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1. INTRODUCTION

Synchronization of coupled oscillators is ubiquitous in nature (Lewis et al. (2014); Strogatz (2000)), from the cohesive
flocking of birds (Giardina (2008)) to the orchestrated firing of neurons (Nordenfelt et al. (2013); Ferrari et al. (2015))
to the dynamics of man-made networks, including power grids and computer networks (Nishikawa and Motter (2015)).
While some systems require synchronization of all units to function properly (Dörfler and Bullo (2014); Chopra and
Spong (2005); Cenedese and Favaretto (2015); Gushchin et al. (2015)), recent studies have shown how neural systems,
among others, depend on cluster synchronization, where populations of neurons evolve cohesively but independently
from one another, and how incorrect patterns may prevent cognitive functions and characterize to degenerative states
such as Parkinson’s and Huntington’s diseases (Hammond et al. (2007); Rubchinsky et al. (2012); Banaie et al. (2009)),
and epilepsy (Lehnertz et al. (2009)). Despite recent results, e.g., Pecora et al. (2014); Sorrentino et al. (2016); Schaub
et al. (2016), methods to predict and control cluster synchronization in dynamically-changing networks remain critically
lacking.

In this paper we focus on networks of Kuramoto oscillators (Kuramoto (1975)), and we identify topological and intrinsic
conditions leading to cluster synchronization. Our choice of Kuramoto dynamics is motivated by the broad applicability
of this model to describe complex synchronization phenomena across different application domains (Ferrari et al. (2015);
Dörfler and Bullo (2014); Gushchin et al. (2015); Kurz et al. (2015)). In this paper we show how cluster synchronization
emerges when the coupling among a group of oscillators is sufficiently stronger than the coupling with the remaining
oscillators, and the natural frequencies of the oscillators in the group are sufficiently homogeneous and different from
the natural frequencies of the remaining oscillators. In fact, the larger the difference between the natural frequencies
inside and outside the cluster, the more cohesive the evolution of cluster phases.

Related work Full synchronization in networks of Kuramoto oscillators has received considerable attention, e.g., see
Dörfler and Bullo (2014). Typically, full synchronization is possible when the coupling among the oscillators is sufficiently
strong to overcome the differences of the oscillators’ natural frequencies. Partial or cluster synchronization has, instead,
been the subject of few recent works. For instance, stability properties of patterns and group synchronization for different
classes of dynamical systems is studied in Dahms et al. (2012). The relationship between clustered dynamics and the
topology is analyzed in Lu et al. (2010), where the authors focus on nonidentical dynamical behaviors of different
clusters. More recently, Burger et al. (2013) analyzes the clusterization in the asymptotic behavior, while Pecora et al.
(2014) highlights how symmetry of the interconnection network may lead to cluster synchronization, and Sorrentino
et al. (2016) exploits network symmetries to characterize all possible patterns of cluster synchronization in networks
of oscillators coupled by a network with Laplacian matrix. Finally, more general network topologies are analysed in
Schaub et al. (2016), where clusters are defined through the graph-theoretical notion of external equitable partitions.
In this work, we depart from the above works by proposing and studying a relaxed notion of cluster synchronization,
which applies to general networks and interconnection dynamics.

Paper contributions The contribution of this paper is twofold. First, we propose a notion of cluster synchronization
in networks of Kuramoto oscillators. With respect to existing notions of cluster synchronization where the phases
of the clustered oscillators are required to be equal to each other, we define cluster synchronization when the phase
differences remain bounded over time. This definition is less stringent, and it allows us to study cluster synchronization
in asymmetric oscillatory networks with general topology and parameters. Second, we show how cluster synchronization
depends on a graded combination of strong intra-cluster and weak inter-cluster connections, similarity of the natural
frequencies of the oscillators within each cluster, and heterogeneity of the natural frequencies of coupled oscillators
belonging to different groups. We provide two different results for the cohesiveness of the phases of the oscillators in
a cluster. The first result is based on the nonlinear dynamics of the network, and it bounds from above the phase
differences of the clustered oscillators. The second result uses a linear system to bound the nonlinear dynamics, and
it approximates the phase differences of the clustered oscillators as a function of the network parameters and natural
frequencies of the oscillators. Although our second result is an approximate bound, it provides novel insight into the
mechanisms enabling cluster synchronization in oscillatory networks, and it serves as a tight indication of the nonlinear
network evolution, as we show through a set of numerical studies.

Paper organization The remainder of the paper is organized as follows. Section 2 contains the problem setup and our
main results on cluster synchronization in networks of Kuramoto oscillators. Section 3 contains our numerical studies,
and finally Section 4 concludes the paper.

2. CLUSTER SYNCHRONIZATION IN NETWORKS OF KURAMOTO OSCILLATORS

2.1 Problem setting

We consider a network of nKuramoto oscillators, represented by a weighted, undirected, and connected graph G = (V, E),
where V = {1, . . . , n} and E ⊆ V × V denote the set of oscillators (nodes) and edges, respectively (Godsil and Royle
(2001)). The matrix A = [aij ] denotes the adjacency matrix of G, whose elements satisfy aij ∈ R≥0 if (i, j) ∈ E and
aij = 0 otherwise. Let S1 denote the unit-radius circle. Each oscillator i ∈ V is described by a phase angle θi ∈ S1,
whose dynamics evolve as a heterogeneous Kuramoto system (Kuramoto (1975)):
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Fig. 1. The left figure shows a network of 12 oscillators with 4 color-coded clusters. The phases of the oscillators within
each cluster evolve cohesively, as defined in Definition 1 and illustrated in the right figure.

θ̇i = ωi +

n∑
j=1

aij sin (θj − θi) , i = 1, . . . , n, (1)

where ωi ∈ R≥0 is the i-th natural frequency. 2

Let |θj − θi| denote the geodesic distance between the two angles θi, θj ∈ S1. In this context (and with reference to Fig.
1), we introduce the following definition:

Definition 1. (Cluster of oscillators) The set of oscillators C ⊆ V is a cluster if there exists an angle 0 ≤ γ ≤ π/2
such that, if |θj (0)− θi (0)| ≤ γ, then |θj (t)− θi (t)| ≤ γ, for all i, j ∈ C and at all times t ≥ 0. �

Although Definition 1 allows a node to belong to different clusters, we will not discuss this case throughtout this paper,
which is aimed at the characterization of a single cluster with respect to all the other nodes. Moreover, notice that
frequencies need not be equal for nodes to belong to the same cluster.

Differently from the case of complete synchronization, the mechanisms enabling cluster synchronization in Kuramoto
networks have not been thoroughly characterized. With this work, we characterize topological and intrinsic properties
of the network leading to the emergence of clusters of oscillators, where the phase angles evolve coherently (in the
sense of Definition 1) within a cluster, but independently among clusters. In particular, we show that clustered
oscillators’ dynamics are due to the interplay of the following network features: strong intra-cluster and weak inter-
cluster connections, and natural frequencies that are relatively homogenous within each cluster and sufficiently different
among oscillators in neighboring clusters.

2.2 Analysis based on nonlinear cluster dynamics

Let C ⊆ V denote a group of oscillators. From (1), the dynamics of each oscillator in C can be decomposed as

θ̇i = ωi +
∑
j∈C

aij sin (θj − θi) +
∑
j∈V\C

aij sin (θj − θi) . (2)

Depending on the network parameters and oscillators’ frequencies, the group C may behave as a cluster. In the next
Theorem we further characterize this relation.

Theorem 1. (Cluster condition based on network weights and oscillators’ frequencies) Let C ⊆ V and

αmax = max
i,j∈C

(
ωij +

∑
k∈V\C (ajk + aik)

2aij +
∑
k∈C min{aik, ajk}

)
,

where ωij = ωj − ωi and aij are as in (1). If αmax ≤ 1, then C is a cluster with respect to the angle

γ = arcsin(αmax). (3)

That is, if |θj(0)− θi(0)| ≤ γ for all i, j ∈ C, then |θj(t)− θi(t)| ≤ γ for all i, j ∈ C and all times t ≥ 0.

Proof. Let θij = θj − θi, and assume that |θij(0)| ≤ γ for all i, j ∈ C. Notice that

θ̇ij = θ̇j − θ̇i = ωij +
∑
k∈V

ajk sin(θjk)− aik sin(θik).

We show that, whenever |θij | = γ for some i, j ∈ C, then
d|θij |
dt ≤ 0, thus proving the forward invariance of the angle γ.

Assume that θij = γ (the case θij = −γ follows from analogous reasoning). We have

θ̇ij =ωij − 2aij sin(γ) +
∑
k∈V\C

ajk sin(θjk)− aik sin(θik)

+
∑

k∈C\{i,j}

ajk sin (θjk)− aik sin (θik)︸ ︷︷ ︸
fk

.

Notice that for all j, k = 1, . . . , n, it is

θjk = θk − θj = θi − θj + θk − θi = θji + θik = −γ + θik,
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where θij = γ by assumption, and

∂fk
∂θik

= ajk cos(θik − γ)− aik cos(θik)

= ajk cos(θik) cos(γ) + sin(θik) sin(γ)− aik cos(θik)

= (ajk cos(γ)− aik) cos(θik) + sin(γ) sin(θik).

Moreover, 
∂fk
∂θik

< 0, if 0 ≤ θik < arctan

(
aik − ajk cos(γ)

sin(γ)

)
,

∂fk
∂θik

> 0, if arctan

(
aik − ajk cos(γ)

sin(γ)

)
< θik ≤

π

2
,

that is, because fk decreases/increases monotonically in the interval [0, γ], we have

fk
max = max

0≤θik≤γ
fk = max{fk(0), fk(γ)}

= max {−ajk sin(γ),−aik sin(γ)}
= − sin(γ) min{ajk, aik}.

The derivative θ̇ij can be bounded as

θ̇ij ≤ ωij − 2aij sin(γ) +
∑
k∈V\C

ajk + aik +
∑

k∈C\{i,j}

fk
max.

Finally, notice that θ̇ij ≤ 0 when the angle γ satisfies

γ ≥ arcsin

(
max
i,j∈C

(
ωij +

∑
k∈V\C ajk + aik

2aij +
∑
k∈C min{ajk, aik}

))
,

which concludes the proof. �

Theorem 1 implies that the cluster C is more cohesive, that is, it has a smaller angle γ, when the weight of the edges
within the cluster increases. Similarly, the angle γ increases when (i) the weight of the edges connecting oscillators
within and outside the cluster increases, and (ii) the natural frequencies of the oscillators in the cluster become more
heterogeneous (ωij increases). It should be noticed that, even in the case C = V, the angle γ may remain positive,
that is, the oscillators may not achieve phase synchronization, which is consistent with existing results on networks
of heterogeneous oscillators (Dörfler and Bullo (2014)). As can be seen in Fig. 3, the bound γ in Theorem 1 may be
conservative. A more refined approximation can be obtained by accounting for the natural frequencies of the oscillators
outside the cluster, as we show next.

Lemma 2. (Linear comparison). Let C be a cluster with respect to the angle γ. Then at all times,

max
i,j∈C

(θj − θi) ≤ max
i,j∈C

(θ̃j − θ̃i),

where θ̃i satisfies θ̃i(0) = θi(0) for all i ∈ C and

˙̃
θi = ωi +

sin(γ)

γ

∑
j∈C

aij(θ̃j − θ̃i) +
∑
j∈V\C

aijvij , (4)

with vij = sin(θj − θ̃i).

Proof. The proof is divided into two parts. First, following the same procedure as in the proof of Theorem 1, it follows
that |θ̃ij | = |θ̃j(t) − θ̃i(t)| ≤ γ at all times. This part is omitted here in the interest of space. Second, we employ the
comparison lemma in Khalil (2002) to prove the claimed statement. Consider the non-negative function

g(t, x) := max(xj(t)− xi(t)),
where xi denotes the i-th component of the vector x. Proving Lemma 2 is equivalent to prove that

g(t, θ) ≤ g(t, θ̃). (5)

Let

U(t) = {i : θi(t) = max
j
θj(t)},

Ũ(t) = {i : θ̃i(t) = max
j
θ̃j(t)},

L(t) = {i : θi(t) = min
j
θj(t)},

L̃(t) = {i : θ̃i(t) = min
j
θ̃j(t)}.
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Notice that

g(t, θ) = θi − θj with i ∈ U(t) and j ∈ L(t),

g(t, θ̃) = θ̃i − θ̃j with i ∈ Ũ(t) and j ∈ L̃(t).

From Lemma 2.2 in Lin et al. (2007), we know that

D+g(t, θ) = lim
h→0

sup
g(θ(t+ h))− g(θ(h))

h
= vmax(t)− vmin(t),

where D+g is the right-hand derivative of g(t, θ), and

vmax(t) = max{θ̇i : i ∈ U(t)},
vmin(t) = min{θ̇i : i ∈ L(t)}.

Analogously, D+g(t, θ̃) = ṽmax(t) − ṽmin(t). From Lemma 3.3 in Cao and Ren (2011), equation (5) holds if

D+g(t, θ)|θ=θ̃ ≤ D+g(t, θ̃). Note that, for some i∗ and j∗,

vmax− vmin = ωj∗− ωi∗ +
∑
k∈C

aj∗k sin(θ̃j∗k)− ai∗k sin(θ̃i∗k)

+
∑
k∈V\C

aj∗k sin(θk − θ̃j∗)− ai∗k sin(θk − θ̃i∗),

and,

ṽmax − ṽmin ≥ ωj∗ − ωi∗ +
sin(γ)

γ

∑
k∈C

aj∗kθ̃j∗k − ai∗kθ̃i∗k+

+
∑
k∈V\C

aj∗k sin(θk − θ̃j∗)− ai∗k sin(θk − θ̃i∗).

Thus,

D+g(t, θ̃)−D+g(t, θ)|θ̃ ≥
∑
k∈C

aj∗k

(
sin(γ)θ̃j∗k

γ
− sin θ̃j∗k

)

− ai∗k

(
sin(γ)θ̃i∗k

γ
− sin θ̃i∗k

)
.

Because |θ̃ij | ≤ γ, we have 
sin (γ) θ̃ij

γ
≤ sin(θ̃ij), if θ̃ij ≥ 0,

sin (γ) θ̃ij
γ

≥ sin(θ̃ij), if θ̃ij ≤ 0.

(6)

Notice that, for every k ∈ C, θ̃i∗ ≤ θ̃k ≤ θ̃j∗ and, consequently, θ̃i∗k ≥ 0 and θ̃j∗k ≤ 0. Thus, D+g(t, θ̃)−D+g (t, θ) |θ̃ ≥ 0,
which concludes the proof. �

2.3 Analysis based on approximated linear dynamics

Lemma 2 shows that the evolution of the nonlinear network dynamics can be bounded by the evolution of the linear
system (4) with bounded inputs vij . We use this observation to find a tighter approximation of the clustering angle
γ. Consider a spanning tree T = (C, ET ) of the subgraph (C, EC), with EC = E ∩ C × C (Godsil and Royle (2001)). For

i, j ∈ C, let pij be the unique path on T from i to j. 1 Let θ̃ij = θ̃j − θ̃i, and notice that

θ̃ij =
∑
h∈pij

θ̃h+1 − θ̃h. (7)

Let xtree and xcluster be the vectors of all θ̃ij with (i, j) ∈ ET and (i, j) ∈ C × C, respectively, with j > i. See Fig. 2 for
an illustration of these definitions. Some algebraic manipulation from (4) and (7) leads to

ẋtree = Fxtree +Gu+ ∆ω,

xcluster = Hxtree,
(8)

1 A path pij on ET , i, j ∈ C, is a sequence of vertices of C such that i and j are the first and last elements of the sequence, respectively, and
for any two consecutive nodes k, h it holds (k, h) ∈ ET .
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Fig. 2. For the cluster with nodes C = {1, 2, 3, 4} in Fig. 1, this figure shows a spanning tree T = (C, EC), where
EC = {(1, 2), (2, 3), (3, 4), (1, 4)}. The system (8) associated with the cluster C is in Example 1.

where F , G, and H are appropriately defined matrices, and ∆ω contains all the differences ωij with j > i and (i, j) ∈ ET .

Notice that each component u can be written as ui = sin(θp− θ̃q), for some q ∈ C and p ∈ V \C. The following definition
will be used: for the i-th component of u, let

ω∗i = |ωp − ωq|. (9)

Example 1. (An example of system (8)) Consider the cluster C = {1, 2, 3, 4} of Fig. 2 with subgraph (C, EC),
EC = {(1, 2), (2, 3), (3, 4), (1, 4)}. The subgraph T = (C, ET ) is a spanning tree, where ET = {(1, 2), (2, 3), (3, 4)}. The
state of the system (8) associated with T is

xtree =
[
θ̃1,2 θ̃2,3 θ̃3,4

]T
,

xcluster =
[
θ̃1,2 θ̃2,3 θ̃3,4 θ̃1,4 θ̃1,3 θ̃2,4

]T
.

The input u has six components:

u1 = sin(θ7 − θ̃1), u2 = sin(θ8 − θ̃1), u3 = sin(θ6 − θ̃2),

u4 = sin(θ11 − θ̃3), u5 = sin(θ9 − θ̃4), u6 = sin(θ10 − θ̃4).

The matrices F , G, H and the vector ∆ω are as follows:

F =

[−(2a1,2 + a1,4) (a2,3 − a1,4) −a1,4
a1,2 −a2,3 a3,4
−a1,4 −(a2,3 + a1,4) −(2a3,4 + a1,4)

]
,

G =

[−a1,7 −a1,8 a2,6 0 0 0
0 0 −a2,6 a3,11 0 0
0 0 0 −a3,11 a4,9 a4,10

]
,

H =

[
1 0 0 1 1 0
0 1 0 1 1 1
0 0 1 1 0 1

]T
, and ∆ω =

[
ω2 − ω1

ω3 − ω2

ω4 − ω3

]
.

Finally, ω∗1 = |ω7 − ω1|, ω∗2 = |ω8 − ω1|, ω∗3 = |ω6 − ω2|, ω∗4 = |ω3 − ω11|, ω∗5 = |ω4 − ω9|, and ω∗6 = |ω4 − ω10|. �

Lemma 3. (Stability of (8)) The system (8) is stable.

Proof. Let θ̃ be the vector of θ̃i with i ∈ C, and let
˙̃
θ = −Lθ̃+ v, where L and v are defined from (4). Notice that L is

a Laplacian matrix (Godsil and Royle (2001)), in fact it equals the Laplacian of the subgraph of G with nodes C. Thus,
because the graph G is connected, L has a simple eigenvalue at the origin, with eigenvector with all equal components

(Olfati-Saber et al. (2007)). Thus, the autonomous dynamics
˙̃
θ = −Lθ̃ satisfy

lim
t→∞

θ̃j(t)− θ̃i(t) = 0,

for all i, j ∈ C. Thus, the matrix F is stable because, when ∆ω = 0 and u = 0, the differences θ̃ij converge to zero. �

Next, we exploit the frequency behavior of the system (8) to derive a tighter bound for the cohesiveness of the phases
of the oscillators within a cluster.

Theorem 4. (Approximation based on linearized dynamics) Let Gi be the i-th column of the matrix G in (8),

and ω∗i be as in (9). Then, with the same notation as in Lemma 2, maxij θij ≤ maxij θ̃ij = ‖xcluster‖∞, and 2∣∣∣‖xcluster‖∞−∥∥HF−1∆ω+
∑
iH(iω∗i I−F )−1Gi

∥∥
∞

∣∣∣≈0. (10)

2 In (10) we have = instead of ≈ when the cluster comprises all nodes, that isC = V, when G = 0, or ω∗i grow to infinity.
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(a) m = n and ωi ≤ ω, i ∈ C (b) ωi = 0, i ∈ C and ωk ≤ ω, k ∈ V \ C (c) ωi ≤ 1, i ∈ C and ωk ≤ ω, k ∈ V \ C

Fig. 3. This figure shows the largest phase difference among the oscillators in the cluster, as described in Section 3, and
the bounds γ and β derived in Theorem 1 and Theorem 4, respectively. In Fig. (a), the cluster comprises all nodes
(V = C) and, for each value of ω, the oscillators natural frequencies are selected randomly and uniformly distributed
in the interval [0, ω]. In Fig. (b), the cluster comprises a proper subset of nodes, the oscillators in the cluster have
equal frequency, while the frequencies of the oscillators outside the cluster are selected randomly and uniformly
distributed in the interval [0, ω]. In Fig. (c), the cluster comprises a proper subset of nodes, the frequencies of the
oscillators in the cluster are selected randomly and uniformly distributed in the interval [0, 1], while the frequencies
of the oscillators outside the cluster are selected randomly and uniformly distributed in the interval [0, ω]. Notice
that (i) β is a tighter bound than γ, (ii) the cohesiveness of the cluster increases when the frequencies of the
oscillators outside the cluster increase, and (iii) exact phase synchronization is possible only when the oscillators
in the cluster have equal frequency, and the frequencies of the oscillators outside the cluster increase to infinity.

Proof. To obtain the approximate bound in Theorem 4, we assume that, using the notation in (9),

ui = sin(θp − θ̃q) ≈ sin((ωp − ωq)t) = sin(ω∗i t).

We then exploit standard argument from linear system theory, and in particular the harmonic response of a linear
system, and stability of (8) to conclude the proof.

It should be observed that our approximation is tighter as the frequencies ω∗i grow to infinity while the natural frequencies
of the oscillators in the cluster remain bounded. In fact, in this case with appropriate initial conditions we have that ωi
grows to infinity, with i ∈ V \ C, and the phase θi evolves as ωit:

θ̇i
ωi

= 1 +
∑
j∈C

aij
ωi

sin(θ̃j − θi)︸ ︷︷ ︸
→0

+
∑
j∈V\C

aij
ωi

sin(θj − θi)︸ ︷︷ ︸
→0

= 1.

Then, we have that sin(θp − θ̃q) converges to sin(ωpt), and the symbol ≈ in (10) can instead be replaced with =. �

Theorem 4 shows how the frequency of the oscillators connected to a cluster affects the cohesiveness of the phases of
its oscillators. In particular the larger ω∗i , the less the effect of the of the neighboring oscillators on the cohesiveness of
the cluster. In fact, in the limit when all ω∗i grow to infinity, the cluster is effectively disconnected from the neighboring
agents because the cluster dynamics act as a low pass filter with respect to the frequencies ω∗i . Additionally, it can be
shown that, as all ω∗i grow to infinity and ∆ω decreases to zero, the cluster achieves phase synchronization, that is,

lim
t→∞

max
i,j∈C

θj (t)− θi (t) = 0.

Finally, it should be noticed that the vector ∆ω is due to heterogeneity of the natural frequencies of the clustered
oscillators, and it acts as a constant input to the system (8).

3. NUMERICAL EXAMPLES

To validate the results in Section 2, we perform two sets of numerical studies. In Fig. 3 we compare the largest phase
difference within a cluster of oscillators with the bounds in Theorems 1 and 4 as a function of the oscillators’ natural
frequencies. We consider fully connected networks of Kuramoto oscillators, where V = {1, . . . , n} and C = {1, . . . ,m};
n and m are randonly selected in the intervals {2, . . . , 10} and {2, . . . , n}, respectively. The network weights aij are
independent random variables uniformly distributed in the intervals [0, 1], if i, j ∈ C, and [0, 0.01] otherwise. For each
value of the largest natural frequency ω, we generate 100 different networks, compute the largest phase difference
within the cluster, evaluate our bounds, and report the average results. The results show that the bound in Theorem
4 is tighter than the bound in Theorem 1, and that it captures the asymptotic behavior of the phase difference as the
natural frequencies of the oscillators outside the cluster increase. Moreover, the cohesiveness of the cluster increases
when the frequencies of the oscillators outside the cluster increase, and exact phase synchronization is possible only
when the oscillators in the cluster have equal frequency, and the frequencies of the oscillators outside the cluster increase
to infinity.
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(a) n=4,m=2, ωi = 0, ωk ≤ 10 (b) n=4,m=2, ωi ≤ 1, ωk ≤ 10 (c) n=20,m=10, ωi =0, ωk≤100 (d) n=20,m=10, ωi≤1, ωk≤100

Fig. 4. This figure shows the largest phase difference among the oscillators in the cluster over time (blue, continuous),
as described in Section 3. We consider fully connected Kuramoto networks, where V = {1, . . . , n}, C = {1, . . . ,m},
{ω1, . . . , ωm} are selected randomly in the interval [0, ωmax

in ], and {ωm+1, . . . , ωn} are selected randomly in [0, ωmax
out ],

with n = 4 in Fig. (a) and (b), n= 20 in Fig. (c) and (d), m= 2 in Fig. (a) and (b), m= 10 in Fig. (c) and (d),
ωmax
in = 0 in Fig. (a) and (c), ωmax

in = 1 in Fig. (b) and (d), ωmax
out = 10 in Fig. (b), ωmax

out = 100 in Fig. (c) and (d).
The figures highlight how heterogeneity of the natural frequencies of the oscillators in the clusters affect cluster
cohesiveness. The bound from Theorem 1 is in red (dashed); the bound from Theorem 4 is in yellow (dashed-dot).

In Fig. 4 we report the time trajectory of the largest phase difference within a cluster. We consider fully connected
networks of Kuramoto oscillators, where the network weights aij are independent random variables uniformly distributed
in the intervals [0, 1], if i, j ∈ C, and [0, 0.01] otherwise. We consider different choices of V, C, and of the oscillators
natural frequencies, as described in the figure caption. The results show how the phase differences inside the cluster
decrease when the natural frequencies inside the cluster are homogeneous, and when the frequencies of the neighboring
oscillators are sufficiently larger.

4. CONCLUSION

This paper characterizes cluster synchronization in networks of Kuramoto oscillators as a function of the network
weights and oscillators parameters. The paper shows how cluster synchronization depends on a graded combination of
strong intra-cluster and weak inter-cluster connections, similarity of the natural frequencies of the oscillators within each
cluster, and heterogeneity of the natural frequencies of coupled oscillators belonging to different groups. The technical
approach leverages tools from linear and nonlinear control theory, and is numerically validated.
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