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Abstract—Wireless sensor networks (WSNs) can provide nu-
merous benefits in industrial automation. By removing the cable
infrastructure, the wireless architecture enables the possibility for
nodes in a network to dynamically and autonomously group into
clusters according to the communication features and the data
they collect. This capability allows to leverage the flexibility and
robustness of industrial WSNs in supervisory intelligent systems
for high level tasks such as, for example, environmental sensing,
condition monitoring and process automation. In this paper, a
clustering strategy is studied that partitions a sensor network
into a non–fixed number of non–overlapping clusters according
to communication network topology and measurements distribu-
tion: to this aim, both a centralized and a distributed algorithm
are designed that do not require a cluster–head structure or other
network assumptions. As a validation, these strategies are tested
on a real dataset coming from a structured environment and the
effectiveness of the clustering procedure is also investigated to
perform anomalies detection in an industrial production process.

Index Terms—Industrial Wireless Sensor Networks (IWSNs),
network clustering, distributed algorithms, anomaly detection,
environment monitoring.

I. INTRODUCTION

In the competitive industrial marketplace, Industrial Wire-
less Sensor Networks (IWSNs) have emerged as a key tech-
nology to improve the efficiency of production processes
while limiting implementation costs. Recent developments
have led to the realization of tiny and low–cost sensor nodes
equipped with data processing and communication capabilities
and IWSNs incorporate networks of up to thousands of these
autonomous devices to facilitate the realization of highly
reliable and self–healing intelligent systems for heterogeneous
applications in the industrial context [1], [2], [3].

The collaborative nature, rapid deployment and flexibility
of IWSNs bring several advantages over traditional wired
industrial systems. Specifically, the lack of cables, the support
for mobility and the low power maintenance make these
solutions suitable for harsh environmental conditions [4].
The existing and potential applications of IWSNs can be
classified according to the taxonomy in [5] into three main
categories, namely environmental sensing, condition monitor-
ing, and process automation, and they regard a wide and
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heterogeneous range of specific scenarios that include building
automation [6], process control [7], utility automation [8],
precision agriculture [9], to cite a few.

In all these contexts, there is typically an intelligent unit,
be it centralized or distributed, that realizes the principal task
through monitoring and control actions, thus requiring real–
time information delivery over very large–scale systems. In
this sense, locality in the communication can, on the one
hand, ensure a rapid spreading of the information and, on the
other, reduce the data interpretation complexity by filtering
out the unnecessary information that regards non neighboring
nodes. Hence, grouping nodes into local clusters arises as
a fundamental tool to enhance the network self-organization
capabilities and improve the system autonomicity towards the
fulfillment of collective goals.

Besides real–time performance, IWSNs differ from other
wireless sensor networks because of an increased attention
towards maintainability, reliability, and safety [1], [4]. In
the industrial environment the networks should be able to
guarantee robust operations in often critical scenarios and to
ensure the safety of personnel, machinery and propriety as
well as fast detection and recovery from malicious external
attacks. Moreover, IWSNs should operate autonomously for
such process and service monitoring. To this aim, fault de-
tection algorithms must be developed that are able to identify
sensors and actuators whose operating conditions are different
from those expected [10]. In this venue, network partitioning
strategies able to group nodes that exhibit similar behaviors
can serve as a useful tool.

The development of effective clustering strategies specifi-
cally tailored for the industrial environment is hence a key
research area towards the realization of self–organizing, real–
time, robust and secure wireless sensor networks to be de-
ployed in industrial applications [11], [12], [13], [14].

A. Related works

The literature on clustering in sensor networks is quite vast
and heterogeneous: it involves different concepts of clustering
and covers several disciplines. It is therefore difficult to draw
an even fairly complete state of the art: in this respect and
with no aim of being exhaustive, a brief overview of clustering
results is presented in the following.

As a general distinction, clustering problem in a wireless
sensor network can be tackled by considering the topology
(network decomposition) or the data gathered from the en-
vironment (data clustering). The first approach is generally
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considered in the design of communication algorithms and
protocols, where the formation of clusters can lead to higher
energy efficiency and reduced communication delays [15].
On the other hand, data–based network partitioning allows
to reduce the computational load by taking into account
similarities among nodes measurements in applications that
deal with large amounts of information [16].

Several partitioning algorithms have been proposed to ac-
complish the clustering task. In particular, the network decom-
position problem can be tackled via well known procedures,
which can be divided into heuristic, weighted, hierarchical and
grid schemes. A comprehensive overview can be found in [17]
and the references therein. Differently, in data clustering the
focus is moved from the topology of the information sources
to the information flow itself. Most techniques are based on
the spatio–temporal correlation properties of the data gathered
by the sensors [18]. In all these works, one solution appears
as particularly popular, in which nodes are partitioned into
clusters and some of them, called cluster-heads (CHs), take
the crucial rôle of aggregating the data coming from the other
elements in the cluster and forwarding them to the base station.

The interest around clustering strategies for general purpose
wireless sensor networks is well established; conversely, only
recently the application of these techniques to IWSNs has
been considered. The work in [11], for example, presents two
clustering approaches to realize tracking of mobile nodes in
IWSNs, a static one where clusters have a predefined number
of elements and a dynamic one, which achieves the task more
efficiently. The application of clustering strategies to solve
environmental sensing and conditional monitoring tasks is the
subject of [12], where a real–time clustering algorithm is
applied to an industrial monitoring network to achieve risk
assessment in an energy–efficient way. The detection of fault
and anomalies in industrial sensing or process applications is
another problem that can be tackled via clustering strategies.
The work in [13] first adopts a well known network decompo-
sition algorithm, Low Energy Adaptive Clustering Hierarchy
(LEACH) [17], then implements a fault detection algorithm
that exploits the presence of clusters. The authors of [14],
instead, develop an original clustering algorithm (Distributed
Matching–based Grouping Algorithm, DMGA) to partition
the network into strongly correlated groups of at least a
predefined number of nodes; on this basis, then, a General
Anomaly Detection (GAD) distributed procedure is developed
that exploits data correlation for real–time recognition of
anomaly conditions. Again, all these approaches rely on the
presence of CHs to facilitate the clustering task.

B. Contribution of the Paper

This paper deals with clustering strategies in IWSNs. Dif-
ferently from other approaches proposed in the literature,
network decomposition and data clustering are here considered
together, since both these aspects are crucial in ensuring the
performance standards of industrial communications. More-
over, the proposed approach is fully distributed and does not

rely at all on the presence of CHs, yielding considerable
benefits in terms of scalability and robustness.

The first contribution of this paper is to provide a formal
definition of the clustering task over a given IWSN, stated as
the determination of the unique partition that simultaneously
abides by three different criteria. Firstly, for each pair of nodes
in a cluster there must exist at least one (communication) path
connecting them composed exclusively by elements included
in the same cluster (connectivity criterion). Secondly, for each
node in a cluster there must exist at least another one in the
same cluster such that the two nodes measurements are similar
according to a defined metric (measurements similarity crite-
rion). Finally, the network must be partitioned into the minimal
number of non–overlapping clusters (maximality criterion).

The most important and original contribution of this work
is to provide algorithms which solve the aforementioned
clustering task. Specifically, the partitioning problem is solved
in the first instance through a centralized policy and then the
distributed paradigm is considered to provide an algorithm
capable of partitioning the network only by local exploration
of measurements. In both cases, no CHs assignment is con-
sidered, and no assumptions are made on the structure of the
emerging clusters (other than those implied by the partitioning
criteria), which are uniquely determined by the proposed
algorithms. The convergence of the distributed solution to
the centralized one is showed through a numeric example
and the efficiency of the proposed approach is confirmed by
comparing it with other clustering techniques, i.e., a classical
k-means strategy [19] and the most recent DMGA algo-
rithm [14]. Finally, the applicability of the proposed procedure
to real industrial use cases is demonstrated by experimental
and simulated scenarios. As a first example, the distributed
clustering algorithm is employed to perform anomaly detection
in a simulated industrial production process. Subsequently,
the performance of a fault detection algorithm based on this
procedure are evaluated on an environmental sensing dataset
and compared with those offered by the state–of–the–art GAD
algorithm, that serves the same purpose.

The remainder of the paper is organized as follows. Section
II formally describes the task to achieve. Section III introduces
both the centralized and the distributed algorithms to solve the
clustering problem, with a first validation against k-means and
DMGA. Then, Section IV validates the proposed distributed
clustering strategy in real–world industrial use cases. Finally,
Section V presents the main conclusions of this work and some
future directions of research.

II. CLUSTERING IN AN IWSN:DEFINITION AND NOTATION

The clustering procedure proposed in this paper is defined
over an IWSN composed by N nodes, whose topology is
represented by an undirected graph G = (V, E), where V
is the set of nodes (vertexes) and E is the set of commu-
nication links (edges) among them. In this framework, each
node vi is associated with a measurement mi, gathered from
the environment and stacked into the measurement vector
m =

[
m1 . . . mN

]>
.
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Fig. 1. Example 1: clustering on a 6–nodes network. The vector measurement for nodes {v1, . . . , v6} is m = [10 12 13 20 22 11]>.

Given G and m, the clustering task consists in identifying
the node clusters {C`} that constitute the unique partition of V ,
defined as C = {C1, . . . , Ck} satisfying the following criteria:
C1. Connectivity: ∀ C` ∈ C, ∀ vi, vj ∈ C` ∃ path p =

{v1, . . . , vh, . . . , vn} such that v1 = vi and vn = vj ,
(vh, vh+1) ∈ E and vh ∈ C` ∀ h ∈ [1, n− 1].

C2. Measurements similarity: ∀ C` ∈ C, ∀ vi ∈ C` ∃ vj ∈
C` such that ‖mi −mj‖ ≤ b, according to some norm;
b ∈ R is named as clustering bound.

C3. Maximality: let C(i) = {C(i)1 , . . . , C(i)ki
}, i ∈ N be a

generic partition of the network satisfying criteria C1–
C2, the maximal partition is C? = {C1, . . . , Ck?}, where

k? = arg min
i∈N

[ki]

The elements of the obtained partition C1, . . . , Ck? are denoted
as optimal clusters and the function F : V → C? is introduced
that maps each node to the optimal cluster it belongs to in the
optimal partition.

Remark 1. (Optimal) clusters are non–overlapping and cover
the entire network, i.e., any node in V belongs to one and only
one cluster following C1-C2-C3. This results in the function
F to be bijective.

Looking at the three criteria, criterion C1 requires that each
cluster forms a connected subgraph: in practice, in industrial
applications, this means that the measurements and more in
general the data obtained from nodes within the same cluster
are shared. Criterion C2, instead, states that a sort of similarity
exists among the measurements of nodes in a cluster: from
the application point of view, the clustering bound b is a setup
parameter related to the expected variance in the measurements
range. Finally, since there can be several network partitions
which fulfill C1 and C2, condition C3 is introduced to select
the partition composed by the minimum number of clusters,
i.e. the one wherein the cardinality of each cluster is maximal.
This ensures that the defined partition is unique, apart from
pathological cases.

Example 1. In order to provide an example of the presented
clustering task and to show the uniqueness of the defined
partition, a network composed by 6 nodes is considered in
Fig. 1. The following (scalar) measurement vector is assumed,
m =

[
10 12 13 20 22 11

]>
, with a clustering bound

chosen as b = 2, which corresponds to the admitted standard

deviation for a correct measurement. Figs. 1a–1b show two
partitions of the network, Ca and Cb, both composed by
three clusters, that satisfy criteria C1 and C2. Nevertheless, a
further partition Cc with only two clusters can be identified,
as reported in Fig. 1c, which also abides by C1 and C2, and
maximizes the cardinality of the clusters (C3).

Interestingly, with respect to C1 and C2 only, all these
partitions show a cluster that includes exclusively nodes v4
and v5 due to the similarity between their measurements and
the dissimilarity with the other nodes values; conversely, the
remaining nodes show a higher level of measurement simi-
larity among them and can be grouped according to different
connectivity graphs that are identified in the network. From a
building intelligence perspective, this suggests the possibility
of detecting and isolating faulty nodes (in this case v4 and v5)
or anomalous events through the clustering procedure [20].

III. CLUSTERING ALGORITHMS

In this section two clustering algorithms are presented: the
former is designed through a centralized approach, while the
latter is achieved according to the distributed paradigm. Both
strategies converge to the same solution providing an optimal
network partition with respect to the established criteria.

A. Centralized Clustering Algorithm (CCA)

In the framework introduced in Sec. II, it is possible to solve
the clustering task through the centralized procedure reported
in Alg. 1. The inputs of the algorithm are the measurement
vector m, the clustering bound b and the (symmetric) adja-
cency matrix E ∈ RN×N of the network, which provides
information about the communication links derived from E ,
i.e., (vi, vj) ∈ E ⇔ E[i, j] = 1. The outcome of the algorithm
is the set {C(vi)}Ni=1 which is related to the optimal partition
C? defined in Sec. II, through the neighborhood of each node
vi, Ni = {vj ∈ V | E[i, j] = 1}, according to the relation
C(vi) = Ni ∩ F(vi).

The proposed solution relies on the dynamic update of the
terms B`

i and Bu
i that indicate a lower and upper bound,

respectively, associated to each node vi. The initial part of
the algorithm is devoted to the setup phase (rows 2-5): for
each node vi, C(vi) = {vi}, while the two bounds B`

i and Bu
i

are defined basing on the initial node measurement mi and
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the imposed clustering bound b. The remaining part of Alg. 1
consists of two steps that are repeated iteratively.

1) Inclusion of nodes in clusters (rows 8-16): for each node
vi, all the neighbors not already included in C(vi), i.e.,
vj /∈ C(vi) such that E [i, j] = 1, are explored. Neighbor
vj is added to cluster C(vi) only if the measurements
similarity criterion (C2) is fulfilled.

2) Update of bounds (rows 17-32): in the second step, for
each cluster C(vi) whose cardinality is larger than 1,
two quantities are computed, namely the minimum lower
bound B`

min and maximum upper bound Bu
max

B`
min = min

vk∈C(vi)
B`

k, Bu
max = max

vk∈C(vi)
Bu

k .

Then, every node in the cluster updates its bounds ac-
cordingly, i.e., B`

k = B`
min, Bu

k = Bu
max ∀ vk ∈ C(vi).

The procedure ends when the second step does not produce
any update of node bounds and, therefore, the cardinality of
each cluster coincides with that of the previous iteration step.

Remark 2. It can be observed that by adopting CCA, criteria
C1, C2 and C3 are actually fulfilled. Indeed, a generic node
vj is inserted in cluster C(vi) through the instructions in rows
10-14. Specifically, this happens only if vj is the neighbor of
another node vh in the same cluster, i.e., E[j, h] = 1, vh ∈
C(vi). At the same time, it is ensured that vj is inserted in
the cluster C(vi) only if ∃ vh ∈ C(vi), s.t. B`

h ≤ mj ≤ Bu
h ,

thus satisfying C2. Finally, Alg. 1 stops only when there are no
more bounds update ensuring that the corresponding partition
has the lowest possible number of clusters, fulfilling C3.

It can be proved that the proposed procedure has complexity
O(N3). Indeed, the instructions inside the while loop require
O(N2) computations, due to the two nested for loops, whereas
the while loop is executed N times in the worst case. This
situation happens when the sensors form a line graph, i.e.
E[i, j] = 1 ⇔ |i − j| ≤ 1, and are provided with evenly
spaced measurements at distance b, i.e., mi = (i − 1) · b. In
this scenario, the upper bound of node v1 (which is the last one
to converge together with vN ) at the k-th iteration is given by
Bu

1 = (k+1) ·b and reaches the maximum value of N ·b only
at iteration k = N − 1. The algorithm hence converges only
at the subsequent iteration, thus yielding an overall O(N3)
complexity. However, it should be noted that this worst–case
scenario is quite uncommon to find in practice and therefore
the complexity is generally lower.

B. Distributed Clustering Algorithm (DCA)

The centralized approach of CCA is based on the assump-
tion that all nodes measurements are available at the same
time together with the network topology at a single location.
Although this statement might be true for some network
configurations, it is not verified in a generic IWSN, and a
distributed paradigm that relies only on local communication
exchange is generally preferable. Moreover, the decentralized
strategy results to be more robust to node failures and dynamic
network topology modifications, which is a valuable feature in

Algorithm 1 CCA
1: procedure CCA(m,b,E)
2: term← false
3: C(vi)← {vi} ∀ i
4: B`

i ← mi − b ∀ i
5: Bu

i ← mi + b ∀ i
6: while not term do
7: update← false
8: for i← 1 to N do
9: for j ← 1 to N do

10: if E [i, j] = 1 and vj /∈ C(vi) then
11: if ∃ vh ∈ C(vi) : B`

h ≤ mj ≤ Bu
h then

12: C(vi)← vj
13: end if
14: end if
15: end for
16: end for
17: for i← 1 to N do
18: if |C(vi)| > 1 then
19: B`

min ← min
vk∈C(vi)

B`
k

20: Bu
max ← max

vk∈C(vi)
Bu

k

21: for each vj ∈ C(vi) do
22: if B`

j > B`
min then

23: B`
j ← B`

min

24: update← true
25: end if
26: if Bu

j < Bu
max then

27: Bu
j ← Bu

max

28: update← true
29: end if
30: end for
31: end if
32: end for
33: term← not update
34: end while
35: end procedure

an industrial environment characterized by noise sources that
may impair communication and faults due to the application
to critical operational scenarios.

The proposed distributed algorithm (DCA) is reported in
Alg. 2 where the iterative nature of the procedure regards the
execution of the same instructions by each node vi of the
network until the unique partition C? that fulfills criteria C1,
C2 and C3 is determined. To this aim, a label ci is associated
to each node vi to specify the cluster to which it belongs to
(at the beginning ci = i). This variable is updated during the
algorithm execution, so that the output of the whole procedure
is a set of labels, one for each node, describing the partition
of the network, in the sense that ci = cj ⇔ F(vi) = F(vj).
As in the centralized solution, a node vi is also associated to
a lower and an upper bound, B`

i and Bu
i respectively, that are

initialized as in Alg. 1.
DCA is again based on an iterative exploration of the

neighbors, performed by each node in a distributed manner.
In detail, node vi checks the measurement of each node vj
belonging to its neighborhood Ni under the constraint cj 6= ci,
meaning that they do not belong to the same cluster. If the two
measurements are similar, according to criterion C2, then both
the labels ci and cj are set to min(ci, cj) (rows 6-8). Moreover,
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Algorithm 2 DCA
1: procedure DCA(mi ,b,N (i))
2: active(vi)← false
3: B`

min ← min
vh:ch=ci

B`
h

4: Bu
max ← max

vh:ch=ci
Bu

h

5: for each vj ∈ N (i), cj 6= ci do
6: if B`

i ≤ mj ≤ Bu
i then

7: cj ← min (ci, cj)
8: ci ← cj
9: if B`

min > B`
j then

10: B`
min ← B`

j

11: end if
12: if Bu

max < Bu
j then

13: Bu
max ← Bu

j

14: end if
15: active(vi)← true
16: active(vj)← true
17: end if
18: end for
19: if B`

min < B`
i or Bu

max > Bu
i then

20: B`
i ← B`

min

21: Bu
i ← Bu

max

22: active(vi)← true
23: end if
24: for each j ∈ N (i), cj = ci do
25: if B`

min < B`
j then

26: B`
j ← B`

min

27: active(vj)← true
28: end if
29: if Bu

max > Bu
j then

30: Bu
j ← Bu

max

31: active(vj)← true
32: end if
33: end for
34: end procedure

node vi keeps track of the minimum and maximum values
assumed by B`

k and Bu
k respectively (rows 10-15) for any

compatible neighbor vk, in order to update its own bounds at
the end of neighbors exploration (rows 19-23). Subsequently,
a further exploration of all the neighbors of vi that belong
to its same cluster, i.e. cj = ci, is performed to update
their bounds accordingly (rows 24-33). The node vi stops
to perform the iterative execution of this algorithm when its
flag active becomes false. This label is initialized to false
at the beginning of the procedure and set to true in three
possible cases: a new compatible neighbor is found, the node
is included in another cluster or its bounds are updated.

The rationale behind DCA resides in the iterative bounds
update and nodes inclusion into clusters, similarly to that of
CCA (Alg. 1); remarkably, though, DCA exploits only local
information to attain the network partition and it is executed
locally by each node, without requiring a central controller.
Notably, for a given network and set of measurements, the
two algorithms produce the same partition, the one defined in
Sec II, as confirmed by extensive numerical simulations.

Example 2. Consider a synthetic IWSN composed of N = 100
nodes whose communication graph is described by a random
geometric graph [21], whereas measurements are randomly
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Fig. 2. Example 2: (a) topology of the IWSN as a random geometric graph;
(b) convergence of the DCA solution to the CCA one.

drawn from a uniform distribution with range between 0
and 100, mi ∈ U ([0, 100]), and the clustering bound is set
to b = 5. One realization of such scenario is reported in
Fig. 2 where both the network topology and the convergence
behavior of DCA in terms of number of clusters are shown.
The initialization of DCA corresponds to the creation of one
cluster per node and the iterative procedure makes the number
of clusters decrease as nodes are merged together, according to
the update of the node bounds. In this context, a step is defined
as the full execution of Alg. 2 by every node in the network.
As expected, the result of the distributed procedure converges
to the centralized solution after three steps. Specifically, in the
reported case, the network optimal partition C? is constituted
by 2 clusters.

C. First Assessment of DCA

Here, the performance of the distributed partitioning strat-
egy DCA is compared with two other procedures: the k–means
clustering approach (hereafter, KMC) and the DMGA strategy,
described in Sec. IV-A of [14].

The evaluation is conducted on a network made of N
nodes ranging from 8 to 100, organized into NC clusters
of fixed size equal to 4 (hence, NC spans from 2 to 25).
The measurement of a generic node in the i–th cluster is
uniformly distributed in the range [Ti − b/2, Ti + b/2], where
Ti is the cluster average measurement and it is generated as
Ti = T0+(i−1)·2b, i = 1, . . . , NC (b is the clustering bound).
Two different network topologies are considered: in one case,
a random geometric graph is chosen within each cluster and
any two clusters are connected by one link between two CH
nodes with probability pL = 0.9 (Fig. 3a); in the other case,
instead, the communication network is given as a complete
graph (Fig. 3b). In both cases, the number of misclassified
nodes is considered versus the network size. Indicating with
C? the optimal partition yielded by CCA and with C a generic
partition, the misclassification cost function is given by

d (C, C?) =

N∑
i=1

χi,

where χi is a function that is equal to zero if the set of cluster
elements of node vi in partitions C and C? coincides (node vi
is correctly classified) and it is equal to one otherwise (node
vi is misclassified).
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Fig. 3. Node classification comparison: (a) not fully connected network
topology; (b) fully connected network topology.

For KMC, the parameter k is set equal to NC and the
centroids are randomly inizialized. For DMGA, instead, the
correlation coefficient cij is defined as the ratio between the
distance of two measurements and the measurements range,
i.e.,

cij = 1− |mi −mj |
b (2 ·NC − 1)

.

Also, the DMGA parameters have been chosen equal to
Nmin = 4 and cmin = 1− (2 ·NC − 1)

−1.
Fig. 3 shows how the performance of KMC are totally inde-

pendent of the network topology as such strategy is exclusively
based on the similarity of the measurements and does not
take into account the communication links. Specifically, the
fact that the algorithm neglects the structure of the network
and the consequent totally random initialization of centroids
cause KMC to get stuck on local optima, which results in
the significant percentage of misclassified nodes observable
in Fig. 3. On the contrary, applying the DMGA procedure,
the set of nodes that are incorrectly classified is empty when
the network is modeled through a complete graph, while a
significant number of nodes is not classified appropriately
when a less connected communication structure is adopted.
Instead, and most remarkably, the partition provided by DCA
algorithm coincides with the optimal one in both cases, thanks
to the fact that the proposed procedure considers at the
same time both the IWSN connectivity properties and the
measurements similarity. Moreover, as explained in Secs. III-A
and III-B, CCA and DCA always yield the same clustering
solution, which is equal to the optimal one defined in Sec. II.

IV. APPLICATION TO THE INDUSTRIAL SCENARIO

Many practical applications of the clustering procedure can
be envisaged within the context of IWSNs. They range from
the fault detection along a production line to the monitoring
of a structured environment in building or factory automation,
from the tracking of mobile nodes in a productive industrial
area to the optimization of energy resources for a surveillance
system. In this sense, two different real world scenarios
have been considered for validation of the proposed DCA,
specifically:
#1 a factory process line, where an item undergoes several

production stages on its way from raw material to end
product;

#2 a structured indoor environment, wherein the task is that
of indoor monitoring, since building energy management
issues may arise and anomaly detection is also important.

Scenario #1 concerns condition and monitoring of highly
dynamic processes in modern factory facilities, where the
timing behaviors of the control variables and of the quantities
of interest need to be accurately monitored in order to ensure
efficiency, performance and quality to the process/service. A
factory intelligence unit should manage to follow the prod-
uct/process chain, to identify the different stages, and to detect
possible faults and anomalies that may occur.

Indeed, this issue can be experienced in a large variety
of production plants and processes. Just to provide a cou-
ple of examples: in the context of the food industry, the
traceability of the product and the proper management of
the ambient conditions throughout the whole supply chain
are of paramount importance to guarantee the quality and
safety of food products and to extend their shelf life [22]. In
semiconductor manufacturing, the development of intelligent
monitoring systems based on IWSN solutions can increase the
automation and maintainability of such complex process and
equipments, thus leading to real–time problem diagnostics and
production optimization procedures [23].

Scenario #2 is characteristic of many industrial, commercial,
and public service installations, and refers to environmental
sensing and service monitoring. In particular, service monitor-
ing aims at offering to the end–users a designed (or expected)
quality of service, and proposing to the providers a tool to
control and optimize the use of resources and increment the
awareness of their employment. These instances are strictly
related to building automation, which has received a surge
of attention in the last few years towards the deployment of
green building solutions in the industry [5], [8]. Environmental
sensing, instead, is referred to the task of measuring quantities
that can be only partially controlled but are fundamental for
the efficiency of equipment and operators, to detect pollution,
avoid hazard and ensure security, and also yield comfort in
the workspace [18].

In detail, the focus in this section is posed on the validation
of the distributed strategy DCA, since it has already been
shown to converge to the centralized solution, and it represents
the most interesting approach for practical applications due to
its intrinsic robustness and flexibility. Thus, the performance
of the proposed partitioning procedure is studied with respect
to different kind of faults in the first scenario, while it is
compared with those of KMC and of DMGA/GAD algorithms
in the second case.

A. Numerical Validation: Process Monitoring Application

This scenario is schematically represented in Fig. 4, where
a plant with multiple production stages is considered, and
a number of items move along the production line. Each
stage is assumed to be characterized by a specific value of
an observable physical quantity (e.g., temperature, pressure,
vibration, or a combination of heterogeneous variables): in this
respect, a gradient of such quantity can be measured across
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Fig. 4. Application scenario #1: sample industrial line–production process characterized by L = 4 stages (gray boxes) each monitored by Nl = 4,
l = 1, . . . , L sensors (white numbered circles), and several moving items (depicted as red squares), which are associated to measurement sensors.

the different production phases and a monitoring IWSN is in-
stalled, made up by different subnetworks, each corresponding
to a distinct production phase. Also, the item that is undergoing
the production process is equipped with or accompanied by a
wireless sensor, so that its own local measurement can be taken
along the production line.

In correctly working conditions, the fixed sensors would
be grouped into four clusters, corresponding to the different
production stages, and the mobile node associated to the
item can be inserted into a specific cluster, meaning that it
is undergoing the corresponding stage, or grouped by itself,
when traveling from one stage to another. It follows that,
since the expected outcome of the clustering procedure for
a mobile node is a priori known, any deviation from such
behavior can be seen as an anomaly and detected by an
intelligent supervisory system, which may be distributed as
well. In this context, DCA is able to keep track of the
item state and detect possible anomalies, given the fact that
it takes into account both communication network topology
and measurements distribution. This detection can be actually
based on a simple cluster label comparison, by opportunely
choosing the IDs for the fixed and the mobile nodes. With
reference to the example in Fig. 4, all fixed sensors have a
lower ID with respect to the mobile nodes: since any node
can retrieve the cluster it is included in by looking at its the
cluster label (that assumes the value of the lowest node ID in
the same cluster), a mobile node can recognize if it is grouped
alone (cluster label equal to its ID) or grouped in a specific
cluster (cluster label lower than its ID). Consequently, since the
evolution of its cluster label over time can be a priori stored in
the node’s memory, the node itself can autonomously detect an
anomaly when the actual evolution differs from the expected
one.

The application of DCA to this framework allows to identify
several different anomalies. In particular, in this context the
following ones are considered:

• Measurement fault: the value of the observed quantity
measured by the mobile node at one stage is significantly
different from that expected. In this case, the node
clusters by itself when it should be clustered with the
stage nodes.

• Timing mismatch: the mobile node reaches a certain

stage earlier or later than expected. In this case, the
evolution of the cluster label is anticipated or delayed
with respect to the nominal trend.

• Communication fault: the mobile node experiences
communication loss and is no longer able to exchange
messages with other nodes. In this case, the node is
always grouped by itself.

The intelligent supervisory system behavior in presence of
these types of anomalies has been simulated for different
scenarios, with multiple fault instances and increasing network
complexity ranging from tens to thousands of sensor nodes:
the results of these numerical experiments consistently show
that the proposed method always allows to detect the different
kinds of anomalies with no occurrence of false positives.

An example in this sense is reported in Fig. 5 for a mobile
node that experiences a failure, in the scenario represented
in Fig. 4: here, the observed physical quantity is the process
temperature and L = 4 production stages are characterized
by temperature ranges ∆T1 = [5, 10]

◦
C, ∆T2 = [15, 20]

◦
C,

∆T3 = [25, 30]
◦

C and ∆T4 = [35, 40]
◦

C, while the initial
temperature measured by the mobile node is below 0 ◦C
(temperature of the raw material before the process). A value
of b = 4 ◦C has been selected as the clustering bound.
The resulting system behaviors (actually, referring to one
realization of such scenario) are shown in terms of measure-
ments trends, clusters evolution, and fault detection signal.
This latter signal is obtained as the mismatch (computed in
practice via logical XOR) between the actual clusters evolution
value with the reference expected one. Interestingly, in the
case of communication fault, namely loss of signal from the
monitoring mobile station, the measurement evolution of the
mobile node is statistically close to the reference one, to the
point that no anomaly can be identified by looking only at the
measurements, while the cluster label comparison promptly
reveals the anomaly.

B. Experimental Dataset: Environmental Sensing Application

The DCA approach has also been applied to a dataset
coming from a sparse sensor network deployed in a public
indoor environment characterized by heterogeneous usage
zones, with reference to Fig. 6a–6b, respectively Area 1
to 4. The considered monitoring network is composed by
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Fig. 5. Application scenario #1: system behavior in pres++ence of anomalies of different kind, i.e. (a) measurement fault, (b) timing mismatch and (c)
communication error. For each anomaly, it is reported the measurements of fixed nodes (FN) and mobile node (MN) in the top row, the clustering trends in
the middle row, and the fault detection signal in the bottom row.

N = 17 wireless t-mote nodes [24] allocated in 4 different
areas composed of multiple rooms and a sample connection
is assumed as shown in the graph reported in Fig. 6a. This
dataset has been derived from a 4 months monitoring period
that includes weekends and holidays; in detail, each sensor
measures a temperature with a fixed sampling interval of five
minutes.

In such a context, the application of DCA to a set of static
measurements collected at a specific time instant (e.g. at 12
a.m. of a generic weekday) with a suitable clustering bound b
yields a network partition such that there is a two–way corre-
spondence between clusters and areas, as reported in Fig. 6a.
Indeed, this cluster–area correspondence is not achieved by
partitioning the network through KMC and DMGA strategies
(see Fig. 6b). On the one hand, even if with k = 4 KMC
identifies four clusters, they do not coincide with the different
areas of the building, mainly because of the reduced signal
variability in the whole environment. On the other hand, the
implementation of DMGA with Nmin = 2 to allow for the
identification of small groups, leads to seven clusters because
of the network sparsity. Remarkably, DCA strategy can handle
both of these aspects correctly detecting the four areas, which
are characterized by a specific measurement behavior and,
hence, may be managed in a dedicated way by an intelligent
environment controller.

Static data processing, however, may be not informative
enough for a building management system with the aim
of energy profile optimization and efficiency. In this sense,
the application of the clustering algorithm during a large
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Fig. 6. Application scenario #2: (a) DCA network partition; (b) KMC (green)
and DMGA (blue) network partitions.

observation interval allows to extract general trends and to
build an effective anomaly detection strategy. In order to
validate this claim, anomalous values are artificially inserted
in the measurements collected by the network during 8 weeks
of operations. In particular, two anomaly models are here
considered [25]:
• constant: the sensor reports a constant value that corre-

sponds to the measurement at the beginning of the fault
period multiplied by a factor γ = 2;

• noise : the sensor measurement is affected by an additive
Gaussian noise with zero mean and standard deviation
σ = 10◦C.

Different anomaly occurrence rates have been considered and
the duration of each fault is a uniform random variable with
an average value of 12 samples (1 hour)

In this framework, a simple yet effective fault detection
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Fig. 7. Application scenario #2: (a) anomaly detection accuracy; (b) F–score.

strategy based on DCA is adopted: the algorithm runs in a
supervised manner during the first week of operation, without
any fault, and, at each sample, every node stores the list of
its neighbors, i.e., the nodes in its same cluster. Then, in the
following weeks, DCA is applied at any new measurements
(with a possible presence of faults) and each node compares
the detected neighbors with those stored for the corresponding
instant of the training week: if less than 50% of current
neighbors are not in the list, the node self–declares as faulty.

To evaluate the performance of this strategy against a state–
of–the–art anomaly detection scheme, GAD algorithm [14] is
applied to the same dataset. The anomaly detection phase starts
after the first week and the following parameters are used:
Nmin = 2, cmin = 0.5 and ∆t = 90 samples (7.5 hours). It
has to be noted that the choice of setting the minimum number
of cluster elements to 2 is imposed by the considered scenario,
characterized by relatively few nodes, sparsely connected
and with a significant measurement variability. However, this
choice strongly affects the detection capabilities of GAD,
which generally requires denser clusters. To cope with this
issue, the algorithm has been slightly modified, labeling as
faulty all the nodes whose status is uncertain. This conservative
choice is motivated by the significant robustness required by
industrial sensing applications, which translates into the urge
to detect as many faults as possible, enduring a possible high
occurrence of false positives. Following a similar reasoning,
the bound of the DCA algorithm is set to an adequately low
value (b = 2◦C), so as to privilege detection of faults with
respect to false positives.

The performance comparison between the two anomaly
detection strategies is shown in Fig. 7 for several values of
occurrence rate. Fig. 7a reports the percentage of anomalies
detected on the total number of generated ones. The detection
strategy based on DCA outperforms GAD for every value
of anomaly rate, yielding an accuracy always greater than
85%, while using the other strategy it drops below 60% for
a fault rate of 20%. To highlight how both strategies suffer
from the presence of false positives due to the significant
irregularity of the measurement trends, the F–score, a metric
that sums up accuracy and precision, is depicted in Fig. 7b.
It can be observed that this metric is low, especially for
low anomaly occurrence rates, where the incidence of false
positives is significant. However, also from this point of view,

the anomaly detection strategy based on DCA confirms its
validity, outperforming GAD by a wide margin.

V. CONCLUSIONS AND FUTURE WORKS

Within the framework of distributed intelligent systems, this
paper aims at designing strategies to effectively partition an
IWSN into non–overlapping clusters of nodes.

To this purpose, three clustering criteria are proposed, that
take into account both communication network topology and
the measurements gathered by the sensor nodes. Indeed, these
features results to be important in noisy industrial environ-
ments, where both the network connectivity and the mea-
surement consistency concur to guarantee IWSN performance
in terms of timeliness, reliability and security. In order to
accomplish this task, two clustering strategies are proposed
following either a centralized or a distributed approach, the
former (CCA) relying on the presence of a central coordinating
unit, the latter (DCA) employing the network itself as a
computational grid, without the need of identifying CHs.

Effectively, the distributed solution converges to the cen-
tralized one after some iterations and hence emerges as the
preferred one for IWSNs thanks to the inherent properties of
autonomicity, scalability and robustness. The proposed DCA
procedure is then tested both in numerical simulations and
on a real–world dataset, to provide an assessment of its
performance in environmental monitoring and fault detection
applications employed in building and process automation.
In this evaluation, the performance of DCA are compared
with both a classical k-means approach and a most recent
procedure, leading to conclude that the proposed algorithm
outperforms other approaches in accomplishing the clustering
task and can be used, for example, as a basis to develop
efficient anomaly and fault detection strategies to be employed
in intelligent industrial monitoring applications.

Future research directions will be focused on the real–time
implementation of the proposed clustering algorithms in a
testbed wireless sensor network to investigate the practical
challenges that could arise from their adoption. Moreover,
future developments include the theoretical and simulative
comparison of the proposed methods in more specific sce-
narios, as well as the deployment of such procedures in actual
IWSN applications.
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