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10.1 Transfer function of a DC Motor
Starting from the equations derived from the DC motor model

La
dia
dt

+ (Ra +Rs) ia = udrv − ue

Jm
dωm
dt

+Bmωm = τm −
1

N
τl

Jl
dωl
dt

+Blωl = τl − τd

ue = keωm

τm = ktia

Nωl = ωm

(10.1)

(10.2)

(10.3)

(10.4)
(10.5)
(10.6)

we want now to obtain the transfer function of the system from the driver input voltage u
to the mechanical load position θl. In order to represent the differential equations of the
system above as algebraic equations in the Laplace domain, we need to define the following
Laplace transforms

Ωm(s) = L [ωm]

Ωl(s) = L [ωl]

Tm(s) = L [τm]

Tl(s) = L [τl]

Td(s) = L [τd]

Ia(s) = L [ia]

Udrv(s) = L [udrv]

Ue(s) = L [ue]

and by applying the Laplace transform on both sides of each differential equation of the
system we obtain:
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(Las+Req) Ia(s) = Udrv(s)−KeNΩl(s)

(Jms+Bm)NΩl(s) = KtIa(s)−
τl(s)

N
(Jls+Bl) Ωl(s) = Tl(s)− Td(s)

(10.7)

(10.8)

(10.9)

where Req = (Ra +Rs) is the equivalent resistance (notice that we combined 10.1, 10.2 and
10.3 with 10.4, 10.5 and 10.6). Now if we define

• Jeq =

(
Jm +

Jl
N2

)
as the equivalent moment of inertia

• Beq =

(
Bm +

Bl

N2

)
as the equivalent friction constant

by combining 10.7, 10.8 and 10.9 we obtain:

Ωl(s) =
kt
N

1

(Las+Req) (Jeqs+Beq) + kekt
Udrv(s)−

1

N2

1

(Las+Req) (Jeqs+Beq) + kekt
Td(s)

from which we can derive the transfer function from the output driver voltage udrv to the
mechanical load angular velocity ωl:

Ωl(s) = P ′(s)Udrv(s), P ′(s) =
kt
N

1

(Las+Req) (Jeqs+Beq) + kekt

The denominator of P ′(s) can be expressed in the form

1

(Las+Req) (Jeqs+Beq) + kekt
=

1

ReqBeq (1 + sTelec) (1 + sTmech) + kekt

where

• Telec =
La
Req

is the electrical time constant

• Tmech =
Jeq
Beq

is the mechanical time constant

and under the assumption that Telec � Tmech (this happens if La is very small), we can write

P ′(s) =
kt
N

1

(ReqJeqs+ReqBeq + kekt)

Notice that the transfer function from the input driver voltage u to the output driver voltage
udrv can be simplified as follows (since Tdrv � Tmech):
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Pdrv(s) =
kdrv

(1 + sTdrv)
' kdrv

Recalling that the mechanical load angle and the mechanical load angular velocity are related
by

ωl =
dθl
dt

and by
Ωl(s) = sΘl(s)

in the Laplace domain, we can lastly obtain the transfer function from the driver input
voltage u to the mechanical load position θl:

Θl(s) = P (s)U(s), P (s) =
1

s
Pdrv(s)P

′(s) =
1

s

1

N

km
(1 + sTm)

where

• km =
kdrvkt

ReqBeq + ktke

• Tm =
ReqJeq

ReqBeq + ktke
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10.2 PID configurations

10.2.1 PID standard configuration

The following configuration shows a classic feedback control system with a PID.

CPID(s) P (s)
u(t)r(t) e(t) y(t)

−

Figura 10.1. Process controlled by a PID.

D

P

I

+
e(t) u(t)

Figura 10.2. Parallel PID configuration.

The problem with this configuration is that at the initial time instant t = 0 we have
y(0) = 0 and if we apply a step function as input signal, the derivative part of PID (with
the add of an high frequency pole to make its transfer function proper) causes an impulse.
In practice is the derivative action is implemented as s

1+τLs
, then it is not difficult to show

via the Initial Value Theorem that the amplitude is proportional to 1
τL
.
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CD(s) =
KDs

1 + τLs

e(t) = r(t) = 1(t)
L−→ E(s) =

1

s

UD(s) = C(s)E(s) =
KD

1 + τLs

L−1

−→ uD(t) =
KD

τL
e
− t
τL

In figure 10.3 we can notice that there is an impulse in the origin.

t0

u(t)

Figura 10.3. Step response: PID standard configuration.
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10.2.2 PI-D configuration

With this configuration we can eliminate the impulse in the control signal. This can be very
useful because the fatigue at the actuator input will be reduced.

PI P (s)

D

r(t) e(t) + u(t) y(t)

−−

Figura 10.4. PI-D configuration.

How you can see in Figure 10.4, the derivative action is applied only at the output. With
abuse of notation we can write:

u(t) =

(
KP +

KI

s

)
(r(t)− y(t))−KD

dy(t)

dt
(10.10)

With a step function as input signal (figure 10.5) we will obtain a control signal u(t) with
no impulses in the origin but still discontinuous.

t0

1

r(t)

Figura 10.5. Input: step function.
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t0

u(t)

Figura 10.6. Step response: PI-D configuration.

10.2.3 I-PD configuration

With this configuration, the integrator action is predominant, but it increases the settling
time. The control signal does not have a discontinuity and the eventual variation of the
signal is limited. Considering the same step function input, we obtain the control signal in
figure 10.8. This configuration is not useful to meet the settling time specification and it is
used only if a quick system response is not needed.

I P (s)

PD

r(t) e(t) + u(t) y(t)

−−

Figura 10.7. I-PD configuration.
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t0

u(t)

Figura 10.8. Step response:configuration I-PD

10.3 Anti wind-up
One of the most problematic source of non-idealities in control system design is the interac-
tion between the integrator and actuators and it is due to the limitation of the control signal
introduced by actuators. For example, by considering the voltage driver-DC motor system,
the voltage driver output signal can not exceed (in absolute value) the maximum value of
6 V . The series connection between the integrator, contained in the PID-controller block
(C(s)), and the actuator (represented by a saturator) is showed off in figure 10.9.

C(s)
SAT

P (s)
r(t) e(t) uC(t) u(t) y(t)

−

Figura 10.9. Series connection between the integrator and the actuator.

In order to make the comprehension easier, we split the PID-controller output signal
(uC(t)) into two components:

uC(t) = uI(t) + uPD(t)

where uI(t) is the integral component and uPD(t) is the proportional-derivative one. The
integral component can be rewritten as

uI(t) =

∫
(r(t)− y(t)) dt =

∫
e(t) dt
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where e(t) = r(t) − y(t) is the error, defined as the difference between the reference signal
and the output signal (figure 10.10).

1 2 3

0.5

1

1.5

e(t)

t

Output y(t)
r(t)

Figura 10.10. Error as the difference between r(t) and y(t).

The three temporal diagrams displayed in figure 10.11 show that the integral component
(uI(t)) of the control signal (i.e. the integral of the error), generated by the PID-controller,
increases until the error e(t) is positive, while it starts decreasing when the error turns
negative (and this happens when the reference signal and the output signal assume the same
value). As a consequence, the saturator output signal will mantain the saturation value
(because of the high value assumed by the integral component) until the negative value of
the error will produce a sufficiently large reduction of the integral term. The scenario here
described will be referred to as wind-up problem.
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0.5
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Figura 10.11. Effect of the saturation on the integral action (wind-up).

Realization of anti wind-up block

In order to avoid the wind-up problem, a system control model such as the one in figure
10.12 should be used.

Depending on the control signal uC(t) behaviour, we need to distinguish two different
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KI
s

PD

Ka

SAT

P (s)
r(t) e(t) + + uC(t) u(t) y(t)

+

−∆U

−
+

−

Figura 10.12. Control system model with anti wind-up.

cases:

• if uC(t) ≤ UMAX then u(t) = uC(t) and the system behaves as a standard PID
configuration

• if uC(t) > UMAX then u(t) = UMAX (i.e. the control signal u(t) exhibits saturation
problems). In this case let us consider the integral and anti wind-up parts of the
controller as a first order system, obtained by unitary negative feedback of the system
described by the transfer function

G(s) =
KaKi

s

with UMAX as input signal and uC(t) as output signal, as showed in figure 10.13
(the proportional-derivative control signal uPD(t) and the error e(t) are treated as
disturbances).
The closed-loop transfer function is

W (s) =
KaKi

s+KaKi

.

In order to satisfy the desired time-domain specifications we have to set the value of
the parameter

Ta =
1

KaKi
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KaKi
s+KaKi

umax uC(t)

Figura 10.13. Equivalent first order system.

which is the time constant of the closed-loop created by the integrator and anti wind-up
block. As a first guess we could set

Ta =
t∗s
3

where t∗s is the desired settling time. Manual tuning of the gain Ka is however almost
always needed in practice.
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