same input and output but different states. Then, there exists T
such that:

z(t)=Tx(t)

m
x(t)=T−1z(t)

⇔
ż(t)=T ẋ(t)

m
ẋ(t)=T−1ż(t)

Thus, we have:

{
T−1ż(t) = AT−1z(t) +Bu(t)
y(t) = CT−1z(t) +Du(t)

⇒
multiplying by T


ż(t) = TAT−1︸ ︷︷ ︸

A′

z(t) + TB︸︷︷︸
B′

u(t)

y(t) = CT−1︸ ︷︷ ︸
C′

z(t) + D︸︷︷︸
D′

u(t)

Therefore, we obtain the following relations:

A′ = TAT−1, B′ = TB, C ′ = CT−1, D′ = D

Below, some of the more useful representations are listed:

• modal representation (Jordan form)

• observability canonical form

• controllability canonical form

• balanced realization.

11.1.1 Properties using state space represantation

The state space representation is characterized by the following properties:

1. it allows the analysis of MIMO systems

2. it describes the evolution of the system. The evolution of the state can be interpreted
as the sum of two terms:

x(t) = x0(t)︸︷︷︸
natural state dynamic

+ xf (t)︸ ︷︷ ︸
forced state dynamic

computed as
x0(t) = eAtx(0)

xf (t) =

∫ t

0

eA(t−τ)Bu(τ)dτ
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where the exponential of a matrix is defined as:

eAt =
∞∑
h=0

(At)h

h!

Therefore, the evolution of the output is given by:

y(t) = C(x0(t) + xf (t)) +Du(t)

= CeAtx(0)︸ ︷︷ ︸
y0(t)

+

∫ t

0

CeA(t−τ)Bu(τ)dτ +Du(t)︸ ︷︷ ︸
yf (t)

Note that:

• x0 and y0 depend only on the initial conditions

• xf and yf depend only on the input.

3. It is possible to derive the transfer function P(s). Hence, to do so, it is sufficient to
apply the Laplace transform:{

sX(s) = AX(s) +BU(s)
Y (s) = CX(s) +DU(s)

(11.5)

From the first equation we have that:

(sI − A)X(s) = BU(s) ⇒ X(s) = (sI − A)−1BU(s)

and substituting into the second equation:

Y (s) =
[
C(sI − A)−1B +D

]︸ ︷︷ ︸
=P (s)∈Cp×l

U(s)

Recall that for SISO systems p = l = 1 and, in particular, P(s) is the ratio between
two polynomials:

P (s) =
n(s)

d(s)
.

For MIMO systems, instead, we have that P (s) is given by the following matrix:

[P (s)]i,j =
nij(s)

d(s)

where all the elements (indexed by the pairs of numbers (i,j)) have the same denomi-
nator d(s), defined as:

d(s) = det(sI − A).
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4. it is possible to study the dynamic of the system through the analysis of the eigenvalues
and eigenvectors. In particular, λ ∈ C is an eigenvalue of A if there exists a vector
v ∈ Cn, v 6= 0, such that Av = λv. Moreover, if λ ∈ C is an eigenvalue of A, then also
λ̄ ∈ C is an eigenvalue of A.
The eigenvalues of A are related to the poles of P(s). More specifically, if λ is eigenvalue,
then det(λI − A) = 0 = d(λ), which means that λ is a pole of P (s). In general, the
determinant of (sI − A) is a polynomial of order n and we have that:

# (number) of distinct eigenvalues ≤ n

det(sI − A) =
m∏
i=1

(s− λi)ni with
m∑
i=1

ni = n

The eigenvalues are also related to the natural response (u(t) = 0) of the system:

x(t) = x0(t) = eAtx(0)

=
m′∑
i=1

n′i−1∑
j=0

tj
′
eλitvj

If λi are all distinct, we have:

x0(t) =
n∑
i=1

eλitαiv̄i

where {v̄i}ni=1 are the normalized eigenvectors and {αi}ni=1 are functions of {xi(0)}ni=1.
Thus, the (natural) output of the system is given by:

y0(t) = Cx0(t)

=
n∑
i=1

αie
λit Cv̄i︸︷︷︸

βi

=
n∑
i=1

αiβi eλit︸︷︷︸
modes

A system is asymptotically stable (AS) if and only if the eigenvalues of A have Re[λi] <
0, ∀λi. If a system is AS, then y0(t)→ 0 as t→∞ for all initial conditions.

5. Controllability/Reachability of (A,B,C,D). Let us focus on reachability: the system
(A,B,C,D) is reachable if ∀x(0) ∈ Rn, ∀x(T ) ∈ Rn, ∀T > 0, T ∈ R, then there exists
u(t), t ∈ [0, T ] that drives x(t) from x(0) to x(T).

Proposition 11.1. : A system (A,B,C,D) is reachable if and only if the matrix C ∈
Rn×(np) given by

C = [B|AB| . . . |An−1B]

has rank equal to n.
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For SISO systems the latter condition implies that C is invertible, hence det(C) 6= 0.

Proposition 11.2. (PBH TEST) : Let us define the matrix H = [sIn − A|B] ∈
Cn×(n+p),∀s ∈ C .The system (A,B,C,D) is reachable if and only if rank(H) = n,∀s ∈ C.
In particular, if s is not an eigenvalue of A, then

s 6= λi ⇒ rank([sIn − A]) = n

Therefore, we have to check that rank(H) = n,∀s = λi.

Proposition 11.3. : A system (A,B,C,D) is reachable if and only if ∀{λ̄1, . . . , λ̄n} ∈
C, ∃K ∈ Rp×n such that Ac = A−BK ∈ Rn×n has eigenvalues equal to {λ̄1, . . . , λ̄n}.

Summing up:

(A,B,C,D) reachable⇒ ∃u(t), t ∈ [0, T ] such that x(t) goes from x(0) to x(T)

⇔ rank[B|AB| . . . |An−1B] = n

⇔ rank([sI − A|B]) = n,∀s ∈ λi(A)

⇔ ∃K such that the eigenvalues of Ac = A−BK are in any arbitrary configuration.
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