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1. Introduction

The most widespread approach to optimal prediction of
discrete-time systems relies on prediction error methods (PEMs),
for which a large corpus of theoretical results is available. For a de-
tailed treatment, the interested reader may refer to Ljung (1999)
and Soderstrom and Stoica (1989), and the references therein. The
statistical properties of prediction error (and maximum likelihood)
methods are well understood under the assumption that the model
class is fixed, and they show that these kinds of procedure are in
some sense optimal, at least for large samples. Within this para-
metric paradigm, a key point is the selection of the most adequate
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model structure, which is usually carried out by resorting to com-
plexity measures such as AIC and BIC (Akaike, 1974; Schwarz,
1978). In particular, AIC-type criteria are minimax-rate optimal
for regression function estimation, while BIC-type ones are con-
sistent (Hannan, 1980; Hurvich & Tsai, 1989); notably, for stan-
dard order estimation criteria, these properties are mutually ex-
clusive (Yang, 2005). Theoretical properties of estimators obtained
after model selection, also called post model selection estimators
(PMSEs), are generally hard to study, as discussed for instance
in Leeb and Potscher (2005) and the references therein. Not sur-
prisingly, sample properties of PMSEs, such as impulse response
estimators or predictors, when tested on experimental data (see
e.g. Section 6), may depart sharply from those predicted by “stan-
dard” (i.e. without model selection) statistical theory, which sug-
gests that PEMs should be asymptotically efficient for Gaussian
innovations.

In this paper, we follow an alternative route to prediction
and identification of linear systems by adopting a Bayesian point
of view. Bayesian approaches to identification are by no means
new: there is an extensive literature whose origins can be traced
back to the 1980s; see e.g. Doan, Litterman, and Sims (1984)
and Kitagawa and Gersh (1984, 1985), and also the more recent
book (Kitagawa & Gersch, 1996). Nonparametric approaches have
also been used in the identification of nonlinear system models,
for example in Young, McKenna, and Bruun (2001), where state-
dependent parameters in nonlinear transfer function models are
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estimated using a special nonparametric approach based on
recursive fixed interval smoothing (Young & Pedregal, 1999).
Our approach is also based on nonparametric estimation, but it
is applied to the identification of linear systems described by
impulse responses (Pillonetto & De Nicolao, 2010). Rather than
postulating finite-dimensional structures for the system transfer
function, e.g. ARX, ARMAX or Laguerre (Goodwin, Braslavsky,
& Seron, 2002; Milanese & Vicino, 1991), the system impulse
response is searched for within an infinite-dimensional space. In
order to circumvent the intrinsical ill-posed nature of the problem,
regularization methods, admitting a Bayesian interpretation, are
employed (Barry, 1986; Bertero, 1989; Pillonetto & Bell, 2007;
Tikhonov & Arsenin, 1977). This is similar in spirit to the work in
Kitagawa and Gersh (1985), McVinish, Braslavsky, and Mengersen
(2006), and Young et al. (2001). The real difference is made by
the recent introduction of a prior distribution on the impulse
response such that the realizations are almost surely (a.s.) BIBO
stable (Pillonetto & De Nicolao, 2010). This method has been
shown to compare very favorably with established parametric
approaches in the identification of output error models (Pillonetto
& De Nicolao, 2010). Along this line, it is of interest to extend
this nonparametric paradigm to the design of optimal predictors
and the identification of discrete-time models based on prediction
error minimization (hereafter, without loss of generality, the
analysis will be restricted to SISO systems).

In the nonparametric approach to predictor estimation, the
main point is to see the predictor as a system with two inputs
(past outputs and inputs of the predicted system) and one
output (output predictions). Therefore, predictor design amounts
to estimating two impulse responses. In the proposed method, they
are modeled as realizations of a Gaussian process (Pillonetto, De
Nicolao, Chierici, & Cobelli, 2009; Rasmussen & Williams, 2006;
Smola & Scholkopf, 2003). The resulting problem is harder than
that treated in Pillonetto and De Nicolao (2010) since not only are
the unknown functions assumed to belong to infinite-dimensional
spaces but dependence on past outputs involves an operator which
itself depends on noisy measurements. In addition, we further
refine the kernel (hereafter, the terms kernel and autocovariance
will be used indifferently') for system identification introduced
in Pillonetto and De Nicolao (2010). In fact, in the present paper,
impulse responses are the convolution of an infinite-dimensional
nonparametric component and a low-order finite-dimensional
one. The latter is used to capture high-frequency oscillations,
e.g. poles with negative real part.

The overall scheme for predictor estimation and system iden-
tification via predictor error minimization relies on an empirical
Bayesian paradigm (Maritz & Lwin, 1989). First, the dimension
and the components of the unknown hyperparameter vector, char-
acterizing the prior, are estimated using marginal likelihood opti-
mization in a low-dimensional space. In the second and final step,
the hyperparameters are set to their estimates, and minimum vari-
ance estimates of the impulse responses are computed. In partic-
ular, we show that the optimal estimates of the predictor impulse
responses are the solution of a Tikhonov-type variational problem,
defined in a reproducing kernel Hilbert space (RKHS) (Aronszajn,
1950; Cucker & Smale, 2001), whose solution is well defined and
has a regularization network structure (Poggio & Girosi, 1990).

Numerical experiments, with data generated by ARMAX models
of different orders and also by infinite-dimensional systems,

1 This terminology stems from the fact that, as we shall recall later on, there
is a perfect correspondence between Tikhonov-type regularization problems in
reproducing kernel Hilbert spaces (RHKSs) with kernel K(-,-) and Bayesian
estimation where a Gaussian process prior with covariance function K(.,-) is
assigned.
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Fig. 1. Output-error impulse response identification: case study. The true impulse
response (thick line) and noisy output samples (dots) are plotted in all panels.
The solid lines represent the estimates obtained by PEM + AIC (left) and by
nonparametric regularization exploiting the cubic spline kernel (middle) and the
stable spline kernel (right).

show that the proposed approach yields substantial improvement
over existing methods both in terms of predictive capability on
new data and accuracy in the reconstruction of system impulse
responses.

The paper is organized as follows. In Section 2, the differences
between the parametric and the kernel-based nonparametric
approach to system identification are illustrated via a case study.
With respect to the nonparametric viewpoint, the so-called stable
spline kernel, originally introduced in Pillonetto and De Nicolao
(2010), is also reviewed. Section 3 reports the statement of the
predictor estimation problem. In Section 4, the Gaussian prior on
predictor impulse responses is defined by refining the stable spline
kernel reported in Section 2. In Section 5, a numerical algorithm
which returns the unknown components of the prior and the
estimates of predictor and system impulse responses is worked
out.In Sections 6 and 7, simulated data are used to demonstrate the
effectiveness of the proposed approach. Our conclusions, given in
Section 8, end the paper. All the proofs are gathered in Appendix B.
In the paper, vectors are column vectors and, given a vector or a
sequence w, w; denotes the i-th element of w.

2. The nonparametric approach to linear system identification

2.1. Asimple case study

In order to introduce the nonparametric approach, let us
consider a simple output-error system identification problem. In
particular, we are given a continuous-time system fed with an
input u which is a Dirac delta. Thus, the measurement model is
yi=h(ty) +e, k=1,2,...,n, (1)
where h is the continuous-time unknown impulse response, {t;}
are the positive sampling times, y© = [y; yalT is the mea-
surements vector, and e = [e; e,]” is made of samples of
white Gaussian noise with variance o2.

A particular instance of this problem is displayed in Fig. 1, where
the unknown impulse response (thick line) has to be estimated
from 100 noisy output measurements (dots) collected on the unit
interval (for details about the generation of this example, see
Appendix A).

2.2. The parametric approach to system identification

The classical approach to impulse response estimation relies on
a finite-dimensional parameterization of h:
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Fig. 2. Bayesian network describing the classical parametric modeling approach
to system identification (case a) and the nonparametric one adopted in this paper
(case by). The latter case with f integrated out (the joint distribution of f and y* is
marginalized with respect to f) is also reported (case b,). In the network, dotted
lines denote deterministic variables and relationships, while solid lines denote
stochastic variables and relationships.

ye ="t M) +e, k=1,2,...,n, (2)

where 6™ is the dM-dimensional vector which gathers all the
unknown parameters of the model once a certain structure M is
postulated. This is graphically depicted by the Bayesian network
in Fig. 2 (left side). Nodes and arrows are either dotted or solid
depending on being representative of either deterministic or
stochastic quantities/relationships. Thus, one can see that 8 is a
deterministic parameter vector whose knowledge fully defines h.
For a given model structure M, the maximum likelihood
estimate of M is
6M = arg max pym (y"), (3)
gerdv
where pyu denotes the probability density function of y™. In real
applications, the model structure M, and hence the dimension
d" of M, is unknown, and must be inferred from data. One of
the most commonly used approaches for the selection of model
complexity hinges on the Akaike criterion (AIC) which, under the
stated assumptions, is formulated as

M= argl\?;i;l 2d" + nIn[RSS(OM)], (4)

where ./ is a set of competitive model structures and RSS is the
residual sum of squares.

According to (3), (4), we proceed to solve the case study
assuming that the z-transform H(z) of h(t) is the ratio of two
polynomials, both with maximum allowed order equal to 10. The
order of the two polynomials chosen by the AIC is 8 for both the
numerator and the denominator of H(z). In the left panel of
Fig. 1, the solid line indicates the estimate of the impulse response
obtained by using the classical PEM approach, as implemented
in the oe.m function of the MATLAB System Identification
Toolbox (Ljung, 2007). The estimate obtained is not satisfactory,
and it suffers from overfitting. This kind of result is confirmed
by a Monte Carlo study made of 300 runs (see Appendix A for
details). In particular, the mean of the 300 values of the relative
root mean square errors, denoted by Err and defined in (55), is
reported in Table 1. In this table, in addition to the results of
PEM complemented with AIC-based order selection, we also report
results obtained by an oracle that, at any run, selects the ideal
model order which minimizes the reconstruction error. Obviously,
this provides an upper bound for the performance of the PEM. One
can notice that the oracle yields Err = 0.031 while the AIC gives
Err = 0.098.

These findings are not completely unexpected. In fact, the
tendency of the AIC to overfit is well documented in the statistical

Table 1
Monte Carlo study (Section 2): Average over 300 runs of the relative root mean
square error (see (54) in Appendix A) obtained by PEM + AIC, PEM + oracle, and
by the nonparametric approaches relying on the stable spline and the cubic spline
kernels.

Estimator PEM + AIC PEM + oracle Stable spline Cubic spline

Err 0.098 0.031 0.033 0.064

literature (Hurvich & Tsai, 1989; Kass & Raftery, 1995). In this
regard, it is useful to summarize the limitations of parametric
approaches equipped with the AIC.

e The AIC is based on an approximation of the likelihood that
is only asymptotically exact. This undermines the applicability
of the theory when the ratio n/d¥ is not sufficiently large.
Indeed, the possible negative bias in the estimate of the
Kullback-Leibler divergence can lead to overfitting (Hurvich &
Tsai, 1989).

e From (3) and (4), it is also evident that the AIC selects the
optimal model without taking into account the uncertainty of
the estimated parameters.

e The AIC evaluation calls for the solution of several nonlinear
optimization problems, one for each model M in .. Since these
problems are defined in possibly large-dimensional spaces,
computational complexity and local maxima can be an issue.

2.3. The nonparametric Gaussian regression approach to system
identification

Under the framework of Gaussian regression (Rasmussen &
Williams, 2006), instead of postulating a parametric structure
for h, the impulse response is regarded as the realization of a
stochastic process f (Pillonetto & De Nicolao, 2010). In particular, f
is modeled as a continuous-time zero-mean Gaussian process with
autocovariance AfZE(t, 7),where ¥ : RT x R > Rand A; € RT

is an unknown hyperparameter.? As such, h is assumed to belong
to an infinite-dimensional function space. The new paradigm is
graphically depicted in Fig. 2 (middle). In comparison with the
parametric scenario, see Fig. 2 (left), the first notable difference is
that the vector 6™ is now replaced by the hyperparameter vector
¢, whose dimension is fixed,® which contains A; and other possible
parameters characterizing the autocovariance of f. In addition,
while 6™ fully defines h™ in deterministic terms, ¢r defines only
the statistics of f, namely its autocovariance. This explains why, in
Fig. 2, ¢ is connected with f by a stochastic relationship.

Two important quantities can be obtained in closed form
starting from the nonparametric model depicted in Fig. 2. The first
one is the minimum variance estimate of f conditional on y*, &,
and o. In fact, exploiting well-known results on Gaussian processes
(Anderson & Moore, 1979), one obtains

EIf Ol &0l =27 Y aZ(t, t), 5)
i=1

where ¢; is the i-th component of the vector

c=xy" (6)
and X, € R™", with the (i, j)-th entry given by

[Zy)ij = A Z(ti, ) + 05, 7)

2 According to the statistical literature, the term hyperparameter is here used to
indicate a parameter of a prior distribution.

3A generalization of this model where such dimension is allowed to vary by
introducing a very restricted number of competitive kernels for f will be discussed
in Section 4. In this section, for the sake of simplicity, the model is not equipped with
the so-called bias space, i.e. parametric structures able to enrich the nonparametric
model; see also Section 4.1 in Pillonetto and De Nicolao (2010).
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Fig. 3. Realizations of a stochastic process f with autocovariance proportional to
the standard cubic spline kernel (left), the new stable spline kernel (middle), and the
sampled version of the stable spline kernel enriched with a parametric component
defined by the poles —0.5 + 0.64/—1 (right; see also Section 4.2).

with §; the Kronecker delta. The conditional expectation (5)
shows that the estimate exhibits the structure of a regularization
network, i.e. it is the linear combination of n basis functions X' (t, t;)
that, in this case study, are the kernel sections at the sampling
instants.

The second key quantity is the marginal likelihood of y™, i.e. the
marginalization with respect to f of the joint density of y™ and f.
After simple computations, one obtains

exp (—%(y*)TZy*]yﬂ
Jdet@rz,)

The model obtained after marginalization is graphically depicted
in Fig. 2(right).

To estimate the unknown impulse response, the so-called
empirical Bayes approach can be used (Maritz & Lwin, 1989;
Pillonetto & De Nicolao, 2010). The first step refers to the network
on the right side of Fig. 2 and obtains the hyperparameters by
maximizing the marginal likelihood:

PO, 0) = (8)

(&, 6) = arg max_p(yt|g, o). 9)
{f,ae.Q

where 2 is a suitable parameter set. The second step considers the
network in the middle of Fig. 2, conditional on y*, ¢, and 6. Thus,
the estimate of the impulse response is E[f (t)|y™, ff, o], given by

(5).

The quality of the estimate coming from the nonparametric
scheme will crucially depend on the kernel chosen to model the
autocovariance of f. In the literature on Gaussian regression, the
prior distribution usually reflects the knowledge that the unknown
function, and possibly some of its derivatives, are continuous with
bounded energy. In this case, the most widely used approach
models f as the m-fold integral of white Gaussian noise. Thus, the
autocovariance of f is assumed to be proportional to

1
Win(s, £) =/ Gin(s, U)G(t, u)du, (10)
0
where
_(r—u)T_1 _fu ifu>o0
Gm(r,u) = W W+ = 0 otherwise.

This is the autocovariance associated with the Bayesian interpreta-
tion of m-th-order smoothing splines (Wahba, 1990). In particular,
when m = 2, one obtains the cubic spline kernel (see e.g. DeNico-
lao, and Marchesi (2007)):

stmin{s, t}  (min{s, t})*
2 B 6

When this kernel is used, from (5) we see that the estimate of the
function is given by a linear combination of n basis functions of
the type W, (ty, -) which, in view of (11), are just cubic splines,
i.e. polynomials up to third-order.

In the system identification scenario, the main drawback of
the kernel (10) is that it does not account for impulse response
stability. In fact, the variance of f increases over time. This can
be easily appreciated by looking at Fig. 3(left), which displays
100 realizations drawn from a zero-mean Gaussian process with
autocovariance proportional to ¥ = W,. If we consider impulse
response identification, the consequences of this drawback are
illustrated in the middle panel of Fig. 1, where the solid line
indicates the estimate of the impulse response obtained by using
the cubic spline kernel (¥ = W, in(5)-(7)), with hyperparameters
As and o determined via marginal likelihood optimization; see (9).
In this case, two additional parameters are added to the model to
account for the initial value h(0) and the initial derivative h(0);
see subsections 1.3-1.5 in Wahba (1990) for all the details. The
obtained estimate suffers from oscillations in the final part of the
experiment due to the fact that the model does not include the
stability constraint. The result of the Monte Carlo study of 300 runs
is Err = 0.064; see Table 1.

WZ (S’ t) =

(11)

2.4. Stable spline kernels

One of the key contributions of Pillonetto and De Nicolao (2010)
is the definition of a kernel specifically suited to linear system iden-
tification which leads to an estimator with favorable bias and vari-
ance properties. In particular, it is immediate to see that, if the
autocovariance of f is proportional to (11), the variance of f(t) is
zero at t = 0 and tends to co as t increases. However, if f repre-
sents a stable impulse response, we would rather let it have a finite
variance at t = 0 which goes exponentially to zero as t tends to oo.
This property can be ensured by considering autocovariances that
are proportional to the class of kernels given by

Kin(s, t) = W (e #, e7Ph),

where § is a positive scalar governing the decay rate of the
variance (Pillonetto & De Nicolao, 2010). In practice, 8 will be
unknown, so it is convenient to treat it as a further hyperparameter
to be included in the vector ¢ which is estimated via the likelihood
maximization (9). It can be easily seen that

s,t € RY, (12)

Kin(s, t) = /OOHm(s, WHp(t, u)Be Pidu (13)
0

Hp(r, 1) = G (e P, e P¥y, (14)

which shows that the new kernel K, models f(t) as multiple
integration from t to +oo of a white noise whose variance decays
exponentially to zero.

In view of (11), (12), if m = 2, the autocovariance becomes the
stable spline kernel originally introduced in Pillonetto and De
Nicolao (2010):

K ) e—ﬂ(t+t)eﬂ3 max(t,7) e—Bﬂ max(t,7) 5
t,7) = — .

2( > 5 (15)

The following proposition, taken from Pillonetto and De Nicolao

(2010), shows that assuming an autocovariance proportional to K

constrains all the realizations to be asymptotically stable.
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Proposition 1. Let f be zero-mean Gaussian with autocovariance
given by the stable spline kernel. Then, with probability one, the
realizations of f are continuous impulse responses of BIBO stable
dynamic systems.

Notice that the above result is different from that reported in
McVinish et al. (2006), where one can find a prior that guarantees
the stability of impulse responses only on average, with no
smoothness enforced.

The effect of the stability constraint can be appreciated
by looking at Fig. 3(middle), which displays 100 realizations
drawn from a zero-mean Gaussian process with autocovariance
proportional to K, with 8 = 0.4.

In the right panel of Fig. 1, the solid line indicates the estimate
of the impulse response obtained by using the empirical Bayes
approach described in the previous subsection with f modeled
using the stable spline kernel. Notice that the estimate is very close
to the true profile. Table 1 reveals that this approach outperforms
all other methods: Err from the Monte Carlo study is 0.033, very
close to the performance of the PEM equipped with the oracle
(Err = 0.031). This result is also notable, as the stable spline
estimator does better than the parametric approach performing
model selection using the AIC among a set of competitive model
structures including also the true model that generated the data.
The reason is that the stable spline estimator overcomes the
drawbacks of the parametric approaches listed at the end of
Section 2.2. To be more precise:

e in the nonparametric approach, the marginal likelihood, which
is a function of the hyperparameters As, B, and o, is exact,
irrespective of the sample size;

e the stable spline estimator accounts for impulse response
uncertainty because the hyperparameter likelihood is obtained
after marginalizing with respect to the stochastic impulse
response;

e due to marginalization, the domain of the marginal likelihood
is a three-dimensional space. Thus, the issue of local maxima
is far less critical. In fact, instead of solving several nonlinear
optimization problems, one is faced with only one optimization
problem in a very low-dimensional domain.

Remark 2. The focus of the present paper is on the comparison
of parametric prediction error methods against nonparametric
identification techniques. Although other approaches like the
instrumental variable (IV) one are beyond our horizon, we applied
IV identification to the Monte Carlo study described in Section 2.2,
performing model selection with either the BIC or the YIC (Young,
2000); see Appendix A for implementation details. Compared to
the average estimation error reported in Table 1, the two IV
methods yielded 0.077 and 0.079, respectively. As suggested by an
anonymous reviewer, we have also employed a continuous-time
implementation where the unknown impulse response is modeled
as the convolution of a rectangular signal with support on [0, 0.01]
and a rational transfer function whose order is estimated by the
BIC. In this case, the error decreases to 0.041. These results are
better than those with PEM + AIC, but still confirm the potential
advantage ensuing from nonparametric identification techniques.

3. Statement of the predictor identification problem

Now, the predictor identification problem is considered. In
what follows, £; denotes the space of impulse responses {fk};gg of
BIBO stable discrete-time causal SISO systems. In addition, I,, will
indicate the n x n identity matrix.

All the subsequent derivation is carried out in discrete time.
Nevertheless, the continuous-time results of the previous section

can be immediately applied by regarding discrete-time stochastic
processes as the sampled version of continuous-time ones.

We are given a finite set of input-output data {u}, {yx} that,
with some abuse of notation, will both denote jointly stationary
stochastic processes with zero mean and finite variance and their
sample values. It is a standard fact that the second-order statistics
of {ug}, {yx} are compatible with a linear dynamical model of the
form

o0 o0
Vo= Qi+ Y weer i, (16)
k=1 k=0

where {ey} is the one-step-ahead (linear) prediction error of y;
given the joint past of u and y. Our problem is to estimate the one-
step-ahead predictor of y, starting from inputs {u,} and outputs
{yk}. As is well known, provided that the joint spectrum of y and u
is bounded away from zero, this predictor is (BIBO) stable.

For the sake of simplicity, in what follows we will assume that
u is a stochastic process independent of {e;}. However, it is worth
stressing that all the outcomes obtained in what follows would
still hold if u were a deterministic signal or if output feedback
were present in the system, apart from minor modifications in the
proofs. We also stress that all the probability densities reported in
what follows are conditional on the system input, but we omit this
dependence to simplify the notation.

4. Prior for predictor coefficients

Let y(t) denote the one-step-ahead prediction of y;. The typical
approach to estimate predictor coefficients relies on a finite-
dimensional parameterization of y(t):

o0 o0
I 0) =D a®)yik+ Y bi(O)u s, (17)
k=1 k=1

where 6 € RP,a : RP — {q,and b : RP +— {4, with ai(-)
and by (-) denoting the predictor impulse responses evaluated at
instant k. In contrast with (17), according to the nonparametric
scenario described in Section 2, we let the predictor impulse
responses belong to infinite-dimensional function spaces. To be
more specific, the predictor now takes on the form

e =Y [y + Y &lOu i (18)
k=1 k=1
@O =) a@fik &&= b(0)F. (19)
k=1 k=1

The relevant variables in (18) and (19), which will be fully specified
in the remaining part of the section, are

o f = {fi} and § = {g}, which indicate zero-mean Gaussian
processes, mutually independent and independent of {e;}. Their
auto-covariances (kernels) are

cov(fy, fj) = 27Kz (i, j) (20)
cov(g;, &) = AKz (i, J), (21)
where K7, Kz : N x N +— R, while A; and A, are unknown
hyperparameters contained in ¢;

e the sequences a and b, which belong to £; and represent finite-
dimensional components of the model, parameterized by ¢.
Their knowledge, together with that of A;K; and AZK, fully

defines the autocovariances of f and g;
e the vector ¢ containing unknown hyperparameters.
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4.1. Choice of the kernels associated with f and g

Hereafter, the notation K indicates the stable spline kernel
obtained setting m_= 2, i.e. K = K. As far as the choice of the
autocovariances of f and g is concerned, K7 and Kz are the sampled
versions of K, i.e.

Kz (k, j) = K(k, j; Br) (22)
Kz (k,j) = K(k,j; Bg), Vk,jeN. (23)

The hyperparameters B; and B, thus represent the asymptotic

exponential decay rates of the variance of f and g which will be
tuned from data together with the scale factors Af and )»é.

4.2. Choice of the finite-dimensional components

The sequences a and b in (19), i.e. the finite-dimensional
components of f and g, are used to enhance the flexibility of
the predictor. In fact, their role is to capture dynamics, such as
high-frequency poles, which are hardly represented by the smooth
processes f and g. In particular, in the scenario of ARMAX model
identification, it is convenient to set 8 = f; = B, in(22)and (23).
Then, we let a,(8) = br(9), V¢, k, where the subvector 6 € R' of ¢
specifies poles with negative real part. To be more specific, 6 enters
the zeta-transforms F,(z) and F,(z) of a and b as follows:

I

1
Fa(2) = Fy(2) = f(z) Py(z) =72'+ ) 677, (24)
j=1

and is such that all the roots of Py(z) belong to the open left unit
semicircle in the complex plane.

4.3. The prior model for f and g

With a slight abuse of notation, we think of the autocovariances
Kz, Kz of f,g as elements of R***°, where the i-th columns
of Ky and Kz are the sequences K (-, i; ff) and K(-,i; B¢), i € N,
respectively. In addition, notation of ordinary finite-dimensional
algebra is used to handle infinite-dimensional objects where
convergence will be guaranteed by the exponential decay of the
elements of the stable spline kernel. Thus, for instance, if w € R*°,
the j-th element of Krw is Y, [Kf ]jiwi.

In view of (19), the kernels of f and g are )Lj?Kf and )él(g,
respectively, where

K; = F,K-FT (25)
f fla
K, = FyK:F, (26)
g g b

with F, and F, lower-triangular Toeplitz infinite-dimensional
matrices with first column given by a and b, respectively.

To better appreciate the role of the finite-dimensional com-
ponent of the model, Fig. 3(right panel) shows some realizations
(with samples linearly interpolated) drawn from a discrete-time
zero-mean normal process having autocovariance proportional to
Kr with B = 0.4 and F, defined by 6 = [1 0.61] in (24). In this
way, an oscillatory behavior is introduced in the realizations by en-
riching the stable spline kernel K7 with the poles —0.5 & 0.64/—1.

5. Estimation of hyperparameters, predictor coefficients and
system impulse responses

In practical applications, the hyperparameters gr and S,
entering K; and K, the scale factors Ar and A4, the vector ¢ entering

F, and F,, and the innovation variance o2 have to be estimated

from data together with the predictor coefficients. In addition, the
complexity of F;, and F;, e.g. the number of high-frequency poles
to be introduced in the prior, may not be known in advance. For
these reasons, it is useful to introduce the vector ¢, which gathers
all the unknown parameters of the nonparametric model once a
certain structure M for a and b is postulated.

5.1. Handling initial condition effects

We start by considering a situation in which ¢™ is perfectly
known. To simplify the notation, the dependence on such a vector
is often omitted. Now, let A € R"**° and B € R"**°, where

[Alji = yj—is (27)
[B]j,':llj,,', ]: 1,...,n,ieN. (28)
In view of (18), it holds that

yT=A0T,yf +BWwg +e, (29)
where u is the input sequence, while

yvi= oy ool (30)
y = ¥y ya...1 31)
e=[e; e ... ey, (32)

where, as in Section 2, e contains the innovations. It is useful also
to introduce the vector

Ve =Moo Y Yor1ls (33)
which contains only the r components of y~— which are measured.
Since y~ is never completely known, i.e. r < oo in (33), a solu-
tion to handle the initial conditions consists of setting its unknown
components to zero, introducing an error which goes to zero
as n increases; see e.g. Section 3.2 in Ljung (1999). Thus, in
what follows we assume perfect knowledge of A(y™,y™), i.e.
AWyt,y7) =A@y, y;). Furthermore, we will exploit the following
approximation for the joint density of y*, f, g, and y™:

POt f.g.y7 1) = pOtIf. 8.y, OP(F.gly . OHPY 1D
~potIf. 8.y, Op(. 8lIOPY); (34)

i.e. the past y~ is assumed neither to affect the prior on f and g nor
to carry information on the hyperparameters.

To simplify the notation, dependence on y~ is hereafter omitted
as well as dependence of A and Bon y™ and u.

5.2. Estimation of the predictor coefficients for known ¢M

In the following, % and .7 denote the reproducing kernel
Hilbert spaces (Aronszajn, 1950) of deterministic functions on N,
associated with K and K, with norms denoted by || - || A and
| - Il 7, respectively.

For a given model structure M, we use f¥¥ to indicate the
minimum variance estimator of f, i.e. f™ = E[f|y*, ¢M]. The
minimum variance estimator g¥¥ is defined in the same way.
The following result shows that, under mild conditions, a.s. these
estimates belong to the spaces # and .#%, are solutions of a
Tikhonov-type variational problem, and admit the structure of a
regularization network (Poggio & Girosi, 1990).

Proposition 3. Let the roots of Py in (24) be strictly inside the unit
circle with the kernels Ky and Kg defined as in (25) and (26). Also,
let {y;} and {u.} be zero-mean, finite variance stationary stochastic
processes. Then, under the approximation (34), a.s., we have

(F".g") =arg  min |y — Ahy — Bhg|
he g, hge oy

+ 1l 1% + vellhg |2, . (35)
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where || - || is the Euclidean norm, y; = o/Af, and y; = 0 /A2,
Moreover, a.s., we also have

M =xKATc g™ = AK,B'c, (36)
where

¢ = (\fAKAT + AZBK B + o’l) "'yt O (37)

5.3. Estimation of the hyperparameters and predictor structure

Given a predictor structure M, the hyperparameter vector ¢M
can be determined by maximizing the marginal likelihood of y™,
which is now obtained by integrating out f and g from the joint
density of y*, f, and g. This is described in the next proposition.

Proposition 4. Under the same assumptions as in Proposition 3, the
maximum marginal likelihood estimate of ¢™ is a.s. well defined and
given by*

M= argm&n](y*; oMy, (38)
¢
where ], the opposite of the log-marginal likelihood of y™, is

1 1
Jotie™ = 5 In(detl2xVIy*]D + 5(y+)T<V|;y+])‘1y+, (39)
with

VIy"] = AAKGAT + AZBKB' + oI, O (40)

Among the possible nonparametric estimators identified by the
choice of M, model selection is performed according to the Akaike
criterion AIC, that is, by minimizing

AIC(M) =2J(y+; M) +2dM, M e ., (41)

where d¥ is the dimension of ¢M.

5.4. Numerical algorithm for predictor estimation

As for the practical implementation of the numerical algorithm
for predictor estimation, for computational reasons f“V and gM
are truncated to having only g non-zero elements. It is important
to stress that the predictor length g is not critical, as it does not
involve any kind of trade-off between bias and variance. It is just a
value that is large enough to capture the dynamics of the predictor.
We are now in a position to summarize the entire numerical
procedure for predictor estimation.

Algorithm 1. The input to this algorithm includes the input and
output sequences, u, y*, y;, and the predictor length g, together
with a set.# containing competitive structures which define a and
b in (19). The outputs of this algorithm are the estimates of the
predictor coefficients in (19). The steps are as follows.

(i) Choose the model M in .# which minimizes (41).
(ii) Determine EM using (38) conditional on M.
(iii) According to the empirical Bayes approach, determine the
predictor estimates fMV and gM” via the regularization
network (36), with hyperparameters set to Z’M .

41 (38), it is implicit that optimization is restricted to the region where the
variances are positive and 6 is such that the all the roots of Py in (24) belong to
the open left unit semicircle in the complex plane.

Remark 5. Note that, if the relationship between predictor
impulse responses and system output admitted a linear state-
space realization, marginal likelihood evaluation and computation
of the solution in the items above could be efficiently computed
using finite interval smoothing (Harvey, 1989; Weinert, 2001),
as done for example in De Nicolao and Ferrari Trecate (2001),
Pillonetto and Saccomani (2006), and Young and Pedregal (1999).
Unfortunately this is not the case in general.

5.5. Model reduction

The estimated predictor impulse responses from Algorithm
1 belong, in principle, to an infinite-dimensional space and, as
such, are not the impulse responses of a finite-dimensional linear
system. In practice, as discussed in the previous section, f*V and
g"¥ have only q non-zero elements, i.e. the predictor is a (long)
autoregression of the form

q q
Vo= f"Vvea+ D s u i +en (42)
k=1 k=1

It is now convenient to rewrite Eq. (42) in the input-output form
asinEq. (16), i.e.

q
MV ,—k
> &'z
k=1 1
Ve = ur + €,

q q
1= Mz 1= e
k=1 k=1

where for convenience of notation the Z-transform formalism has
been used. The transfer functions

> glvet .
W) =—""F— W@=—F" (43)
- L 1oy et

k=1 k=1

admit a minimal realization of dimension g, which may be
large. Hence, if needed, one could also apply standard model
reduction techniques to Q(z) and W(z) in order to obtain reduced-
order approximations, e.g. deterministic balanced truncation
(Pernebo & Silverman, 1982) for Q(z) and stochastic balanced
truncation (Desai & Pal, 1984) for W(z).

6. Numerical experiments involving ARMAX models

The performance of the proposed approach was first evaluated
by means of five Monte Carlo studies, each consisting of 500 runs.
The aim is to estimate an ARMAX model from an identification
(training) set and assess the performance of different estimators
both in terms of predictive capability on new data (test set) and
the quality of reconstruction of the system impulse responses.

6.1. Random generation of ARMAX models

At any run, an ARMAX model of the following form

ny ne

ny
Ve = Z h{yH + Z hiue_i + e, + Z hie;_; (44)
i=1 i=1 i=1

is generated. To be specific, first, the value for n, is randomly
drawn from a discrete uniform distribution with support on
{1, 2, ..., 20}. Then, the MATLAB function drmodel .m is used to
generate a random stable discrete-time n,-th-order model. The
coefficients of the polynomial defining the denominator of the
transfer function provide the coefficients {h{ }. The number and
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Table 2

Features characterizing the five Monte Carlo studies.
Experiment #1 #2 #3 #4 #5
Input for training set WN WN SW LP1 LP2
Noise for training set and test set ~ WN WN WN WN WN
Training set size 1000 200 500 500 200
Input for test set WN WN WN WN WN
Test set size 1000 1000 1000 1000 1000

values of the non-zero elements of the numerator define n, and
{h'}, respectively. In this way, h is always different from zero with
input delay equal to one. Finally, we set n, = ny, and the function
drmodel . m is used to obtain another Hurwitz polynomial whose
coefficients define {h{}. System and predictor poles are restricted
to lie inside the circle of radius 0.95, while the output variance is
bounded by 400 (drmodel .m is repeatedly called at any run until
such requirements are fulfilled).

To obtain information regarding the signal to noise ratios in
the identification data, at each run, we computed the quantity
llgll2/llwll2 which, in view of (16), is the ratio of the 2-norms of
the impulse responses governing the deterministic and stochastic
parts of the system. The average value of such ratio was 2.1. In
particular, the 5%, 25%, 50%, 75%, and 95% quantiles of the ratios
were 0.08, 0.45, 1.2, 2.6, and 7.7, respectively.

6.2. Features of the five Monte Carlo experiments

At each run, the ARMAX model is used to generate a training
set and a test set, consisting of data collected after getting rid
of initial condition effects. Five different experimental conditions
are considered. They are characterized in terms of the following
aspects.

e Input u generating the training set. This is white noise of unit
variance (WN) in the first two experiments, while in the third
one it is a square wave of period 40, which alternates between
levels 0 and 1 (SW). In the last two experiments, we use two
different low-pass signals. In the fourth one, it is a random
Gaussian signal (LP1) generated using the idinput .m MATLAB
function with band [0, 0.8], where 0 and 0.8 are the lower
and upper limits of the passband, expressed as fractions of
the Nyquist frequency. In the last experiment, the input power
is even more concentrated at low frequencies since it is the
filtered Gaussian signal (LP2) with cut-off frequency equal to
10 kHz described in Schoukens, Suykens, and Ljung (2009).

e Disturbance noise generating the training set and the test set. In all
cases this is WN with variance equal to one.

e Size of training set. In the five experiments this is 1000, 200, 500,
500, and 200.

e Input u generating the test set. This is always WN of unit variance.

e Size of test set. This is always equal to 1000.

All the relevant information concerning the 5 experiments is
summarized in Table 2. Notice that the first and the last experiment
exhibit, respectively, the most favorable condition (1000 output
data generated using WN as input) and the most adverse one
(training set size equal to 200 and strongly low-pass input).

6.3. Performance indices: quality of the estimated predictor and
model

The first performance index regards predictive capability on
new data. In particular, at each Monte Carlo run, the estimates
{fe} and {&} of the predictor coefficients are first obtained. Let
{yper 100 and {uf®”}}%% denote the test set consisting of new
output and input data, respectively. Then, the one-step-ahead

prediction y*” is computed by the estimated predictor. At the j-th
Monte Carlo run, the root mean square one-step-ahead prediction
error is

1000

> @1 =y
t=1
1000

while the so-called coefficient of determination, which quantifies
how much of the output variable variance is explained by the
forecast, is

errj; = , (45)

1000 .
Z (y?ew _ y?ew)Z
copj=1-“=" (46)
1000 x V;

where V; denotes the sample variance of {y"*}!%%. We also define

500 500
> errj > CoD;
Erp=2L__  cop=2"___ (47)
500 500

to quantify the average root mean square error in the one-step-
ahead prediction on new output data and the average coefficient
of determination. The indices errj; (k), COD;(k), Err1(k) and COD(k)
instead quantify the performance of the estimated k-step-ahead
predictor. They are defined as in (45)-(47) except that the
one-step-ahead prediction y7° is replaced by the k-step-ahead
prediction, computed from the estimated model.

As regards the identification performance, at each Monte Carlo
run, the estimates {q;} and {t;} of the system impulse responses
are first obtained. Then, the quality of the estimated model is
quantified by

111Gk — 1| —w
erry = - lk — qillz | 1 llwg — will2 (48)
2 gl 2 Jlwllz
Finally,
500
D ermio
— k=1
Erry = ——— 49
2 =00 (49)

measures the average 2-norm of the error relative to the
reconstruction of the system impulse responses.

6.4. The evaluated estimators

The following estimators are compared via the Monte Carlo
studies.

e Stable spline. This is the estimator based on the stable spline
kernel. As for the prior on f and g, we set 8; = B, = B.
Then, hyperparameters {As, A¢, 8,0}, as well as the poles
with negative real part enriching the kernel structure, are
determined from data according to Algorithm 1. In particular,
the number of poles which can be introduced ranges from 0 and
3, and is determined by the AIC; see (41). In experiments #2
and #5, where the data set size is 200, 50 predictor coefficients
are estimated, i.e. we set the predictor length g to 50, while
y, and y* contain the first 50 and the last 150 available out-
put samples, respectively, i.e. r = 50 in (33) and n = 150 in
(30). In the other three experiments, we set ¢ = r = 60. After
obtaining the estimates of the predictor coefficients, the system
impulse responses are obtained as described in Section 5.5
without adopting model order reduction. From them, for any k,
it is straightforward to obtain the estimate of the k-step-ahead
predictor (Ljung, 1999).
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Fig.4. Five Monte Carlo studies using ARMAX models: boxplot of prediction errors.

e PEM + orl. The classical PEM approach, as implemented
in the pem.m function of the MATLAB System Identification
Toolbox (Ljung, 2007), equipped with an oracle for one-step-
ahead prediction. To be specific, at any run j, this ideal tuning
provides an upper bound for the prediction performance of
the PEM by selecting those model orders ny, n,, and n,, that
minimize errj; in (45).

PEM + or2. The same as above, except that the oracle
minimizes errj; in (48). In this way, an upper bound for the
performance obtainable by the PEM in system impulse response
reconstruction is obtained.

PEM + AIC. The same as above, but with the model orders ny, ny,
and n, chosen by the Akaike criterion AIC, i.e.

min  2n, + n¢ In[RSS(ny, ny, ne)]

(ny» My, Ne) = arg
Ny, Ny, Ne€lp5

(50)

where 1 is the size of the training set, n, = 1+ ny + n, + n,
Ls = {1, 2,...,25},andRSS is the residual sum of squares. The
latter is computed from the output predicted by the estimated
model using the predict .m MATLAB function.

PEM + AICC. The same as above, but now the model orders are
chosen by the corrected version of the Akaike criterion AICC
(Hurvich & Tsai, 1989), i.e.

S.t.ny = ne, ny < ny,

e+ )
e —np—2
+ n¢ In[RSS (ny, ny, ne)]

(1, fiy, fle) = arg  min
Ny, Ny, Ne€lp5

s.t.ny, =ne, ny < ny.

299
T T
100 E#1 i i
10 b + + 1
5 1E ‘ 1
01k : é : é = ==
L . A L T
0.01 + L 1 L L 3
Sub+BIC Sub+AIC Sub+AICC PEM+or2 Stable SplinePEM+BIC PEM+AIC PEM+AICC
. .
7 I :
10000 F + i
o 1000 F
5 100 | +
10 F : Lo : é : E
1 *é é é i é —J 1
==
01 EE T Sl O o L — T
Sub+BIC Sub+AIC Sub+AICC PEM+or2 Stable SplinePEM+BIC PEM+AIC PEM+AICC
100 b3 B I 4
10 F 9
o * H
H 1k : 1
i : Ei‘ [ T
L ]
0 - i 4 i i i
L L L L L
Sub+BIC  Sub+AIC Sub+AICC PEM+or2 Stable SplinePEM+BIC PEM+AIC PEM+AICC
+ b ‘ ‘
10000 g4 - $ : Fooo g
1000 % 1
T ; £ L i ; é 3
TR Ll oL a4 |
1 b : . L —T E
3 SRR =g e et A == Lnd AU at st
001 L I . I I I L I 3
Sub+BIC  Sub+AIC Sub+AICC PEM+or2 Stable SplinePEM+BIC PEM+AIC PEM+AICC
.
10000 H ¥ E
1000 F it : ]
&~ 100 F 3; ]
o 10 | + i 1
1TESS %I T =t : s
01 fF i i TS I Lt . il
i Il Il Il Il Il Il
Sub+BIC  Sub+AIC Sub+AICC PEM+or2 Stable SplinePEM+BIC PEM+AIC PEM+AICC

Fig. 5. Five Monte Carlo studies using ARMAX models: boxplot of errors in
reconstruction of the system impulse responses.

(fy, fiy, i) = arg  min
Ny, Ny, Ne€lys

+ 1 In[RSS (ny, ny, ne)]

log(n;)n,

st.ny =n,., ny <ny. (51)

e ARX + AIC. This estimator determines the predictor coefficients

via ARX modeling. The model orders of the two polynomials
defining the predictor structure are equal and are chosen by
the AIC. The maximum allowed lengths of the predictor impulse
responses are 40 when the size of the data set is 200 and 60 in
the other situations.

e ARX + AICC. The same, except that the model orders are chosen

by the AICC.

o ARX + BIC. The same, except that the model orders are chosen

by the BIC.

e Sub + AIC. This estimator determines the system impulse

responses by using a subspace algorithm which relies upon the
results achieved by ARX + AIC. The order of the state-space
model is automatically determined using the singular value
criterion; see also Chiuso, Pillonetto, and De Nicolao (2008),
Chiuso (2007) and Bauer (2001).

e Sub + AICC. The same, except that the subspace algorithm relies

on the predictor coefficients obtained by ARX + AICC.

e Sub + BIC. The same, except that the subspace algorithm relies

on the predictor coefficients obtained by ARX + BIC.

6.5. Results

Figs. 4 and 5 illustrate the performance of the estimators.

e PEM + BIC. The same as above, but now the model orders are
chosen by using the BIC, i.e.

We start by commenting on the results regarding prediction
performance. The panels of Fig. 4 report boxplots of {errj;} for
the eight different estimators, while Table 3 reports the Errq
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Table 3
Five Monte Carlo studies using ARMAX models. Average prediction error Err; as a function of experiment number and employed estimator.
Experiment ARX + BIC ARX + AIC ARX + AICC PEM + or1 Stable spline PEM + BIC PEM + AIC PEM + AICC
#1 1.03 1.03 1.02 1.00 1.01 1.01 1.17 1.16
#2 1.12 1.38 1.13 1.07 1.10 1.42 447 293
#3 3.34 8.58 6.52 1.22 1.61 1.74 7.21 6.12
#4 7.72 356 19.1 1.89 7.71 12.3 117 113
#5 208 130 437 6.77 11.1 103 3.93e3 1.93e3
Experiment #2 Experiment #2 (reduced data set)
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Fig. 6. Monte Carlo study #2 (left) and its variant with halved size of the data set (right): Err; (k) (top), i.e. average error in k-step-ahead prediction, and COD(k) (bottom),
i.e. average coefficient of determination relative to k-step-ahead prediction, using PEM + oracle (e), PEM + BIC (*), PEM + AICC (¢) and Stable spline (o).

values obtained. The performance reference is represented by
PEM + or1. The results obtained by the PEM suggest that, except in
experiment #1, the AIC performance is really poor. This is in perfect
agreement with what already discussed in Hurvich and Tsai (1989)
and in Section 2 of the present paper: the negative bias affecting
the estimate of the Kullback-Leibler divergence often leads to
overfitting. When the AICC is used, the results improve, but only
marginally. The performance of PEM + BIC is much better than that
of the AICC-based predictor, even if in the last two experiments
it performs much worse than the oracle. Similar considerations
hold for ARX-based estimators with the AIC and AICC, whose
performance is largely unsatisfactory when the training set is not
generated using WN. The best performance is instead obtained
by the Stable spline. In fact, the Erry values achieved by using
the approach proposed in this paper are always close, or at least
comparable, to those of PEM + or1. Notice also that, in the last
experiment, the Stable spline estimator’s average performance is
better than that of PEM + BIC by a tenfold factor.

To further illustrate the advantages of the stable spline esti-
mator, we focus on Experiment #2, considering Errq(k) relative
to the k-step-ahead prediction. Fig. 6 (top left) displays Errq(k)
obtained by Stable spline, PEM + BIC, PEM + AICC, and PEM
equipped with an oracle. Similarly to PEM + or1, the latter pro-
vides, for any value of k, the best k-step-ahead predictor obtain-
able using the PEM. It is apparent that Stable spline outperforms
all the other implementable approaches, with its performance
close to that of the oracle. Fig. 6 (bottom left) displays COD(k) ob-
tained in the same experiment by Stable spline, PEM + BIC, and

PEM equipped with an oracle. The stable spline performance is
similar to that of the oracle. In addition, the forecast obtained by
the stable spline estimator captures much more output variance
than PEM + BIC. Consider now a variant of Experiment #2, where
only half of the identification data are available to the estimators
(100 output data in place of 200). In this case, Stable spline is im-
plemented setting the predictor length q as well as r in (33) to 30.
The results are reported in the right panels of Fig. 6 and confirm
the robustness of the stable spline estimator.

Finally, we consider the results regarding performance in
system impulse response reconstruction. The panels of Fig. 5
report boxplots of {errj,} obtained by the eight estimators, while
Table 4 reports the corresponding Err, values. The reference now
is PEM + or2. Even in this scenario, Stable spline outperforms all
the other implementable approaches, with its performance always
close to that of the oracle. The performance of Sub is satisfactory
only when the input u, used to generate the training set, is WN
(experiment #1 and #2) and ARX + AICC is used. However, even in
these cases, Err-, is almost twice as large as that achieved by Stable
spline. In the other three experiments, Sub performs very poorly,
irrespective of the model order selection criterion employed. The
PEM performance is really unsatisfactory when the AIC or AICC is
used, while PEM +- BIC appears the best competitor of Stable spline.
However, in experiments #2, #3, and #4, Err, is 2 or even 3 times
larger than that achieved by Stable spline, while it is 30 times larger
in the last experiment. In particular, notice that even when the
median of the distribution of the errors is comparable, PEM + BIC
leads to longer tails of poor estimates.
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Table 4
Five Monte Carlo studies using ARMAX models. Average system identification error Err as a function of experiment number and estimator employed.
Experiment Sub 4+ BIC Sub + AIC Sub + AICC PEM + or2 Stable spline PEM + BIC PEM + AIC PEM + AICC
#1 0.42 0.23 0.24 0.13 0.18 0.22 0.73 0.67
#2 0.85 1.24 0.57 0.24 0.32 0.62 9.06e5 21.2
#3 4.22e7 4.41e38 9.12e12 0.28 0.36 0.95 15.2 8.8
#4 3.51e54 3.42e56 3.48e56 0.21 0.31 0.72 78.2 42.6
#5 5.34e98 2.41e82 3.08e97 0.45 0.72 21.1 1.21e3 1.37e3
Table 5 101 F T T =
Monte Carlo studies using the Runge function. Err, (average system identification ! ! o o . S
error) as a function of the input used to generate the data set for identification (WN S ' ‘
or SW) and estimator employed. « 100 F Gt % i E
Input PEM + or2 Stable spline PEM + BIC PEM + AICC ° T : i R [ =
= ! — -
WN 0.24 0.17 0.73 0.71 1071 kot = B
SW 0.35 0.23 13 19 : T B
SR
PEM+0r2 Stable Spline PEM+BIC PEM+AICC
Remark 6. We have also repeated the five numerical studies using
Stable spline with the dimension of the parametric part of the ) ‘
model fixed to 2, i.e.| = 2 in (24). The results (not shown) are very 10 :
close to those obtained when the number of poles with negative % 3
real part is chosen by the AIC. o 0b ; E ; T f‘ ]
v i P ‘
7. Numerical experiments involving infinite-dimensional g ‘ T
models 101 £ b PRI : Lk : 4
PEM+0r2 Stable Spline PEM+BIC PEM+AICC

To further illustrate the flexibility of the stable spline estimator,
we consider the identification of an output error model whose
impulse response is infinite dimensional. In particular, the
measurement model is

o0
Ye= Z hiue_; + ey, (52)
=1

where {h}'} is a translated and scaled version of the well-known
Runge function (Runge, 1901), i.e.

. 2\ !
h}‘:(1+25<l “)) L i=1,2,..., (53)
n

with u a positive scalar.

Two Monte Carlo studies of 500 runs are considered in which
the system input is WN or SW, while the innovation variance is
always 1. At each Monte Carlo run, p in (53) is randomly drawn
from a distribution which is uniform in [5, 25]. Then, the training
set consists of 300 input-output pairs collected after getting rid of
the initial condition effect.

Employed estimators are PEM + or2, PEM + BIC, PEM + AICC,
and Stable spline, with ¢ = r = 60, implemented as described in
the previous section. In this way, information regarding the output
error model structure is not provided, i.e. estimators search for a
suitable model within the class of ARMAX models.

We just focus on performance regarding the quality of the im-
pulse response reconstruction. The panels of Fig. 7 report boxplots
of {errj;} for the four different estimators, while Table 5 re-

ports the Err, values. Remarkably, in both of the experiments,
Stable spline performs better than the PEM equipped with the
oracle. To understand this point, let us recall that there exists
an extensive literature in the field of numerical analysis (see
e.g. Berrut and Trefethen (2004); Wahba (1990)) showing that
(smooth) functions can be efficiently and arbitrarily well approx-
imated by combinations of splines (or of particular polynomials)
centered in suitable nodes. Notice also that Proposition 3 shows
that the estimate from the nonparametric estimator adopted in
this paper is indeed the linear combination of (filtered versions

Fig. 7. Monte Carlo studies using the Runge function: boxplot of errors in the
reconstruction of the system impulse responses using WN as input (top panel) and
SW (bottom panel).

of) stable splines, the number of nodes being equal to the num-
ber of measurements. Instead, insofar as parametric models are
concerned, it is possible to assess that a good approximation of
the Runge function, e.g. within a 5% relative error, requires a
rational transfer function of order close to the value of w. For
instance, if 4 = 20, a model (searched inside the ARMAX
class in this experiment) containing roughly 60 parameters is
needed. On the downside, the estimated parameters of a high-
dimensional model may have large variance, especially with small
data sets. This not only exposes the PEM to the risk of local minima,
but may bias the estimates of PEM + oracle. This explains why in
this case PEM + oracle is also outperformed by the stable spline
estimator.

8. Conclusions

The approaches that are currently used for linear predictor
design postulate finite-dimensional models which are identified
by standard techniques such as least squares and the PEM. So far,
nonparametric kernel-based approaches have been mainly used
for nonlinear system identification; see e.g. Goethals, Pelckmans,
Suykens, and De Moor (2005), Ha Quang, Pillonetto, and Chiuso
(2009) and Young et al. (2001). In this paper, which is a follow
up of Pillonetto and De Nicolao (2010), we have shown that linear
system identification can also benefit from the flexibility of these
methods. In particular, we have extended a recently proposed
nonparametric paradigm to design the optimal predictor and to
identify discrete-time models via prediction error minimization
within infinite-dimensional spaces of candidate models. Predictor
coefficients are modeled as the convolution between a Gaussian
process, which incorporates information on BIBO stability, and a
low-order finite-dimensional model which is used to capture high-
frequency poles. The predictor structure, as well as the unknown
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hyperparameters characterizing the prior, are estimated from data.
Then, according to an empirical Bayes paradigm, estimates of the
predictor and system impulse responses are obtained in closed
form.

In the numerical experiments, the performance of the nonpara-
metric approach is remarkable, also in view of the fact that in
almost all the case studies the PEM approach considers a finite
number of competitive models among which the true model is
present. As discussed in Section 2 and also in Leeb and Pétscher
(2005) and Pillonetto and De Nicolao (2010), the model selection
required by the PEM may prove critical. In fact, a joint likelihood,
associated with a much richer parametric structure, has to be han-
dled. The nonparametric approach, instead, searches the estimate
within a much larger and infinite-dimensional space. However, the
choice of the regularization parameters, whose tuning plays a role
similar to model selection, is performed by optimizing a marginal
likelihood defined in a low-dimensional space. Furthermore, in the
likelihood maximization, the uncertainty of the unknown impulse
response is accounted for.

In future work, we will discuss the asymptotic performance of
our nonparametric estimator by obtaining, in the spirit of Smale
and Zhou (2007), explicit learning rates of important classes of
impulse responses, such as sums of exponentials.

Appendix A

In Section 2, the unknown system impulse response displayed
in Fig. 1is the sum of ten exponentials, i.e.

10
h(t) =) Arexp(—ait)

i=1
where

A=1[19.6, -8.6,-3.3,-5.9, -3.1,9.7, —19, 11, 7.15, 1.8]
a=1[9.9,75,51,53,57,94,7.3,7.8,7.4,5.3].

In particular, {A;} and {«;} are realizations from mutually
independent random variables: each A; is drawn from a zero-mean
Gaussian with standard deviation (SD) equal to 10, while each «;
comes from a uniform distribution with support in [5, 10]. The
number of available data is n = 200. The first 100 consist of pure
measurement noise, and are used by the parametric estimators
described below to handle initial condition effects. The last 100 are
collected on an uniform grid on the unit interval after applying the
Dirac delta atinstant 0. The noise SD is 5% of the maximum absolute
value of the noiseless output.

As for the Monte Carlo study, at each run a different impulse
response h is randomly generated, and 200 output measurements
are generated by the same stochastic machinery described above.
As regards the parametric estimators, the estimate of h is obtained
by PEM + AIC using the oe . m function of the System Identification
Toolbox for MATLAB, by IV + YIC, and by IV + BIC using rivid . m’
andrivbjid.m,respectively, asimplemented in the Captain Tool-
box for MATLAB (Pedregal, Taylor, Tych, & Young, 2009). The
continuous-time implementation instead exploits the function
rivcbjid.m, equipped with the BIC, still as implemented in the
Captain Toolbox. The maximum allowed order of the two poly-
nomials defining the output error model is 10, so 100 candidate
models are considered. Regularized nonparametric estimation
instead uses the cubic spline kernel (in this case just obtaining the

5 Such a function implements three different versions of YIC. The one providing
the best results has been selected.

first 100 impulse response coefficients and setting the other ones
to zero) and the stable spline kernel. Let h and ﬁj be h sampled
on 0.01, 0.02, ... and its estimate obtained at the j-th run, respec-
tively. Then, the relative root mean square error at the j-th run is

llh — hjll
Ikl

where | - || is the £;-norm that is numerically approximated using

the first 200 components of h and flj. Finally, the average error is
defined by

errj = , (54)

r=— Y err. 35
300 Z] ! (59)

Appendix B. Preliminaries

First, some additional notation is introduced. Dependence on
™, ¥4, u, and sometimes also on y* is omitted in what follows to
simplify the notation. Let us denote by A € R"™*7 and B € R"*¢
the matrices obtained by retaining only the first ¢ columns of A
and B, respectively. Similarly, K € R99 and K, € R?*? contain
only the first ¢ rows and columns of Ky and K,, respectively. In
addition, we use f and g to indicate g-dimensional random vectors
in correspondence with f and g subject to the constraints fi, = g =
0 for k > q. If such constraints hold, one has

yt =AWHf +Bg +e. (56)

Let us also recall the following “pseudo-autocovariance” of y+,
already introduced in (40):

VIy*l = MAGOKAY " 4+ ABK,B" + oI,
which, if (56) holds, is equivalent to
VIy"l = MAGOKAT (v + A2BKB" + oI, (57)

Proof of Proposition 3. We use A; and B; to denote the i-th row of
the matrices A and B. The following preliminary lemma is needed.

Lemma 7. Let the roots of Py in (24) be strictly inside the unit
circle, with the kernels Ky and K, defined as in (25) and (26). Then,
provided that {y.} and {u.} are zero-mean, finite-variance stationary
stochastic processes, the operators {A;} and {B;} are a.s. continuous in
the topology of 4 and .

Proof. Recall that a functional acting on a reproducing kernel
Hilbert space (RKHS) is continuous if its application to the kernel
yields a function belonging to the RKHS; see e.g. Aronszajn (1950).
Then, it suffices to show that hy = A;K (-, k) € # (a.s.). The same
argument will hold for A; and B;.

Let us first consider

¢ L
B =D AuKrG. k) = D _yioiKr . ).
j=1 j=1

This is a finite linear combination of shifted kernel functions and,
using the fact that the y; s are a.s. finite, it is (a.s.) in 7. In addition,
in view of the so-called reproducing property (Aronszajn, 1950),
Ihgl1%, = i1 Y1 Yi-iy1-iKs (i, j). A sufficient condition for
almost sure convergence of a sequence of random variables x,, is
that, Ve > 0,

o0

ZsupIPme — x| > €]l <0 (58)
=1 m>4£
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(see e.g. Loeve (1963) [Ex. 14(b), p. 174]). From (15) and (25), and
the fact that P, has roots strictly inside the unit circle, we notice
that the elements of Ky decay exponentially fast as a function of
both row and column indices. Now, setting x, = hﬁ and|-| = ||~||3gj
in (58), we have that

Zsup P[Ih™ — h*)l g > €]

=1 m=t

Z sup P |:Z Z%—i%—ij(i,j) > 82:|

=1 m=¢ i=t j=¢

m m .
o ;E|J/1fiY1fj||Kf(la])|

i={j=¢
< sup 5
=1 m=t €
o] ,02 o0 00
<> 5D Ikl < oo,
= ¢ = j=¢

where the Markov inequality, a bound on the second moments
(Ely1—iy1-jl < p% where p? is the variance of y;), and the expo-
nential decay of |K; (i, j)| have been used. This shows that hf is(a.s.)
a Cauchy sequence in the topology of %, and thus has (a.s.) a limit
in the space. O

Now, as regards the first part of the proof, we will derive the
minimum variance estimates of predictor impulse responses under
the truncated model given by (56). Then, we will obtain (36) and
(37) by letting g tend to oo so that the finite-dimensional prior on
f and g tends (a.s.) to the original one on f and g.

If (56) holds, using the factorization

PO &) = POy 1,y 8)
P02y, [, &)PUilf. 8),
one easily obtains
IR ETK'g
zxf 212

Lyt f.8) = —loglp(y™, f,§)] =

]
2 log det(anfIG) + - log det(ansz)
nw-ﬁ—&w

o (59)

1
+ 3 log det2mol,) +

where the existence of K7' and K;"! derives from the fact that
the stable spline kernel is strictly positive; see Pillonetto and De
Nicolao (2010) for details. Notice that, for known y™, f and g are
Gaussian, and that the Hessian of L with respect to f and g is

Y+ o 2[ABI"[AB].  (60)

02 Lt ) = diag{a 2K, 152Ky

Hence, the minimum variance estimates of f and g are
MV

() -

_(MKAT

B szgBT

o2 [8;§L(y+, , .)]71 [AB]Ty*

) VIy* Dy (61)

where the last equality exploits the matrix inversion lemma
(Anderson & Moore, 1979). Finally, (36) and (37) are obtained by
letting g tend to co in (61) and noticing that in this way V[y+] KfAT
and KB" tend to V[y*], KsAT and K,B', respectively, and that all

these limits are a.s. well defined under the same assumptions as in
Lemma 7°.

Let us now prove the correspondence with Tikhonov regulariza-
tion in RKHS illustrated in (35). First, recall that an RKHS on X is the
Hilbert space of functions which are the completion of the mani-
folds given by all the finite linear combinations Z:zl miK (-, t;) for
all choices of | € N, m; € R, and t; € X, with inner product

< Z m;iK (-, t;), Z leK(', Sj) > = Z mian(tj, Sj). (62)
i J ij

Now, we define an RKHS .# of objects in R®*? whose kernel Q :
(N x {1,2}) x (N x {1, 2}) — R is defined as follows:

[Qlinjt = AfKr (i J), (63)
[Qli2j2 = };Kg (i, j), (64)
[Qlinj2 =[Ql2j1 =0, ijeN. (65)
If h = [hy hy], with hy, hy € R*, in view of (62)—(65), it holds that

”hZ”yfg
2
)Lg

2
Ihil1%,

2
Af

1%, =

Problem (35) can now be rewritten as follows:

MY _ _y*t = ch)?

= arg min + [1h1% (66)
where C : s# +— R",from Lemma 7,is a linear and (a.s.) continuous
operator defined for any h by Ah 4+ Bh,. Now, the same rationale as
in the proof of Theorem 1.3.1 in Wahba (1990) can be followed to
show that the solution is a linear combination of the representers
of the n linear functionals, defined in our case by the rows
of C. Recalling that the representer of a linear and continuous
functional acting on an RKHS can be obtained by applying it to the
reproducing kernel, we conclude that ™V belongs to the subspace
generated by the columns of QCT. Replacing h and ||h||?%0 in (66)

with QCTc and ¢T CQC”c, respectively, we obtain that c must satisfy
(CQC" + 0%l =y*

Using (63)-(65), and the definition of C, (36) and (37) are obtained,
and this completes the proof. O

Proof of Proposition 4. Given the function h on a finite-dimen-
sional domain, whose Hessian matrix afh(x) is constant and pos-
itive definite, Laplace’s method provides the following expression
for calculating exponential integrals:

+o0o aZh —1/2 R
/ e "™dx = det [2"—] e "W, (67)
- b

oo

where X minimizes h(x) with respect to x; see e.g. De Bruijn (1961).
Then, if (56) holds, using (67), we obtain

92 10", )
—mmwn=1mm{“z)
2 27
+ Ly, M, M, (68)

6 The proof uses the same arguments used in the proof of Lemma 7 and is
therefore omitted.
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with L given by (59), af?gL by (60), and fMV, g by (61). Using
Lemma 19 in Bell and Pilionetto (2004), one has

2 1oyt
02.L0", )

1 1 o
3 log det + 3 log det(27 AfKy)

1 .1
+3 log det(27 A7 Ky) + 3 log det2mo?l,)

= % logdetrV[y™]), (69)
while, after simple computations which exploit the equality
In — MAKAT(VIy™ ) ™" — AZBKB (VIy™ ]~
= (Vly'D,
we obtain
(fMV)TI“(fﬁfMV (gMV)TkglgMV Iyt —Af _ B§||2
2} 212 202

1 o
= E(y+>T<VI;y+D“y+. (70)
This allows us to conclude that
~ loglp(")] = 5 In(eti2 Iy 1)) + 5 ) (Ply* )~y (71)

By letting g tend to oo, V[y™] tends to V[y™] in (71), where, as
above, the limit is (a.s.) well defined under the same assumptions
as in Lemma 7, and (39) is finally obtained. O

Remark 8. Compared with (39), (68) is especially efficient if ¢ <
n, since it allows one to compute the marginal likelihood by
inverting matrices of size g x g. On the other hand, using (39) may
lead to a more numerically robust method, since it can be easily
seen that the matrix (60) is generally more ill conditioned than
(57).
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