UniPD – CdL in Ingegneria Informatica (a.a. 04-05) Insegnamento di SEGNALI E SISTEMI (Finesso, Pavon, Pinzoni)

Richiami sui numeri complessi

Il corso di Segnali e Sistemi e quello di Elettrotecnica presuppongono la perfetta padronanza dei numeri complessi e della loro aritmetica. Queste note sono scritte per chi ha bisogno di rinfrescare nozioni già apprese, mentre si rimanda ai testi di Matematica per una trattazione completa.

Numeri complessi

Un numero complesso a è determinato da due numeri reali α e β , la parte reale e la parte immaginaria rispettivamente. Solitamente si scrive

$$a = \alpha + j\beta$$

dove j è l'unità immaginaria per cui vale

$$i^2 = -1$$

In matematica la notazione usuale è z=x+iy, ma in Elettrotecnica i si è troppo compromessa con la corrente elettrica per poter essere utilizzata e in Segnali e Sistemi anche x,y e z sono riservate.

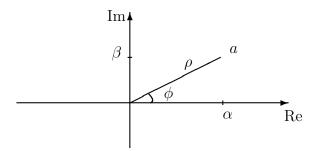
La parte reale e quella immaginaria si denotano

$$\alpha = \operatorname{Re} a$$
$$\beta = \operatorname{Im} a$$

L'insieme dei complessi si denota \mathbb{C} . Il sottoinsieme dei complessi a parte immaginaria nulla si identifica con l'insieme dei numeri reali \mathbb{R} . I complessi a parte reale nulla si dicono numeri immaginari o numeri immaginari puri. Attenzione: la parte immaginaria di $a \in \beta$ (un numero reale), non $j\beta$ (un immaginario puro).

Altro punto cui si deve prestare la massima attenzione è che l'insieme \mathbb{C} non è ordinato: non hanno alcun senso le scritture a < b o a > b tra numeri complessi. Hanno invece senso scritture del tipo $\operatorname{Re} a > \operatorname{Im} b$ o $\operatorname{Im} a > \operatorname{Im} b$ ecc. essendo, queste, relazioni tra numeri reali.

Poichè un numero complesso è specificato da due numeri reali è naturale identificare $a = \alpha + j\beta \in \mathbb{C}$ con la sua rappresentazione cartesiana $(\alpha, \beta) \in \mathbb{R}^2$. Il piano diventa allora una rappresentazione di \mathbb{C} , l'asse delle ascisse si dice asse reale e quello delle ordinate asse immaginario.



Nel piano si possono specificare i punti anche assegnandone le coordinate polari (ρ, ϕ) , dove ρ è il modulo e ϕ l'argomento. La coppia (ρ, ϕ) è la rappresentazione polare del numero complesso

$$a = \alpha + j\beta = \rho\cos\phi + j\rho\sin\phi$$

Si denota $|a|=\rho$ il modulo di a e con una delle notazioni arg $a=\angle a=\phi$ l'argomento. Il passaggio dalla rappresentazione cartesiana a quella polare richiede maggiore attenzione. Si ricorda che mentre il modulo è univocamente determinato, l'argomento è determinato a meno di multipli di 2π (tranne che nell'origine dove è indeterminato): quando l'unicità è importante si deve fissare un intervallo di ampiezza 2π cui riportare l'argomento. Le componenti polari di $a=\alpha+j\beta$ sono

$$\rho = \sqrt{\alpha^2 + \beta^2}$$

$$\phi = \begin{cases} \arctan \frac{\beta}{\alpha} & \alpha > 0 \\ +\frac{\pi}{2} & \alpha = 0, \beta > 0 \\ -\frac{\pi}{2} & \alpha = 0, \beta < 0 \\ \arctan \frac{\beta}{\alpha} \pm \pi & \alpha < 0 \end{cases}$$

Attenzione: Le formule per l'argomento, propriamente interpretate, danno un angolo nell'intervallo $(-\pi,\pi]$. Allo scopo, poiché $\arctan(x) \in (-\frac{\pi}{2},\frac{\pi}{2}]$, nel caso di $\alpha < 0$ si deve prendere $+\pi$ o $-\pi$ in accordo col segno di β e si prende $\phi = \pi$ per $\beta = 0$. Non serve memorizzare queste formule: in pratica basta calcolare $\arctan \frac{\beta}{\alpha}$ e aggiustare l'angolo in base al quadrante in cui si trova a. Fare gli esercizi!

Operazioni

Se $a = \alpha + j\beta$ e $b = \gamma + j\delta$ definiamo:

Somma

$$a + b = (\alpha + \gamma) + j(\beta + \delta)$$

La somma è associativa, commutativa, ha elemento neutro 0 = 0 + j0 ed inverso $-a = -\alpha + j(-\beta)$. La rappresentazione cartesiana consente di dare un'interpretazione geometrica alla somma di numeri complessi (disegnare una figura!).

Prodotto

$$ab = (\alpha \gamma - \beta \delta) + j(\alpha \delta + \beta \gamma)$$

Il prodotto è associativo, commutativo, distributivo rispetto alla somma, con elemento neutro 1=1+j0 ed inverso a^{-1} definito per ogni $a\neq 0$. Torneremo tra poco sull'espressione dell'inverso.

Si osservi che per il calcolo del prodotto non è necessario memorizzare la precedente formula: è sufficiente applicare le usuali regole dell'algebra reale e la regola $j^2=-1$ per ottenere

$$ab = (\alpha + j\beta)(\gamma + j\delta) = (\alpha\gamma + \alpha j\delta + j\beta\gamma + j^2\beta\delta) = (\alpha\gamma - \beta\delta) + j(\alpha\delta + \beta\gamma)$$

Complesso coniugato

$$\overline{a} = \alpha - i\beta$$

una notazione alternativa per il coniugato è a^* . Si osservi che (dimostrarlo!)

$$\overline{a+b} = \overline{a} + \overline{b}$$
$$\overline{ab} = \overline{a}\,\overline{b}$$

Alcune utili espressioni con il coniugato sono le seguenti (dimostrarle!)

$$\frac{a+\overline{a}}{2} = \operatorname{Re} a$$

$$\frac{a-\overline{a}}{2i} = \operatorname{Im} a$$

$$a\,\overline{a} = (\alpha+j\beta)(\alpha-j\beta) = \alpha^2+\beta^2 = |a|^2 = \rho^2$$

L'ultima di queste formule è utilissima per esprimere l'inverso di un numero complesso ed il quoziente di due numeri complessi.

Inverso moltiplicativo

Se
$$a \neq 0$$
 $\frac{1}{a} = \frac{\overline{a}}{a\overline{a}} = \frac{\alpha - j\beta}{(\alpha + j\beta)(\alpha - j\beta)} = \frac{\alpha}{\alpha^2 + \beta^2} - j\frac{\beta}{\alpha^2 + \beta^2}$

Basta moltiplicare numeratore e denominatore per \overline{a} e svolgere i calcoli. In particolare vale

$$\frac{1}{i} = -j$$

Quoziente

$$\frac{a}{b} = \frac{\alpha + j\beta}{\gamma + j\delta} = \frac{(\alpha + j\beta)(\gamma - j\delta)}{(\gamma + j\delta)(\gamma - j\delta)} =$$

$$= \frac{(\alpha + j\beta)(\gamma - j\delta)}{\gamma^2 + \delta^2}$$

$$= \frac{\alpha\gamma + \beta\delta}{\gamma^2 + \delta^2} + j\frac{\beta\gamma - \alpha\delta}{\gamma^2 + \delta^2}$$

Anche in questo caso non è necessario memorizzare la formula per il quoziente: è sufficiente moltiplicare numeratore e denominatore per il coniugato del denominatore ed eseguire i calcoli.

Esponenziale complesso

Per ogni $a \in \mathbb{C}$ si definisce

$$e^a := \sum_{k=0}^{\infty} \frac{a^k}{k!}$$

Questa definizione è formalmente identica a quella che si dà nel caso di a reale. Anche nel caso complesso la serie è assolutamente convergente e dunque vale

$$e^{a+b} = e^a e^b$$

e quindi per $a = \alpha + j\beta$

$$e^a = e^{\alpha + j\beta} = e^{\alpha}e^{j\beta}$$

Particolare attenzione merita l'esponenziale immaginario puro. Dalla definizione $e^{j\beta}=\sum_{k=0}^{\infty}\frac{(j\beta)^k}{k!}$, e si osservi che le potenze $j^k,\ k=0,1,2,\ldots$ assumono i valori $1,\ j,\ -1,\ -j,\ 1,\ j,\ldots$ ripetendosi periodicamente con periodo 4. Una felice manipolazione fornisce allora

$$e^{j\beta} = \sum_{k=0}^{\infty} \frac{(j\beta)^k}{k!} = \sum_{k=0}^{\infty} (-1)^k \frac{\beta^{2k}}{(2k)!} + j \sum_{k=0}^{\infty} (-1)^k \frac{\beta^{2k+1}}{(2k+1)!}.$$

Nelle due sommatorie si riconoscono le serie di Taylor della funzione $\cos \beta$ e $\sin \beta$ rispettivamente ¹. Si ricava così la fondamentale formula di Eulero

$$e^{j\beta} = \cos \beta + j \sin \beta$$

Da qui è facile ricavare che $|e^{j\beta}|=1$ ed estendere il risultato a $|e^a|=e^{\operatorname{Re} a}$ (dimostrare queste affermazioni!) Dalla periodicità di $\cos\beta$ e $\sin\beta$ si ricava $e^{j\beta}=e^{j(\beta+2k\pi)}$. L'esponenziale immaginario è periodico di periodo 2π !

In particolare per $\beta=\pi$ si ottiene la portentosa

$$e^{j\pi} + 1 = 0$$

Questa formula non è utile per sé, ma contiene la summa della matematica settecentesca, legando tra loro le principali costanti delle varie branche 0,1,j dall'algebra, π dalla geometria, e dall'analisi. Non fermarsi un attimo ad ammirarla sarebbe imperdonabile.

L'esponenziale immaginario è strettamente legato alla rappresentazione polare dei numeri complessi. Basta osservare che per $a \in \mathbb{C}$

$$a = \alpha + j\beta = \rho(\cos\phi + j\sin\phi) = \rho e^{j\phi} = |a|e^{j\arg a}$$

e, per il coniugato,

$$\overline{a} = \alpha - j\beta = \rho(\cos\phi - j\sin\phi) = \rho e^{-j\phi} = |a|e^{-j\arg a}$$

Per dimostrare questa formula si ricorre alle note simmetrie di seno e coseno $(\sin(-\phi) = -\sin\phi, \cos(-\phi) = \cos\phi)$.

Il prodotto ed il quoziente tra numeri complessi si calcolano molto agevolmente usando la rappresentazione polare.

$$ab = |a||b|e^{j(\arg a + \arg b)}, \qquad \frac{a}{b} = \frac{|a|}{|b|}e^{j(\arg a - \arg b)}$$

Ovvero |ab| = |a| |b| e arg $ab = \arg a + \arg b$.

Abbiamo rivisto la forma cartesiana della somma e le forme cartesiana e polare del prodotto. La forma polare della somma si trova eseguendo brutalmente i calcoli.

Una funzione che ammette infinite derivate, uniformemente limitate, nell'origine, è sviluppabile in serie di Taylor-MacLaurin $f(x)=f(0)+f'(0)x+\frac{f''(0)}{2}x^2+\frac{f'''(0)}{3!}x^3+\ldots$ In questo modo si ricava cos $\beta=1-\frac{\beta^2}{2}+\frac{\beta^4}{4!}\ldots$ ed analogamente sin $\beta=\beta-\frac{\beta^3}{3!}+\frac{\beta^5}{5!}\ldots$ In queste due formule si riconoscono i primi termini delle due serie nel testo.

Utili espressioni trigonometriche

$$e^{j\beta} = \cos \beta + j \sin \beta$$

 $e^{-j\beta} = \cos \beta - j \sin \beta$

Sommando si ottiene

$$\cos \beta = \frac{e^{j\beta} + e^{-j\beta}}{2}$$

mentre sottraendo

$$\sin \beta = \frac{e^{j\beta} - e^{-j\beta}}{2j}$$

Applicazioni

Dimostrazione delle formule di addizione.

$$\cos(\phi + \theta) = \cos\phi\cos\theta - \sin\phi\sin\theta$$
$$\sin(\phi + \theta) = \sin\phi\cos\theta + \cos\phi\sin\theta$$

La dimostrazione è semplicissima scrivendo

$$e^{j(\phi+\theta)} = \cos(\phi+\theta) + j\sin(\phi+\theta)$$

ed osservando che

$$e^{j(\phi+\theta)} = e^{j\phi}e^{j\theta}$$

$$= (\cos\phi + j\sin\phi)(\cos\theta + j\sin\theta)$$

$$= (\cos\phi\cos\theta - \sin\phi\sin\theta) + j(\sin\phi\cos\theta + \cos\phi\sin\theta)$$

Uguagliando parti reali ed immaginarie si ottengono le formule di addizione Dimostrazione delle formule di prostaferesi.

$$\sin\theta\sin\phi = \frac{1}{2}\cos(\theta - \phi) - \frac{1}{2}\cos(\theta + \phi)$$

Per la dimostrazione basta riscrivere il membro di sinistra impiegando l'espressione esponenziale per la funzione sin.

In modo analogo si possono dimostrare le formule di prostaferesi per $\sin\theta\cos\phi$, e per $\cos\theta\cos\phi$. Queste formule saranno molto utili per lo studio della serie di Fourier.

Formule per le potenze $di \sin \theta$ e $di \cos \theta$. Si ricavano facilmente usando la rappresentazione esponenziale. Ad esempio

$$\sin^2 \theta = \left(\frac{e^{j\theta} - e^{-j\theta}}{2j}\right)^2$$
$$= \frac{e^{j2\theta} + e^{-j2\theta} - 2}{-4}$$
$$= \frac{1}{2} - \frac{1}{2}\cos 2\theta$$

Questa formula si poteva ricavare per via elementare. Provare ora con $\sin^3 \theta$!

Radici n-esime di numeri complessi

Storicamente la motivazione all'introduzione dei numeri complessi è venuta dall'algebra. L'insieme dei numeri complessi $\mathbb C$ estende $\mathbb R$ in modo tale che l'equazione algebrica di grado k

$$x^{k} + a_{1}x^{k-1} + a_{2}x^{k-2} + \dots + a_{k-1}x + a_{k} = 0$$

ha esattamente k radici in \mathbb{C} (contando le molteplicità). Questo è il cosidetto teorema fondamentale dell'algebra, la cui dimostrazione richiede però risultati di analisi matematica. Il caso particolare dell'equazione

$$x^k - a = 0, \qquad a \in \mathbb{C}$$

è di particolare interesse in Segnali e Sistemi.

Trovare le soluzioni di $x^k = a$ significa determinare le radici k-esime del numero complesso a che, per il teorema fondamentale dell'algebra, sono k.

Sia $a = \rho e^{j\phi}$. L'equazione $x^k = a$ si può riscrivere come

$$x^k = |x|^k e^{j k \arg x} = a = \rho e^{j\phi} = \rho e^{j(\phi + 2\pi h)}, \quad \text{per ogni } h \in \mathbb{Z}$$

Dalla regola per il calcolo del prodotto in forma polare si trova

$$x = \sqrt[k]{a} = \sqrt[k]{\rho} e^{j\frac{\phi + 2\pi h}{k}} = \sqrt[k]{\rho} e^{j\frac{\phi}{k}} e^{j\frac{2\pi h}{k}}, \quad h = 0, 1, \dots, k - 1$$

In particolare per a = 1 si trovano le k radici dell'unità

$$\sqrt[k]{1} = e^{j\frac{2\pi h}{k}}, \quad h = 0, 1, \dots, k-1$$

Disegnare le radici dell'unità sul piano cartesiano!

Esercizi sui numeri complessi

Esercizio 1.

Siano $a_1 = 4 - 5j$ e $a_2 = 2 + 3j$. Calcolare in forma cartesiana

$$a_1a_2$$
, $\frac{1}{a_2}$, $\frac{a_2}{a_1}$, $(a_1+a_2)^2$, $\frac{a_1}{a_1+a_2}$

Esercizio 2.

Determinare

$$\operatorname{Re} \frac{1}{1+i}$$
, $\operatorname{Im} \frac{3+4j}{7-i}$, $\operatorname{Re} e^{3+j3\pi}$, $\operatorname{Im} e^{j\frac{\pi}{4}}$

Esercizio 3.

Dimostrare che

$$\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$$

Esercizio 4.

Esprimere $\sin^3 \theta$ in funzione di $\sin k\theta$ e $\cos k\theta$ per k=1,2,3

Esercizio 5.

Trovare la rappresentazione polare $\rho e^{j\phi}$ dei numeri

1,
$$-3$$
, $1+j$, $1-j$, $-1+j$, $-1-j$, $\frac{1+j}{1-j}$.

Esercizio 6.

Calcolare le radici

$$\sqrt{j}$$
, $\sqrt[4]{-1}$, $\sqrt{-7-24j}$.

Esercizio 7.

Determinare e rappresentare graficamente i seguenti sottoinsiemi di \mathbb{C} .

$$|a-4j|=4, \quad 0<\operatorname{Re} a<\frac{\pi}{2}, \quad |a-1|\leq |a+1|$$

Altri esercizi

Esercizio 1.

Per la funzione $f(t) = e^{t-1}$ calcolare

$$\frac{d}{dt}f(t), \qquad \int_0^t f(s) \, ds$$

Esercizio 2.

Dire quali delle seguenti serie convergono e perchè

$$\sum_{n=2}^{\infty} \frac{2}{n^2}, \qquad \sum_{n=0}^{\infty} \frac{1}{n+1}, \qquad \sum_{n=0}^{\infty} x^n$$

Esercizio 3.

Calcolare

$$\lim_{x \to 0} \frac{\sin 2x}{x}$$

Esercizio 4.

Risolvere l'equazione differenziale

$$\frac{d}{dx}y(x) = 2x + 1$$

con la condizione iniziale y(0) = 0.

Quanto vale y(1)? Tracciare il grafico della soluzione per $x \in [0, 1]$

last update Oct 17, 2004