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Abstract

Population models are used to describe the dynamics of different subjects belonging to a population and play an important role in drug
pharmacokinetics. A nonparametric identification scheme is proposed in which both the average impulse response of the population and the
individual ones are modelled as Gaussian stochastic processes. Assuming that the average curve is an integrated Wiener process, it is shown
that its estimate is a cubic spline. An empirical Bayes algorithm for estimating both the average and the individual curves is worked out. The
model is tested on simulated data sets as well as on xenobiotics pharmacokinetic data.
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1. Introduction

An important problem in biomedicine is that of characteriz-
ing the average behaviour as well as the inter-individual vari-
ability of a population of subjects. As an example, the analysis
of population data is of primary importance in pharmacology,
where drug responses measured in multiple subjects are used
to obtain average and individual pharmacokinetic and pharma-
codynamic models.

When it is possible to collect a sufficient number of obser-
vations for each subject, model identification can be performed
separately for each individual. However, in many cases there are
technical, ethical and cost reasons that limit the number of sam-
ples that can be collected in each subject. Some examples are
given by toxicokinetic studies as well as pharmacological exper-
iments involving critical patients such as neonatal, pediatric or
intensive care unit ones. If the individual models cannot be iden-
tified separately, it is necessary to resort to so-called “population
methods” that provide the average and individual models from

* This paper was presented at the 16th IFAC World Congress, Prague,
Czech Republic, 2005. This paper was recommended for publication in revised
form by Associate Editor Kenko Uchida under the direction of Editor Ian
Petersen.

* Corresponding author. Tel.: +39 0382985484 fax: +39 0382 985373.

E-mail addresses: marta.neve@unipv.it (M. Neve),
giuseppe.denicolao @unipv.it (G. De Nicolao).

0005-1098/$ - see front matter © 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2006.12.024

the joint analysis of all the available data (Aarons, 1999; Beal
& Sheiner, 1982; Davidian & Giltinan, 1995; Guardabasso,
Munson, & Rodbard, 1988; Sheiner, 1994; Sheiner, Rosenberg,
& Marathe, 1977; Sheiner & Steimer, 2000; Vozeh et al., 1996;
Yuh et al., 1994).

In the drug development process, the use of population
approaches has been recommended by the Food and Drug
Administration, in order to obtain a reliable assessment of
intra- and inter-individual variabilities (Center for Drug Eval-
uation and Research, 1999). However, the use of such models
is not restricted to pharmacology but is being extended to data
analysis problems arising in several contexts ranging from
medical imaging (Bertoldo, Sparacino, & Cobelli, 2004) and
diagnosis of metabolic disorders (Vicini & Cobelli, 2001) to
genomics (Ferrazzi, Magni, & Bellazzi, 2003).

Population methods can be divided into three main branches:
parametric, semiparametric and nonparametric. In the para-
metric approach, a structural model is assumed, e.g. a com-
partmental one, and the model parameters are regarded as
random variables extracted from a distribution representative
of the given population (Beal & Sheiner, 1998; Jelliffe, Schu-
mitzky, Van Guilder, Wang, & Leary, 2001; Leary, Jelliffe,
Schumitzky, & Van Guilder, 2001; Wakefield & Bennett, 1996;
Wakefield, Smith, Racine-Poon, & Gelfand, 1994) (note that
the term “nonparametric” in the papers by Jelliffe et al. (2001)
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and Leary et al. (2001) refers to the estimation of the probability
distributions of the parameters of a grey-box model).

In other cases, for instance in the preliminary phases of a
study, a structural model is not available and semiparametric
or nonparametric techniques must be used. In the semipara-
metric approach, the response curves are modelled as regres-
sion splines (Fattinger & Verotta, 1995a, 1995b; Park, Verotta,
Blaschke, & Sheiner, 1997), so that the non-trivial problem of
deciding the number and the location of the spline knots arises.

Recently, in order to develop a completely nonparametric
approach, the individual curves have been modelled as discrete-
time stochastic processes (e.g. random walks), reformulating
the problem within the framework of Bayesian estimation
(Magni, Bellazzi, De Nicolao, Poggesi, & Rocchetti, 2002).
This kind of model has also been used for the analysis of
gene expression time series measured using DNA micro-arrays
(Ferrazzi et al., 2003). Since the sampling schedules are usu-
ally not uniformly spaced in time, it would be more convenient
to model the individual curves as continuous-time stochastic
processes. In this paper we develop such a continuous-time
population model. More precisely, assuming that the average
impulse response of the population is an integrated Wiener
process, it is shown that its Bayes estimate is a cubic spline.
Explicit formulas are worked out also for the estimates of the
individual responses. This estimation approach extends the
Gaussian processes methodology for the reconstruction of con-
tinuous functions given discrete and noisy samples (MacKay,
1998; Smola & Scholkopf, 2003; Williams, 1999) to the case
of population models. Remarkably, the overall estimator can
be interpreted as a kind of Regularization Network (Poggio &
Girosi, 1990) whose weights are the solution of a system of
linear equations.

In the last few years there has been a growing interest in
smoothing splines within the control community, especially for
what concerns their interpretation in an optimal control theo-
retic context (Egerstedt & Martin, 2001; Sun, Egerstedt, & Mar-
tin, 2000). In the present paper, conversely, smoothing splines
arise as the solution of an optimal mean-square estimation prob-
lem. The method is tested on simulated data sets as well as on
pharmacokinetic data related to xenobiotics administration in
human subjects.

2. Stochastic population model

Consider the problem of estimating a family of scalar real-
valued continuous-time functions z/ (¢), j=1,...,N, t>0,
on the basis of noisy samples taken at discrete instants. More
precisely, assume that the following measurements are available

W=dh+vl k=1...n M

where t,{ > 0 denotes the kth sampling instant (‘“knot”) for the
Jjth curve, and the measurement errors v,{ are mutually indepen-
dent and normally distributed with E [v,{ 1=0, Var[vkj 1= (a,{)z.
In an experimental setting, the jth curve z/ (¢) will be represen-

tative of the jth subject (e.g. an impulse response obtained as
a drug concentration profile in plasma after administration of a

unit bolus). Note that the number and location of the sampling

instants t,f may vary from subject to subject. Hereafter, each
individual curve will be decomposed as

@) =z0)+ 7 (1),

where z(z) is the “average curve” of the population and zZ(¢) is

the “individual shift” with respect to the average behaviour. For

ease of notation, the observations will be grouped as follows
| 1.2 2 N N 4T

Y= Yy YU Va1 Yy

Letting n =ny 4+ ny + - - - 4+ ny be the total number of obser-

vations, y is an n-dimensional column vector. In a similar way,

it is possible to define

= . =041 =1 =(+N =(+N \1T

Z:= [z(tl)...z(tnl) .2 )...z(tnN)] s

5 . =11 =11 =N N =N N \1T

z2:=[z(t)...2 () ...2°(#)...2 (tnN)] ,
. 1 1 2 2 N N 4T

V=[] .y, VT, 0y Y ]

Therefore, in vector notation, (1) can be rewritten as
y=2+2Z+v,
where v ~ N(0, L), I, := diag{(c}])*... (s}, )?}. £, > 0.

2.1. Average and individual curves

In the present paper, a stochastic approach is adopted: the
unknown functions are modelled as stochastic processes and
the aim is to compute their posterior distributions given the
observed data (note that the data are processed off-line, so
that there is no need for the estimator to satisfy causality con-
straints).

Assumption 1. The Gaussian stochastic processes 7(t) and
ZI(t), j=1,..., N, are independent of each other and of the
noise vector v.

In the following, R(t,7) := Cov[z(t), z2(1)] and R(z,7) :=
Cov[z/ (1), 7/ (1)], Vj,will denote the auto-covariance functions
of the average curve and the individual shifts, respectively.
Hereafter, it will be assumed that both R(z, 7) and ﬁ(t, T) are
positive definite operators. Recalling that Z/(¢) is a shift with
respect to the average response, it is reasonable to assume that
E[Z/(1)] =0, Vt, V). As for Z(t), by properly scaling the data,
it can be assumed without loss of generality that E[z(#)] = 0.

Remark 1. The nonparametric approach developed in the
present paper is not intended to be an alternative but rather
a complement to standard parametric population models cur-
rently used in pharmacokinetics. Nonparametric models may
be particularly useful when a reliable structural model is not
available. This may happen in the early stages of a study, in
which case nonparametric modelling may help evaluating the
exposure and also checking for misspecification of candidate
parametric models. When comparing nonparametric and para-
metric models, one should be aware that (with the exception of



1136 M. Neve et al. / Automatica 43 (2007) 1134—1144

linear-in-parameter models) the average curve is different from
the so-called typical curve, obtained by plugging the average
population parameters into the parametric model. Although the
typical curve may be preferred for its physiological insight, it
depends on the adopted model parametrization. To make an ex-
ample, referring to poles rather than to time constants would
yield different typical curves. Moreover, in absence of a para-
metric structural model, the average curve, which is uniquely
defined in all circumstances, can still be used to characterize
the average behaviour of the population. There are also some
caveats regarding the average curve. For instance, a multiexpo-
nential response may arise as the average of single exponential
responses. The average curve may also be misleading when
the population is a mixture of subpopulations, e.g. normal and
pathological subjects. To avoid these pitfalls one should never
trust average features without checking the population distri-
bution.

Since all the involved processes are jointly Gaussian, the pos-
terior distributions are Gaussian as well. The following results
provide the point estimates and the confidence intervals for the
average curve and the individual ones. In the next proposition
and thereafter, Var[y] will denote the covariance matrix of the
random vector y.

Proposition 1.

N nj . .
20 = EZMlyl=)_ Y R, 1)), )
j=lk=1
nj
2 () = El (0)lyl =2(0) + Y _ | R(t. 1)), (3)
k=1
c=xly, )
c:[c} cé...c,lZl ...C{V...c,ivN]T,
X, = Var[y] = Var[z] + Var[z] + X,,
Ral.t})y - Rt}
Var[i]:R: s
RN 1) RN 1))
Var[Z] = R := blockdiag{R', ..., RV},
R, t]) R, t,{j)
R/ :=
R(nj’ ) R’S(l‘,{j,l‘,{j)

Proof. According to a well-known formula for jointly Gaussian
random variables, see, e.g. Shiryaev (1996),

E[Z(0)ly] = E[Z(t)] + Cov[Z(1), y] Var[y] "' (y — E[y]).
Under the given assumptions, E[z(#)] =0, E[y] =0 and

Cov[z(t),y] = Cov[z(t),z + z + v] = Cov[z(?), Z]

=[R(t,1{)... R(t, )],

Concerning z(t), a completely analogous derivation yields
E[Z/ (1)]y] = Cov[Z/ (¢), y] Varly]y.

Observing that E[z/(¢)|y] = E[z(t)|]y] + E[Z/ (¢)|y] and that
E[z/ (t)|y,i] =0, Vi # j, Eq. (3) is obtained. Finally, the ex-
pressions for X, Var[z] and Var[z] follow directly from the
assumptions. [

Proposition 2.
Var[z()|y] =
=[R(1,1])...

Var[z/ (1)|y] =

R@t.1) — 7L} 'F",

R, 10)],

R(t,t) + R/ (t,1) — (t + f'j)z;l(f + )T,
F/ = Cov[Z/ (1), Z].

Proof. By a well-known formula (Shiryaev, 1996)

Var[Z(1)|y] = Cov([z(1), y] Var[y]~" Cov[Z (), y]".

Recalling that y=z+Z+ v and in view of the independency as-
sumptions, the expression for Var[z(¢)|y] immediately follows.
Analogous considerations hold for Var[z/ (¢)|y]. O

Var[z(t)] —

2.2. Regularization network interpretation

It is 1nterest1ng to note from (2) and (3) that the estimates
z(t) and 3/ (#) are obtained as linear combinations of the func-
tions R(z, tk) R(t tk) This is the typical structure that comes
out in the Bayesian estimation of Gaussian processes (Girosi,
Jones, & Poggio, 1995; Poggio & Girosi, 1990; Wahba, 1990;
Williams & Rasmussen, 1996). Remarkably, the same estimator
can also be obtained via Tychonov regularization theory (Girosi
et al., 1995; Poggio & Girosi, 1990). This explains why Poggio
and Girosi (1990) have introduced the term regularization net-
work (RN) to denote such estimators, pointing out their neural
network-like structure. Also the estimator of Proposition 1 can
be regarded as an RN, although of a special type. Having to
do with the identification of a population model, the number of
neurons is twice the number n of the data instead of n as in the
standard RN, see Fig. 1. A first set of n neurons receive ¢ as in-
put and have R(z, t,f ) as activation function. The estimate E(t)
of the average curve is obtained by linearly combining these
outputs through the weights c,{. A second set of n neurons,
having R(t, t,‘cl) as activation functions produce outputs that,
combined again through the weights c,i, yield the estimates of

the individual shifts 7/ (t). The weight vector ¢ is obtained as
the solution of a system of n linear equations, see (4). This is
an advantage with respect to other kinds of networks, such as
multi-layer perceptrons, in which the weights have to be com-
puted using iterative nonlinear optimization (MacKay, 1997).

3. Population splines and hyper-parameters estimation

For the results of the previous section to be of practical use it
is necessary to specify the statistics of the stochastic processes
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R(, i)

Fig. 1. Regularization network structure of the estimator.

Z(1), 2 (r). If frequently sampled observations were available,
their statistics could be identified by black-box parametric iden-
tification methods. On the other hand, population studies are
often characterized by the scarcity of samples per subject.
Therefore, it is necessary to introduce signal models that reflect
the available a-priori knowledge.

3.1. Modelling the average curve

If it is only known that a signal is “smooth”, it is a common
practice to model it as an integrated Wiener process as done
below.

Assumption 2.
x(1) = AX(t) + Bw(r),
2(1) = Cx(0),

_ 0 1 _ 0 N
A=|: ] B=H, C=11 o1,
0 0 1

where %(0) ~ N(0, Xo), and w(t) is a scalar continuous-time
white Gaussian noise, independent of x(0) and the measure-
ment error vector v, with E[w(t)w(t)] = 225(t — 7).

The model above can describe signals whose initial con-
ditions are deterministically known by setting X = 0. The
case of completely unknown initial conditions, corresponding
to )_(5 1_ 0, will be discussed in Section 4. The parameter 72
affects the regularity of the realizations (smaller values corre-
spond to smoother signals). The a-priori knowledge is seldom

sufficient to specify 22 so that it must be regarded as a “hyper-
parameter” that will have to be estimated from the data, see
Section 3.3. In Assumption 2, an unstable model with two poles
in the origin is postulated for the average curve. The advantage
of this particular model is that the associated Bayesian estima-

tor can reconstruct linear functions without bias (provided that
the initial state has infinite variance). In fact, the next result
shows that the Bayes estimate is a cubic spline.

Theorem 1. Under Assumption 2, Z(t) defined in Proposition
1 is a cubic spline with knots located in the sampling instants
{tl, 0, ...t

Proof. It is well known that X(¢) := Var[%(¢)] is the solution
of the differential Lyapunov equation

X(1) = AX(1) + X(1)AT + 7°BB”,
X(0) = Xo.

Moreover,

CX()eATDCT, 1<y,

r>T.

R(t,0)=1 . o
CeA=0X(7)CT,
In view of the definition of A, B, (_3, it follows that R(t, T), seen

as a function of ¢, is a piecewise cubic polynomial. In particular
if Xg = 0, the auto-covariance is

12 t
—(t—=), t<r,
- (--3)

‘52 T
Y
2 3

Note that R(z, 7) is continuous with all its derivatives every-
where but in ¢ = t where it is continuous up to the second
derivative. Recalling that z(¢) in (2) is a linear combination of

Rt,t)= )2

the functions R(z, t,f) (Proposition 1), the thesis immediately
follows. [J

In the literature, it is known that the conditional expectation
of an integrated Wiener process given discrete observations is a
cubic smoothing spline (Wahba, 1990). In some sense, Theorem
1 generalizes such a result to the analysis of a population of
signals so that it is natural to define E(t) a population smoothing
spline.

3.2. Modelling the individual curves

Concerning the model for the individual shifts 7/ (1), the
following assumption is in order.

Assumption 3. For j=1,..., N,
(1) =A%) + Bw/ (1),
7 (1) = Ci (),

5 a; 1 - 0 -
A=|: :|, B:|: ], C=1[1 0],
0 1

where a; <0, ay <0, and $(0) ~ N(0,Xy), and W’ (t) is a
scalar continuous-time white Gaussian noise (independent of
v, w(t) and W (1), i # j) with E[W()(z)] = i25(t — 7).
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The above model encompasses all Gaussian processes ob-
tained by passing a white Gaussian noise through a transfer
function with relative degree two, so that the continuity of the
process and its first derivative is guaranteed (this expresses
the prior knowledge that the sample paths are “smooth”). The
statlstlcs of z(t) will depend on the three parameters ai, ap, 72,
For /2 the same considerations as for 4> hold. The two poles
ay and ap provide two more degrees of freedom for shaping
the auto-covariance of Z/(r). A possible drawback may be the
difficulty in estimating two more hyper-parameters from the
data. In this respect, a simpler model describes also the indi-
vidual shifts as integrated Wiener processes (a1 =0, ay =0).
However, observe that the measurements can be rewritten as

yi =zt + vy,

where ﬁljc =)+ v,{ . In other words, as far as the estimation

of z(t) is concerned, 6,’( acts as measurement noise. If Z/(¢)
were an integrated Wiener process, its variance would tend
to infinity with 7, and the confidence intervals for z(z) would
diverge as t grows. A notable exception occurs when some a-
priori knowledge on the asymptotic value of the average curve
z(t) is available, in which case an integrated Wiener model for
the individual shifts can do as well (this is further discussed in
Section 5).

In view of Assumption 3, the calculation of Ié(t, T) is com-
pletely analogous to that of R(z, ) described in the proof of
Theorem 1. In the particular case a; = a» = a and Xo =0, the
auto-covariance is

ea(r—t) t262at B teZat B eZat —1
2a 2a? 4q3
zateZat _ e2ut 41
. +(t — et i . <1,
R(t,7) = “
ea(t—‘r) 1262‘” B TeZar B e2(1‘17 -1
2a 2a? 4a3
Date?dt — e2a7 4 ]
+(r — 1)et—D 1 , t>T.
a

3.3. Estimating the hyper-parameters

When one is faced with a Bayesian estimation problem in-
volving unknown hyper-parameters, a simple, yet effective, ap-
proach is to resort to the so-called empirical Bayes method
(MacKay, 1992). In the first step, a maximum likelihood (ML)
estimate of the hyper-parameters is computed. Then, the Bayes
estimate is calculated as if the hyper-parameters were determin-
istically known and equal to their ML estimates. In the problem
at hand, this leads to the following estimation algorithm, where
0= [;12, :12, ay, az] denotes the hyper-parameters vector.

Algorithm.

. Let Oy, = arg ming{In(det(E,)) + yT=; 'y},
2. Let [22, 72, a1, a2]T = O

and compute Z(t) and 3/ (1), j=1,...,
Proposition 1.

N according to

If also the individual shifts are modelled as integrated Wiener
processes, the only hyper-parameters will be 7% and /2. In the
present paper, it has been assumed that the measurement error
variances (a,]{)2 are known. If an error model is postulated, e.g.
a constant coefficient of variation one, its parameters may well
be regarded as hyper-parameters and estimated via likelihood
maximization, although more data will be needed to obtain
reliable estimates.

4. Completely unknown initial conditions

It is important to be able to estimate average curves whose
initial conditions in # =0 are Completely unknown. As already
mentioned, this would correspond to X;~ = 0. A practical ap-
proach is to let XO = ¢l where ¢ is a small enough scalar,
but this is far from being numerically robust. The rigorous ap-
proach calls for the derivation of specific formulas as done in
the following. Taking into account average curves whose initial
conditions have infinite variance is equivalent to considering a
population of the type

J)y=75) + 7 (1), 5)
@) = gL+ 2 (), (6)

where Z(¢) and Z/ (¢) have finite auto-covariances, ¢(¢) : R!
R'*M ig a deterministic vector function, and { ~ N (O, pZI),
p2 = oo. For instance, with reference to the integrated Wiener
process of Assumption 2, letting Xo = p°I, p*> = oo would yield
¢T(t) = [1 ¢]. In other words, handling completely unknown
initial conditions amounts to estimating additional parameters
with infinite prior variance. In the following, it will be assumed
that the measurements are as in (1) and that the n x M matrix

=[p(t]) ... ¢(th) ... ) ... PN )IT

is full column rank.

Proposition 3. For the model (5)—(6),

N nj

0 = EEOlI=Y Y ¢ Rt.1)) + ¢ (1),

j=1k=1

nj

20y = B 0yl =2 (1) + Y ¢ Rt 1)),
k=1

d= @M ') o™y,
c=M"'(y — ®d),
M:=R+R+3X,.

Proof. Mutatis mutandis, the proof is completely analogous to
that of Theorem 1.5.3 in Wahba (1990) and is therefore omitted.
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In the setofsamplinginstantst,f,j=1, o Nik=1,...,nj,
there may be repeated elements as more than one individual
curve can be measured at the same time. For the subsequent
derivations it is useful to introduce the “minimal set” (i.e. with-
out repetitions) of sampling instants {7;}, i =1, ..., n, where
Ti; 7 Tiy, Vi1 # i2, and 7; is such that there exist j and k such
that 7; = t,f . Moreover, let A be a matrix whose entries are ei-
ther O or 1 such that

N

NN = Al )T

1 1
[t ...t N e

iy S
The next two results provide the posterior variance, and hence
the confidence intervals, of the average and individual curves,
respectively.

Proposition 4. For the model (5)—(6),

Var[Z*(1)[y] = Ru () + Ro (1),

R,(t)=R(1,1) — TR™'FT,

R,(t) =LL,LT,

L, = FETR+Z)F+D

_ 0 0
J = |: :]:|,
0 R
F:=[® Al
L:=[¢"() iR7"],
r:=[R( 11)...R(®, 1),
R(t1,11) R(t1, T77)
R =
R(ti, 1) R(ti, Ti1)

Proof. First of all, observe that the positive definiteness of
the operator R(z, t) implies the invertibility of R. As for the
existence of )2,7, assume by contradiction that there exists x # 0
such that xT (FT(R + ZU)_IF +j)x =0. Let x be partitioned as
x=[¢Tz"T, ¢ € RM*! This implies R™'z=0 and ®¢+Az=0,
that is z =0 and ®f =0, { # 0, which contradicts the full-
rank assumption made on ®. In order to apply Lemma 1 (in
the Appendix), let z* := 7*(¢) and observe that

= (O +2(0),

y=Fi+e

e~N@©OX), Z,=R+X,
p=1" 2",
z:=[z(t)...2t)]".

Moreover,
I := Cov[z*, ij] = [¢" (1) Var[¢] Tl

|:Var[C] 0:|
V := Var[yq] = -,
0 R

v =[¢"0) PR =L

Recalling that p?> = 0o, it is easy to see that

L, =FT'F+vHl

Then,

Var[z*|ff] = Var[z*] — Cov[z*, ] Var[5] ™ Cov[z*, i]"
= ¢" (1) Varll1o(1) + R(t, ) =TV T
=R(t,1) — tR™'FT.

Finally, the thesis follows straightforwardly from the applica-
tion of Lemma 1. [

Note that the problem of evaluating the posterior variance
is similar to that considered in Wahba (1983). The approach
followed herein relies on the decomposition of the noiseless part
of the observations as the sum of a contribution ®¢ due to the
(infinite variance) initial conditions and another contribution Az
having finite variance. This expedient, together with Lemma 1,
helps obtaining a compact expression for the posterior variance.

Proposition 5. For the model (5)—(6),
Var[z/ (1)|y] = Ri (1) + R (1),

RI(t) = R,(t) + R(t, 1) — F/R™'FI7T
RIn)=Lig,Li",

E, = FLF+D7,

0 0
J = [ o 1] ,

0 R+R)~
F:=[® I],
L =[¢"() G+FHR+R)L
Proof. The invertibility of R follows from the positive defi-
niteness of the operator R(z, 7). As for the invertibility of X,
it can be proved in the same way as the invertibility of X,

demonstrated in the proof of Proposition 4. In order to apply
Lemma 1, let z* := z/(¢) and observe that

F=¢T O+ () + 7 (1),
y=Fn+v,

=" @+2""
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Moreover,

I := Cov[z*, ] = [¢ (t) Var[{] T+ F/],

Var[(] 0
V:=Var[n]=[ _ ]
0 R+ R

rv'!=rL/.

The rest of the proof is very similar to the proof of
Proposition 4. [

5. Examples

In this section the proposed identification scheme is applied
to two case studies, one simulated and the other experimental.

5.1. Simulated example: sparsely sampled data

In this example the proposed nonparametric identification
scheme is applied to a problem in which sampling is not uni-
form between subjects. In particular the number of samples
per subject ranges from 1 to 9. In such conditions it is clearly
impossible to estimate the average curve by averaging the in-
dividual curves estimated by standard identification methods.
Conversely, the nonparametric population approach not only
reconstructs the average curve but provides also estimates of
the individual ones.

The measurements y,ﬂ in the jth subject were obtained as

() = aj exp(—f;t),
y,{ =7/ (i) + v,{,
Var[v/] = (0127 (t)))2,

where (aj, f3;) are the parameters characterizing the jth sub-
ject. The population distribution of the individual parameters
is as follows

oj = exp(vi;),

Bj = exp(v2)),

vi=[vij v,1%,

v~ N(O ln(0.2)]T, diag{0.01, 0.0259}).

The typical curve z%P is obtained in correspondence with
the expected values of the parameter vector v: VP (r) = e 0%,
For this model, 500 replicate data sets of N = 7 individuals
each were generated. The set of possible sampling instants
was {t1,...,19} ={0,0.5,1,1.5,2,4,8, 12, 24}. In each data
set, subject #1 was fully sampled, #2 was sampled at time
points {t1, 13, t5, t6, t7, 13}, #3 at {11, ts, te, t3, fo}, #4
at{t;, 13, te, 13}, #5 at {ry, t4, tg}, #6 at {r3, t7} and #7 at
{ts} (30 samples in total). For illustrative purposes, in Fig. 2
the noisy measurements and the individual curves of one of
the 500 data sets are plotted. In this problem, in order to take
into account the prior information that all curves tend to zero,

1.4

o Noisy data
—— Concentration curves

1.2

1
0.8
0.6
0.4
0.2

0
0 5 10 15 20 25

Fig. 2. A simulated data set: noisy measurements and real individual curves.

Fig. 3. True (dashed) vs. estimated (solid) average curve with its 95%
confidence intervals and available data (open circles). The typical curve (thin
solid) is also plotted.

a transformation of the time coordinates was performed. More
precisely, 1"V =1/(1+1t/y) so that t =0 and oo correspond to
"% =1 and 0, respectively. Then, in the new time coordinates
it was assumedthat both the average and individual curves had
zero initial conditions (corresponding to zero terminal condi-
tions at 1 = o0), i.e. x(0) =0 and x(0) = 0. As the new time
range "V € [0, 1] is finite, the individual shifts were modelled
as integrated Wiener processes (since t"®" does not go to infin-
ity, the posterior variance of the average curve cannot diverge).
Another advantage of the time transformation has to do with its
ability to formalize the prior knowledge that the curves become
smoother as time increases. In fact, processes whose second
derivative is stationary in the new time coordinate correspond
to processes whose second derivative has decreasing variance
in the original time coordinate. The parameter y of the time
transformation was chosen so as to maximize the minimum
distance between each pair of transformed sampling instants,
yielding 7y = 3.00. In the estimation algorithm Var[v,i] was
approximated by 0.01(z (t,f ))2, i.e. by replacing the (unknown)
2 (t,g) with the predicted value. The hyper-parameters were
estimated via ML. The results of the identification for one of
the 500 data sets are given in Figs. 3-5, where the estimated
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Fig. 4. Individual curve #4: true (dashed) vs. estimated (solid) curve with its
95% confidence intervals and available data.

— - True individual curve
® Observed data of the individual curve |
— Estimated curve

... Confidence intervals

15 20 25

Fig. 5. Individual curve #6: true (dashed) vs. estimated (solid) curve with its
95% confidence intervals and available data.

average curve and two of the seven individual curves are
reported together with their confidence intervals. Both the
average and individual curves are estimated with reasonable
accuracy. Note the difference between the average and typical
curve of the population (Fig. 3). The accuracy of the individual
curves decreases together with the number of available data.
This phenomenon can be appreciated by looking at the boxplots
of the RMSEs reported in Fig. 6. The RMSE was computed as

1 19 . . 1/2
RMSE = (7 / @ () -2/ (r))2d1>
9 J0

for the individual curves, and analogously for the average
curve z(t).

5.2. Analysis of pharmacokinetic data

Finally, the proposed population model was tested on a data
set related to xenobiotics administration in 27 human subjects
(Rocchetti & Poggesi, 1997). In the experiment, 8 samples
were collected in each subject at {#1, 1, 13, 14, 15, t6, t7, 13} =
{0.5,1,1.5,2,4,8, 12, 24} hours after a bolus administratjon.

The data have a 10% coefficient of variation, i.e. Var[v,{] =

0.25 : 1

0.15
0.1

0.05

#1 #2 #3 #4 #5 #6 #7  typical

Fig. 6. RMSE of each individual curve and of the average curve computed
on 500 data sets.

120

100 |
80 HINA

60 HIZAN\

xenobiotics concentration

0 5 10 15 20 25

time (hours)

Fig. 7. Xenobiotics concentration data after a bolus in 27 human subjects:
average curve (bold) and individual curves.

(0.12(4 ))2. To illustrate the population variability, the 27 ex-
perimental concentration curves are reported in Fig. 7, together
with the average curve which, given the number of subjects, is
a reasonable estimate of the average curve. Starting from these
experimental data, different sampling schemes can be simu-
lated by choosing proper subsets of the data. In particular, we
adopted an example of a sparse sampling protocol: subject #2
is sampled at time points {tg, t7, 3}, #5 at {t2, 4, t3}, #7 is fully
sampled, #8 at {3, 5}, #13 at {r1, ro}, #17 at {t7}, #19 at {ts},
#20 at {14, 13}, #21 at {rs} and #23 at {#1, 13} (25 samples in
total). Also in this case study the times were transformed by
defining a new time axis 1"V = 1/(1 +¢/y) with y =3.00 (the
value of y coincides with that used for the simulated example
because the sampling schedule is the same). In this case, in the
new time coordinates all the curves (the average and the indi-
viduals) are equal to zero in "% = 1 (corresponds to ¢t = 0).
This was accommodated by inserting zero-variance null mea-
surements in t"*¥ = 1. The hyper-parameters were estimated
via ML (23, =102130, /2;; =23443). In Fig. 8, the estimated
average curve with its 95% confidence intervals is reported to-
gether with the data. The estimated average curve (Fig. 8) ap-
pears to be a satisfactory reconstruction, especially if it is taken
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80
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°.. ... Confidence intervals

xenobiotics concentration

0 5 10 15 20 25

Fig. 8. Estimated average curve (bold) with its 95% confidence intervals.
The adopted sparse sampling protocol uses only 25 data (circles) out of the
available 216.

80
R e Observed data
70 Fooo — Individual curve i
y N o Unobserved data
... Confidence intervals

xenobiotics concentration

0 5 10 15 20 25

Fig. 9. Estimated individual curve of subject #5 (bold) with its 95% confidence
intervals. For this individual curve only three data (full circles) were available.
In order to assess the quality of the reconstruction, the other five unobserved
data (open circles) are also plotted.

80
e Observed data

70 | — Individual curve b
o Unobserved data

60 r .... Confidence intervals |

xenobiotics concentration

0 5 10 15 20 25
Fig. 10. Estimated individual curve of subject #19 (bold) with its 95%
confidence intervals. For this individual curve only one datum (full circle)

was available. In order to assess the quality of the reconstruction, the other
seven unobserved data (open circles) are also plotted.

into account that it was obtained using only 25 observations. In
Figs. 9 and 10 the estimate of the individual curve of subjects
#5 and #19, respectively, are shown together with their confi-

dence intervals. For the other individuals, reasonable estimates
are obtained (data not shown).

6. Conclusions

A new nonparametric continuous-time model for the pop-
ulation analysis of multiple experiments has been proposed.
The average curve as well as the individual ones are modelled
as continuous-time Gaussian processes. If the statistics of the
processes are known, the posterior expectation given the data
(the Bayes estimate) is obtained as the output of an RN, i.e.
as the linear combination of auto-covariance functions centred
at the sampling knots. The network weights are computed by
solving a system of linear equations. Moreover, if the average
curve is modelled as an integrated Wiener process, its estimate
is a cubic spline. In general, the statistics of the processes are
not completely known and depend on some unknown hyper-
parameters. Therefore, an empirical Bayes scheme has been
proposed: first the hyper-parameters are estimated via ML and
subsequently their ML estimates are plugged into the RN. The
availability of effective nonparametric methods is of great in-
terest in the population pharmacokinetic field. Especially in
the early stages of a study, in absence of reliable parametric
models, nonparametric estimation may help both evaluating the
exposure, see (Magni et al., 2002) and checking for misspec-
ification of candidate parametric models. Before the present
paper, the only approach for identifying continuous-time pop-
ulation models without assuming a parametric model was the
semiparametric spline method discussed in Park et al. (1997).
Compared to that approach, the proposed method is strongly
grounded on a Bayesian paradigm and avoids the nonlinear op-
timization required to locate the spline knots. On the other hand,
some kinds of constraints, such as nonnegativity and negative
tail slope, may be more easily handled in the semiparametric
approach.

A first direction of future research will focus on the imple-
mentation of computationally efficient algorithms. In fact, the
proposed scheme requires the solution of a system of linear
equations and its computational complexity scales with the cube
of the number of observations. By exploiting the state—space
model it may be possible to work out algorithms based on
Kalman filtering whose complexity scales linearly with the
number of data, see, e.g. De Nicolao and Ferrari-Trecate
(2001), where the efficient computation of RNs is addressed.
The main advantage of a linear complexity algorithm would
manifest itself in the hyper-parameter estimation via iterative
likelihood maximization. A second topic that is being currently
investigated is the development of a truly Bayesian estimation
procedure in which the hyper-parameters and the curves are
estimated jointly using Markov Chain Monte Carlo algorithms
(Neve, De Nicolao, & Marchesi, 2005).
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Appendix A. Technical lemma

Consider the problem of estimating a scalar random variable
z* given noisy observations y = Fy + € where the vector # is
correlated with z* and ¢ is an independent noise term. In the
next lemma it is shown that the conditional variance Var[z*|y]
can be decomposed as the sum of two terms. The first one is
the conditional variance when # is perfectly known, whereas
the second term keeps into account the presence of the mea-
surements noise €. A graphical representation of the lemma
in terms of projections in the Hilbert space of jointly normal
random variables is provided in Fig. A.1. Lemma 1 in Wahba
(1983) is obtained as a particular case letting F =1.

Lemma 1. Assume that
y=Fy+e yeR",

€~ N(07 El))v El} > 0’

Z*
|: ] ~ N(0,X),
n
o2 T
= [ i| , X>0,
v
where z* is a scalar and ¢ is independent of [z*y"1T. Then,
Var[z*|y] = Var[z*[q] + Var[E[z" |n]|y],
Var[z*|g] = 02 —TV~'TT,
Var[E[[y]ly] =TV~ Var[yly]V~'T",

Var[gly] = (FTX'F 4+ v-H~1

Proof. The expression for Var[z*|y] is a straightforward con-
sequence of well-known properties of jointly Gaussian random
variables. As for the computation of Var[E[z*|y]|y], observe
that E[z*|g] = T'V~!y. Therefore,

Var[E[z*|q]ly] = TV~! Var[yly]lV~'TT.

On the other hand, in view of standard Bayesian estimation
formulas

Var[yly] = (FTZ,'F + v-H=L,

a*=Var [7'ly]
b*=Var [E[z'm] | y]
A=Var [z*lnj

ic

EE[z*m]

2 =E[z*y]

y

Fig. A.1. Graphical interpretation of Lemma 1 in terms of projections in the
Hilbert space of jointly normal random variables.

By applying the matrix inversion lemma, one has that
Var[y|y] =V — VFL(FVFT + £,)"'FV.
Finally,
Var[z*[y] 4 Var[E[z*|n]|y]
=g -1Tv T
+TV (V- VF'EVF' + ) 'FV)v-ITT
=¢2 —TF (FVFT + x,)"'FI?
= Var[z*] — Cov[z*, y]Var[y] ' Cov[z*, y]"
= Var[z"|y]
so proving the thesis. [
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