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Dynamic detection and quantitative analysis of
biological network structures from live images

Alessandro Abate, Angelo Cenedese, and Alberto Silletti

I. DESCRIPTION OF THE TECHNIQUE

We will consider the three phases of the procedure and
approach the methodological issues of interest in order to
compute the structure of interest in the image.

1) Detection. The first available image frame is analyzed
searching for an underlying network structure, which
is then extracted leveraging the use of a random walk
model to navigate the network edges combined with
a network agent to organize the retrieved information
into a complex structure. The first frame is taken as a
reference frame, also for the warping function w and
the outcome of this procedure is a network graph
(vertices, edges) with spatial information.

2) Tracking. The networked structure is then deformed
in time starting from the information given by the
reference frame and according to the visual data
of the following frames. This phase resorts to the
computation of optimal (or sub-optimal) warping
maps w for motion and deformation that account for
the underlying dynamics of the deformable system
and at the same time accommodate the dataflow. A
set of time stamped network structures is produced,
each uniquely associated to the corresponding image
frame.

3) Registration. Once the salient structures are detected
and tracked in time, is of fundamental importance to
establish a quantitative relationship among them by
matching networks from consecutive frames.

A. Detection: random walk model and network model

The rationale behind the detection procedure is that
of finding topologically continuous paths over the image
I exploiting the collective motion of a set of agents
{A1, ...,ANτ } exploring the digital field of the frame, and
tracking1 their paths along (see Fig. 1(a)), similarly to
what proposed in [1], [4]. The motion of these exploring
agents is a random walk model driven by an external input
that is related to the features of the already traveled path
and some prediction on the following steps, in order to
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1In this context, the temporal coordinate τ is set by the pseudo-time of

the detection algorithm.

ensure a level of continuity in the track. On the other
hand, the number of the agents Nτ is not constant during
the detection phase and determined by the complexity of
the structures: At any bifurcation point one or more new
agents are initialized with different heading directions in
order to proceed towards the detection of new branches,
and whenever a closed structure is completely detected the
detecting agent ceases to exist.

More formally, each random walk agent Ai is character-
ized at instant τ by a couple {xi, θi}(τ), respectively the
position on the image frame and the heading direction, and
employs a motion law defined as:

xi(τ + 1) = xi(τ) + αejθi(τ), (1)

where α is the step size of the advancement and j is the
imaginary unit. The heading direction θi(τ) ∈ Θ = [0, 2π)
is the polar angle seen by the walker agent obtained from
the following solution set

{arg max
θ∈Θik

(
EI (θ,xi(τ)) |Θik s.t. EI (θ,xi(τ)) > Ē

)
},
(2)

where EI is a suitable energy function defined over the
image in a xi neighborhood domain (see Fig. 1(b)), θ
is the polar angle coordinate, and Ē is a suitable thresh-
old value. Basically, if there is only one subdomain of
Θ where EI exceeds Ē , be it Θi1, there is a unique
possible heading direction θi the agent keeps on travel-
ing. Conversely, if the thresholding operation highlights
more intervals {Θi1, . . . ,ΘiNΘ

}, the extremization pro-
cedure of Eq. 2 suggests a set of heading directions
{θi1 ∈ Θi1, . . . , θiNΘ ∈ ΘiNΘ} as local extremal points in
the intervals of Θ (see Fig. 1(c)). In such a case, NΘ

agent instances are initialized with the same position and
different heading directions {{xi, θi1}, ..., {xi, θiNΘ

}}, and
the procedure is able to accommodate path bifurcations.

Loosely speaking, the energy function E gathers local in-
formation by exploring the surroundings of current position
xi(τ) and the rôle of this energy term is to drive the agent
towards the salient structure, being strictly related to the
image intensity function and the visual data appearance.
In the specific case, the reticular structure appears as a
light network on a darkish cluttered and noisy background:
Hence, the energy term EI related to the image intensity I
is chosen with respect to a reference value I0 as:

EI(θ,xi(τ)) =

∫
Ωi

(I(x)− I0(x))
2
dx∫

Ωi
dx

, (3)
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Fig. 1. Walker agent approach. (a) Several agents explores the
frame. The union of the paths traveled by all agents provides the reticular
structure detection. (b) The agent field of view, Ω, chosen as a rectangular
shape, is employed as the domain to determine the heading direction. (c)
Local maxima of the energy function EI correspond to possible heading
directions for advancing a single agent or generating new agents. A
smoothed version, filtering small random disturbances, is more reliable
for noisy images.

where the integration domain depends on local position
and orientation, Ωi , Ω(θ,xi(τ)). Nicely, this domain
represents the field of view of the agent in exploring its
neighborhood.

The global description provided by the walker agents,
obtained as the union of all states

⋃
τ

⋃
i {xi, θi} (τ) yields

a refined representation of the networked structure and can
be summarized through a graph model G = (N,E) (nodes
and edges, respectively), where each location reached by a
random walk agent is a node in the graph and the edges
keep track of the path traveled by the agents2.

Being designed for representation aims, this model may
be overabundant for modeling purposes, especially when
the goal is to obtain compact-size models that are flexible
and agile to be used both for simulation and for prediction
of the behavior of the structure. In this sense, only the sub-
set N̄ ⊂ N of the nodes associated to path bifurcations (and
the correspondent connecting edge set Ē) are interesting in
the description. If border effects are neglected, the resulting
graph Ḡ =

(
N̄, Ē

)
is a 3-connected graph, obtained by

selecting the nodes with valency greater than 2, formally
δ(Ḡ) = 3, and creating connecting edges according to the
path connections of G (see Fig. 2(a)).

Such a procedure operates the abstraction of the retrieved
visual data into a compact and versatile data structure,

2A loop closure procedure is also performed in order to detect closed
structures, fusing contributions from different agents while avoiding at the
same time closed loop artifacts in uniform image intensity areas.

that allows the definition of metrics for the quantitative
evaluation of the salient objects detected in the image frame
and the applications of methodologies and models from
network and graph theory. Interestingly, in the case of cell
clusters or similar agglomerates, the graph Ḡ (obtained from
the network of the objects boundaries) can be considered as
a primary structure of nodes (all branching locations) and
edges (virtual boundaries) whose dual graph Ḡ′ =

(
N̄′, Ē′),

conversely, is composed by nodes as the object centers and
edges as the connections with the neighbors, and is useful
to understand collective behaviors during the evolution. An
instance of such duality is shown in Fig. 2.

(a) (b)

Fig. 2. Primary and dual graphs. (a) In the primary graph Ḡ =
(
N̄, Ē

)
nodes corresponds the bifurcation locations visited by the walker agents
and the edges are directly related the traveled paths. (b) Conversely, the
dual graph Ḡ′ =

(
N̄′, Ē′) shows as nodes the centers of the cluster

objects, and the connections with the neighbors assume the rôle of edges.

B. Tracking: motion and deformation maps
In the case a sequence of images is available in the dis-

crete time domain t = 1, . . . , T (t indicating the evolution
time), represented by the image intensity set {I1, . . . , IT },
the temporal coherence, that is the property of an image
frame It to be similar to its neighbor It+1, can be exploited
to perform a dynamic detection of the structures or the
tracking.

In general, to understand motion in an image sequence,
computer vision literature focuses on two different con-
cepts, those of motion field and optical flow: The former
is a purely geometric and unique map V : R3 → R2

that represents the projection of the real world 3D motion
vectors on the 2D image plane, while the latter is the not
uniquely determined map F : R2 → R2 that transforms one
image into another [5]. Given these definitions, the purpose
of motion estimation is to recover an optical flow that is as
close as possible to the real motion field.

Considering two images It and It+1, the optical flow
F(x) is a velocity vector vt that describes the displacement
of pixel at x of image It into It+1 [2], [3]:

It(x) = It+1(x + vt). (4)

The assumption is made of small displacement so that the
linearization of (4) yields the image constraint equation

It(x) = It+δt(x + δx) ≈ It(x) +
∂I

∂x
δx +

∂I

∂t
δt, (5)

whence the optical flow constraint equation is derived, that
can be written in a compact fashion as

∇I · F +
∂I

∂t
= 0. (6)
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To find the optical flow, another set of equations is needed,
given by some additional constraint, which is often found in
a smoothness constraint, |∇F| ≈ 0, assuming that motion
field does not vary drastically between neighboring regions.

Accordingly, the graph structure Gt deforms into Gt+1

and its morphing is the optical flow field restricted to the
node set Nt, where the pedices highlight the dynamic na-
ture of these structures. The computation of such morphing
is obtained as the solution to the following minimization
problem:

Problem 1: For each point x ∈ Nt a neighborhood
N (x) in in It is considered, and a corresponding point
(x + vt) ∈ N with neighborhood N (x + vt) in It+1. The
optimal value for the optical flow is obtained as

F(x) = arg min
vt

∫
N
|It(x)− It+1(x + vt)| dx︸ ︷︷ ︸

Jx

, (7)

where the functional Jx(vt) as a function of vt, related to
position x, is highlighted.

While on images with high coherence, a unique min-
imum is found with the optimization procedure above,
with low coherence images the solution to (7) may in fact
yield a sub-optimal vector, due to the presence of several
minima of the same magnitude in the functional Jx(vt).
This issue is exemplified in Fig. 3 where two typical maps
of Jx, referred to as J-maps, are shown as a function of
vector vt (the central point of the map corresponding to
the null displacement, vt = 0): High coherence images
(like that on the left) generate a precisely located and
unique minimimum, while low-coherence images (e.g. on
the right) exhibit more than one good minima. In these

Fig. 3. J-maps. The yellow circle indicates the minimum of Jx(vt),
while the yellow cross the ground-truth. A highly coherent image pair
{It, It+1} generates a J-map providing a well defined minimum (left).
Instead, a low coherent image pair (right) generates a J-map with many
local minima of similar value (A,B,C,D). In this case, it is more difficult
to discriminate among these minima and, also, the global minimum (yellow
cross, D) may not correspond to the ground truth (circle, C).

cases, to detect the position of the true minimum, the
strategy is to consider instead of the single J-map, a set of
neighboring J-maps (J-maps associated to neighbor points)
that can mutually support the localization of the optimal
displacement by averaging their values. This approach finds
a justification in the smoothness constraint of the optical
flow F(x): Neighbor J-maps will show similar patterns
and approximately close minima

x1 ≈ x2 ⇒ Jx1
(vt) ≈ Jx2

(vt)⇒ F(x1) ≈ F(x2), (8)

with straightforward meaning of the adopted notation.
Fig. 4 shows a set of neighbor J-maps , with a yellow

cross on the global minima. Intuitively, it is possible to
detect the error on the right and to (somehow) correct it.

Fig. 4. Low coherent J-maps. J-maps from low coherent images show a
number of local minima, and sometimes fail in detecting the ground truth.
Nonetheless neighbor J-maps exhibits a similar appearance, and thus it’s
possible to cross check them and detect potention errors. For instance the
image on the right shows a global minima not consistent with the global
minima of the other J-maps - not consistent with the smoothness constraint

The J-maps correction is an iterative steps. For each im-
age Js we consider a set of neighbor images , and compute
the global minima of each of them. The average value
indicates respectively the optical flow average direction and
the confidence of this measure.

Image 5 shows equation ?? applied to the example of
image 4. The image on the right is Js, and the three
remaining images on the left are {Js1 , Js2 , Js3}. After the

Fig. 5. Correction of the J-Maps. The J-map on the right, J̄s, is
computed from Js according to equation ??. The blu cross is the position
of the old global minimum. The red cross is the center of the gaussian
(v̄x, v̄y). The yellow cross is the location of the new global minimum

correction step over all the images, the “new” J̄ overwrite
the “old” J . The entire procedure may be repeated, until a
steady state is reached.

Figure 6 compare the morphing of a reticular structure
computed respectively with the raw optical flow algorithm
and the improved one. Figure 7 compare the optical flows

Fig. 6. Morphing of a reticular structure. The inexact computation of
the optical flow can morph a shape (left, a reticular shape in red) into
a wrong one (center). The improved optical flow algorithm guarantees
instead optimal results (right). The images refer to a video sequence of
the drosophila morphogenesis, captured by mean of a microscope. Red
lines, over imposed on the original frames, show the cellular structure.
The image on the left refers to frame 21, images on center and on the
right refer to frame 22. See also images 7. Courtesy of Prof. Jeff Axelrod.

after and before refinement.
Evolving the Active Contour in a pseudo time removes

false positives edges and refine the structure. Finally, we
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Fig. 7. Optical flow field. The two images refer to the optical flow vector
field computed on 6. The raw computation (left) yields a wrong result. The
smoothness constraint is not respected. The refined optical flow is instead
a smooth vector field. See also images 6

generate a set of random walk agent from each node of the
graph. This is necessary to fill holes and to “expand” the
shape over the possibly appeared portion of the frame.

Fig. 8. Morphing of the Drosophila reticular structure using J-Maps.
The image shows the reticular shape detected in frame 11 overimposed on
frame 12. The green arrows schematically represents the morph obtained
by means of J-maps, applied here to two cells
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Fig. 9. Complete dataset IM1.


