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Question
y1 = θ1 + ν1

...
yN = θN + νN

N ≥ 3
θi deterministic
νi ∼ N (0, σ2)
νi ⊥ νj

Find θ̂ minimizing E
[∥∥∥θ − θ̂

∥∥∥2
2

]

Answer?

θ̂ =


y1
...

yM

 ML
MVUE
efficient
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The James-Stein estimator (1956)

θ̂JS =

(
1− (M − 2)σ2

‖y‖22

)
y

its MSEs always better than LSs ones, for every θ ∈ RM

its MSEs tend to LSs ones when ‖θ‖2 is large
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Why?

θ̂JS =

(
1− (M − 2)σ2

‖y‖22

)
y

The Bias – Variance dilemma

E
[∥∥∥θ − θ̂

∥∥∥2
2

]
=
∥∥∥E [θ − θ̂

]∥∥∥2
2
+ E

[∥∥∥θ̂ − E
[
θ̂
]∥∥∥2

2

]

θ̂JS is a regularized estimator

Rule-of-thumb: more regularization ⇒
{

more bias
less variance
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Graphical intuition

θ̂1

θ̂2

θ̂3

θ̂4

θ̂5

θ̂if θ1=θ2=...=θ5

θ̂JS

usually outliers
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Some comments

θ̂JS =

(
1− (M − 2)σ2

‖y‖22

)
y

θ̂JS “learns” the mechanism generating the ym’s
(connections with Empirical Bayes)

improves the total MSE , not the MSEs of the single
components

very close to LS if ym’s very far apart
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Regularization helps: an example

0 0.2 0.4 0.6 0.8 1

0

5

10
true f (x)
LS
RLS
yi ’s

f (x) = θ1e−x + θ2e−2x + θ3e−3x θ =

 3
−4
9

 νi ∼ N (0, 9)

LS = arg min
θ∈R3

∑
i

(
yi−fθ(xi)

)2
RLS = arg min

θ∈R3

∑
i

(
yi−fθ(xi)

)2
+5
∥∥∥θ∥∥∥2

2
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Examples of regularization

Ridge regression (`2 norms)
LASSO (`1 norms)
Elastic network (combination of `1 and `2 norms)
. . .

regularization is most useful
when problems are ill-conditioned

here we focus on Ridge regression
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From parametric to nonparametric

previous aim: introduce regularization

next aim: introduce nonparametric regression
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Nonparametric approaches – motivations 1
true
LS

Key fact in previous example: H = span
{
e−x , e−2x , e−3x}

peculiarity of parametric approaches!

1

C0 H

plausibility of the hypotheses

10



Nonparametric approaches – motivations 1
true
LS

Key fact in previous example: H = span
{
e−x , e−2x , e−3x}

peculiarity of parametric approaches!

1

C0 H

plausibility of the hypotheses

10



Nonparametric approaches – motivations 2

1

C0 H

plausibility of the hypotheses

(some) drawbacks of parametric approaches
require high levels of prior knowledge
complex systems may lead to proliferation of parameters (high
variance!)
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Towards nonparametric approaches

From 1

C0 H

plausibility of the hypotheses

to 1

H

plausibility of the hypotheses

how should we define the novel plausibility?
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plausibility = regularity

1

H (not C0!)

plausibility of the hypotheses

f

?

concept of regularity depends on prior assumptions!

intuitive examples:

‖f ‖22 =
∫
X

f (x)2dx ‖f ‖2cub.sp. =
∫
X

f̈ (x)2dx
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Towards RKHSs

assumption: f ∈ H? and regularity of f := ‖f ‖?

question: what can ? be?
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RKHSs – the key ingredient

? = K K : X × X 7→ R K :


symmetric
continuous
positive definite

(X = domain of f )

Example: Gaussian Kernel K (x1, x2) = exp
(
− (x1−x2)2

2σ2
)

0 0.5 1

0
0.5

1
0

0.5

1

x1 x2

K
(x

1,
x 2
)
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RKHSs

K ↔ HK := span {K (x , ·) s.t. x ∈ X}

0 0.5 1

0
0.5

1
0

0.5

1
K

RKHSs = spaces of functions where the
evaluation functional is bounded and linear

Remarks:
HK ⊂ C0

f (·) =
∑

i
aiK (xi , ·) ⇒ ‖f ‖2K =

∑
i ,j

aiajK (xi , xj)
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Kernels are the goggles with which one sees the world

f (·) =
∑

i
aiK (xi , ·) ⇒ ‖f ‖2K =

∑
i ,j

aiajK (xi , xj)

same f , different K ’s, different ‖f ‖K ’s

linear
x1x2 + c

polynomial
(αx1x2 + c)d

Gaussian
exp

(
−γ(x1 − x2)2

)
Laplacian

exp (−γ(x1 − x2))
hyperbolic

tanh
(
(αx1x2 + c)d

) rational quadratic

1− |x1 − x2|2
|x1 − x2|2 + c

multiquadratic√
|x1 − x2|2 + c

inv. multiquadratic(√
|x1 − x2|2 + c

)−1 wave
θ

|x1 − x2|
sin
( |x1 − x2|

θ

)
...

...
...
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Examples of typical elements of HK

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

Gaussian Kernel: K (x1, x2) = exp
(
−γ|x1 − x2|2

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−2

0

2

Laplacian Kernel: K (x1, x2) = exp (−γ|x1 − x2|)
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Examples of different approximation capabilities

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2
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0.2

0.4

0.6

0.8

1

True function and a set of noisy data

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Cubic spline estimator

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Gaussian kernel−based estimator

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Stable spline estimator
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Example of regression with RKHSs

f ∗ = arg min
f ∈HK

∑
i

(
yi − Li [f ]

)2
+ γ ‖f ‖2K

tradeoff between fitting and regularity
– same as before!!

This case = Regularization Network

f ∗(·) =
∑

i
ciLi [K (·, ·)]


c1
...

cM

 =




L1[L1[K ]] · · · L1[LM [K ]]
...

...
LM [L1[K ]] · · · LM [LM [K ]]

+ γI


−1 

y1
...

yM


20
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An important example

hu y

yt = Lt [f ] = (u ∗ h)t

convolution is a linear functional
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important differences

Parametric: θ∗ = argmin
θ∈Θ

∑
i

(
yi − Li [fθ]

)2

Nonparametric: f ∗ = arg min
f ∈HK

∑
i

(
yi − Li [f ]

)2
+ γ ‖f ‖2K

22



System Identification as Nonparametric regression

1st requirement: select the most appropriate K (·, ·)

assumption: our system is LTI BIBO stable

Translating the available a-priori information

impulse response g ∈ L1, i.e.,
∫
R+
|g(x)| dx < +∞

Definition

K (·, ·) is said a stable kernel if HK ⊂ L1
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Characterization of the stable kernels (1)

Proposition∫
R+

∫
R+
|K (x1, x2)| dx1dx2 < +∞ ⇒ HK ⊂ L1

Proposition
If K (x1, x2) ≥ 0 for all x1, x2 ∈ R+ then

∫
R+

∫
R+
|K (x1, x2)| dx1dx2 < +∞ ⇔ HK ⊂ L1
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Characterization of the stable kernels (2)

Definition
Let q =

p
p − 1. K (·, ·) is said q-bounded if

K (x , ·) ∈ Lp for almost all x ∈ R+

f ∈ Lq ⇒ g(x) :=
∫
R+

K (x , a)f (a)da ∈ Lp

Proposition
K q-bounded ⇔ HK ⊂ Lp

thus

K ∞-bounded ⇔
∫
R+

∣∣∣∣∫
R+

K (x , a)f (a)da
∣∣∣∣ dx < +∞ ∀f ∈ L∞

⇔ HK ⊂ L1
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Nonparametric identification of LTIs

?u y

e

yt =
∞∑

i=1
fiut−i +

∞∑
i=1

giet−i , dataset = {ut}, {yt}

PEM approach:

ŷt|t−1 =
∞∑

i=1
hu

i ut−i +
∞∑

i=1
hy

i yt−i

SysId with Regularization Networks??

h∗ = arg min
h∈?

∑
t

(
yt − ŷt|t−1

)2
+ γ ‖h‖2?
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The Stable Splines Kernel

G. Pillonetto, G. De Nicolao (Automatica 2010)
A new kernel-based approach for linear system identification

cubic splines: W (s, t) =


s2
2

(
t − s

3

)
if s ≤ t

t2
2

(
s − t

3

)
if s > t

stable splines: K (x1, x2) = W
(
e−βx1 , e−βx2

)

Bayesian interpretation
Let f ∼ GP(0,K ). Then

P [f = imp. resp. of LTI BIBO stable system] = 1

27



Examples of typical elements of HK

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−2

0

2

Stable Splines Kernel
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how to actually perform the identification
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The model & the hyperparameters

A(z)y(t) = B(z)u(t) + C(z)e(t)

MISO ⇒ more than one impulse response!
i := impulse response index

hi ∼ GP
(
0, λ2i K (·, ·, ; β)

)

λ2i : “amplitude” of the i-th impulse response

β: decay ratio

30
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Estimation of the hyperparameters

Empirical Bayes in theory
1 assume existence of prior distribution with unknown

hyperparameters
2 compute the marginal likelihood
3 estimate the hyperparameters maximizing the marginal

likelihood

Empirical Bayes in practice (with some abuses of notation)
1 p (y |h ), p (h |λ) are known, λ unknown
2 exploiting p (y , h |λ) = p (y |h, λ) p (h |λ) compute

p (y |λ) =
∫

p (y , h |λ) p (h |λ) dh

3 λ∗ = argmaxλ p (y |λ)

31
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SSpline.m: a matlab toolbox
. . . even if not yet publicly available

[M,ip,Ak]=SSpline(y,U,p,l,mv,mb,cn,r,LP,LP2,ips)
M: estimated tf (idpoly object)
ip: estimated hyperparameters
Ak: AIC of the estimated tf
y: measured outputs
U: measured inputs
p: max. length of the to-be estimated impulse responses
l: type of tf to be estimated (ARMAX / ARX / etc.)
mv: one λ in common for all the hi ’s or not
mb: one β in common for all the hi ’s or not
cn: identify high frequencies components
r: number of data to be used for estimating the hyperparameters
LP: obtain sparse solutions
LP2: obtain approximated solutions
ips: start optimization from the assigned initial point 32



the routine returns an idpoly and has a
pre-fixed impulse responses max. length!

Question: at the end of the day, we obtain an object of the same
kind of classical PEM approaches. So, why should this be
better?

Answer: at the end of the day, because of the bias / variance
tradeoff

33
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Some comparisons

1000 MC runs, for each run:
ARMAX order ∈ {1, . . . , 30}
ARMAX model ∼ drmodel

no delays
inputs ∼ idinput

training set = 200 samples
test set = 1000 samples

34



And some conclusions

regularization usually has beneficial effects

nonparametric approaches are specially suited for complex
situations

regularization in nonparametric approaches can be seen as using
prior smoothness assumptions

regularization in nonparametric approaches leads to an extremely
efficient LTIs sysid technique
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Beamer and Tik Z licensed under the Creative Commons BY-NC-SA 2.5 Italy License:
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