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Abstract—The early stages of the drug development process are
often characterized by a limited number of subjects participating
the study and a limited number of measurements per individual
that can be collected, mainly due to technical, ethical, and cost rea-
sons. The so-called dose escalation studies, performed during phase
I, usually involve about 40 subjects or less, and feature observations
at no more than three (rarely four or five) dose levels-per-subject.
Depending on the complexity of the underlying pharmacokinetics,
simple linear models or nonlinear ones (e.g., power, Emax mod-
els) may be appropriate to describe the relationship between the
metrics of systemic exposure to the drug (Cmax , AUC) and the ad-
ministered dose. However, in such data-poor scenarios, formulat-
ing models based on parametric descriptions is generally hard, and
may easily result in model misspecification. Hence, nonparametric
or “model-free” solutions, borrowed from the machine learning
field, are deemed appealing. We resort to Gaussian process theory
to work out Bayesian posterior expectations of a population (a.k.a
mixed-effects) regression problem, namely Population Smoothing
Splines (PSS). We show that in seven experimental dose escalation
studies, Population Smoothing Splines improve on three widely
used parametric population methods. Superiority of the model-
free technique is confirmed by a simulated benchmark: Popula-
tion Smoothing Splines compare very favorably even with the true
parametric model structure underlying the simulated data.

Index Terms—Bayesian population model, dose escalation,
Gaussian process, mixed effects model, phase I trials.

I. INTRODUCTION

ONE of the most interesting identification problems aris-
ing in biomedical data analysis is the characterization of a

population of subjects. Classical examples are found in pharma-
cokinetics (PK) and pharmacodynamics (PD), where multiple
subjects are sampled in order to obtain both the average and
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individual response to the administered drug. If a sufficiently
large number of samples are collected in each individual, it is
possible to identify a distinct model for each subject. The typi-
cal response of the population could then be obtained from the
distribution of the individual models. However, the specific na-
ture of biomedical experiments often poses technological cost
or ethical constraints that permit to collect only few data in each
subject. When the separate identification of individual models
is not viable, an effective solution is provided by the so-called
population modeling approach [1]–[3].

Population methods analyze all the data jointly, yielding an
average model and individual ones, as well as an estimate of the
inter-individual variability [1]–[9].

In the drug development process, the use of population ap-
proaches has been recommended by the Food and Drug Ad-
ministration, in order to obtain a reliable assessment of intra-
and inter-individual variabilities [10]. However, the use of such
models is not restricted to pharmacology but is being extended to
data analysis problems arising in several contexts ranging from
medical imaging [11] and diagnosis of metabolic disorders [12]
to genomics [13].

At the early stages of drug development or when the mecha-
nistic understanding of the biological and physiological process
involved in the drug action are not available, reliable paramet-
ric models [14]–[18] may be difficult to formulate. Hence the
need for flexible nonparametric population approaches that re-
duce the structural assumptions to a minimum [19]. Along this
direction, an example is provided by the so-called semipara-
metric methods that model the response curves as regression
splines [20], [21]. A potential difficulty underlying the use of
these techniques is the optimization of the number and location
of the knots of regression splines, which could suffer from the
presence of local minima. More recently, in order to develop a
fully nonparametric approach, within a Bayesian paradigm it has
been proposed to model the individual curves as realizations of
discrete- or continuous-time stochastic processes, e.g., random
walks or integrated Wiener processes [22], [23]. In these works,
each individual curve is seen as the sum of an average curve
(common to all subjects) and an individual shift (varying from
subject to subject). In particular, both the average curve and the
individual shifts are assumed to be Gaussian processes whose
statistics are specified by few hyperparameters. For instance, if
the curve is an integrated Wiener process, the hyperparameter
is the corresponding intensity. Hyperparameter tuning can be
carried out via likelihood maximization. For a given choice of
the hyperparameters, the posterior expectations of the processes
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given the data provide point estimates of the average and in-
dividual curves. In particular, when the prior is formulated in
terms of integrated Wiener processes, the estimated curves are
cubic splines [23]. Recently, a Bayesian MCMC approach able
to return the full posterior of hyperparameters and unknown
functions has been also worked out [24].

Dose-escalation procedures are often conducted in the phase I
of clinical development of experimental drugs, especially when
the compound is given to human subjects for the first time. In
this context, human healthy subjects are typically given the ex-
perimental drug in different occasions, at increasing dose levels,
to assess safety, tolerability, and pharmacokinetics. In addition
to this, markers of pharmacological activity can be evaluated for
helping the identification of the clinically relevant doses and/or
systemic exposure [25], [26].

In case of first-time-in-human studies, the escalation starts at
such a dose that no pharmacological response is expected. Doses
are then gradually increased, carefully monitoring safety and tol-
erability, up to a stopping limit. For experimental drugs, metrics
of systemic exposure, such as peak plasma concentration of the
compound (Cmax ) or area under the plasma concentration-time
profile AUC), are often used as surrogate of safety stopping lim-
its. During the assessment, pharmacokinetic data are collected
in order to propose the next dose level that can be administered
without exceeding the predefined pharmacokinetic limits in the
same subjects or in a different cohort of subjects [25], [27].

In recent years, there has been a growing interest in Bayesian
methods for the sequential estimation of either the toxicity prob-
ability [25], [28]–[33], or the relationship between dose and
metrics of drug exposure, both in the parametric [34] and non-
parametric case [35], [36] (the latter two not resorting to a
population approach). In the field of cancer dose finding trials,
a notable example is provided by the work of O’Quigley and
coworkers [28], which resort to parametric models (e.g., logis-
tic) of the toxicity probability as a function of the dose. Although
a particular parametric model of the dose-toxicity relationship
may be misspecified, their approach allows efficient estimation
of so-called maximum tolerated dose, which is a major goal in
dose finding studies.

In real dose escalation scenarios, limited number of subjects
(∼ 10 to 40) and samples-per-subject (∼ 1 to 5) is available.
Selection of the most appropriate dose-exposure model is there-
fore a crucial issue. The purpose of this paper is to provide a
novel methodology that overcomes possible model misspecifi-
cation issues during a dose-escalating process. To achieve this
objective, we resort to a flexible, model-free approach based
on Gaussian process theory. Our nonparametric technique relies
on a mixed-effects (a.k.a. population) approach, with the aim
to characterize the dose-exposure relationship of the subjects
enrolled in the trial as well as a generic subject who was never
observed. Three parametric Bayesian population models were
used as a benchmark for the model-free method. Model com-
parison based on complexity criteria and cross validation was
applied to identify the most appropriate model. We compare
performances on both simulated and experimental datasets ob-
tained for GlaxoSmithKline investigational compounds entering
the clinical phase.

TABLE 1
DESIGN CHARACTERISTICS OF THE SEVEN DOSE ESCALATION STUDIES

The paper is organized as follows. A description of materials
is provided in Section II. Section III describes the Population
Smoothing Splines (PSS) method. Results obtained in exper-
imental and simulated scenarios are illustrated in Section IV.
Section V discusses our model-free approach to modeling dose
escalation data. Estimation algorithm, details of the simulation
study, and references to the source code in R language [37] are
reported in the Appendices.

II. MATERIALS

Methods described in the present paper were tested in real
scenarios. Experimental datasets from seven different dose es-
calation studies were used. Data refer to compounds in early
clinical development proposed for the treatment of psychiatric
disorders. Each subject received placebo and up to three or five
ascending doses of the experimental drug (see Table I). The
initial doses were chosen as an appropriate submultiple of the
expected pharmacologically active dose. Subjects were recruited
until predefined safety or pharmacokinetic stopping limits were
reached. These limits are typically defined using data collected
in preclinical toxicological experiments. Safety stopping limits
are defined as a given incidence and severity of unwanted effects
(as expected based on preclinical experiments) in the subjects
enrolled in the dose escalation study. The pharmacokinetic stop-
ping limits are defined as the metrics of systemic exposure to the
drug (peak plasma concentration (Cmax ), area under the plasma
concentration-time curves (AUC)) calculated in animals given
the highest dose level without safety/tolerability concerns (typ-
ically, the maximal dose level at which no adverse effects were
observed in animals). The seven studies differed in the number
of subjects (12 to 40), number of observations per subject (1 to
5), total number of observations (33 to 100), number of dose
levels per subject (3 to 5), and dose range (see also Table I).

Additionally, 300 simulated studies generated with three para-
metric models described in Section III (100 datasets each) were
analyzed in a comparative benchmark.

III. METHODS

Consider the problem of estimating continuous functions
zj , j = 1, . . . , N from sparse measurements Y j

k taken at dis-
crete doses Dj

k on N subjects. In the following, the mathemat-
ical relationship between doses and measurements (e.g., met-
rics of systemic exposure such as peak concentration, Cmax , or
area under the plasma concentration-time curve, AUC) will be
modeled after a logarithmic transformation: yj

k := log(Y j
k ) and
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dj
k := log(Dj

k ). For the jth subject, the following measurements
are available:

yj
k = zj (dj

k ) + vj
k , k = 1, . . . , nj

where vj
k are mutually independent, normally distributed mea-

surement errors with zero mean and variance σ2 .
Individual curves zj (d) may be decomposed as:

z̄∗(d) = φT (d)ζ + z̄(d)

zj (d) = z̄∗(d) + z̃j (d) (1)

where φT (d) = [1 d] and ζ ∼ N(0,∞I). Note that the term
z̄∗(d), which does not depend on j, represents the so-called
typical curve, that is, the typical behavior of the population.

In vector notation, (1) is expressed by

z̄ :=
[
z̄(d1

1) . . . z̄(d1
n1

) . . . z̄(dN
1 ) . . . z̄(dN

nN
)
]T

z̃ :=
[
z̃1(d1

1) . . . z̃1(d1
n1

) . . . z̃N (dN
1 ) . . . z̃N (dN

nN
)
]T

v :=
[
v1

1 . . . v1
n1

. . . vN
1 . . . vN

nN

]T

Φ :=
[
φ(d1

1) . . . φ(d1
n1

) . . . φ(dN
1 ) . . . φ(dN

nN
)
]T

y = Φζ + z̄ + z̃ + v.

Unknown functions z̄(d) and z̃j (d) are modeled as Gaussian
stochastic processes with zero mean and autocovariance func-
tions R̄(d, δ) and R̃(d, δ), respectively (defined in Appendix A).
More precisely, z̄(d) and zj (d) are assumed to be integrated
Wiener processes:

˙̄x(d) = Ax̄(d) + Bw̄(d) x̄(0) = 0

z̄(d) = Cx̄(d)

˙̃x
j
(d) = Ax̃j (d) + Bw̃j (d) x̃j (0) ∼ N

(
0,

[
σ2

0 0
0 0

])

z̃j (d) = Cx̃j (d)

A =
[

0 1
0 0

]
B =

[
0
1

]
C = [ 1 0 ] .

Random processes w̄(d) and w̃j (d) are zero-mean white Gaus-

sian noises with variance λ̄
2 and λ̃

2
, respectively. The variance

parameters λ̄
2 , λ̃

2
, σ2

0 , and σ2 are also called hyperparameters
of the model. Moreover, w̄(d), w̃j (d), x̄(0), x̃j (0), ζ, and vj

k are
assumed independent ∀j, k.

Note that the term φT (d)ζ in (1) allows modeling completely
uncertain initial conditions of x̄(d), which could not be obtained
by imposing infinite variance on x̄(0) (see [23] for a detailed
discussion).

In a Bayesian setting, the above stochastic model is widely
used to formalize prior knowledge about the smoothness of an
unknown function. As a matter of fact, the second derivatives
of z̄(d) and z̃j (d) have finite variance, which is equivalent to
assume that realizations of z̄(d) and z̃j (d) are continuous up to
the first derivative. According to the Bayesian paradigm, the es-
timate is just the posterior expectation given the observed data y.
Assuming hyperparameters as known, the posterior expectation

can be obtained in closed form since the stochastic model is com-
pletely linear. Notably, the solution yields so-called PSS [23],
that is, piecewise cubic polynomials. As noted elsewhere, PSS
can be interpreted as a kind of regularization network, i.e., a ba-
sis function network whose weights are computed by solving a
Tychonov-type regularization problem [38], [39]. The detailed
estimation procedure is given in Appendix A, where also the
issue of hyperparameter tuning is addressed.

Moreover, population parametric models were used to de-
scribe the dose-measurement relationship. In particular, we
explored:

1) A power model:

Y j
k = αj (Dj

k )β j

(1 + V j
k )

2) An Emax model:

Y j
k =

Ej
maxD

j
k

Ej
50 + Dj

k

(1 + V j
k )

3) A Hill (sigmoidal) model:

Y j
k =

Ej
max(D

j
k )γ

(Ej
50)γ + (Dj

k )γ
(1 + V j

k ).

The three parametric models were fitted with WinBUGS
1.4.3 [40], whereas PSS using R 2.8.0 [37]. In all cases, a
Bayesian population approach was adopted for model estima-
tion. Noninformative priors were chosen for population param-
eters and measurement error variance. Priors of interindividual
variances in the parametric models were automatically tuned
through a preliminary two-stage fitting.

IV. RESULTS

A. Analysis of Experimental Dose Escalation Datasets

The PSS method was tested on seven experimental dose-
escalation datasets described in Section II and labeled A to
G in the following. All datasets were successfully fitted. As an
example, results of parameter estimation from dataset B are pre-
sented in Fig. 1, which shows the population dose-exposure re-
lationship and 90% predictive limits superimposed on the whole
dataset. The corresponding fitting of individual data is shown
in Fig. 2 for a subset of six subjects. The population response
curve has been superimposed as a reference, so as to point out
the heterogeneity of the subjects in terms of dose-exposure rela-
tionship. Note that, given the small number of observations per
subject, the individual dose-exposure curve is a compromise
between the population curve and the individual data.

Furthermore, Fig. 3 shows estimated population curve, pre-
dictive limits and exposure data for the other six dose esca-
lation studies. Interestingly, uncertainty in the distribution of
dose-exposure relationships is accounted for by larger predic-
tive limits in dose regions where no data are available (see for
example study C). Also note that, although in study C the distri-
bution of data points at the higher doses appears shifted toward
the lower percentile, this should not be regarded as a symptom
of model misspecification: since the escalation is controlled by
safety criteria, subjects characterized by a dose-exposure curve
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Fig. 1. Population response curve relative to experimental dataset B. The
90% predictive limits, which represent the population distribution, were ob-
tained through MonteCarlo simulation. The safety cutoff is the pharmacokinetic
stopping limit (see Section I).

Fig. 2. Individual predictions for a subset of six subjects from study B. The
heterogeneity of subjects is apparent. Given the small number of observations,
the individual dose-exposure curve is a compromise between the population
curve and the individual data.

lying above the population curve are, in fact, less likely to re-
ceive high doses, as opposed to those who respond less (i.e.,
whose curves lie below the population curve).

In addition to PSS, the three parametric models described
in Section III were fitted on the seven experimental datasets.
Performances of the four approaches were evaluated by means
of three metrics:

1) Identification root mean square error (RMSE), which re-
flects goodness-of-fit (Fig. 4);

2) Bayesian information criterion (BIC), as a metric of model
complexity (Fig. 5);

3) Root mean square error obtained from cross validation
(cross-validatory RMSE) [41], to assess the predictive ca-
pabilities of PSS relative to the three parametric methods
(Fig. 6). Each dataset was split into an identification set
and a validation set, the latter including higher doses than
the former. Amount of data included in the identification
set ranged from 41% to 82% with respect to the total num-
ber of observations. Identification sets were made large
enough to allow identifiability of all four models.

B. Simulation Study

Performances of PSSs were tested in a simulated benchmark,
as detailed in Appendix B. Each parametric model (Power,
Emax , Hill) was used to generate 100 synthetic datasets. The
generating model and PSS were then fitted, and compared in
terms of identification RMSE, BIC, and cross-validatory RMSE,
so as to emphasize the contribution of goodness-of-fit, model
complexity and predictive capability to model performances.
Fig. 7 shows boxplots of identification RMSE, BIC, and cross-
validatory RMSE for each comparison, i.e., generating model
versus PSS.

V. DISCUSSION

The availability of effective nonparametric methods is of great
interest in the population pharmacokinetic field. Especially in
the early stages of drug development (e.g., phases 0 and 1), in
absence of reliable parametric models, nonparametric estima-
tion may help both establishing a dose-exposure relationship
[22] and checking for misspecification of candidate parametric
models.

The proposed nonparametric model for the population anal-
ysis of multiple experiments has been successfully employed
to model dose escalation data in phase I clinical trials, al-
though in principle our approach could as well be applied to
the analysis of longitudinal pharmacokinetic or pharmacoki-
netic/pharmacodynamic (PK/PD) data. The average curve as
well as the individual ones were modeled as Gaussian pro-
cesses. The posterior expectation of such processes, given the
available data (Bayes estimate), takes the form of a regular-
ization network [23], [38], [39], i.e., the linear combination of
autocovariance functions centered at the sampling knots. The
network weights were computed by solving a system of lin-
ear equations. Modeling the average and individual curves as
integrated Wiener processes yields estimate cubic splines as
estimates.
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Fig. 3. Population response curve and 90% predictive limits for the six experimental datasets A and C–G.

Fig. 4. Identification RMSEs obtained from the seven experimental datasets.

A thorough model comparison procedure was applied, based
on residuals, model complexity, and cross validation. Evaluating
several performance metrics allows a useful cross check when
one is faced with the problem of finding the most adequate
model for a given study.

In experimental studies, PSS robustly handled a variety of
scenarios, thus overcoming possible misspecification problems.

Fig. 5. BIC scores obtained from the seven experimental datasets.

The proposed approach yielded excellent goodness-of-fit, BIC,
and cross-validatory RMSE, performing comparably to, or bet-
ter than parametric methods. In particular, PSS achieved better
identification RMSE than parametric methods in six studies out
of seven, with PSS still better than the Power model in study
F (Fig. 4). With respect to model complexity, analysis of BIC
scores (Fig. 5) highlighted PSS as the preferred method in all
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Fig. 6. Cross-validatory RMSEs obtained from the seven experimental
datasets.

studies, although in study G the Emax model achieves com-
parable performance. Such outcome of the model complexity
analysis is not trivial at all, given the generally large number of
degrees-of-freedom of spline models [42]. Last, PSS performed
well also in cross-validation (Fig. 6). PSS won the comparison
in four cases (studies A–C, and E). Moreover, cross-validatory
RMSEs obtained with PSS were substantially equivalent to the
winning methods in the remaining three studies.

In the simulated benchmark, our nonparametric method out-
performed parametric techniques on their own home ground.
In the six comparisons relative to PSS versus Power and Emax
models (Fig. 7), PSS yielded better results even if the datasets
were generated by the parametric methods themselves. Al-
though it may look surprising that the Gaussian process ap-
proach improves on using the true model structure, there are
other recent results (see Fig. 4 in [43]) showing the effective-
ness of nonparametric estimation complemented with automatic
hyperparameter tuning (see the likelihood maximization A1 in
Appendix A) in comparison with traditional parametric mod-
eling. In our benchmark, the percentage of PSS “winning
matches” (as determined by lower identification RMSE, BIC, or
cross-validatory RMSE) ranged from 70% to 91%, with respect
to the number of simulated datasets (100 for each parametric
model).

In the three cases concerning PSS versus the Hill model,
percentages amount to 28%, 40%, and 41% relative to identi-
fication RMSE, BIC, or cross-validatory RMSE, respectively.
Note, however, that such results, in a real-life perspective, still
look comforting: If we were to analyze an experimental dataset,
without knowing that the underlying structure is that of a Hill
model, we would still be able to apply PSS successfully (in
terms of model complexity and cross-validatory performance)
with about 40% chance.

In view of the above results, an added value of PSS is evident
when few data are available to suggest a parametric model, and
one wants to perform reliable predictions: evaluation of cross-
validatory RMSE yielded percentages of PSS wins equal to

85%, 70%, and 41% (PSS versus Power, Emax and Hill models,
respectively).

Finally, it is worth adding some comments on the issue of ex-
trapolation, which is obviously fundamental in dose-escalation
studies. In this respect, one may feel more comfortable with
parametric models rather than nonparametric ones, as the lat-
ter seem more empirical. While in some cases this might be
true, when there is not enough information to support a spe-
cific parametric model (as typically happens in dose-escalation
studies), the application of a nonparametric model may be less
biased. To make an example, if the parametric model is linear
in log-log scale (i.e., a power model is assumed for the orig-
inal data), extrapolations at high doses are based on intercept
and slope parameters that optimize the fit over the whole dose
range. In case of a model mismatch, such an extrapolation is
all but safe because predictions for high doses will be affected
by the need to fit data collected at low doses. Conversely, the
proposed nonparametric approach yields linear predictions in
log-log scale (i.e., power model extrapolations in the natural
scale) that extrapolate the behavior observed at nearby doses,
without being overly affected by the need to accommodate the
data collected at lower doses. This extrapolation strategy is con-
ceptually more robust than postulating the existence of a true
parametric model. Indeed, our results from simulated and exper-
imental studies confirm the effectiveness of Gaussian process
nonparametric extrapolation.

In conclusion, the approach proposed in this paper for relating
exposure to doses is a very valuable alternative to parametric
models, especially when the amount of information collected
does not allow to resort to parametric models, or there is a
danger of model misspecification.

APPENDIX A

PSS ESTIMATION

Since the statistics of the processes (λ̄2 , λ̃
2
, and σ2

0 ), as well
as the magnitude of the measurement error (σ2), are generally
not known, an empirical Bayes scheme [44] is here adopted:

first, hyperparameters
{

λ̄
2
, λ̃

2
, σ2

0 , σ2
}

are estimated via maxi-

mum likelihood (ML), then their ML estimates are plugged into
the Bayes estimator. Therefore, since all the involved processes
(conditional on the hyperparameters) are jointly Gaussian, the
posterior distributions are Gaussian as well. The following for-
mulas provide the posterior means for the typical curve and
the individual ones. The detailed derivation of the formulas de-
scribed later, as well as the expression of the posterior variance
(not employed in the present work), are reported in [23].

Posterior means are obtained as the linear combination of
autocovariance functions R̄(t, tjk ) and R̃(t, tjk ), evaluated at the
sampling knots tjk , weighted with coefficients cj

k :

ˆ̄z∗(d) := E [z̄∗(d) | y] =
N∑

j=1

nj∑

k=1

cj
k R̄(d, dj

k ) + φT (d)b

ẑj (d) := E
[
zj (d) | y

]
= ˆ̄z∗(d) +

nj∑

k=1

cj
k R̃(d, dj

k ).
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Fig. 7. Identification RMSE, BIC, and cross-validatory RMSEs obtained from 100 simulated datasets.

Autocovariances R̄(t, tjk ) and R̃(t, tjk ) are given by

R̄(d, δ) = λ̄
2

{
d2

2

(
δ − d

3

)
d ≤ δ

δ 2

2

(
d − δ

3

)
d > δ

R̃(d, δ) = σ2
0 + λ̃

2

{
d2

2

(
δ − d

3

)
d ≤ δ

δ 2

2

(
d − δ

3

)
d > δ

.

Moreover, the variance of vectors z̄ and z̃ is expressed in
matrix form by

R̄ = V ar [z̄] :=

⎡

⎢
⎣

R̄(d1
1 , d

1
1) . . . R̄(d1

1 , d
N
nN

)
...

...
...

R̄(dN
nN

, d1
1) . . . R̄(dN

nN
, dN

nN
)

⎤

⎥
⎦

R̃ = V ar [z̃] := blockdiag
{
R̃1 , . . . , R̃N

}

R̃j :=

⎡

⎢
⎣

R̃(dj
1 , d

j
1) . . . R̃(dj

1 , d
j
nj

)
...

...
...

R̃(dj
nj

, dj
1) . . . R̃(dj

nj
, dj

nj
)

⎤

⎥
⎦ .

Weights cj
k can be interpreted as the weights of a regulariza-

tion network [38], [39], and are computed as

M = R̄ + R̃ + Σv N =
(
ΦT M−1Φ

)−1

γT γ = yT M−1y − yT M−1ΦNΦT M−1y

b = NΦT M−1y c = M−1 (y − Φb) .

In view of the above definitions, maximum likelihood (ML)
estimates of hyperparameters are computed as

ΘM L := arg minΘ
{
log(|M|) − log(|N|) + γT γ

}

{
λ̄

2
, λ̃

2
, σ2

0 , σ2
}

= ΘM L. (A1)

APPENDIX B

SIMULATION STUDY

Performances of PSS were compared to Power, Emax , and
Hill models using a MonteCarlo procedure. Each parametric
model (Power, Emax , Hill) was used to generate 100 synthetic
datasets containing 12 subjects and 3 observations/subject. A
first cohort of four subjects received doses {0.25, 0.5, 1 mg},
second one received {1, 1.5, 1.75 mg}, third one received {1.75,
2, 3.5 mg}, so as to mimic a realistic dosing schedule (such a
dose grid is also featured in experimental dataset B). Inter- and
intra-individual variances were chosen so as to yield a realis-
tic degree of heterogeneity in the simulated trials. Parameter
values used to simulate datasets are reported in Table II. A con-
stant coefficient of variation of 20% was used to generate the
measurement error.
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TABLE II
SIMULATION PARAMETERS

In order to apply the cross-validation, each simulated dataset
was split into an identification set, featuring cohort 1 (all doses)
and 2 (1 and 1.5 mg), and a validation set, featuring cohort 2
(1.75 mg) and 3 (all doses). Posterior means of the individual
response curves were used as point predictions. The RMSE
between such point predictions and the validation data were
then considered as the performance metrics.

APPENDIX C

R SOURCE CODE

The PSS method was implemented and tested using R version
2.8.0 [37] under Windows XP Professional. The PSS source
code in R language as well as example datasets are avail-
able from the corresponding author, or can be downloaded at
http : //aimed11.unipv.it/PSS.
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