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1. INTRODUCTION

In the last decade, the problem of energy management in buildings has become a prominent research area in the context
of building automation (BA), both for monitoring and control. This interest is motivated by the fact that more than
one third of the whole energy expenditure in modern cities is due to residential and commercial buildings and half
of this consumption refers to heating, ventilation and air conditioning (HVAC) (see for example Pèrez-Lombard et al.
(2008); Yuan et al. (2015), and references cited therein). Even if an increased efficiency of systems and materials and
the adoption of green building policies has allowed to prevent a dramatic growth of such consumption in residential
buildings, the design of control solutions remains of paramount importance in large commercial and industrial facilities
to yield resource optimization while guaranteeing comfort of the occupants (Gupta et al. (2015); Sturzenegger et al.
(2016)). From these premises, it clearly appears how the punctual, accurate, and robust monitoring of the environment
thermal state is a key ingredient for such BA applications: the monitoring network appears as part of the HVAC
system (Agarwal et al. (2011)), and Industrial Wireless Sensor Networks (IWSNs) are particularly suitable for this task,
given the additional attention posed to robustness, reliability and maintainability features with respect to standard
WSNs.

To meet these requirements, IWSNs usually adopt Fault Detection and Isolation (FDI) procedures (see Gungor and
Hancke (2013); Reppa et al. (2016)) and it is agreed that a clustering approach is beneficial to improve efficiency and
attain fault resilience (Zhang et al. (2015); Bianchin et al. (2015)). Indeed, the advantages of partitioning the sensors
into clusters for sensor fault detection are mainly two. Firstly, by exploiting network decomposition (Abbasi and Younis
(2007)), it allows to reduce communication, because each sensor can communicate for sensor fault detection purposes
only with neighboring sensors, i.e. sensors belonging to the same cluster. Secondly, by adopting data clustering (Ma
et al. (2011)), it allows to group sensors with similar modeling uncertainty and/or disturbances and it allows to reduce
the conservativeness of the fault detection thresholds, by exploiting measurement locality.

Fault tolerant clustering approaches have been proposed in the literature (as in Gupta and Younis (2003); Zhang et al.
(2015); Chen et al. (2015)), relying though on the presence of special cluster–head (CH) nodes to facilitate the clustering
task and support the fault detection and anomaly recognition procedures. Conversely, considerable benefits in terms of
scalability, robustness and reconfigurability of the network would be yielded by a solution that is completely distributed
(see for example Boem et al. (2011); Shames et al. (2011); Stankovic et al. (2010); Boem et al. (2017) for an overview
on distributed FDI).

Starting from the results in Bianchin et al. (2015); Cenedese et al. (2017), in this paper we address the problem of FDI
in HVAC systems focusing on the monitoring IWSN. The main contribution we propose consists in:

(1) a methodology that considers heterogeneous sensors measuring different quantities and a procedure to tune the
measurement model and properly design the clustering threshold bounds for estimation and FDI;

(2) a FDI algorithm that takes advantage of such clustering procedure and provides a model-based clustering
reconfiguration strategy, able to cope with both single and multiple sensor faults;

(3) a numerical validation within the scenario of temperature monitoring for the smart management of an HVAC
system.

2. PROBLEM FORMULATION

We consider an IWSN composed of N sensors, which communicate according to an undirected graph G = (V, E), where
V is the set of the nodes (the sensors) and E is the set of the edges connecting the nodes. We define the set of neighbours
of node i: Ni = {l ∈ V : (l, i) ∈ E}. The sensors V monitor the indoor temperature in different rooms of a building. In
each area the heat diffusion is modeled as

Ti(k + 1) = h(Ti(k), u(k), Pi) + ηi(Ti(k), u(k), Pi, ue(k)), (1)

where Ti(k) is the temperature at a point Pi at time k; h is a field modeling the nominal heat diffusion depending on the
past temperature, the local inputs u (including the HVAC input and possibly the outdoor temperature if known) and
the position Pi; ηi considers modeling uncertainty and disturbances ue, including the unknown/unmodeled influence of
neighboring rooms’ temperature or unknown/unmodeled inputs or phenomena, such as the effects of windows, lights or
electrical appliances, or the presence of people in the environment.

Thus, each i-th node provides a noisy measurement yi of temperature Ti:

yi(k) = Ti(k) + di(k) + fi(k), (2)

where di(k) is the measurement noise at time k and fi(k) explicitly models the effect of possible faults affecting sensor
i at time k (clearly, fi(k) = 0 in healthy conditions).

Hypothesis 1. The measurement noise at each node is assumed to be bounded, i.e. |di(k)| ≤ d̄i, i = 1, . . . , N , where d̄i
is a known constant positive value.

For notation simplicity we assume in the following that all the sensors are characterized by the same constant noise
bound d̄. This case can be trivially extended to account for more heterogeneous sensors and to consider time-varying
or state-dependent measurement noise.
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With the aim of performing fault detection on the sensor network, we build on the clustering method proposed in
Cenedese et al. (2017) in order to group sensors in each room into clusters having similar uncertainty conditions.
Clustering results and a novel model-based sensor fault diagnosis strategy are used to detect the presence of faults and
isolate faulty sensors in the clusters.

3. DISTRIBUTED CLUSTERING

The distributed clustering technique introduced in Cenedese et al. (2017) is briefly recalled. Each node i is associated
with the corresponding measurement yi at the time when we perform the clustering, which has to satisfy the following
criteria:

(1) connectivity;
(2) measurements similarity, such that the difference between two measurements in the same cluster is lower than a

given clustering bound b;
(3) maximality, minimizing the number of clusters.

We replace the measurements similarity criterion with a consistency criterion, allowing sensors to measure different
quantities, and designing the bound b based on the model of the system. This allows to obtain clusters that have similar
modeling uncertainty or disturbances. In the following section we explain how each sensor can compute the bound b in
a distributed way using only local communication with neighbours.

3.1 The consistency criterion

Each sensor i communicates its own measurement yi to the neighbouring sensors and compares it with the measurements
yj taken by neighbouring nodes j ∈ Ni. For each pair (i, j) in healthy conditions:

|yi − yj | = |Ti − Tj + di − dj | . (3)

Since the actual temperature at each point is unknown, and temperatures at different spatial points may be quite
different simply due to the physics of the problem and not due to the presence of anomalies, each node can compute
an estimate of the temperature based on the nominal model, past measurements, known inputs and position:

T̂i(k) = h(yi(k − 1), u(k − 1), Pi). (4)

Similarly, each node can compute the estimate also for the neighbouring sensors, assuming that the positions Pj , j ∈ Ni

are known to node i. In the case that the positions Pj , j ∈ Ni are unknown to node i, the estimates T̂j can be
communicated to the neighbours together with the measurements yj reducing the computation cost at each node, but
increasing the communication cost. By substituting (1) in (3) and using (4), we have that

|yi − yj | ≤
∣∣∣T̂i − T̂j∣∣∣+ |−∆hi + ∆hj |+ |ηj − ηi|+ 2d̄, (5)

where ∆hi(k) = h(yi(k), u(k), Pi) − h(xi(k), u(k), Pi). Given Hypothesis 1, it is possible to compute a bound ∆̄hi(k)
for |∆hi(k)|:

∆̄hi := max
|di|≤d̄

|h(yi, u, Pi)− h(yi − di, u, Pi)| .

Since the goal of the clustering is to partition the sensors into groups with similar uncertainty, we neglect the term
ηj − ηi for the definition of the local clustering bound bi:

bi = min
j

[ ∣∣∣T̂i − T̂j∣∣∣+ ∆̄hi + ∆̄hj + 2d̄
]
.

We then apply Algorithm 2 in Cenedese et al. (2017) to partition the sensor network in clusters.

4. SENSOR FAULT DIAGNOSIS

Once the IWSN is partitioned into clusters, the distributed fault detection and isolation method is implemented at
each sensor i. We assume that the initial clustering is performed in healthy conditions. At each time step, each
node communicates its measurements (and estimates) only to neighbouring nodes belonging to the same cluster Ci:
N ∗i = Ni ∩ Ci. At each time step, sensor i computes two different residual signals rij1 and ri2 for sensor fault detection:

rij1 (k) = yi(k)− yj(k),

ri2(k) = yi(k)− ŷi(k),

where
ŷi(k) = h(yi(k − 1), u(k − 1), Pi) + λ(yi(k − 1)− ŷi(k − 1))

is the model-based observer estimate (with 0 < λ < 1 to guarantee the convergence).
Then, it firstly checks the coherence with neighbouring sensors. In fact, in healthy conditions, ∀j ∈ N ∗i ,∣∣∣rij1 (k)

∣∣∣ ≤ ∣∣∣T̂i(k)− T̂j(k)
∣∣∣+ ∆̄hi + ∆̄hj + 2d̄ := r̄ij1 (k). (6)
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Secondly, it checks the coherence with respect to its own past measurements and the model. In healthy conditions,∣∣ri2(k)
∣∣ =
∣∣λri2(k − 1) + ∆hi(k − 1) + ηi(k − 1) + di(k)

∣∣
≤
∣∣λri2(k − 1)

∣∣+ ∆̄hi(k) + η̄i(k − 1) + d̄ := r̄i2(k), (7)

where η̄i satisfies the following

Hypothesis 2. The modeling uncertainty at each node is assumed to be bounded, i.e. |ηi(k)| ≤ η̄i(k), ∀k, i = 1, . . . , N ,
where η̄i(k) is a known positive value.

In healthy conditions the residual signals (rij1 , ri2) are lower than the corresponding thresholds (r̄ij1 , r̄i2). When at least
one of the two residual signals crosses the corresponding threshold in at least one of the sensors of the cluster, then it
is possible to conclude that a fault has occurred in one or more sensors of the cluster. It is important to note that the
proposed thresholds guarantee the absence of false-alarms thanks to the way they are defined in (6)-(7). It is also worth

noting, as it will be deeply explained in Section 5, that residual rij1 is sensitive both to faults in sensor i and sensor j.
On the other hand, residual ri2 is sensitive only on faults on sensor i. This double redundancy allows the isolation of
the faulty sensor(s) in each cluster.

After fault isolation, the faulty sensors are removed from the sensor network. The clustering algorithm can be performed
to reconfigure the clusters.

5. DETECTABILITY AND ISOLABILITY ANALYSIS

In this section, we analyse some sufficient conditions on the faults, with respect to noises and uncertainties, to allow
the detection by the proposed distributed method. The proofs are omitted due to space constraints.

5.1 Detectability of a single fault

Let us consider a general fault fi occurring on sensor i, that is, for k ≥ kf , the i-th output equation is

yi(k) = Ti(k) + di(k) + fi(k), (8)

where fi(k) could even be zero at some time after kf in the case of intermittent faults. We are not assuming a specific
type of sensor fault (persistent, intermittent, bias, drift,..).

Proposition 3. Let us consider that sensor i is affected by a fault fi for k ≥ kf . It is sufficient that the fault effect
satisfies the following condition to guarantee fault detection by means of residual ri2:∣∣∣∣∣∣

k−1∑
h=kf

λk−h−1fi(h+ 1)

∣∣∣∣∣∣ > 2r̄i2(k).

The condition in the previous proposition gives a characterization of the cumulative fault effect needed to guarantee
fault detection by the proposed architecture by means of residual ri2 in the worst case scenario, despite the presence of
uncertainties and disturbances that may hide its effect. We now provide a sufficient condition regarding the instantaneous
effect of the fault.

Proposition 4. Let us consider that sensor i is affected by a fault fi at time k̄. It is sufficient that the fault satisfies the
following condition to guarantee fault detection at time k̄:∣∣fi(k̄)

∣∣ > 2r̄i2(k̄).

Furthermore, we provide the following sufficient condition for a fault fi to be detected at time kd ≥ kf by means of the

residual rij1 .

Proposition 5. Let us consider the case that sensor i is affected by a fault fi. It is sufficient that at time kd the fault
satisfies the following condition to guarantee fault detection:

|fi(kd)| > 2r̄ij1 (kd).

In a similar way, it is possible to prove the following.

Proposition 6. If a fault fj is occurring in sensor j, j ∈ N ∗i ,

• it will not be detected by residual ri2 in sensor i;

• the following condition is sufficient for sensor i to detect the fault by means of residual rij1 at time kd:

|fj(kd)| > 2r̄ij1 (kd).

5.2 Detectability of multiple faults

We have the following theoretical result.
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Proposition 7. Let us consider the case that sensor i is affected by a fault fi and simultaneously a fault fj is occurring
in sensor j, j ∈ N ∗i . The following condition is sufficient to guarantee the fault detection at time kd by the proposed
distributed sensor fault detection scheme:

|fi(kd)− fj(kd)| > 2r̄ij1 (kd).

It is worth noting that, depending on the sign of the faults, the presence of multiple faults may either improve or
compromise the fault detection.

By analyzing the results in the previous propositions, it is important to note that the use of two different residual
signals may possibly increase the detectability performance of the proposed distributed architecture and, as we will see
in the following section, allows to isolate faults distinguishing between local and neighbouring faults.

5.3 Isolability analysis

After fault detection, node i communicates the alarm to neighbouring sensors j, j ∈ N ∗i , according to the following:

dij1 (k) =

 0 if
∣∣∣rij1 (k)

∣∣∣ ≤ r̄ij1 (k)

1 if
∣∣∣rij1 (k)

∣∣∣ > r̄ij1 (k)

di2 =

{
0 if

∣∣ri2∣∣ ≤ r̄i2
1 if

∣∣ri2∣∣ > r̄i2
and receives analogous information from the neighbours.

In order to reduce the communication cost, the communication is required only after fault detection. If not received,
the quantities dj1 are assumed to be null. By exploiting the fact that, as shown in the previous sections, residual ri2 is

sensitive only on local faults fi, while residual rij1 is sensitive both to local faults affecting sensor i, and faults occurring
in the neighbouring sensor j, it is possible to develop a fault isolation logic. In Table 1, we provide the Fault Isolation
(FI) decisions for each couple (i, j) depending on the values of the signals dij1 = dji1 , di2, dj2.

dij1 di2 dj2 FI Decision

1 0 0 fi OR fj

1 1 0 fi

1 0 1 fj

1 1 1 fi AND fj

0 1 0 fi

0 0 1 fj

0 1 1 fi AND fj

Table 1.

Due to the way the detection thresholds are designed, if the residual crosses the corresponding threshold, the presence
of a fault is guaranteed. Viceversa, as long as the residual is lower than the corresponding threshold, the absence
of the fault cannot be guaranteed, since it could be ‘hidden’ by the noise, disturbances or other faults presence. The
communication with other neighbouring sensors l ∈ N ∗i , l 6= j, may support the isolation decision when it is not possible
to distinguish between the presence of fi or fj (see the first row of Table 1) only considering the signals of the couple
(i, j). It is interesting to note the scenario described by the last row of Table 1. The simultaneous presence of fi and

fj may be not detected by dij1 for two different reasons: in the specific application threshold r̄ij1 could be slightly more
conservative than r̄i2 or the two faults may have the same sign and similar magnitude (see Prop. 7).

6. SIMULATION RESULTS

In this section, we illustrate the application of the distributed clustering-based sensor fault detection method to an
IWSN monitoring the performance of an HVAC system, composed of the electromechanical part and a single zone, i.e.
a room. We simulate the HVAC system presented in Reppa et al. (2015), using the same parameters except for the
dimension of the room, chosen as 4.5 m× 1.75 m× 4.5 m. The system is controlled by 2 feedback linearization controllers
whose gains are selected as K = 1. The desired values of the temperature of the cooling coil and the room are set up
as follows: T e = 10◦C and T = 22◦C. The diffusion of the heating in the room at time k is modelled according to the
heat equation (Guenther and Lee (1996), Myint-U and Debnath (2007)) solution for a room of length L:
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Ti(Pi, k)=Tf (k) +

∞∑
n=1

Bn(k) sin

(
2n− 1

L

π

2
Pi

)
e−( 2n−1

L
π
2 )

2
k (9)

where Tf is the temperature of the air introduced in the room by the fan and

Bn(k)=
2

L

∫ L

0

[Ti(Pi, k − 1)− Tf (k)] sin

(
2n− 1

L

π

2
Pi

)
dPi. (10)

The room temperature is characterized by some uncertainty modelled everywhere as the sum of a noise η(1) ∼ N (0, 10−4)
and a term computed at each position Pi as η(2) = −2.3e−l, being l = |Pi−Ps| the distance between Pi and the source of
an unmodelled phenomenon, such as the presence of a window or a door, located in Ps = (4 m, 4.5 m). This phenomenon,
not considered in the nominal model for estimation, causes a reduction of the temperature in the top-right corner of
the room that decays from −2.3 in Ps to 0 going towards the centre of the room. The bound on the uncertainty is
set to η̄i = 2.006 at each point. In the room, N = 20 sensors are randomly deployed such that the resulting graph is
connected (see Figure 1 for a network example).
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Fig. 1. IWSN with 20 sensors. The green nodes belong to C1, the red nodes belong to C2 and the blue ones belong to C3.

Other parameters used for the simulations are the filter gain λ = 0.7 and the measurement noise bound d̄ = 0.4.
Moreover, since we are considering a sensor network, a discretization of the system has been performed using Euler’s
explicit method, with sampling rate equal to 1 min. In the simulations, we consider both single and multiple sensor
faults scenarios for three different kind of faults:

• constant sudden faults: f(k) = c · u(k − kf ),
• temporary faults: f(k) = c · [u(k − kf1)− u(k − kf2)], kf2 > kf1 ,
• linear degrading faults: f(k) = c · k · u(k − kf ),

where c is a positive random constant representing the amplitude of the fault and u(·) is the unit step.
At the first time step, the proposed distributed clustering algorithm is performed, assuming that no faults are affecting
the sensors. The result of the clustering (see Figure 1) is the set of clusters C∗={C1, C2, C3}, with C1 ={1, 2, 3, 4, 5, 6, 7},
C2 = {8, 9, 10, 11, 12, 13, 14, 15} and C3 = {16, 17, 18, 19, 20}, which satisfies both the conditions on connectivity and
on measurement similarity. Moreover, as expected, the sensors in the top-right corner, namely the area with higher
uncertainty, are grouped together.

Let us consider a first scenario where a single abrupt fault f18(k) = 0.8 · u(k − kf18) occurs in the 18-th sensor at time
kf18 = 60 min. The results of the distributed sensor fault detection and isolation method are shown in Figure 2, where
the performances of the faulty sensor 18 are compared with those of the healthy sensor 20 belonging to the same cluster
C3. Due to space constraints, we show the results only for a couple of sensors, but similar and coherent behaviours
are obtained for the other sensors. By analyzing rij1 (Figure 2, (c) and (d)), both sensors can detect the presence of a
fault at k = 61 min. At the same time, by observing the residuals |ri2| (Figure 2, (e) and (f), detection for |r18

2 | and no
detection for |r20

2 |), the correct fault is isolated.

We can observe similar results in Figure 3 for the case of a temporary fault f(18)(k) = 1.5 · [u(k− kf18,1)−u(k− kf18,2)],
kf18,1 = 60 min, kf18,2 = 70 min. The detection and isolation method is successful from the very beginning of the fault
where the residuals cross the related thresholds in correspondence of the faulty values.

In Figure 4 we illustrate the relationship between the detection time and the amplitude of the fault, represented by the
rate c in the case of linear degrading faults occurring at kf = 60 min. The parameter c is chosen in the interval [0.02, 1].
As expected, as the amplitude of the fault increases, the detection delay (kd − kf ) becomes smaller.

Let us now consider the case that multiple faults may simultaneously affect the sensors in the sensor network. In Figure
5 we can see the case of multiple linear degrading faults occurring in sensors 18 and 20 belonging to the same cluster.
The considered faults are f(18)(k) = 0.06 · u(k − kf18) occurring at kf18 = 60 min and f(20)(k) = 0.02 · u(k − kf20)
occurring at time kf20 = 61 min.
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Fig. 2. Comparison between sensor 18, affected by a single sudden fault f(18)(k) = 0.8 · u(k − kf18) at kf18 = 60 min,
and the healthy sensor 20.

Other scenarios have been considered in simulation showing the effectiveness of the proposed method. They are omitted
due to space constraints.

7. CONCLUSIONS

In this paper, a distributed sensor fault diagnosis architecture based on a clustering approach is proposed for IWSN
monitoring HVAC systems. Detectability and isolability properties are analyzed. Simulation results showing the
effectiveness of the proposed method are provided. As a future work, we are going to consider the possible simultaneous
presence of process and sensor faults.
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Fig. 3. Comparison between sensor 18, affected by an intermittent fault f(18)(t) = 1.5 · [u(k − kf18,1) − u(k − kf18,2)],
kf18,1 = 60 min, kf18,2 = 70 min, and the healthy sensor 20.
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Fig. 4. Detection time vs. fault amplitude (c parameter) for single linear degrading faults, kf = 60 min.
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(a) Actual temperature and
measurement of sensor 18
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(b) Actual temperature and
measurement of sensor 20
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(c) |rij1 | and r̄ij1 , i=18, j=20
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(d) |rij1 | and r̄ij1 , i=20, j=18
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(e) |ri2| and r̄i2, i = 18
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(f) |ri2| and r̄i2, i = 20

Fig. 5. Comparison between sensor 18, affected by fault f(18)(k) = 0.06 · u(k − kf18) at kf18 = 60 min and sensor 20
affected by f(20)(k) = 0.02 · u(k − kf20).
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