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Main Objectives of this lectures

To provide the background on modeling stationary stochastic pro-
cesses with linear stochastic models as well as to introduce the main
issues which arise in their identification from measured data.
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OUTLINE
1. Motivation: Modeling and Identification

◦ Feedback Interconnections

◦ Main Ingredients: Data, Models and Criteria

2. Review of linear models of stationary processes

◦ General facts about stationary processes

◦ Spectral factorization and ARMA Models

3. Interconnected Stochastic Systems

◦ Modeling with Inputs

◦ Feedback Interconnections and Granger Causality

◦ Dynamic Networks

4. System Identification

◦ Data: trajectories from stationary and ergodic processes

◦ Models: Linear models (finitely parametrized?)

◦ Criteria: Prediction Error Methods and Model Complexity Selection
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Motivation: Modeling and Identification of
(interconnected) Stochastic Systems

+
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y(t)r(t) u(t)

v(t)
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?

Joint model for the “processes” y e u (we haven’t defined what the are, yet...)

1. The signals v e r are to be seen as “exogenous” (references, noises etc.)

2. Feedback may be intrinsic and does not necessarily correspond to “physical” control
loops..

3. This scheme can be more “complicated” resulting in a “network” of interconnections;
this interconnection has to be well posed and internally stable.
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Motivation: Modeling and Identification of
(interconnected) Stochastic Systems
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PROBLEMS:

1. Which kind of “stochastic processes” y e u (not defined, yet...) does
this model describe?

2. How do I get an estimate of F(z) and of the “statistical” properties of
the “disturbance” v from measured data {u(1),y(1), ...,u(T ),y(T )}?
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INGREDIENTS OF AN IDENTIFICATION
PROBLEM

◦ DATA: {u(1),y(1), ...,u(T ),y(T )}

◦ MODELS: linear/nonlinear, parametric/non parametric etc.

◦ CRITERIA: how do we choose a good model? how do we choose the
model class and its complexity (order for linear parametric models)?
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Essential ingredients #1: The Data

We need to introduce a probablistic description of the data. The data at our
disposal at some fixed time instant represent only partial evidence about
the behavior of the system as we do not know the future continuation of
the input and output time series. Yet,
all possible continuations of our present data must carry information about
the same physical phenomenon we are about to model, and hence the
possible continuations of the data cannot be “totally random” and must be
related to what we have observed so far. So, data must have a “memory”;
i.e. their own dynamics, and in order to discover models of systems, we
have to first understand models of uncertain signals.

Data will be modeled as stochastic processes in fact discrete-time stochas-
tic processes. Since the underlying phenomenon (system) that we want to
describe is assumed to be time invariant the stochastic processes which
model the observed data will be stationary. There are important excep-
tions where data need not be stationary but only are there some statistical
properties (e.g. some model parameters) which are stationary.
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In addition our data have to be “rich enough” to reveal the underlying statis-
tical properties. In practice ensemble properties (e.g. means, covariances
etc. ) are to be estimated from ONE sample trajectory:
this requires ERGODICITY.



Essential ingredients #2: The model class

In real systems, there are always many other variables besides the prese-
lected inputs and outputs which influence the time evolution of the system.
These variables represent the unavoidable interaction of the system with
its environment. For this reason, even in the presence of a true causal
relation between inputs and outputs there always are some unpredictable
fluctuations of the values taken by the measured output y(t) which are not
explainable in terms of past input (and/or output) history.

We cannot (and do not want to) take into account these variables explicitely
in the model as some of them may be inaccessible to measurement and in
any case this would lead to complicated models with too many variables.
We need to work with models of small complexity and treat the unpre-
dictable fluctuations in some simple aggregate manner.
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Models (however accurate) are always mathematical idealizations of na-
ture. No physical phenomenon, even if the experiments were conducted in
an ideal interactions-free environment can be described exactly by a set
of differential or difference equations and even more so if the equations
are a priori restricted to be linear, finite-dimensional and time-invariant. So
the observables, even in an ideal ”disturbance-free” situation cannot be
expected to obey exactly any linear time-invariant model.

A realistic formulation of the problem requires a satisfactory notion of non-
rigid, i.e. flexible or approximate, notion of mathematical model of the ob-
served data.
A model should be able to accept as legitimate, data sets (time series)
which may possibly differ slightly from each another.
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Imposing rigid ”exact” descriptions of the type F(u,y) = 0 to experimental
data has been criticized since the early beginnings of experimental sci-
ence. Particularly illuminating is Gauss’ general philosophical discussion
in Theoria motus corporum caelestium sect. III, p. 236.

Example: there has been a widespread belief in the early years of control
science that identification was merely a matter of solving (exactly) for h a
linear convolution equation

y(t) =
t∑
t0

h(t− τ)u(τ) (1)

or, equivalently, by matching exactly pointwise harmonic response data
with linear transfer function models. Results have always been extremely
sensitive even to small perturbations in the data.

New incoming data tend to change the model drastically, which means that
a model determined in this way has very poor predictive capabilities.
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The reason is that data obey exactly rigid relations of this kind “with proba-
bility zero”. If in addition the model class is restricted to be finite-dimensional,
which is what is necessary for control applications, imposing the integral
equation model (1) on real data normally leads to disastrous results. This
is by now very well-known and documented in the early literature. In the
language of numerical analysis, fitting rigid models to measured data in-
variably leads to very ill-conditioned problems.



We shall follow Gauss idea of describing data by a distribution function; i.e.
work in a probabilistic setting. Models will then be probabilistic objects.

Other alternatives are possible, say using deterministic model classes con-
sisting of a rigid “exact” model as a “nominal” object, plus an uncertainty
ball around it. In this case, besides a nominal model, the identification
procedure is required to provide at least bounds on the magnitude of the
relative “uncertainty region” around the nominal model.

Here one should provide a mathematical description of how the dynamic
uncertainty ball is distributed in the frequency domain, rather than, as more
traditionally done, in the parameter space, about the nominal identified
model.
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Essential ingredients #3: The Model Selection
Criterion

In these lectures we shall take the probabilistic point of view and model un-
certainty with the apparatus of probability theory. In this framework iden-
tification is essentially a problem of mathematical statistics. General
idea: minimize criteria based on a notion of distance between the data and
the model class.
Trivial example: Least squares fitting. Note that in Gauss’ work least
squares come out as a solution method for optimally fitting a certain class
of density functions to the observed data (maximum likelihood).
Nota Bene: the basic problem of identification is, much more than de-
signing algorithms which fit models to observed data ( the easy part), the
quantification of the uncertainty bounds or the description of the dynamic
errors which will be incurred when using the model with generic data. Any
sensible identification method should provide some mathematical descrip-
tion of how uncertainty is distributed in time or frequency about the nomi-
nal identified model. In this respect statistics and probability offer an ideal
framework. Describing a probability distribution is the same as modeling
uncertainty.
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A common critique

It has been argued that the abstract “urn model” of probability theory looks
inadequate to deal with situations like the one we have envisaged, where
there is just one experiment and there is really no sample space around
from which the results of the experiment could possibly have been drawn.
The critique has the merit of criticizing large sectors of the literature where
the statistical framework is often imposed dogmatically.
In our opinion however, the critique originates from a tendency to confuse
physical reality with mathematical modeling. In fact the urn model (i.e. the
underlying probability space) is just a mathematical device which is not re-
quired to have any physical interpretation and could in principle be used
to model things which, to be described deterministically, would require ex-
tremely complicated mathematical models with myriads of variables.
On the same grounds it could be questioned if there are in nature objects
like differential or difference equations.
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INGREDIENT #1: DATA

{u(1),y(1), ...,u(T ),y(T )} where u(t) will be called “input” and y(t) will be
called “output” are sample paths from (wide-sense) stationary and er-
godic stochastic processes u and y respectively.
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Wide-sense stationary random processes

y = {y(t,ω)} discrete-time m-dimensional random process t ∈ [t0,+∞).
Expected value: Ey(t) =

∫
Ω

y(t,ω)dP = µ(t)
can be subtracted off. All random quantities will be zero mean. Assume a
finite Covariance function:

Ey(t)y(s)> = Λ(t,s) , m×m matrix function .

This is the basic mathematical description of the process. A second or-
der process is the equivalence class of all stochastic process having (zero
mean and) the same covariance function. Contains a Gaussian represen-
tative. Second order processes can be described by Linear models.

y is a (wide sense) stationary process if its covariance function depends
on the difference t− s: Λ(t,s)≡ Λ(t− s).
We shall study stationary processes on the time line Z(t0 =−∞).
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Hilbert space setting for second order
processes

The closure in L2(Ω,P) of all finite linear combinations of the random vari-
ables yk(t),k = 1,2, . . . ,m, t ∈ Z, is a Hilbert space

H(y) := span{yk(t) ; k = 1,2, . . . ,m ; t ∈ Z} ≡ span{y(t) ; t ∈ Z}

with inner product 〈ξξξ ,ηηη〉= E{ξξξ η̄ηη}.
The shift operator U : H(y)→H(y) is the linear extension of

Uyk(t) := yk(t +1) , k = 1,2, . . . ,m, t ∈ Z.

U is Unitary (preserves inner product).

Notation: H−t (y) := span{yk(s) ; k = 1,2, . . . ,m ; s < t}
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Hilbert space for second order processes:
projections and orthogonality

Let A,B,C be a closed subspaces of H(y). Define the following symbols:

(◦): For ηηη ,ξξξ ∈H(y), we write ηηη ⊥ ξξξ ⇔ Eηηηξξξ = 0

(◦): A⊥ B if any element of A is orthogonal to any element of B.

(◦): For ηηη ∈H(y), η̂ηη := Ê [ηηη |A] is the orthogonal projection of ηηη onto A, i.e.
the unique element of A such that ηηη− η̂ηη ⊥ A

(◦): ηηη ⊥ ξξξ |A (conditional orthogonality) if ηηη− Ê [ηηη |A]⊥ (ξξξ − Ê [ξξξ |A])

(◦) B⊥C|A if, for any ηηη ∈ B, ξξξ ∈C, ηηη ⊥ ξξξ |A holds.

NOTA BENE: Ê [ηηη |A] is the conditional expectation in the Gaussian case.
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Hilbert space for second order processes:
linear prediction

Projection Theorem: the best (minimum variance) linear estimator η̂ηη of
ηηη ∈H(y) based in y(s), s < t, which has the form

η̂ηη :=
∞∑

k=1

h>k y(t− k)

is given by the orthogonal projection

η̂ηη = Ê [ηηη |H−t (y)]
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Purely non deterministic stationary random
processes

A stationary random process is purely non deterministic (p.n.d) if it can be
represented as the output of a causal `2-stable linear system driven by a
white noise

y(t) =
t∑

k=−∞

W (t− k)w(k)

{w(t)} p-dimensional white noise process of variance Ew(t)w(s)>=Ipδ (t− s).
The m× p impulse response W (t) is a causal function in `2: W (t) = 0 for
t < 0.
The Fourier transform has an analytic extension W (z) to {|z|> 1} in H2.
The representation is highly non unique. Input white noise is a latent vari-
able; special white input is the innovation process = one step prediction
error given the infinite past.
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FIRST ENCOUNTER WITH
INGREDIENT #2: MODELS

This is just one particular instance, we shall see more later on.
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Spectrum from shaping filters

Shaping filter representation

w(t) y(t)
W (z)- -

Wiener-Kintchine formula gives the spectral density matrix Φ(e jθ ) of
{y(t)}

Φ(e jθ ) =

+∞∑
k=−∞

e− jθτ
Λ(τ) =W (e jθ )W (e− jθ )> spectral factorization.

FACT: every shaping filter W (z) is a spectral factor of Φ(z).
The covariance function Λ(τ) of a p.n.d process admits Fourier transform.
Positivity: Φ(e jθ ) =W (e jθ )W (e− jθ )> ≥ 0 .
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Shaping filters and ARMA models

Assume W (z) is a rational matrix function. Since W (z) is stable i.e. ana-
lytic in {|z| > 1}, can be written as a ratio of polynomial matrices W (z) =
D(z)−1 N(z) with detD(z) 6= 0 in {|z|> 1};

D(z) = Izν +

ν∑
1

Ak zν−k N(z) = N0zν +

ν∑
1

Nk zν−k

{y(t)} may be described by a (multivariabile) ARMA model

y(t)+
ν∑
1

Ak y(t− k) = N0 w(t)+
ν∑
1

Nk w(t− k) .

There are many ARMA model representations !
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Shaping filters and ARMA models

In symbolic form we write

y(t) =W (z)w(t)

For the purpose of exposition let us consider the scalar case m = 1 (in this
course we shall only deal with scalar processes)

We shall be interested in one special ARMA model W−(z), together with its
driving noise e(t) such that both

y(t) =W−(z)e(t) e(t) =W−1
− (z)y(t)

can be interpreted as causal systems (of course for this to hold both W−
and W−1

− has to be BIBO stable).
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Shaping filters and ARMA models

What do we need?

W−(z) =
∑

ν
k=0 bkz−k

1+
∑

ν
k=1 akz−k =

∑
ν
k=0 bkzν−k

zν +
∑

ν
k=1 akzν−k

It is necessary and sufficient that

1. W−(z) is analytic outside the closed unit disc |z| ≥ 1, i.e. W−(z) is the
transfer function of a causal and BIBO stable linear system.

2. W−1
− (z) is analytic outside the closed unit disc |z| ≥ 1, i.e. W−1

− (z) is the
transfer function of a causal and BIBO stable linear system (caution
with zeros on the unit circle...)

i.e. W−(z) is causal and with causal inverse. This implies that y(t) is a
(stable) function of the past of e(t) and viceversa, so that

H−t (y) = H−t (e) (2)
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Prediction for ARMA models

PROBLEM: want to compute the linear one-step-ahead predictor of y(t)
given the past values y(s), s < t. By the Projection Theorem this is given
by:

ŷ(t|t−1) := Ê [y(t)|H−t (y)]

Theorem: ŷ(t|t−1) can be written as

ŷ(t|t−1) = (W−(z)−1)W−1
− (z)y(t)
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Proof : from y(t) = W−(z)e(t), defining {w−(k)}k∈Z+ := Z −1[W−(z)], and
observing that w−(0) = 1, we have that

y(t) = e(t)+
∞∑

k=1

w−(k)e(t− k)

Therefore, using (2) we have:

ŷ(t|t−1) := Ê [y(t)|H−t (y)] = Ê [y(t)|H−t (e)] =
∞∑

k=1

w−(k)e(t− k)

= [W−(z)−1]e(t) = [W−(z)−1]W−1
− (z)y(t)

HOMEWORK: use the argument above to compute y(t+k|t−1), k = 1,2, ....



Purely deterministic stationary random
processes

y is a purely deterministic (p.d) process if it has zero innovation. Can be
predicted exactly based on the infinite past.
Example (elementary)

y(t) =
ν∑

k=1

xk cosωkt + zk sinωkt , Ex2
k = Ez2

k = σ
2
k

all random variables {xk , zk ; k = 1,2, . . . ,ν} mutually uncorrelated.

H(y) := span{xk , zk ; k = 1,2, . . . ,ν}= H−t (y) = H+
t (y)

The spectral density does not exists. Formally is a sum of delta functions
(spectral lines).
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Wold decomposition

Theorem 1 (Wold decomposition) Every stationary process can be de-
composed uniquely as

y(t) = ypnd(t)+ypd(t) ,

where {ypnd(t)} is p.n.d., {ypd} is p.d. and {ypnd(t)} and {ypd} are uncor-
related, i.e. Eypnd(t)y>pd(s) = 0, ∀t,s ∈ Z, and subordinate to y, i.e.

H−t (ypnd)⊆H−t (y) H−t (ypd) = H−∞(ypd)⊆H−t (y)

The spectrum of y is the sum of an absolutely continuous part (spectral
density) plus a singular part (spectral lines + ..). If the logarithm of the
absolutely continuous part of the spectrum Φy(e jθ ) satisfies∫

π

0
logΦy(e jθ )dθ >−∞

then Φy(e jθ ) is also the spectrum of the p.n.d. component, i.e. Φy(e jθ ) =

Φypnd(e
jθ ).
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(WIDE-SENSE) ERGODICITY (I)

Consider the (time invariant) functions

ft(y) := y(t)y>(t− τ)

The (wide-sense) stationary process y is (wide-sense) ergodic if

lim
T→∞

1
T

T∑
1

ft(y)= lim
T→∞

1
T

T∑
1

y(t)y>(t−τ)= Ey(t)y>(t−τ)= E ft(y) w.p.1

(3)

NOTA BENE 1: Sufficient conditions for this to hold are not very simple.
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(WIDE-SENSE) ERGODICITY (II)

Consider the (time invariant) functions

ft(y) := y(t)y>(t− τ)

The stationary process y is (wide-sense) ergodic if

lim
T→∞

1
T

T∑
1

ft(y) = E ft(y) w.p.1

NOTA BENE 2: There is a more general definition of Ergodicity (strict
sense) which requires strict stationarity as an assumption and considers
general measurable functions f , which do not depend explicitly on time, of
the variables {y(τ) ,τ ∈ I}, I⊆ Z.
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ERGODICITY (III)

lim
T→∞

1
T

T∑
1

ft(y) = E ft(y) w.p.1

NOTA BENE 3: This is really a theorem (Birkhoff’s ergodic theorem). The
almost sure convergence is a consequence of the more general definition
of ergodicity which requires that the only invariant variables of the process
are deterministic constants.

30



DO STOCHASTIC SIGNALS EXIST?

Let y(t) be a “deterministic” signal which admits the limits

lim
N→∞

1
N

N∑
t=1

y(t) := 0

lim
N→∞

1
N

N∑
t=1

y(t + τ)y>(t) := r(τ) τ ∈ Z

(4)

If (4) holds we say the the deterministic signal y(t) is second order sta-
tionary.

It is a theorem (which goes back to Wiener 1930) that if such a limit exists,
r(τ) is a positive definite function, i.e.

Rn :=


r(0) r(1) . . . r(n−1)
r(1) r(0) r(1) . . . r(n−2)

... ...
r(n−1) r(n−2) . . . r(0)

 ≥ 0 ∀n
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DO STOCHASTIC SIGNALS EXIST? (II)

A positive (semi-)definite function r(τ) is called a bona-fide covariance
function.

m

One can think that y(t) is one sample trajectory of a stationary ergodic pro-
cess y which admits r(τ) as covariance function and by Herglotz theorem
there is a monotonically non-decreasing (on [−π,π]) function Fy(e jθ ), the
spectral distribution of y, such that:

r(τ) =
∫

π

−π

e jθτ dFu(e jθ ) .

If this spectral distribution is absolutely continuous then one recovers the
more classical representation

r(τ) =
∫

π

−π

e jθτ
Φy(e jθ )dθ .

where Φy(e jω) =
dFy(e jθ )

dθ
is the (power) spectral density.
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DYNAMICAL MODELS FOR SYSTEM
IDENTIFICATION

From now on:

1. • Output variables (symbol y): variables which are to be modeled

• eXogenous variables (symbol u) : variables we are not interested
in but which influence y

2. Data are sample trajectories of∗ second order stationary stochastic
processes, i.e. we consider the equivalence class of processes having
the same second order moments.

3. Additional assumptions may be needed to guarantee (wide sense) er-
godicity which become relevant to study the asymptotic properties.

∗This is not a limitation for the reasons discussed a few slides earlier.
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LINEAR DYNAMICAL MODELS
FOR SECOND ORDER PROCESSES

Second order statistics (mean, in general assumed to be zero, and covari-
ance function) can be described ONLY using linear models.

EXAMPLE: the Wold representation for p.n.d. processes is a linear model;
it is independent of the probability distribution.
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FEEDBACK MODELS, PREDICTION AND
CAUSALITY
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FEEDBACK MODELS AND PREDICTION

+
+

+
+

y(t)r(t) u(t)

v(t)

H(z) �

-j-F(z)-j-

6

?

How do we find a feedback model for the p.n.d. “processes” z := [y>,u>]>?

Can do prediction of z using the same procedure we used earlier for y:

ŷ(t|t−1) := Ê [y(t)|H−t (y),H−t (u)] = P11(z)y(t)+P12(z)u(t)
û(t|t−1) := Ê [u(t)|H−t+1(y),H

−
t (u)] = P21(z)y(t)+P22(z)u(t)

(5)

where Pi j(z) is analytic outside the (closed) unit disc and

P11(∞) = P12(∞) = P22(∞) = 0 (6)

Define now the innovations e(t) := y(t)− ŷ(t|t−1) and n(t) := u(t)− û(t|t−1) it is easy to

show that e and n are completely uncorrelated.
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Therefore:
y(t) = P11(z)y(t)+P12(z)u(t)+ e(t)
u(t) = P21(z)y(t)+P22(z)u(t)+n(t) (7)

so that

y(t) =
P12(z)

1−P11(z)
u(t)+ 1

1−P11(z)
e(t)

u(t) =
P21(z)

1−P22(z)
y(t)+ 1

1−P22(z)
n(t)

which yields the feedback scheme in the previous slide with

F(z) := P12(z)
1−P11(z)

v(t) := 1
1−P11(z)

e(t) = G(z)e(t)

H(z) := P21(z)
1−P22(z)

r(t) := 1
1−P22(z)

n(t) = K(z)n(t)
(8)

where the rightmost equations define G(z) and K(z).

Nota Bene: From (6) and (7) we have F(∞) = 0, G(∞) = I, K(∞) = I, G−1(z)
and G−1(z)F(z) stable



INTERNALLY STABLE FEEDBACK MODELS

From Wold’s representation of the joint process∗ z := (y>,u>)> we have
that

H−t (y,u) = H−t (e,n) (9)

where e,n is the joint innovation process. Note that equation (7) can be
rewritten as:[

1−P11(z) −P12(z)
−P21(z) 1−P22(z)

][
y(t)
u(t)

]
= [I−P(z)]

[
y(t)
u(t)

]
=

[
e(t)
n(t)

]
(10)

Theorem: Both (I−P(z)) and (I−P(z))−1 are proper and analytic in |z| ≥ 1

Proof : From (10) (I−P(z)) is the transfer function from z to its innovation
while (I − P(z))−1 constructs z from its innovation. From (9), there is a
causal relation between the past spaces H−t (y,u) and H−t (e,n); Therefore,
both (I−P(z)) and (I−P(z))−1 have to be causal and stable.
∗We assume z to be of full rank, see Rozanov, 1967 and, for simplicity, we assume also
Φz > cI (coercive).
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INTERNALLY STABLE FEEDBACK MODELS

Hence, the feedback interconnection

+
+

+
+

y(t)r(t) u(t)

v(t)

H(z) �

-j-F(z)-j-

6

?

with

• F(z), H(z) uniquely defined from P(z) as in (8)

• r, v completely uncorrelated

is internally stable.
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Conversely:

Theorem: If the joint process z is stationary and the model

y(t) = F(z)u(t)+v(t) = F(z)u(t)+G(z)e(t)
u(t) = H(z)y(t)+ r(t)

is given such that:

1. F(∞) = 0

2. e⊥ r and G(z)ΛeG>(1/z) = Φv(z), G(∞) = I

3. G−1(z)F(z) and G−1(z) are analytic in |z| ≥ 1

Then
y(t) = G−1(z)F(z)y(t)+(G(z)−1)G−1(z)u(t)+ e(t)

= ŷ(t|t−1)+ e(t)



Proof : Note that from joint stationarity of z(t) is follows that the transfer
function from (e,r) to z is analytic in |z| ≥ 1 so that H−t (y,u) ⊆ H−t (e,r).
Therefore e(t)⊥H−t (e,r)→ e(t)⊥H−t (y,u). In addition, using

e(t) = G−1(z)y(t)−G−1(z)F(z)u(t)

y(t) can be written in the form

y(t) = F(z)u(t)+(G(z)−1)e(t)+ e(t)
= F(z)u(t)+(G(z)−1)G−1(z)(y(t)−F(z)u(t))+ e(t)
= G−1(z)F(z)y(t)+(G(z)−1)G−1(z)u(t)+ e(t)

From the assumptions G−1(z)F(z)y(t)+(G(z)−1)G−1(z)u(t)∈H−t (y,u) and
the fact that e(t)⊥H−t (y,u) we obtain

ŷ(t|t−1) := Ê [y(t)|H−t (y,u)] = G−1(z)F(z)y(t)+(G(z)−1)G−1(z)u(t)
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FEEDBACK MODELS AND CAUSALITY

Problem: Understand when variables “influences each other”. In which
sense? is “plain correlation” the correct concept? NO!

DEFINITION: We say that y does not Granger-cause u (or also that there
is absence of feedback from y to u) if

û(t|t−1) = P12(z)y(t)+P22(z)u(t) = P22(z)u(t)

i.e. P12(z) = 0.
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FEEDBACK MODELS AND CAUSALITY

The following are equivalent conditions:

1. y does not Granger-cause u

2. H(z) = 0 in the internally stable feedback model

3. H+
t (u)⊥H−t (y)|H−t (u)

4. Ê [y(t)|H(u)] = Ê [y(t)|H−t (u)] = F(z)u(t), F(z) strictly causal and stable

5. e⊥ u
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FEEDBACK MODELS AND CAUSALITY

Can be extended to more general interconnections. Define

z>(t) := [z1(t)
>,z2(t)

>, ..,zk(t)
>]

and consider the predictor

ẑi(t|t−1) :=
∑

j

Hi j(z)z j(t)+ ei(t)

We say that z` does not Granger-cause zi if

ẑi(t|t−1) =
∑
j 6=`

Hi j(z)z j(t) Hi`(z) = 0 (11)

This is a “dynamic” version of static conditional orthogonality conditions.
Note that, in the static Gaussian case, these conditional orthogonality cor-
responds to zeros in the inverse covariance matrix, see the old paper by
A.P. Dempster, Biometrics, 1972, on the so-called covariance selection
problem.
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Note that causality conditions of the form (11) can be encoded in a graph-
ical way where nodes are time series z j and there is an arc from z j to zi if
Hi j(z) 6= 0.



SYSTEM IDENTIFICATION

INGREDIENTS OF THE PROBLEM

◦ DATA: {u(1),y(1), ...,u(T ),y(T )}

◦ MODELS: linear/nonlinear, parametric/non parametric etc.

◦ CRITERIA: how do we choose a good model? how do we choose the
model class and its complexity (order for linear parametric models)?
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SYSTEM IDENTIFICATION

INGREDIENTS OF THE PROBLEM
A CLASSICAL PERSPECTIVE

◦ DATA: {u(1),y(1), ...,u(T ),y(T )} =⇒ Trajectories from a stationary and
ergodic stochastic process

◦ MODELS: =⇒ Linear Parametric Models; We shall discuss linear non-
parametric models tomorrow (see Pillonetto/De Nicolao)

◦ CRITERIA: =⇒ Prediction Error Methods and order selection criteria
(AIC, BIC, MDL, GCV...)
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LINEAR PARAMETRIC MODELS

We shall consider linear parametric models (in innovation form) with the
structure

y(t) = Fθ (z)u(t)+Gθ (z)e(t) , θ ∈Θ⊂ Rp (†) (12)

Fθ (z) e Gθ (z) are rational functions of fixed order. We assume that the
parametrization is regular, i.e. continuous and differentiable as many times
as needed.

We shall be interested in the “direct chain” of the feedback interconnection
which represents the joint process z := (y>,u>)>. In general one might
have a collection of variables z>(t) := [z1(t)>,z2(t)>, ..,zk(t)>] and be inter-
ested in modeling one (say zi) as a function of the others, in the form

zi(t) =
∑
j 6=i

Fi j(z)z j(t)+Gi(z)ei(t)
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REMARKS:

1. Several well-known model classes are contained in (12) ARMAX, ARX,
OE, Box-Jenkins, ARIMA, Orthonormal Basis (Laguerre, Kautz) etc.,
see Ljung, Söderström, Box-Jenkins....

2. The assumption that the model order is fixed and known is an unre-
alistic assumption. In practice it has to be estimated from data using
well known order estimation criteria AIC, BIC, MDL, AICC, GCV. Prop-
erties of estimators which follows model selection (PMSE: Post Model
Selection Estimator) are not entirely trivial (see Leeb-Pötcher)



IDENTIFIABILITY ISSUES

Two important issues arise (NOT TOUCHED UPON IN THESE LECTURES)

1. A Priori Identifiability ⇐⇒ the parametrization θ → [Fθ ,Gθ ] is injective
(globally/locally), i.e.

[Fθ0(z),Gθ0(z)] = [Fθ2(z),Gθ2(z)] ∀z ∈ C⇔ θ1 = θ2 globally/locally

2. The “inputs” (or external excitations r and v in the “feedback” intercon-
nections) are rich enough so that, under condition 1 the predictor can
be uniquely determined, i.e.

E‖ŷθ1(t|t−1)− ŷθ2(t|t−1)‖2 = 0⇔ θ1 = θ2 globally/locally (13)

DEFINITION: Condition (13) is called Identifiability

Nota Bene: Condition 2 can be “strengthened” to an optimal experiment
design problem: how do I design the experiment so that certain properties
of the system are estimated with the least uncertainty?
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IDENTIFIABILITY ISSUES: HOMEWORK

Assume there is no feedback: prove that any p.n.d. input signal u is “suffi-
ciently exciting” so that a priori identifiability is necessary and sufficient for
identifiability
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PREDICTION ERROR METHODS (PEM)

Principle: given a (parametric??) model M(θ), θ ∈ Θ (e.g. specified
through Fθ and Gθ ), where the domain Θ may account for constraints of
various form (e.g. stability, positivity etc.) and given a sequence of input-
output data

yN := {y(t) ; t = 1,2, . . . ,N} , uN := {u(t) ; t = 1,2, . . . ,N}
do:

1. Compute the best (e.g. linear minimum variance) predictor ŷθ (t | t−1)
based on the given model M(θ) (note that ŷθ (t | t−1) is a deterministic
function of the data and of θ . We shall use the symbol ŷθ (t|t− 1) for
the same function of the random variables {y(s),u(s),s < t} rather than
of the sample values {y(s),u(s),s < t}.

2. Compute the prediction errors:

εθ (t) := y(t)− ŷθ (t) ; t = 1,2, . . . ,N
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which, similarly to the predictor, can be regarded as random quantities
and denoted with bold symbols: i.e. εεεθ (t).

For the parametric model class (12) the prediction error takes the form:

εεεθ (t) = y(t)− ŷ(t | t−1) = y(t)−Gθ (z)
−1 [Fθ (z)u(t)+(Gθ (z)−1)y(t)]

= Gθ (z)
−1 [y(t)−Fθ (z)u(t)] (14)

3. Minimize w.r.t. θ the mean squared prediction error which quantifies
how well the model is able to predict the next data point:

VN(θ) :=
1
N

N∑
t=1

εθ (t)
2

REMARK: sometimes weighted versions are considered which include for-
getting factors β (N, t),

VN(θ) :=
1
N

N∑
t=1

β (N, t)εθ (t)
2

β (t,N)> 0 (15)



to account for effect of transients (e.g. mishandling of initial conditions
and/or to time slowly time-varying parameters); also clipped and/or filtered
residuals are sometimes used to (i) reduce the effect of outliers and (ii)
focus on specific frequency bands of interests.

Bottom line, the minimum prediction error estimator θ̂N is obtained solving

θ̂N := Arg min
θ

VN(θ) (16)

WARNING: this turns out to be a non-linear, non-convex optimization
problem with local minima etc.

4. An estimator of the innovation variance λ 2 = var{e(t)}, is taken to be the
mean of the squared residuals , i.e.

λ̂
2
N := VN(θ̂N) (17)



WHY PREDICTION ERROR METHODS?

Based on “nice” statistical properties:

1. PEM estimator coincide (asymptotically in N) with the Maximum Likeli-
hood (ML) estimator for Gaussian innovations, as such it inherits nice
properties of ML:

2. Consistency: under some reasonable assumptions (if “true” model be-
long to model class)

θ̂N
P−→θo

otherwise converges to a point of “minimum distance” from the “true”
model in terms of Kullback-Leibler divergence (for Gaussian innova-
tions)
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3. Asymptotic normality (under some reasonable assumptions)
√

N(θ̂N−θo)
L→N (0,Σ)

i.e. the normalized error
√

N(θ̂N − θo) converges in law to a normal
random variables with zero mean (

√
N-consistency) and variance Σ

4. Asymptotic efficiency (for Gaussian innovations): the asymptotic vari-
ance Σ is equal, for Gaussian innovations, to the Cramèr-Rao lower
bound (theoretical lower bound on the minimum variance achievable
by any unbiased estimator of θo).



CAVEATS:

The properties above are

1. Asymptotic in the number of data

2. Hold when the model order/complexity (say n) is known

When the “true” model order no is replaced with and estimator n̂ (consis-
tent), θ̂N(n̂) is called a PMSE (post model selection estimator): these prop-
erties do not hold uniformly in the parameter space (see Leeb-Pötcher)
and have unbounded (normalize) maximal risk:

lim
N→∞

sup
θ

NE‖ŷθ (t|t−1)− ŷ
θ̂N(n̂)

(t|t−1)‖2 = ∞

NB: similar results hold for any unbounded loss function `(ŷθ (t|t − 1)−
ŷ

θ̂N(n̂)
(t|t−1)).
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MODEL ORDER SELECTION CRITERIA

Typically of the form (θ ∈ Rn)

CN(n) =−
2
N

logp
θ̂N(n)

(y)+
α(N)

N
n

which, in the Gaussian case reduces to

CN(n) = log

(
1
N

N∑
t=1

(
y(t)− ŷ

θ̂N(n)
(t|t−1)

)2
)
+

α(N)

N
n
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Possible choices:

1. AIC: α(N) = 2. It is obtained minimizing (and estimate of) the KL-
divergence between the model parametrized by θ and the “true” model.
It is, w.r.t. estimation of a “regression function”, min-max rate optimal
= “the (worst-case) risk of this estimator when predicting the output
converges at the same rate as that of an “optimal” estimator which
minimizes the worst case (min-max) risk” (see next slides). AIC over-
estimates the order with positive probability.

2. BIC/MDL: α(N) = log(N). It derives from a “Bayesian” viewpoint where
models are assigned a certain prior and the model class is estimated
by maximizing the marginal posterior of the model (i.e. once the “pa-
rameters” are averaged out), Schwartz, 1978. It is consistent, i.e.:

lim
N→∞

P[n̂ = no] = 1

FACT: no order estimator can be at the same time min-max rate optimal
and consistent (Yang, 2005)



RISK and OPTIMALITY

Let yθo(t) := ŷθo(t|t−1)+ eo(t) denotes the output process when the “true”
parameter is θo. Consider the risk (final prediction error), where expecta-
tion is taken w.r.t. the “innovation process”

FPE(θo,N, n̂) :=
1
N

N∑
t=1

E
(

yθo(t)− ŷ
θ̂N(n̂)

(t|t−1)
)2

The rule n̂ is called min-max rate optimal w.r.t the parameter set Θ if
supθo∈Θ FPE(θo,N, n̂) converges at the same rate as

inf
θ̂

sup
θo∈Θ

1
N

N∑
t=1

E
(
yθo(t)− ŷ

θ̂
(t|t−1)

)2

where θ̂ ranges through all measurable functions of the available data.
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MINIMIZING RISK (FPE)?

Definition: minimum Final Prediction Error

n̂FPE := arg min
n

F̂PE(θo,N,n)

is the estimator of the order which minimizes an unbiased estimator F̂PE
of FPE. This criterion is known as Final Prediction Error because it is
(an estimate of) the expected prediction error when the estimated model is
used to predict new data.

Theorem:

n̂FPE = arg min
n

N +n
N−n

σ̂
2
ML(n)

where

σ̂
2
ML(n) :=

1
N

N∑
t=1

(
y(t)− ŷ

θ̂N(n)
(t|t−1)

)2
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is the Maximum Likelihood (under Gaussian innovations) estimator of the
innovation variance σ2.

Proof : We provide the proof under the simplifying assumption that yθo(t) :=
φ>(t)θo+ eo(t). Let

θ̂N(n) :=

( N∑
t=1

φ(t)φ>(t)

)−1 N∑
t=1

φ(t)yθo(t)

be the least squares estimator and let θ̃N(n) := θo− θ̂N(n) be the error with
variance

E θ̃N(n)θ̃
>
N (n) = σ

2

( N∑
t=1

φ(t)φ>(t)

)−1



Then

FPE(θo,N,n) = 1
N
∑N

t=1 E
(
φ>(t)θ̃N(n)+ eo(t)

)2

= 1
NTr

[∑N
t=1 φ(t)φ>(t)E θ̃N(n)θ̃>N (n)

]
+σ2

= 1
NTr

[∑N
t=1 φ(t)φ>(t)σ2

(∑N
t=1 φ(t)φ>(t)

)−1
]
+σ2

= σ2(1+ n
N
)

An unbiased estimator of FPE(θo,N,n) is

F̂PE(θo,N,n) =
N

N−n

(
1+

n
N

)
σ̂

2
ML =

N +n
N−n

σ̂
2
ML(n)

This concludes the proof.

Proposition: AIC and FPE are asymptotically equivalent

Proof : Homework!
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