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Large scale distributed systems 
Introduction 
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Networked Controlled Systems (NCSs) 
Introduction 
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Sensor Network Network Controlled Systems 

Sensor and Actor Network (SAN): 
  

physically distributed dynamical systems interconnected by a communication 
network. 

Nodes are sensors (monitoring) and/or actuators (control). 



Typical applications 
Introduction 
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Swarm robotics Indoor monitoring Localization & Tracking 

Building Energy Management Camera networks 

MPG – June 5, 2013 

AN1

AN2

AN3

AN4

AN5

AN6

AN7AN8

AN9

AN10

AN11

AN12



The challenge of distributed systems 
Introduction 
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q  To generate a co-design framework, to integrate architectural constraints and performance trade-offs. 

q  This approach: 
q  will enable the development of more efficient, robust and affordable networked control systems 

that scale and adapt with changing application demands 
q  will contribute in mastering complexity 
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Camera networks as distributed systems 
Camera networks 
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q  Cameras and computing power are both becoming more affordable.  

q  Companies are building ever larger networks of cameras and there is a drive to distribute the computing locally 
to the camera. It remains an open problem how to control such smart camera networks:  

 
q  Architecture: scale and complexity of the system. Need to communicate large amounts of data 

efficiently and coordinate several cameras. 

q  Control & Complexity: the number of network nodes in this application will be very large and therefore 
the issue of scalability will come to the forefront. 

q  Control & Communication: enormous quantities of data collected by the cameras that, if communicated 
naively, are likely to swamp any network with traffic.  

q  Control & Computation: of primary importance will be the issue of Control aware computing, especially 
since one of the camera platforms used is based around FPGA and DSP on board processors that have 
slow development cycles and limited computing flexibility. 



Camera networks as multiagent systems 
Camera networks 
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q  Cameras are actuated visual sensors characterized by: 

q  Locality in sensing: wedge shaped f.o.v. (optical cameras) or range sensor (depth cameras) 

q  Local information exchange through a communication network 

q  Global tasks and global performance index 

q  Graph based interaction models 

Camera networks are smart camera networks! 

DSP FPGA HDD ETH I/O MOT 

Task Msg 

 
Resource Supervisor 

 Event 
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Graph based interaction models 
Camera networks 
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G = (V, E)
Agents (cameras) 

Areas 

q  Protocols of interest are: 

q  Consensus: the agents need to agree to a common decision on a task or a value 

q  Formation: agents need to coordinate their “motion” for sensing 

q  Assignment: the agents are resource limited and there is need for a fair assignment of tasks 

q  Coverage: achieve best area coverage as a network global task 

q  Distributed estimation: cooperative and collective gathering of data to produce better information 

Communication links 
Visibility links 

Neighboring relationships 



Camera networks and robotic networks 
Camera networks 
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q  Boids models 

1.  Separation: avoid collisions with your 
neighbors 

2.  Alignment: steer towards the local 
heading of your neighbors 

3.  Cohesion: keep contact with your 
neighbors and avoid being isolated 

q  Camera network patrolling 

1.  Separation: minimize the f.o.v. overlap 
between neighbors 

2.  Alignment: synchronize the speed of 
patrolling to attain optimal lag time 

3.  Cohesion: agree on the phase of the 
periodic movement 

Camera networks and robotic networks share common features and common problems 



Consensus algorithm 
Camera networks 
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q  Given a graph and some variable measured by the nodes 

G = (V, E) ⇒ {x1, . . . , xn}

q  Distributed recursive algorithm adapted to the graph: 

xi (t+1) = f



x1(t), xj1(t), . . . , xjNi
(t)

� �� �
∈Ni

, t





xi (t+1) = pii(t)x1(t) +
�

j∈Ni

pij(t)xj(t) ⇒ x(t+1) = P (t)x(t)

q  Solution to the consensus problem: 
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solves the 
consensus problem: 

average consensus problem: 



Sparse and dense camera networks 
Camera networks 
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Sparse camera networks: 

q  Cameras do not necessarily have overlapping fields of view.  

q  Issues: data association, network relationship learning, scene 
understanding. 

Dense camera networks: 

q  Large overlapping fields of view between cameras: geometrical 
information can be used to calibrate the cameras and reconstruct 
the shapes and trajectories of objects in the 3D space. 

q  Issues: data and tasks distribution. 
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Motivating application: smart video-surveillance systems 
Sparse camera networks 
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Today’s reality Tomorrow’s vision 

Co-design approach: C3 communication-control-complexity 

q  “Dynamic” sensing: sensors are actuated and their parameters tuned according to the dynamics of the scene 

q  Area coverage and flexibility according to operational needs 

q  Scalability in terms of adding nodes 



Smart video-surveillance system 
Sparse camera networks 
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q  Actuated: able to perform a set of tasks/actions such related to the video registration/coding and the 
interpretation of the scene 

q  No central coordinator: both the information and the surveillance tasks are shared among the nodes 

q  Performance of the system shows slow degradation in presence of faults 

The smart video-surveillance system realizes the SAN paradigm! 



(Some) open problems 
Sparse camera networks 
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q  Setup phase: 

q  Topology learning and graph building problem: build the graph structure of the network from 
observations 

q  Distributed calibration: compute the relative relationship among camera pairs 

q  Operation phase: 

q  Manage patrolling and tracking tasks in a coordinated way 

q  Provide autonomic behavior in presence of faults or hacking 



Topology learning: problem statement 
Sparse camera networks 
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q  Assumptions: 
q  States of the system are the distinguishable visible 

areas (overlapping and non overlapping fov’s) 
q  Observations are given as binary strings: 

Ot ∈ {0,1}K 1 0 11 0 0

q  Problem: 
q  Given an observation sequence, infer the set of states and the underlying graph that 

constraints their transitions: 
O ⇒ {S,G = (S, E)}

q  Solution: 
Two-step approach: 

q  The correspondence between states and static observations provides a first-guess model 
(states and transition probabilities). 

q  The discovery of hidden states is obtained through a splitting procedure from dynamic 
observations and the model is tuned accordingly. 



Topology learning: Hidden Markov Model (HMM) 
Sparse camera networks 
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Topology learning: the state splitting 
Sparse camera networks 
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Topological Splitting 

Logical Splitting 

• The 2-step transitions are considered: qt−1 → qt → qt+1

• The orthogonality among the probability sequence is evaluated to
split the states as a sort of “innovation measure”.



Topology learning: Scenario I - corridor 
Sparse camera networks 

A. Cenedese 21 MPG – June 5, 2013 



Topology learning: Scenario II – park 
Sparse camera networks 
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[Cenedese-Ghirardello-Guiotto-Paggiaro-Schenato, On the graph building problem in camera networks, NECSYS2010] 



Distributed calibration: global registration 
Sparse camera networks 
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[Lu-Milios, Globally Consistent Range Scan Alignment for Environment Mapping, 1997] 

q  Given a camera network and relative noisy distance measurements: 

q  Recover the cameras’ pose: 

x1

xi ∈ R6

x6

x5
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x2
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D46

D56
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q  In matricial form: 

Mahalanobis distance 

H: visibility/communication matrix  
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Distributed calibration: global registration 
Sparse camera networks 
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[Tron-Vidal, Distributed Image-Based 3D Localization of Camera Sensor Networks, CDC2009] 

q  Given a camera network and the pose representation: 

retrieve each camera pose from relative measurements  
 
q  Introduce the geodesic distance in SO(3): 

q  Define the functional: 

q  Solve the constrained minimization problem in a distributed fashion by separation: 

“Pose reconstruction error” 
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Perimeter patrolling: introduction 
Sparse camera networks 
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q  Problem: Real-time PTZ multi-camera optimal 
perimeter patrolling 

q  Fixed position cameras with different speeds 
and visible portions of the perimeter 

q  Each camera is an autonomous agent capable of 
communication and independent decision making 

q  Goal: to provide an algorithm to achieve optimal 
patrolling policy 

q  Distributed 
q  Asynchronous 
q  Parallelizable 
q  Adaptive 

q  Patrolling: act of an agent that senses a different portion of the environment at a time, in order to 
detect events or anomalies 



Perimeter patrolling: introduction 
Sparse camera networks 

A. Cenedese 26 MPG – June 5, 2013 

[Pavone-Arsie-Frazzoli-Bullo, Equitable partitioning policies for robotic networks, ICRA09] 

q  Robotic networks: autonomous vehicles move in the environment to attain the optimal area 
coverage and to act coordinately 

q  Smart camera networks: particular case of the multiagent network to design an optimal patrolling 
strategy for the patroller, in terms of Pan-Tilt-Zoom (PTZ) commands 

q  Systems constrained by their motion dynamics, by their sensing capabilities, and by the 
communication protocols 



Perimeter patrolling: rationale 
Sparse camera networks 
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D1 
D2 

D3 D4 

1.  The problem of optimal perimeter patrolling is abstracted into a distributed optimization problem 
subject to constraints and with asynchronous communication and updates.  

2.  Strategy features:  

q  Cameras communicate and coordinate only with 
the preceding and the following  

q  Cameras optimally cooperate to patrol/partition 
the perimeter 

q  Partitions require the same minimal time to patrol  

q  The focus is on the coordination and communication among cameras, studied in the context of 
distributed algorithms. 



Perimeter patrolling: conjecture 
Sparse camera networks 
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q  Conjecture: patrolling as partitioning 
In a multiagent framework, the optimal strategy is obtained by partitioning the perimeter 
into subdomains and allowing the agents to patrol their domains to and fro at maximum speed 

[Czyzowicz-Gasieniec-Kosowski-Kranakis, Boundary Patrolling by Mobile Agents with Distinct Maximal Speeds, 2011] 

q  Centralized optimal partitioning with 

q  Optimization problem: 



Perimeter patrolling: optimal partitioning problem 
Sparse camera networks 
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q  LP problem: 

à  centralized solution that can be computed in a distributed fashion 

q  New optimization problem: unique solution as one of the original problem solutions 

q  under gossip communication: scalable and parallelizable distributed algorithms 
q  uniqueness of the minimizer yields convergence of iterative numerical algorithms 



Perimeter patrolling: communication schemes 
Sparse camera networks 
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q  Symmetric Gossip algorithm 

q  Transmission iteration: 
 

q  Extremes’ iteration: 
 

q  Asymmetric Broadcast algorithm 

q  Transmission iteration: 
 

q  Extremes’ iteration: 
 

q  Deterministic/Probabilistic convergence    

D1 D2 D3 D4 

A1 A2 A3 A4 

A1 A2 A3 A4 

A1 A2 A3 A4 

A1 A2 A3 A4 

[Alberton-Carli-Cenedese-Schenato, Multi-agent perimeter patrolling subject to mobility constraints, ACC12] 



Perimeter patrolling: Symmetric Gossip strategy 
Sparse camera networks 
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Perimeter patrolling: Asymmetric Broadcast strategy 
Sparse camera networks 
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Large scale MoCaps: distributed approach? 
Dense camera networks 
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!
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q  The request of a more and more accurate estimation of the target positions is leading to the use of large camera 
network systems.  

q  The real time use of the system imposes stringent computational requirements. 

Use the network as a computational grid! 
1.  A binary tree structure: spreading the calculation on different nodes/cameras to tackle the issue of 

computational complexity when scaling up 
2.  A node pairing strategy: define and compute a suitable affinity measure between cameras 
3.  An algorithm: the correctness and the termination of the algorithm should be guaranteed 



3D reconstruction by triangulation 
Dense camera networks 
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How it works: 
q  Markers appear as unlabeled dots on each camera image plane  
q  Matching à Back-projection à Reconstruction  

Cam.2 

q’ 
p’ 

q 
Cam.1 

Φ	

Ψ	


Cam.3 
q’’ 

Reconstruction 

Φ	


q 
Cam.1 Cam.2 

q’ 

Cam.3 
q’’ 

Image Formation 

[Hartley-Sturm, Triangulation,CVIU97] 



The reconstruction problem 
Dense camera networks 
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+ noise 

(P1, d1) (Pm, dm)
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Reconstruction problem as an 
optimal estimation problem 
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The camera affinity: synthetic experiments 
Dense camera networks 
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k-affinity set problem:  
compute the k−1 cameras that allows the best 
reconstruction when associated to a specific camera  

k-reconstruction set problem: 
compute the k cameras that allow the best 
reconstruction 

[Masiero-Cenedese, Reconstruction error in a motion capture system, arXiv:1203.3230v1 , 2012] 

Error on depth Error on target plane 

q  m camera setup: the error about the target position provided by one camera j can be modeled as: 

Σj = Mψjψ
�
j + σ2ejd

2
jΨjΨ�

j trace
�
Σj

�
≤ σ2e d̄

2 3
m−λ3[M(φ)]

Cameras parameters 

Network population 
Cameras positions 



Binary tree structure 
Dense camera networks 
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Pairing 
strategy 

Topological structure Binary tree structure 

N nodes ⇒ logN levels ⇒ (N − 1) computational units



The algorithm 
Dense camera networks 
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[Cenedese-Felicini-Czyz-Smyth, A Distributed approach to 3D reconstruction in Marker Motion Capture systems, 2013] 

MPG – June 5, 2013 

Node 

level (i-1) level (i) level (i+1) 

Input 1 

Input 2 
Output 2D 

3D 

2D 
3D 2D 

3D 

3-Phase algorithm: each node combines 

q  3D info (Input 1) + 3D info (Input 2) 
  
q  2D info (Input 1) + 3D info (Input 2)  
q  3D info (Input 1) + 2D info (Input 2)  

q  2D info (Input 1) + 2D info (Input 2)  

To create new 3D points 
To associate 2D points with existing 3D points 
To reduce 2D points 



Affinity based distributed algorithm – performance comparison 
Dense camera networks 
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Distributed vs centralized – video  
Dense camera networks 

A. Cenedese 41 MPG – June 5, 2013 

Distributed (slowed down)                       Centralized 
 



Distributed vs centralized – snapshots  
Dense camera networks 

A. Cenedese 42 MPG – June 5, 2013 
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Open research issues 
Sparse camera networks 
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q  Topology learning 

q  Distributed calibration 

q  Patrolling with non ideal domains 

q  non-connected 

q  with bifurcations  

q  with occlusions 

q  Two-dimensional patrolling 

Upside-Down building in NavLab 
Testbed sperimentale 
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Open research issues 
Sparse camera networks 
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q  Mobile camera networks 



Open research issues 
Dense camera networks 
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q  Estimation and compensation of the camera synchronization delay in a network 
  
 RMSE in the reconstruction of 3D targets positions (n = 100) 
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q  Consensus-based 3D reconstruction 
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