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Abstract: Intrigued by some recent results on impulse response estimation by kernel and nonparametric
techniques, we revisit the old problem of transfer function estimation from input-output measurements.
We formulate a classical regularization approach, focused on finite impulse response (FIR) models, and
find that regularization is necessary to cope with the high variance problem. This basic, regularized least
squares approach is then a focal point for interpreting other techniques, like Bayesian inference and
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1. INTRODUCTION

Estimation of the transfer function, or impulse response, of a
linear system is a problem that we feel that we have known
“everything about” for at least a quarter of a century, e.g.
Ljung [1985], based on well established theory and algorithms
in statistics and the system identification community. Never-
theless, papers on the problem are still appearing. A recent,
very inspiring, and thought provoking, contribution is Pillonetto
and Nicolao [2010a] (see also the follow-up, Pillonetto et al.
[2011]), which shows rather remarkable results based on Gaus-
sian processes and spline kernels. That has prompted the current
wish to revisit the transfer function estimation problem from
scratch.

Problem Formulation Consider a single-input—single-output
linear stable system

y(t) = Go(q)u(t) +v(r) (1)
Here g is the shift operator, qu(t) = u(z + 1), v(¢) is additive
noise, independent of the input u(¢), and the transfer function is

=Y &gt )
k=1

The coefficients gg form the impulse response of the system.
The corresponding frequency function is defined as

Z gk —iwk (3)

Given the input-output data ZN {u(®),y(t),t = 1,...,N}, the
goal is to find an estimate Gy(e’®) of Go(e'®) that is as good
as possible. A related goal is to assess and quantify the error in
the estimate.

The traditional way is to postulate a finite-dimensional param-
eterization
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G(q,9) “
in terms of O and then estimate 6 in some suitable way and
deliver the estimate Gy (¢/®) = G(¢'®, By). Many such parame-
terizations have been suggested and tested in the literature, e.g.
Ljung [1999]. A distinct difficulty is to determine the “size”
of the parameter vector 6 and to assess the error that stems
from Gy (e'®) being outside the set of functions that is covered
within the parameterization. Partly for that reason, alternative
approaches based on other ideas, like Gaussian process regres-
sion, and non-parametric descriptions of the function Gp(e'®)
(or the impulse response) have recently been suggested, e.g.
Pillonetto and Nicolao [2010a], Pillonetto et al. [2011]. Re-
lated methods for assessing the quality of Gy (e’®) have been
discussed in the 90’s and early 2000’s, Goodwin et al. [1992],
Gustafsson and Hjalmarsson [1995], Goodwin et al. [2002] in
connection with bias quantification.

The Question Revisited Suppose we are given a batch of
input-output data. We have no information about the data,
except that it is collected from a linear stable system with
additive noise. The task is to estimate, as well as possible, the
impulse response of the unknown system. The typical, standard
answer to this question is to apply a prediction error/maximum
likelihood (PEM/ML) method to various model structures (4)
and use model order/model selection techniques to pick the
best model order/structure, and finally compute the impulse
response for the model of best order/structure.

We shall revisit this question with an emphasis on high order
regularized FIR (finite impulse response) models, that are sim-
ple, safe and robust ways of building linear models, directly
focusing on the impulse response. This basic, regularized least
squares approach is then a focal point for interpreting other
techniques, like Bayesian inference and Gaussian process re-
gression.

2. A DATA-BANK OF TEST DATA

To test different techniques we generated a data-bank of 5000
systems and data sets. They should be representative of real-
life data sets, in that the underlying system is not of low order
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(but could allow good low order approximations) and should
correspond to different signal-to-noise ratios (SNR). We have
done as follows:

e A number of 30th order random SISO continuous-time
systems were generated using the command rss in MAT-
LAB.

e These continuous-time systems were sampled at 3 times
the bandwidth to yield the discrete-time systems using the
following commands in MATLAB
bw=bandwidth (m)

f = bwx3x2xpi

md=c2d (m, 1/£,’ zoh’)

where m is the continuous-time system and md is the
corresponding discrete-time system.

e These discrete-time systems were split into 2500 “fast”
systems S1 that have all their poles inside a circle with
radius 0.95 and 2500 slow” systems S2 which have at
least one pole outside the circle with radius 0.95 (but
inside the unit circle).

e The 5000 systems were simulated with an input which
was white Gaussian noise with unit variance, and output
additive white Gaussian noise with different variances:

- low SNR: SNR=1. The additive output noise has the
same variance as the noise-free output. The number
of data in these records is 375.

- high SNR: SNR=10. The additive output noise has a
variance which is a tenth of the variance of the noise-
free output. The number of data in these records is
500.

This gives four collections of data sets.

S1D1: Fast systems with high SNR.
S2D1: Slow systems with high SNR.
S1D2: Fast systems with low SNR.
S2D2: Slow systems with low SNR.

All these data sets are accessible from
http://www.rt.isy.liu.se/ tschen/research/

regul_fir/systems_tested/

To evaluate the various methods the estimates of the impulse
response coefficients g were compared to the true ones by the
measure

Ti |g2—gk|2] PN el
W=10(1—- |=—F—— =- 5
where n is the order of an FIR model and its definition will
become clear shortly. The W in (5) corresponds to the “fit” in
the compare command in the System Identification Toolbox,
Ljung [2007]. Note that W = 100 means a perfect fit between
the true impulse response and the corresponding estimate for
the first n coefficients. Each data set gives rise to a particular
value of W, and in the tables below we give the average of W
over all the sets in a certain collection.

3. A CLASSICAL PERSPECTIVE

In the classical perspective Gy(e'®) is unknown and estimated
from the data. The estimate is a random variable (due to the
noise v(¢)) and the quality can be assessed by the “distance”
between the estimate and the true value.

A reasonable measure is the mean square error (MSE)
My() = E|Gy(¢'”) — Go(e'®) (©)

Here, the expectation E is with respect to the output noise
process v(z). Now, the MSE My (®) is classically split into a
bias part

By (@) = EGy(e®) — Go(e'®) (7
and a variance part
VN((D) =E|GN(eiw)—EGN(eiw)|2 (8)
so that
My(0) = Vy(0) + By () ©)

3.1 Trading Variance for Bias to Minimize the MSE

In the expression for the MSE My (), the bias term By (@) de-
creases and the variance term Vy (@) increases, when the model
becomes more flexible (contains more essential parameters).
The MSE My (®) is then often minimized for a model flexibility
that does not give zero bias. In other words, a pragmatic choice
of model flexibility allows some bias to reduce variance so that
the MSE My (®) is minimized.

3.2 OE-models

We will not be concerned with noise models in this contribu-
tion, so a natural numerator/denominator model is

B(q,6)
G(q,0) =
0= Fg.0)
The PEM/ML approach to the estimation of (10) would be

N
91€E = argmein Z Iy(t) — G(q, 9)u(t)|2
t=1

(10)

)

The estimation involves search for the solution of the non-
convex problem (11), which may lead to local minima and
possibly ill-conditioned calculations. An alternative is to fix the
denominator F(gq,0) to 1 (or any fixed, stable, polynomial) so
that a linear regression problem is obtained.

3.3 FIR-models

The simplest approach to estimate G(g, ) is to truncate the ex-
pansion (2) at a finite number of impulse response coefficients
(“FIR” model, corresponding to fixing F'(g,0) = 1 in (10))

n
Gg.0)=Y ag*, O=[a1g .. .8l (12
k=1

where n is the order of the FIR model. The vector 8 is then
easily estimated by the least squares method. Write the model
as

(1) = 9" ()8 +v(1), (1) = [ult—1) ... u(t—n)]’

(13a)
or Yy =®1 60+ Ay (13b)
where Yy =[y(n+1) y(n+2) ... y(N)]T (13¢)
Dy =[p(n+1) ¢(n+2) ... p(N)] (13d)
Ay =[v(n+1) v(n+2) ... v(N)]" (13¢)
The least-squares solution is well known:
6% = o & ... 4&5)" = argminvy(6) (14a)
N
2
w(8) =ty —®y6[> = Y. (6)—"(1)6)"  (14b)
t=n+1
05 = (o DY) ' OyYy =Ry Fy (14¢)
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N
Fy=®yYy= Y o()y)

(14d)
t=n+1
N
Ry=oy®5 =Y oo (14e)
t=n+1
Since u(—n+1),...,u(0) are not known, the summation in

(14b) starts at n+ 1 to allow @(¢) to be formed. This is known
as the 'non-windowed’ case. As can be seen from (13c), this
means that the first n outputs, y(1), y(2),...,y(n) in the data set
ZN = {u(t),y(t),t = 1,...,N} are not used.

How good is the resulting FIR model? Let us assume that
Ev(t) =0, Ev(t)v(s) = 628 (15)
The input u(¢) (and thus @(t)) is seen as a deterministic vari-

able, and for the conceptual analysis here, for simplicity we
will assume that there exists ¢ > 0 such that

1
—Ry — ul, as N— oo (16)

N
This will hold w.p. 1 if u(r) is chosen as white noise with
variance U but may be true under many other choices of
input (PRBS, certain multi-sine input etc). This means that for
reasonably large N,

1
NRN ~ ul, (17)
Then it is immediate to show that
A T
EOF =6)=[¢) &3 ... &'] (18)
2
A N _ o
E(65 —60)(0F° —680)" = Ry ~ WI,, (19)

which gives the bias, variance, and MSE, corresponding to (7)
to (9), as follows

By(w)= Y gl (20a)
k=n+1
2
no
V(o) ~ —— 20b
v (®) Npi (20b)
o2 d ?
n .
My(0) ~ -+ Y ghei* (20¢)
B s

3.4 Regularization

Still, we see that the variance increases linearly with the FIR

model order n so for higher order FIR models it is important

to counteract the increasing variance by regularization. This is

an example of pragmatic bias-variance trade-off, c.f. Section

3.1. Regularization means that we replace the criterion vy(0)

in (14) by

N 2
w(8.D)= ) (v(1)-¢"(1)6) +6"Db
t=n+1

where D is a positive semi-definite n X n matrix. That changes

the estimate to be

08 = (a8 &% ... &%]" = (Ry+D)'Fy = (Ry+D) 'R0}’
(21b)

How to select D? We have (all expectations are with respect to

V(1))

MSE(65) = (Ry+ D)~ (6°Ry + D606 D" )(Ry +D) '

(22a)

where MSE () is the MSE matrix of 8 with respect to the
true impulse response coefficients vector 6y in (18).

(21a)

Suppose that D is diagonal and D = diag(d,,d>,...,d,), and
(17) is used for Ry. The (k,k)th element of MSE (%) satisfies

5 O + a3 ()
MIEED = TN

which is minimized with respect to di by dy = 62/(g?)>.
Therefore this gives a clue how to choose the regularization
matrix D: If the system is stable, then there exist positive
real numbers ¢, A such that the diagonal of D should increase
exponentially:

(23)

62

de= "7 (24)

Remark 1. Note that the FIR model (12) can be seen as a
special case of regularization: If we choose the diagonal reg-
ularization D = diag(d),d,,...,dy) with m > n and

if <
dk:{O if k<nm

if k>n
it is the same as using an FIR model (12).

k=1,...,n

(25)

Remark 2. Regularization as in (2la) is often used in a
Tikhonov sense, Tikhonov and Arsenin [1977], where the ob-
jective is to make an ill-conditioned problem have better numer-
ical properties. Here, however, the main aspect of regularization
is to better deal with the bias-variance trade-off (9).

3.5 Using a Base-line Model

If the impulse response is decaying slowly, a high order FIR
model will be required to capture that. It may then be beneficial
to incorporate a “base-line model” that can take care of a
dominating part of the impulse response. For example, an
additive based-line model can be like

G(q,m,6) = Gy(q,n) +Gr(q,0)

n
with  Gi(q,0) =Y gwg™*
k=1

(262)

(26b)

Here G;(g,1m) is the base-line model and 7 is the associated
parameter vector and G,(q, 0) is a high order FIR model and 6
is as defined in (12).

3.6 Cross-validation

Using the classical methods mentioned in Sections 3.2 to 3.4
for optimal MSE means that we must know certain variables
(say B), like the best OE model order, the best FIR model
order, or the optimal regularization parameters ¢, A in (24).
The necessary information to compute these are typically not
known, which in the classical perspective typically is handled
by cross-validation:

1) Split the data record into two parts of the same length: an
estimation data part and a validation data part.

2) Estimate models G(q,Qy) using the estimation data for
different values of 3.

3) Form the error between the measured and the model
outputs for these models using the validation data:

&(t,B) = y(t) = G(g, On)u(t)
W(B) =Y let.B)I?
and pick the value of § that minimizes W (f3). The model

can then be re-estimated for this 8 using the whole data
record.

27
(28)
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3.7 Regularization as Model Merging

A standard way in statistics is to combine two parameter
estimates 0; and 0, with covariance matrices P; and P, to an
estimate

0= '+ (Ple+P6) (29)
That estimate has the smallest variance if the two original ones
are unbiased. In that perspective the regularized estimate (21b)
can be seen as the combination of the un-regularized estimate
655 and an estimate § = [0 0 ... O]T with variance D!,

3.8 Numerical lllustration

Let us try these methods on our data bank of data sets as shown
in Section 2.

Example 1. (Fixed order OE models). We estimate models (10)
of different orders n (same order for B(g,0) and F(g,0)) using
the command m=oe (data, [n,n, 1]) inthe System Identi-
fication Toolbox, Ljung [2007], and compute the average fit (5)
for all the models.

The results are shown in the table below. It also contains the fits
when the order n for each data set has been chosen by cross-
validation (CV) testing orders 5:5:40.

n=5 n=15 n=25 0n=35 0n=40 CV
SID1I 863 864 74.2 54.9 426 894
S2D1 687  71.7 63.1 49.3 42.0 732
SID2 719  56.1 34.5 10.2 -1.7 70.8
S2D2  50.8 423 20.4 2.1 -8.5 49.6

Example 2. (Fixed order FIR models). We estimate models (12)
of different orders n using the least squares method (14) and

compute the average fit (5) for all the models. For fair compar-

isons we use in all cases the maximum start value of n = 125 in

(14b).

The results are shown in the table below. It also contains the
fits when the order for each data set has been chosen by cross-
validation (CV) testing orders 5:10:125.

n=5 n=35 n=65 n=95 n=125 CvV
SID1 32.2 83.1 85.8 81.7 76.9 86.1
S2D1 -0.7 47.1 60.0 64.0 65.3 67.4
S1D2 30.8 61.4 46.0 25.9 -0.1 59.6
S2D2 -1.8 30.5 24.2 8.0 -18.2 30.5

Example 3. (FIR-models of order 125 with regularization). We
estimate models (12) of order 125 using the regularization
method (21) with diagonal D for different values of ¢ and A
in (24), and compute the average fit (5) for all the models.
Throughout the simulations in this paper, the variance ¢ is
estimated from the sample variance of the estimated FIR model
(12) of order 125 using the least squares method.

The results are shown in the table below. It also contains the
fits when ¢ and A for each data set has been chosen by cross-
validation (CV) testing the grid of 9 values, ¢ = 1,5,9 and
A =0.5,0.9,0.95.

c=1 c=1 c=1 c=9 c=9

A=05 A =09 A =0.95 A=05 A =0.95 cv
SID1 51.0 84.8 79.2 58.2 71.5 84.8
S2D1 18.4 67.8 66.8 24.5 65.6 67.1
S1D2 37.4 54.9 36.3 44.7 17.1 55.6
S2D2 6.4 29.5 8.6 12.7 -71.5 23.3

Example 4. (As Example 3 but with base-line model (26)). We
estimate models (26) where an additive second order base-
line model Gp(gq,n) is first identified using the command
m=oe (data, [2,2,1]), then an FIR model (12) of order
125 is estimated using the regularization method as in Example
3.

c=1 c=1 c=1 c=9 c=9
A=05  a-09 A=095 i=05 a=095 Y
S1D1 74.8 85.4 79.3 78.0 71.5 86.7
S2D1 56.5 722 69.6 58.7 68.4 74.1
S1D2 62.2 575 37.4 64.3 17.1 66.4
S2D2 422 32.6 9.8 427 -6.4 45.8
Findings: The “standard” approach (Example 1), works rea-

sonably well. Note that in the simulated data, the “true” order
is 30, but this is normally not the best order choice for the OF
models. The experiments in Example 2 also show that although
the true impulse response is infinite, it is normally not the best
choice to use maximum FIR model order. The high variance for
such models overrides the low bias. Choosing the FIR model
order by cross-validation gives a fit between 30 — 85 %. Using
FIR models of order 125 and regularization (21) with diagonal
D in (24) (Example 3) does not always improve the fit for all
the c, A tests, and the good affect is largely dependent on their
values, so they should be chosen with care. The cross-validation
choice of ¢, A over the 9 point-grid gives a fit of about the same
size as cross-validation over orders. Adding a second order
base-line model, (Example 4), is beneficial, mostly so for the
slow systems.

4. A BAYESIAN PERSPECTIVE

In the Bayesian view, the parameter to be estimated is itself a
random variable, and we seek the posterior distribution of this
parameter, given the observations.

In the current setup, we regard the parameter of the nth order
FIR model (12), i.e., the impulse response coefficients vector
0 as a random variable, say of Gaussian distribution with zero
mean and covariance matrix P,:

0~ ¥ (07.P), 67 =0 (30)
If the input u(¢) (and @(¢), see (13a)) is known and the noise
v(t) is independent Gaussian distributed with

v(t) ~ 4 (0,0) 3
then with

Yy =dy6 + Ay 32)
Yy and 6 will be jointly Gaussian variables:

0 0 P, PPy
[YN} ~ N ([0] : [cp,TVPn @,TvpnquJrole_nD 33)

The posterior distribution of 8 given Yy is

0| Yy ~ N (BEPo PLroy (34a)
0" = P, ®N (PN PPN + 0P Iy_) 'Yy (34b)
P]’\l’P()s[ = Pn - an)N(q)IZ;/PnCI)N + O-ZIan)_ch[]VtP" (34C)

We notice that this a posteriori estimate 87" is the same as the

regularized estimate éﬁ if the regularization matrix D is chosen
as

D=o’p! (35)
This is just a restatement of the well-known fact that regular-
ization is closely related to prior estimates.
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So this gives an insight into how to choose the regularization
matrix: Let it reflect the size and correlations of the impulse
response coefficients. For the size, it is entirely in line with
the choice of diagonal elements (24). If the impulse response
is smooth (for example a fast sampled continuous system) it is
also natural to let P, reflect that, by letting the diagonals close
to the main diagonal show high correlation. A simple choice is
to let the correlation coefficient between g and g; in (12) be
p/k=il. With diagonal elements of P, being cA* as in (24) we
then get a covariance matrix P, whose (k, j)th element is

cpl=ilpkti)/2 (36)

where ¢,A > 0 and |p| < 1. The estimates that we come up with
are thus the same as in the classical, regularized estimate (21b),
but the Bayesian perspective has given additional insights into
the choice of D.

4.1 Estimating Hyper-parameters

The Bayesian perspective gives one more insight: Suppose that
prior knowledge does not give a definite choice of P,, but it is
natural to let it depend on unknown hyper-parameters f3, P, (3)
(like B = [c A] in (24)). From (33) we see that

Yy ~ A (0,07 Iy + PYP.(B) D) (372)
so with a classical twist in this Bayesian framework we can

form the likelihood function of the observation Yy given 8, and
estimate 8 by the maximum likelihood (ML) method:

p= argrr;}inYA;Z(ﬁ)*lYN+logdet2([3) (37b)
where £(B) = 62Iy_, + ®yP,(B)®L. This method of estimat-
ing hyper-parameters in the prior distribution is known as the
empirical Bayes methods.

The noise variance ¢ used in (37b) and (35) can of course be
included among the hyper-parameters, but in the simulations in
this paper we used the way as mentioned in Remark 3.

4.2 Numerical Illustration

Let us test, on the data bank of data sets as shown in Section
2, the Bayesian method (34) and (37) with the following prior
covariances: the diagonal (24) and the correlation (36)

, Ak ifk=j . ,
Ppy(k,j) = { 0 else J ("Diagonal’)

Ppc(k,j) = cp‘k*jUL(kﬂ)/2 ("Diagonal/correlated’) (38b)
where the hyper-parameters are ¢c,A > 0 and |p| < 1. We also
test a related prior of (38b) by linking p = VA

Pre(k, j) = emin(A7,A%)  (‘Tuned/correlated’)  (38c)

Example 5. (Testing ML estimation of hyper-parameters). We
first estimate models (12) of order 125 using the Bayesian
method (34) and (37) with the prior covariances (38). Then
we estimate models (26) where an additive second order base-
line model Gy(g,m) is first identified using the command
m=oe (data, [2,2,1]), then an FIR model (12) of order
125 is estimated using the Bayesian method (34) and (37) again.

(38a)

The average fit (5) is calculated and the simulation results
are shown in table below, where an “e” is appended to the
regularization matrix name if a base-line model is used.

DI DC TC Dle DCe TCe
S1ID1  86.7 90.8 903 889 912 911
S2D1 686 780 778 756 816 8l.6
SID2 618 727 724 689 740 741
S2D2 332 60.7 60.8 506 622 61.8

Findings: We see that estimating the hyper-parameters for
DI and Dle give about the same fit as the CV in Examples 3
and 4. The ML estimates of the hyper-parameters are slightly
better though, perhaps since the search is over a continuum
of ¢,A and not just the 9-point grid, used for CV. It is also
clear that allowing and estimating correlation between the
impulse response coefficients with DC, and TC gives a clear
improvement. It should be noted that the criterion (37b) is not
convex, So it requires some care to initialize the search and
search for the minimum. This can be illustrated by the fact that
TC actually behaves better than DC in some cases, although it
is a special case of DC, but with fewer parameters. In all the
tests, we initialize ¢ = exp(5), p = 0.5. Since the optimization
problem (37b) is sensitive to the initial value of A, we solved
(37b) twice with two initial values of A, 1 and 0.5, respectively.
The hyper-parameter estimate that gave a larger likelihood
p(Yn|B) was chosen as the ultimate hyper-parameter estimate.

5. GAUSSIAN PROCESS REGRESSION TO THE
TRANSFER FUNCTION ESTIMATION

Gaussian process regression (GPR) has become a widely
spread and very popular method for inference in machine learn-
ing, see, e.g. Rasmussen and Williams [2006]. In short, it is
about inferring an unknown function f(x) from measurements
vi,i = 1,2,...,N that bear some information about f(x). The
argument x can either be a continuous or a discrete variable.
The prior information about the function is that it is a Gaussian
process, with certain mean and covariance function. This means
that the vector [f(x), f(x2),....,f(xn)], for any collection of
points x; is a jointly Gaussian random vector, with mean m(x) =
E f(x) and covariances

Cov(f(xe), f(x})) = P(xe,x;) (39)
where P(xy,x;) is often called a kernel. Often m(x) = 0. Typi-
cally, the observation y; is a linear functional of f(x;), measured
in additive Gaussian noise. This causes [f(x),y1,...,yn] to be
a jointly Gaussian vector, which means that the posterior distri-
butions,

p(f(x1)7"'7f(xn)|yl7'"7yN) (40)

can be calculated by the rules for conditioning jointly Gaussian
random variables.

In Pillonetto and Nicolao [2010a] the GPR is applied to es-
timating the impulse response of a stable linear system. For
a sampled model, the impulse response function is given by
g}{), k=1,...,00in (2). The observation y; is the measured output
in (1) at time ¢ = i. Modeling the impulse response function as
a Gaussian process means that, for any n,

[gl7---7gn]N‘/V(OaPn) (41)

where P, is the n x n upper left block matrix of the semi-infinite
matrix P defined in (39). This is the same situation as in the
Bayesian perspective (30)—(34). The Gaussian process estimate
of any collections of impulse response coefficients is thus given
by (34).
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The only thing that remains to be discussed is the choice of
prior covariances (41) (or (39)). Of course, the considerations
for choosing P, in (41) and in (30) must be the same, and the
relation to the thoughts about the regularization matrix D in (35)
still holds. But in GPR several standard choices for (39) exist.

In Pillonetto and Nicolao [2010a] the following kernels/covariance

functions are discussed

Kok :
R Ci(.] - 5)7 k S J . .
Pes(k,j) =4 % ; (Cubic Spline’)  (42a)
L k—L) k>
2 37
_ k=)? .
Psg(k, j) =ce 222 (’Squared Exponential’) ~ (42b)
AZk . ﬂ,k
e W —=) k<
Pss(k,j) =1 3; 2 (*Stable Spline’)

e (A~ T k>

(42¢)
where the hyper-parameters ¢,A > 0. There is also a MATLAB
toolbox, Pillonetto and Nicolao [2010b], that implements the
GPR, including estimating the hyper-parameters using (37).

Remark 3. As pointed out by the authors of Pillonetto et al.
[2011], the prior covariance (38c) (TC) can actually be seen as
a stable spline kernel Pillonetto et al. [2011] of order 1.

Let us test the GPR approach with different kernels (42) on the
data bank of data sets as shown in Section 2.

Example 6. (D-matrices suggested in the GPR approach). Sim-
ilar to Example 5, let us estimate the models (12) of order 125
and (26) with the kernels (42).

The average fit (5) is calculated and the simulation results are
shown in table below, where an “e” is appended to the kernel

name if a base-line model is used.

CS SE SS CSe SEe SSe

SID1 780 80.8 903 81.6 842 904

S2D1  38.8 747 717 479 789 81.2

SID2 166 444 68.0 60.7 657 71.6

S2D2  12.1 483 482 -443 586 59.6
Findings: The CS kernel, has difficulties with the slow sys-

tems, while the kernel SS shows a performance compatible with
DC, DI and TC in Example 5.

Remark 4. For the SS estimate, we used the SSpline com-
mand in the identification toolbox Pillonetto and Nicolao
[2010b] (with p=125, Lab='ny’, mv=0, mb=1, cn=0,
red=375, LP=0 and LP2=0). For the remaining estimates,
we used our own implementation, which only differs in the
estimation of o2 and in that two initial values of A are used
in solving (37b) as in Example 5. With our implementation, the
four figures for the SS estimate become 90.3, 77.9, 70.1 and
58.5 in order.

Remark 5. Tt is fair to add that the theory around GPR and
its relation to Bayesian estimation is much richer than shown
here. The estimation of continuous time impulse responses can
be handled in the same framework and there are interesting
connections to Reproducing Kernel Hilbert Spaces (RKHS) and
spline approximation. Our point here is that the actual resulting
impulse response estimate is a regularized FIR estimate (21b)
for a certain choices of regularization matrix D. We refer to

Pillonetto and Nicolao [2010a] for a more complete account of
the theory.

6. CONCLUSION

Let us now sum up the findings about the question posed in the
introduction, to estimate the impulse of the unknown system,
so that it has the best fit to the true impulse response.

We have tested several algorithms for this on rather large sets of
high order systems to assess both approximation and accuracy
aspects.

The conventional method is to try the models (10) of different
orders using PEM/ML methods, use the cross-validation in
Section 3.6 to pick the best model order, and finally use the
whole data record to estimate the model (10) with the best
model order. This approach was tested in Example 1 where its
performance is shown in the column CV.

We have compared the performance of this standard approach
with that of the regularization methods based on the ker-
nels/regularization matrices SS, TC and DC as shown in Ex-
amples 5 and 6. The results show that the standard approach
works reasonably well, but for slow systems with poor signal-
to noise ratios a clear improvement is obtained in the average
fit for the FIR models with carefully tuned regularization.

Another result of this paper is that the links between “Non-
parametric Gaussian Process Regression” and more conven-
tional FIR-modeling with regularized LS-estimates have been
exposed.
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