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Abstract

This thesis is concerned with two generalized moment problems arising in
the estimation of stochastic models.

Firstly, we consider the THREE approach, introduced by Byrnes Geor-
giou and Lindquist, for estimating spectral densities. Here, the output co-
variance matrix of a known bank of filters is used to extract information on
the input spectral density which needs to be estimated. The parametrization
of the family of spectral densities matching the output covariance is a gen-
eralized moment problem. An estimate of the input spectral density is then
chosen from this family. The choice criterium is based on the minimization
of a suitable divergence index among spectral densities. After the introduc-
tion of the THREE-like paradigm, we present a multivariate extension of
the Beta divergence for solving the problem. Afterward, we deal with the
estimation of the output covariance of the filters bank given a finite-length
data generated by the unknown input spectral density.

Secondly, we deal with the quantum process tomography. This problem
consists in the estimation of a quantum channel which can be thought as the
quantum equivalent of the Markov transition matrix in the classical setting.
Here, a quantum system prepared in a known pure state is fed to the un-
known channel. A measurement of an observable is performed on the output
state. The set of the employed pure states and observables represents the
experimental setting. Again, the parametrization of the family of quantum
channels matching the measurements is a generalized moment problem. The
choice criterium for the best estimate in this family is based on the maxi-
mization of maximum likelihood functionals. The corresponding estimate,
however, may not be unique since the experimental setting is not “rich”
enough in many cases of interest. We characterize the minimal experimental
setting which guarantees the uniqueness of the estimate. Numerical simula-
tion evidences that experimental settings richer than the minimal one do not
lead to better performances.
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Sommario

In questa tesi vengono presentati e analizzati due problemi dei momenti ge-
neralizzati che vengono utilizzati per la stima di modelli stocastici.

Inizieremo col considerare l’approccio THREE, introdotto da Byrnes Geor-
giou e Lindquist, per la stima di densità spettrali. In questo metodo la
covarianza dell’uscita di un banco di filtri noto è utilizzata per estrarre infor-
mazione sulla densità spettrale da stimare del segnale all’ingresso del banco.
La parametrizzazione della famiglia di densità spettrali compatibili con la
covarianza di uscita è un problema dei momenti generalizzato. Una stima di
questa densità spettrale è scelta in questa famiglia. Il criterio di tale scelta si
basa sulla minimizzazione di un opportuno indice di divergenza tra densità
spettrali. Dopo aver introdotto il paradigma di tipo THREE, presenteremo
una estensione multivariata della Beta divergenza per risolvere questo pro-
blema. Successivamente, affronteremo il problema della stima della matrice
di covarianza dell’uscita del banco di filtri avendo a disposizione una sequenza
di dati generati dalla densità spettrale all’ingresso del banco.

Infine, tratteremo la tomografia di processi quantistici. Questo problema
consiste nello stimare un canale quantistico che può essere pensato come
l’equivalente della matrice di transizione di un processo Markoviano nel caso
classico. Più precisamente, il canale quantistico da identificare è alimentato
da un sistema quantistico preparato in uno stato puro noto. Il corrispon-
dente stato all’uscita è successivamente soggetto alla misura di un osservabile.
L’insieme di questi stati puri e osservabili caratterizza il setting sperimentale.
Anche in questo caso, la parametrizzazione della famiglia di canali quantistici
compatibili con le misure costituisce un problema dei momenti generalizzato.
Il criterio di scelta della stima migliore in questa famiglia si basa sul principio
a massima verosimiglianza. Tale stima può tuttavia non essere unica perché
l’esperimento in molti casi non è sufficientemente “ricco”. Individueremo il
setting sperimentale minimo che garantisce l’unicità della stima. Le simu-
lazioni numeriche evidenziano che setting sperimentali più ricchi di quello
minimo non portano a migliori prestazioni.
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Chapter 1

Generalized Moment Problems

1.1 Introduction

The term “moment problem” occurred for the first time in 1894 in the work
about continued fractions by Stieltjes [60]. In particular, he considered the
following setting: Let µ(u) be a non-decreasing function defined on the in-
terval [0,∞) which represents a distribution of positive mass on [0,∞). Ac-
cordingly, the integrals∫ ∞

0

dµ(u),

∫ ∞
0

udµ(u),

∫ ∞
0

u2dµ(u)

represent the total mass on the line [0,∞), the static moment of µ, and the
moment of inertia with respect to u = 0 of µ, respectively. Stieltjes assigned
the name of generalized moment of order k to the integral∫ ∞

0

ukdµ(u)

and he formalized the “moment problem” as follows: Given a certain se-
quence of numbers ck with k = 0, 1, . . ., find a non-decreasing function µ(u)
(u ≥ 0) such that

ck =

∫ ∞
0

ukdµ(u), k = 0, 1, . . .

The usually named moment problem was introduced by Hamburger [41] in
1920 and it represents an extension of the above problem: Given a certain
sequence of numbers ck with k = 0, 1, . . ., and c0 = 1, find a non-decreasing
function µ(u) such that

ck =

∫ ∞
−∞

ukdµ(u), k = 0, 1, . . .
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Since then, the moment problem, together with its modifications and gen-
eralizations (see for example [59],[2],[48]) has been employed in many issues
arising in pure and applied mathematics, physics and engineering.

In the following Section we consider the generalized moment problem
introduced by Georgiou in [37] and we provide some preparatory examples
to the estimation issues successively considered.

1.2 Generalized Moment Problem

Let Gleft and Gright be a Cnl×m-valued function and a Cm×nr -valued function,
respectively, defined on I. The multidimensional moment problem intro-
duced by Georgiou, [37], may be stated as follows.

Problem 1.1. Given R ∈ Cnl×nr , it is required to find a Hm-valued measure
dµ on the support I ⊆ R satisfying the constraint

R =

∫
I
Gleft(ϑ)dµ(ϑ)Gright(ϑ). (1.1)

Then, it is possible to formulate the “discrete” version of Problem 1.1:
Find a nonnegative Hm-valued function µ on the support I ⊆ Z such that∑

k∈I

Gleft(k)µ(k)Gright(k). (1.2)

We now give some identification paradigms which are instances of the above
generalized moment problem.

1.2.1 THREE-like spectral estimation

Let us consider an unknown zero mean, m-dimensional, Rm-valued, purely
non-deterministic, wide sense stationary process y = {yk; k ∈ Z} with spec-
tral density Ω(ejϑ) defined on the unit circle T. Assume that the a priori in-
formation on Ω is given by a prior spectral density Ψ ∈ Sm+ (T). Here, Sm+ (T)
denotes the family of bounded and coercive Rm×m-valued spectral density
functions on T. Then, a finite-length data y(1) . . . y(N) generated by y is
observed. We want to find an estimate Φ ∈ Sm+ (T) of Ω by exploiting Ψ and
y(1) . . . y(N). This spectral estimation task is accomplished by employing a
THREE-like approach which hinges on the following four elements:

1. A prior spectral density Ψ ∈ Sm+ (T);
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2. A rational filter to process the data

G(z) = (zI − A)−1B, (1.3)

where A ∈ Rn×n is a stability matrix, B ∈ Rn×m is full rank with
n > m, and (A,B) is a reachable pair;

3. An estimate Σ̂, based on the data y(1) . . . y(N), of the steady state
covariance Σ = ΣT > 0 of the state xk of the filter

xk+1 = Axk +Byk; (1.4)

4. A divergence index S between two spectral densities.

An estimate Φ ∈ Sm+ (T) of Ω, according to the THREE-like approach, is
given by solving the following task.

Problem 1.2. Given Ψ ∈ Sm+ (T) and Σ̂ > 0,

minimize S(Φ‖Ψ) over the set{
Φ ∈ Sm+ (T) |

∫
G(ejϑ)Φ(ejϑ)G(ejϑ)∗

dϑ

2π
= Σ̂

}
. (1.5)

Remark 1.3. The THREE-like approach considered above may be extended
to the complex case: y is Cm-valued, A ∈ Cn×n, B ∈ Cn×m and Σ is a positive
definite Hermitian matrix.

Note that Ψ is generally not consistent with Σ̂, i.e.∫
G(ejϑ)Ψ(ejϑ)G(ejϑ)∗

dϑ

2π
6= Σ̂. (1.6)

Hence, we have a spectrum approximation problem which is an instance of the
previous generalized moment problem. Chapter 2 deals with Problem 1.2 and
we will show how to solve it. Chapter 3 is devoted to a structured covariance
estimation problem for finding an estimate of Σ from y(1) . . . y(N). Thus,
the considered THREE-like spectral estimation procedure consists in solving
a structured covariance estimation problem and then in solving a spectrum
approximation problem. The key feature for these estimators concerns the
high resolution achievable in prescribed frequency bands, in particular with
short data records. Significant applications to these methods can be found in
H∞ robust control [16],[39], biomedical engineering [52], and modeling and
identification [13], [40], [45].
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Finally, we want to stress that Problem 1.2 includes as special cases a
variety of important problems. These are introduced below, where we assume
Σ̂ = Σ in order not to compromise the clarity of exposition.
Covariance extension problem: Let y = {yk; k ∈ Z} be a scalar, R-
valued, zero-mean, stationary, purely non-deterministic, stochastic process.
By choosing

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

...
0 0 0 . . . 1
0 0 0 . . . 0

 , B =


0
0
...
0
1

 , (1.7)

we obtain xk =
[
yk−n . . . yk−1

]T
, accordingly

Σ =


r0 r1 . . . rn−1

r1 r0 . . . rn−2

...
...

. . .
...

rn−1 rn−2 . . . r0

 (1.8)

where rl = E[yk+lyk] is the l-th covariance lag of y. In this case, Problem
1.2 consists in finding an extension cn+1, cn+2 . . . from the partial covariance
sequence c0 . . . cn such that

Φ(ejϑ) =
+∞∑

k=−∞

cke
−jϑk ≥ 0, ∀ ejϑ ∈ T (1.9)

which is the classical covariance extension problem. We conclude that, the
spectrum approximation problem above may be viewed as a generalized co-
variance extension problem [32], [19], [15] [35], [18], [17].
Nevanlinna-Pick interpolation problem: Let us consider the function

f(z) =
1

4π

∫ π

−π
Φ(ejϑ)

z + e−jθ

z − e−jθ
dθ, Φ(ejϑ) ∈ S1

+(T) (1.10)

which is a positive real function, i.e. f(z) is analytic in |z| > 1 with positive
real part in |z| > 1. Moreover, it can be shown that f admits a series
representation

f(z) =
1

2
c0 + c1z

−1 + c2z
−2 + c3z

−3 + . . . (1.11)

The Nevanlinna-Pick interpolation problem consists in finding a positive real
function interpolating given values {w1, . . . , wn}, wl ∈ C, at given points
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{p−1
1 , p−1

2 , . . . , p−1
n } lying in the domain of analyticity. Here, n ≥ 3. We now

want to show that this problem can be recovered by Problem 1.2 by choosing

A =


p1 0 0 0 0
0 p2 0 0 0
...

...
. . .

...
0 0 0 . . . 0
0 0 0 . . . pn

 , B =


1
1
...
1
1

 . (1.12)

In this case, G(z) =
[
G1(z) . . . Gn(z)

]T
with Gl(z) = 1

z−pl
, l = 1 . . . n.

Let xl = {xlk; k ∈ Z} be the stationary process obtained as the output of
the filter Gl(z) when driven by y. Then

xlk = plx
l
k−1 + yk−1

= yk−1 + plyk−2 + p2
l yk−3 + . . . (1.13)

and so we have

E[xlkx̄
q
k] = E[(yk−1 + plyk−2 + p2

l yk−3 + . . .)

×(ȳk−1 + p̄qȳk−2 + p̄2
q ȳk−3 + . . .)]

= c0(1 + plp̄q + (plp̄q)
2 + . . .)

+c1pl(1 + plp̄q + (pip̄q)
2 + . . .) + c̄1p̄q(1 + plp̄q + (plp̄q)

2 + . . .)

+c2p
2
l (1 + plp̄q + (plp̄q)

2 + . . .) + c̄2p̄
2
q(1 + plp̄q + (plp̄q)

2 + . . .)

= (c0 + c1pl + c̄1p̄q + c2p
2
l + c̄2p̄

2
q + . . .)

1

1− plp̄q
= [(

1

2
c0 + c1pl + c2p

2
l + . . .) + (

1

2
c0 + c̄1p̄q + c̄2p̄

2
q + . . .)]

1

1− plp̄q

=
f(p−1

l ) + f(p−1
q )

1− plp̄q
. (1.14)

Therefore the values of the positive real function f(z) at the points {p−1
1 , p−1

2 ,
. . . , p−1

n } can be expressed in terms of the covariance of the output xk =[
x1
k . . . xnk

]T
of the filters bank as in (1.14). Accordingly, by choosing

the filters bank as in (1.12) and setting

Σ = E[xkx
∗
k] =


w1+w̄1

1−p1p̄1

w1+w̄2

1−p1p̄2
. . . w1+w̄n

1−p1p̄n
w2+w̄1

1−p2p̄1

w2+w̄2

1−p2p̄2
. . . w2+w̄n

1−p2p̄n
...

...
. . .

...
wn+w̄1

1−pnp̄1

wn+w̄2

1−pnp̄2
. . . wn+w̄n

1−pnp̄n

 , (1.15)

Problem 1.2 solves the Nevanlinna-Pick interpolation problem.
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1.2.2 Quantum process tomography

Consider a d-level quantum system, [53], with associated Hilbert space H
isomorphic to Cd. The state of the system is described by a density operator,
namely by a positive semidefinite, unit-trace matrix

ρ ∈ D(H) = {ρ ∈ Hd |ρ ≥ 0, tr(ρ) = 1},

which plays the role of probability distribution in classical probability. Mea-
surable quantities or observables are associated with Hermitian matrices
X =

∑
l xlΠl, where {Πl} is the associated spectral family of orthogo-

nal projection and the spectrum {xl}, xl ∈ R represents the possible out-
comes. The probability of observing the l-th outcome can be computed as
pρ(Πl) = tr(Πlρ). A quantum channel (in Schrödinger’s picture) is a map
E : D(H) → D(H). It is well known [47],[53] that a physically admissible
quantum channel must be linear and completely positive (CP) and trace
preserving (TP), i.e. ε maps elements of D(H) in D(H). We will see in
Chapter 4 that such a ε is completely described by a positive semi-definite
matrix χ satisfying the constraint

d2∑
m,n=1

e∗mχenF
∗
nFm = I, (1.16)

where {ei} is the canonical basis of Rd2
and {Fi} is a suitable basis for Hd.

Next, consider the following setting: A quantum system prepared in a
known state ρ is fed to an unknown channel ε. The system in the output
state ε(ρ) is then subjected to a projective measurement of an observable Π.
We will show that the probability of observing the l-th outcome is

pρ(Π) = tr(χ(Π⊗ ρT )) =
d2∑

m,n=1

αmne
∗
nχem, (1.17)

where

Π⊗ ρT =
d2∑

m,n=1

αmneme
∗
n, with αmn ∈ C. (1.18)

Assume that the experiment is repeated with a series of known input states
{ρk}Lk=1, and to each trial the same observables {Πj}Mj=1 are measuredN times

obtaining a series of outcomes {xjkl }. We consider the sampled frequencies
to be our data, namely

fjk =
1

N

N∑
l=1

xjkl . (1.19)

6



The channel identification problem (or as it is referred to in the physics
literature, the quantum process tomography problem [54],[53],[50]) consists in
finding a positive semi-definite matrix χ̂ (which represents a CPTP quantum
channel ε̂) satisfying the following constraints

fjk =
d2∑

m,n=1

αjkmne
∗
nχ̂em

I =
d2∑

m,n=1

e∗mχ̂enF
∗
nFm. (1.20)

Again, the above problem is an instance of Problem 1.1. We will analyze it
in detail in Chapter 4.

7
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Chapter 2

Spectrum approximation
problem

2.1 Introduction

We consider the spectrum approximation problem introduced in Section 1.2.1
(i.e. Problem 1.2) which constitutes part of the THREE-like procedure for
estimating multivariate spectral densities. This problem “chooses” as esti-
mate of the input spectral density Ω the spectral density which minimizes
a divergence index S, with respect to an a priori spectral density Ψ, over
the family of spectral densities Φ ∈ Sm+ (T) matching the estimated output
covariance matrix through the constraint∫

GΦG∗ = Σ̂. (2.1)

Throughout this Chapter, integration takes place on (0, 2π] with respect to
the normalized Lebesgue measure dϑ/2π:∫

f :=

∫ 2π

0

f(ejϑ)
dϑ

2π
. (2.2)

Moreover, we assume that Σ̂ is given and such that Problem 1.2 is feasible,
i.e. there exists Φ ∈ Sm+ (T) satisfying constraint (2.1). In Chapter 3 we will

show how Σ̂ should be computed from the finite-length data y(1) . . . y(N).
We only anticipate that a necessary and sufficient condition which guarantees
the feasibility is Σ̂ ∈ Range Γ∩Qn,+, where Range Γ is the range of the linear

operator defined in (3.5)1. Once we have Σ̂, we can replace G with G = Σ̂−
1
2G

1In Chapter 3, the general case is considered where A ∈ Cn×n, B ∈ Cn×m and the
process y is complex valued too. Thus, in the case we are dealing with, the codomain of
Γ is Qn.

9



and (A,B) with (A = Σ̂−
1
2AΣ̂

1
2 , B = Σ̂−

1
2B). Thus, the constraint may

be rewritten as
∫
ḠΦḠ∗ = I. Accordingly, from now on we consider the

following equivalent formulation.

Problem 2.1. Given Ψ ∈ Sm+ (T) and G(z) = (zI − A)−1B such that I ∈
Range Γ,

minimize S(Φ‖Ψ) over the set{
Φ ∈ Sm+ (T) |

∫
GΦG∗ = I

}
. (2.3)

The most delicate issue in the above problem deals with the choice of
the divergence index S. In fact, the corresponding solution to the spectrum
approximation problem (that heavily depends on the divergence index) must
be computable and possibly with bounded McMillan degree. Accordingly, it
is important to have many different indexes available in such a way to choose
the most appropriate index in relation to the specific application. Note that, a
divergence index among spectral densities in Sm+ (T) must satisfy the following
basic property for all Φ,Ψ ∈ Sm+ (T):

S(Φ‖Ψ) ≥ 0

S(Φ‖Ψ) = 0 if and only if Φ = Ψ. (2.4)

The Chapter is structured as follows. We start by introducing the diver-
gence indexes for multivariate spectral densities suggested in the literature.
We then introduce the Beta divergence family and we consider the corre-
sponding spectrum approximation problem, [66]. We will show that it is
possible to characterize a family of solutions to Problem 2.1 with bounded
McMillan degree. Moreover, its limit coincides to the solution obtained by
using the Kullback-Leibler divergence.

2.2 Divergences indexes employed in the lit-

erature

The THREE estimator, introduced by Byrnes Georgiou and Lindquist in [14],
only works when the process y is scalar. Moreover, its solution corresponds
to the maximum entropy scalar spectrum satisfying the constraint in (2.3)
which can be expressed in closed form (see [35]) as

Φ̂THREE =
[
G∗B(BTB)−1BTG

]−1
. (2.5)

10



In [38], this setting was generalized by considering Problem 2.1, where the
new “ingredient” is the possibility of considering prior information encoded
in an a priori spectral density Ψ. Here, the Kullback-Leibler divergence for
coercive spectra with the same zeroth moment was considered:

SKL0(Ψ‖Φ) =

∫
Ψ log

(
Ψ

Φ

)
, (2.6)

and they showed that the unique solution to Problem 2.1 is

ΦPRIOR =
Ψ

G∗ΛG
, (2.7)

where Λ ∈ Qn. Note that ΦPRIOR is rational when Ψ is a rational spectral
density.

In [37], a Kullback-Leibler divergence for multivariate spectral densities
with the same trace of the zeroth-moment has been introduced

SKL0(Ψ‖Φ) =

∫
tr[Ψ(log(Ψ)− log(Φ))] (2.8)

where log(·), whose definition will be given in Section 2.3, is the matrix log-
arithm. This divergence is inspired by the Umegaki-von Neumann’s relative
entropy [53] of statistical quantum mechanics. It turns out that it is possible
to compute the solution to Problem 2.1 with (2.8) only with Ψ = I. In this
case we obtain (2.5), [35]. On the other hand, the solution to Problem 2.1
with

SKL0(Φ‖Ψ) =

∫
tr[Φ(log(Φ)− log(Ψ))] (2.9)

is computable, [37]. Note that, (2.9) may be readily extended to the nonequal-
trace case, see [20] for the scalar case,

SKL(Φ‖Ψ) =

∫
tr[Φ(log(Φ)− log(Ψ))− Φ + Ψ] (2.10)

and SKL0(Φ‖Ψ) = SKL(Φ‖Ψ) when
∫

trΦ =
∫

trΨ. Moreover, SKL satisfies
property (2.4). The corresponding spectrum approximation problem con-
sists in minimizing SKL(Φ‖Ψ) over

{
Φ ∈ Sm+ (T) |

∫
GΦG∗ = I

}
which is a

constrained convex optimization problem. Its Lagrangian is

LKL(Φ,Λ) = SKL(Φ‖Ψ) +

〈∫
GΦG∗ − I,Λ

〉
= tr[

∫
Φ(log(Φ)− log(Ψ))− Φ + Ψ +G∗ΛGΦ]− tr(Λ)
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where Λ ∈ Qn is the Lagrange multiplier. It is easy to see that LKL(·,Λ)
is strictly convex over Sm+ (T). Thus, its unique minimum point is given by
annihilating its first directional derivative for each δΦ ∈ Lm×m∞ (T):

δLKL(Φ,Λ; δΦ) = tr

∫
[log(Φ)− log(Ψ) +G∗ΛG]δΦ (2.11)

where we exploited the expression for the differential of the logarithm matrix,
see Appendix A. Thus, the minimum point for LKL(·,Λ) is

ΦKL(Λ) := elog(Ψ)−G∗ΛG (2.12)

and
LKL(ΦKL(Λ),Λ) ≤ LKL(Φ,Λ), ∀ Φ ∈ Sm+ (T). (2.13)

Following the same lines in [37], it is possible to prove that there exists Λ◦

such that ΦKL(Λ◦) ∈ Sm+ (T) and
∫
GΦKL(Λ◦)G∗ = I. Accordingly, (2.13)

implies that ΦKL(Λ◦) is the unique solution to Problem 2.1 with SKL. The
resulting solution is however not rational, even when Ψ = I.

A multivariate extension of the Itakura-Saito distance has been recently
presented by Ferrante et al., [26]:

SIS(Φ‖Ψ) =

∫
tr[log(Ψ)− log(Φ) + ΦΨ−1 − I], (2.14)

which has an interpretation in terms of relative entropy rate among processes.
They have shown that the corresponding solution to Problem 2.1 always
admits a unique solution

ΦIS(Λ◦) := [Ψ−1 +G∗Λ◦G]−1, (2.15)

where Λ◦ is given by solving the corresponding dual problem. Note that, ΦIS

has bounded McMillan degree when Ψ is rational.
We will show in Section 2.3 that the divergence indexes (2.10) and (2.14)

belong to the same multivariate Beta divergence family.

Remark 2.2. We mention that there exists another multivariate distance,
called Hellinger distance, which gives a rational solution to Problem 2.1, [27].

2.3 Beta divergence family

The Beta divergence family for scalar spectral densities was firstly introduced
in [4]. Then, it has been widely used in many applications: Robust principal
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component analysis and clustering [51], robust independent component anal-
ysis [49], and robust nonnegative matrix and tensor factorization [22], [21].
In what follows we will adopt the same notation employed in [20]. First of
all, we need to introduce the following function

logc : R+ × R+→ R

(x, y) 7→

 1
1−c

[(
x
y

)1−c
− 1

]
, c ∈ R \ {1}

log(x)− log(y), c = 1
(2.16)

which is referred to as generalized logarithm discrepancy function throughout
the Chapter. Notice that logc is a continuous function of real variable c
and logc(x, y) = 0 if and only if x = y. The (asymmetric) Beta divergence
between two scalar spectral densities Φ,Ψ ∈ S1

+(T) is defined by

Sβ(Φ‖Ψ) := − 1

β

∫
[Φβ log 1

β

(
Ψβ,Φβ

)
+ Φβ −Ψβ]

=

∫
[

1

β − 1
(Φβ − ΦΨβ−1)− 1

β
(Φβ −Ψβ)] (2.17)

where the parameter β is a real number. For β = 0 and β = 1, it is defined
by continuity in the following way

lim
β→0
Sβ(Φ‖Ψ) = SIS(Φ‖Ψ)

lim
β→1
Sβ(Φ‖Ψ) = SKL(Φ‖Ψ), (2.18)

where SIS and SKL are the scalar versions of (2.14) and (2.10), respectively.
Moreover, the Beta divergence is a continuous function of real variable β
in the whole range including singularities. Thus, it smoothly connects the
Itakura-Saito distance with the Kullback-Leibler divergence. Since Sβ is a
divergence index, property (2.4) is satisfied. Finally, Sβ is always strictly
convex in the first argument, but is often not in the second argument.

We are now ready to extend the Beta divergence family to multivariate
spectral densities. Likewise to the scalar case, we start by introducing the
generalized multivariate logarithm discrepancy. To this aim, recall that the
exponentiation of a positive definite matrix X to an arbitrary real number c,
is defined as Xc := Udiag(dc1, . . . , d

c
m)UT where X := Udiag(d1, . . . , dm)UT

is the usual spectral decomposition with U orthogonal, i.e. UUT = I, and
diag(d1, . . . , dm) > 0 diagonal matrix.2 The generalized logarithm discrepancy

2It is also possible to take the exponentiation of positive semidefinite matrices when
c 6= 0.
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in the multivariate case is defined as follows

logc : Qm,+ ×Qm,+→ Qm

(X, Y ) 7→
{

1
1−c(X

1−cY c−1 − I), c ∈ R \ {1}
log(X)− log(Y ), c = 1

(2.19)

where log(X) = Udiag(log(d1), . . . , log(dm))UT is the matrix logarithm of X.

Proposition 2.3. The generalized multivariate logarithm discrepancy is a
continuous function of real variable c in the whole range. Moreover, logc(X, Y ) =
0 if and only if X = Y .

Proof. By definition X1−c and Y c−1 are continuous function of real variable
c. Thus, the function logc(X, Y ) of real variable c is continuous in R\{1}. It
remains to prove that logc is continuous in c = 1. This is equivalent to show
that limc→1 logc(X, Y ) = log(X) − log(Y ). Let X = Udiag(d1, . . . , dm)UT ,
then

1

1− c(X1−c − I) = Udiag(
d1−c

1 − 1

1− c , . . . ,
d1−c
m − 1

1− c )UT . (2.20)

Taking the limit for c→ 1, we get

lim
c→1

1

1− c(X1−c − I)

= Udiag(lim
c→1

d1−c
1 − 1

1− c , . . . , lim
c→1

d1−c
m − 1

1− c )UT

= Udiag(log(d1), . . . , log(dm))UT = log(X). (2.21)

Accordingly,

lim
c→1

logc(X, Y )

= lim
c→1

[
1

1− c(X1−c − I)− 1

1− c(Y 1−c − I)]Y c−1

= lim
c→1

[
1

1− c(X1−c − I)]− lim
c→1

[
1

1− c(Y 1−c − I)]

= log(X)− log(Y ) (2.22)

which proves that logc is continuous in c = 1. Concerning the last statement,
it is straightforward that X = Y implies logc(X, Y ) = 0. On the contrary,
logc(X, Y ) = 0, with c 6= 1, implies X1−cY c−1 = I which is equivalent to
X1−c = Y 1−c, since X, Y ∈ Qm,+. Thus, X = Y . We get the same conclu-
sion for c = 1 by exploiting similar argumentations.
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The exponentiation of a spectral density Φ(ejϑ) ∈ Sm+ (T) to an arbitrary real
number c is punctually defined by exploiting the previous spectral decompo-
sition:

Φ(ejϑ)c = U(ejϑ)diag(d1(ejϑ)c, . . . , dm(ejϑ)c)U(ejϑ)T

where Φ(ejϑ) = U(ejϑ)diag(d1(ejϑ), . . . , dm(ejϑ))U(ejϑ)T with U(ejϑ) ∈ Lm×m∞ (T)
such that U(ejϑ)U(ejϑ)T = I. Observe that Φc belongs to Sm+ (T). We are
now ready to introduce the multivariate (asymmetric) Beta divergence among
Φ,Ψ ∈ Sm+ (T):

Sβ(Φ‖Ψ) : = − 1

β

∫
tr[Φβ log 1

β

(
Ψβ,Φβ

)
+ Φβ −Ψβ]

=

∫
tr[

1

β − 1
(Φβ − ΦΨβ−1)− 1

β
(Φβ −Ψβ)] (2.23)

where β ∈ R\{0, 1}. Similarly to the scalar case, we can extend by continuity
the definition of Beta divergence for β = 0 and β = 1.

Proposition 2.4. The following limits hold:

lim
β→0
Sβ(Φ‖Ψ) = SIS(Φ‖Ψ) (2.24)

lim
β→1
Sβ(Φ‖Ψ) = SKL(Φ‖Ψ). (2.25)

Proof. Since Φ and Ψ belong to Sm+ (T), i.e. Φ and Ψ are coercive and
bounded, it is possible to show by standard argumentations that the in-
tegrand function of (2.23) uniformly converges on T for β → 0 and β → 1.
Hence, it is allowed to pass the limits, for β → 0 and β → 1, under the
integral sign. Taking into account the first limit, we get

lim
β→0
Sβ(Φ‖Ψ)

= lim
β→0

∫
tr[

1

β − 1
(Φβ − ΦΨβ−1)− 1

β
(Φβ −Ψβ)]

=

∫
tr

{
−I + ΦΨ−1 − lim

β→0

1

β
[(Φβ − I)− (Ψβ − I)]

}
=

∫
tr[−I + ΦΨ−1 − log(Φ) + log(Ψ)]

= SIS(Φ‖Ψ) (2.26)
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where we exploited (2.21). For the second limit, we obtain

lim
β→1
Sβ(Φ‖Ψ)

= lim
β→1

{
− 1

β

∫
tr[Φβ log 1

β

(
Ψβ,Φβ

)
+ Φβ −Ψβ]

}
= −

∫
tr[Φ lim

β→1
log 1

β

(
Ψβ,Φβ

)
+ Φ−Ψ]

= −
∫

tr[Φ lim
β→1

log2−β (Ψ,Φ) + Φ−Ψ]

=

∫
tr[Φ (log(Φ)− log(Ψ)) + Ψ− Φ]

= SKL(Φ‖Ψ) (2.27)

where we exploited (2.22).

In view of Proposition 2.3 and Proposition 2.4, we conclude that the mul-
tivariate Beta divergence is a continuous function of real variable β in the
whole range including singularities and it smoothly connects the multivariate
Itakura-Saito distance with the multivariate Kullback-Leibler divergence.

Remark 2.5. For β = 2, the Beta divergence corresponds, up to a constant
scalar factor, to the standard squared Euclidean distance (L2-norm)

SL2(Φ‖Ψ) =

∫
〈Φ−Ψ,Φ−Ψ〉 (2.28)

where 〈X, Y 〉 = tr(XY ) is the usual scalar product in Qm.

Finally, we show that the multivariate Beta divergence satisfies condition
(2.4).

Proposition 2.6. Given Φ,Ψ ∈ Sm+ (T), the following facts hold:

1. Sβ(·‖Ψ) is strictly convex over Sm+ (T),

2. Sβ(Φ‖Ψ) ≥ 0 and equality holds if and only if Ψ = Φ.

Proof. In order to prove the statements, we need of the following first vari-
ations of the maps X 7→ tr(Xc) and X 7→ tr(XcY ), respectively (further
details may be found in Appendix A):

δ(tr[Xc]; δX) = ctr[Xc−1δX]

δ(tr(XcY ); δX) = tr[OX,c(δX)Y ], (2.29)
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where Y ∈ Qm and the map OX,c is defined in (A.4).
1) The first variation of Sβ(Φ‖Ψ), with respect to Φ, in direction δΦ ∈
Lm×m∞ (T) is

δ(Sβ(Φ‖Ψ); δΦ) =
1

β − 1

∫ 2π

0

tr[(Φβ−1 −Ψβ−1)δΦ]
dϑ

2π
. (2.30)

The second variation in direction δΦ is

δ2(Sβ(Φ‖Ψ); δΦ) =
1

β − 1

∫ 2π

0

tr[OΦ,β−1(δΦ)δΦ]
dϑ

2π

=

∫ 2π

0

tr

[∫ 1

0

Φ(β−1)(1−τ)

∫ ∞
0

(Φ + tI)−1δΦ

× (Φ + tI)−1dtΦ(β−1)τdτδΦ
] dϑ

2π

=

∫ 2π

0

∫ 1

0

∫ ∞
0

tr[Φ(β−1)(1−τ)(Φ + tI)−1δΦ

×(Φ + tI)−1Φ(β−1)τδΦ]dtdτ
dϑ

2π
.

By the cyclic property of the trace and since Φ(β−1)τ and (Φ+tI)−1 commute,
we get

δ2(Sβ(Φ‖Ψ); δΦ) =

∫ 2π

0

∫ 1

0

∫ ∞
0

ft,τ (Φ, δΦ)dtdτ
dϑ

2π
(2.31)

where

ft,τ (X,∆) = tr[X
(β−1)τ

2 (X + tI)−
1
2 ∆(X + tI)−

1
2

×X(β−1)(1−τ)(X + tI)−
1
2 ∆(X + tI)−

1
2X

(β−1)τ
2 ] (2.32)

with X ∈ Qm,+, ∆ ∈ Qm, t ∈ [0,∞) and τ ∈ [0, 1]. Thus, ft,τ (X,∆) ≥ 0 and
ft,τ (X,∆) = 0 if and only if ∆ = 0. We conclude that integral (2.31), i.e.
the second variation of Sβ(·‖Ψ), is positive for δΦ 6= 0. Accordingly, Sβ(·‖Ψ)
is strictly convex over the convex set Sm+ (T).
2) As a consequence of the previous statement, the minimum point is unique
and it is given by annihilating (2.30) for each δΦ ∈ Lm×m∞ (T). Since Φβ−1 −
Ψβ−1 ∈ Lm×m∞ (T), it follows that the minimum point satisfies the condition
Φβ−1 = Ψβ−1. Accordingly, Φ = Ψ. Finally it is sufficient to observe that
Sβ(Ψ‖Ψ) = 0.

Note that Sβ(Φ‖·) is not convex on Sm+ (T) (not even in the scalar case).
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2.4 Spectrum approximation problem

Since the Beta divergence is well-defined for β ∈ R, we choose β = − 1
ν
+1 with

ν ∈ Z \ {0}. As we will see, this choice guarantees that the corresponding
solution to Problem 2.1 is rational for a suitable choice of Ψ. In order to
simplify the notation we define Sν(Φ‖Ψ) := Sβ(Φ‖Ψ) with β = − 1

ν
+ 1.

We have to minimize Sν(Φ‖Ψ) over
{

Φ ∈ Sm+ (T) |
∫
GΦG∗ = I

}
. Since it is

a constrained convex optimization problem, we consider the corresponding
Lagrange functional

Lν(Φ,Λ)

= Sν(Φ‖Ψ) +
ν

1− ν

∫
tr(Ψ

ν−1
ν ) +

〈∫
GΦG∗ − I,Λ

〉
=

∫
tr

[
−ν(Φ

ν−1
ν − ΦΨ−

1
ν ) +

ν

1− νΦ
ν−1
ν +G∗ΛGΦ

]
− tr(Λ) (2.33)

where we exploited the fact that the term
∫

tr(Ψ
ν−1
ν ) plays no role in the

optimization problem. Note that, the Lagrange multiplier Λ ∈ Qn can be
uniquely decomposed as Λ = ΛΓ+Λ⊥ where ΛΓ ∈ Range Γ, Λ⊥ ∈ [Range Γ]⊥.
Since Λ⊥ is such that G∗(ejϑ)Λ⊥G(ejϑ) ≡ 0 and tr(Λ⊥) = 〈Λ⊥, I〉 = 0 (see
[56, Section III]), it does not affect the Lagrangian, i.e. Lν(Φ,Λ) = Lν(Φ,ΛΓ).
Accordingly we can impose from now on that Λ ∈ Range Γ.

Consider now the unconstrained minimization problem min
Φ
{Lν(Φ,Λ) |

Φ ∈ Sm+ (T)}. Since Lν(·,Λ) is strictly convex over Sm+ (T), its unique minimum
point Φν is given by annihilating its first variation in each direction δΦ ∈
Lm×m∞ (T):

δLν(Φ,Λ; δΦ) =

∫
tr
[(
ν(Ψ−

1
ν − Φ−

1
ν ) +G∗ΛG

)
δΦ
]

(2.34)

where we exploited (2.29). Note that, ν(Ψ−
1
ν − Φ−

1
ν ) + G∗ΛG ∈ Lm×m∞ (T).

Thus, (2.34) is zero ∀Φ ∈ Lm×m∞ (T) if and only if

Φ−
1
ν = Ψ−

1
ν +

1

ν
G∗ΛG. (2.35)

Since Φ−
1
ν ∈ Sm+ (T), the set of the admissible Lagrange multipliers is

Lν :=

{
Λ ∈ Qn | Ψ−

1
ν +

1

ν
G∗ΛG > 0 on T

}
. (2.36)

Therefore, the natural set for Λ is

LΓ
ν = Lν ∩ Range Γ. (2.37)
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In conclusion, the unique minimum point of the Lagrange functional has the
form

Φν(Λ) := [Ψ−
1
ν +

1

ν
G∗ΛG]−ν . (2.38)

Assuming that Ψ
1
ν is rational in ejϑ, there always exists a unique (up to a

right-multiplication by a constant orthogonal matrix) stable and minimum

phase spectral factor W such that Ψ(ejϑ)
1
ν = W (ejϑ)W (ejϑ)∗. By defining

G1(ejϑ) = 1√
ν
G(ejϑ)W (ejϑ), we obtain an equivalent form of (2.38):

Φν(Λ) = [W (I +G∗1ΛG1)−1W ∗]ν . (2.39)

Corollary 2.7. Assume that Ψ
1
ν has bounded McMillan degree. Then, Φν is

rational in ejϑ with McMillan degree less than or equal to |ν|(deg[Ψ
1
ν ] + 2n).

Moreover, among all the spectral densities Φν with ν ∈ Z \ {0}, the spectral
densities with the smallest upper bound on the McMillan degree correspond
to the Itakura-Saito and the squared Euclidean distance.

Proof. In view of (2.38) and (2.39), deg[Φν ] ≤ |ν|(deg[Ψ
1
ν ] + 2n) where n is

the McMillan degree of G(z). Since ν ∈ Z \ {0}, the spectral densities with
the smallest upper bound on the McMillan degree are attained for ν = ±1,
i.e. β = 0 and β = 2, which are the optimal forms related to SIS(Φ‖Ψ) and
SL2(Φ‖Ψ), respectively. Note that, Φ1(Λ) = [Ψ−1 + G∗ΛG]−1, which is the
same optimal form found in [26] for the multivariate Itakura-Saito distance,
and Φ−1(Λ) = Ψ−G∗ΛG.

Corollary 2.8. As ν → ±∞, Φν tends to the spectral density (2.12) corre-
sponding to the Kullback-Leibler divergence.

Proof. We know that that the optimal form obtained by using the Kullback-
Leibler divergence is ΦKL(Λ) = elog(Ψ)−G∗ΛG. We want to show that Φν →
ΦKL as ν → ±∞. Let us consider the function F (λ) := log(Ψ−λ + λG∗ΛG)
with λ ∈ R such that Ψ−λ+λG∗ΛG > 0 on T. Its first order Taylor expansion
with respect to λ = 0 is Ψ−λ + λG∗ΛG− I. Accordingly,

lim
ν→±∞

ν log(Ψ−
1
ν +

1

ν
G∗ΛG)

= lim
ν→±∞

Ψ−
1
ν − I
ν−1

+G∗ΛG

= − log(Ψ) +G∗ΛG (2.40)
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where we exploited (2.21) and the previous Taylor expansion. Finally,

lim
ν→±∞

Φν(Λ) = lim
ν→±∞

elog[(Ψ−
1
ν + 1

ν
G∗ΛG)−ν ]

= lim
ν→±∞

e−ν log(Ψ−
1
ν + 1

ν
G∗ΛG)

= e
− lim
ν→±∞

ν log(Ψ−
1
ν + 1

ν
G∗ΛG)

= elog(Ψ)−G∗ΛG = ΦKL(Λ). (2.41)

In this section we showed that Φν(Λ) is the unique minimum point of Lν(·,Λ),
namely

Lν(Φν(Λ),Λ) ≤ Lν(Φ,Λ), ∀Φ ∈ Sm+ (T). (2.42)

Hence, if we produce Λ◦ ∈ LΓ
ν satisfying constraint in (2.3), inequality (2.42)

implies

Sν(Φν(Λ
◦)‖Ψ) ≤ Sν(Φ‖Ψ), ∀Φ ∈ Sm+ (T) s.t.

∫
GΦG∗ = I (2.43)

namely such a Φν(Λ
◦) is the unique solution to Problem 2.1 with Sν . The

following step consists in showing the existence of such a Λ◦ by exploiting
the duality theory.

2.5 Dual problem

Here, we do not deal with the case ν = 1, since the existence of the solution
to the dual problem was already showed in [26]. We start by considering the
case ν ∈ N+ \ {1}. The dual problem consists in maximizing the functional

inf
Φ
Lν(Φ,Λ) = Lν(Φν ,Λ)

=
ν

1− ν

∫
tr[(Ψ−

1
ν +

1

ν
G∗ΛG)1−ν ]− tr(Λ) (2.44)

which is equivalent to minimize the following functional hereafter referred to
as dual functional:

Jν(Λ) = − ν

1− ν

∫
tr[(Ψ−

1
ν +

1

ν
G∗ΛG)1−ν ] + tr(Λ). (2.45)

Theorem 2.9. The dual functional Jν belongs to C∞(LΓ
ν ) and it is strictly

convex over LΓ
ν .
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Proof. In view of (2.29), the first variation of Jν(Λ) in direction δΛ1 ∈ Qn is

δJν(Λ; δΛ1)

= −
∫

tr[(Ψ−
1
ν +

1

ν
G∗ΛG)−νG∗δΛ1G] + tr(δΛ1)

= −
∫

tr
[(
W (I +G∗1ΛG1)−1W ∗)ν G∗δΛ1G

]
+ tr(δΛ1). (2.46)

The linear form ∇Jν,Λ(·) := δJν(Λ; ·) is the gradient of Jν at Λ. In order to
prove that Jν(Λ) ∈ C1(LΓ

ν ) we have to show that δ(Jν(Λ); δΛ1), for any fixed
δΛ1, is continuous in Λ. To this aim, consider a sequence Mn ∈ Range Γ
such that Mn → 0 and define QN(z) = W (z)(I + G1(z)∗NG1(z))−1W (z)∗

with N ∈ Qn. By Lemma 5.2 in [56] and since W is bounded on T, QΛ+Mn

converges uniformly to QΛ. Thus, applying elementwise the bounded con-
vergence theorem, we obtain

lim
n→∞

∫
GQν

Λ+Mn
G∗ =

∫
GQν

ΛG
∗. (2.47)

Accordingly, δ(Jν(Λ); δΛ) is continuous, i.e. Jν belongs to C1(LΓ
ν ). In order

to compute the second variation, consider the operator I : A 7→ A−ν . By
applying the chain rule, we get

δ(I(A); δA) = −
ν∑
l=1

A−lδAAl−ν−1. (2.48)

Thus, for δΛ1, δΛ2 ∈ Qn we have

δ2Jν(Λ; δΛ1, δΛ2)

=
1

ν

ν∑
l=1

∫
tr[Ql

ΛG
∗δΛ2GQ

ν+1−l
Λ G∗δΛ1G]. (2.49)

The bilinear form Hν,Λ(·, ·) = δ2Jν(Λ; ·, ·) is the Hessian of Jν at Λ. The
continuity of δ2Jν can be established by using the previous argumentation.
In similar way, we can show that Jν has continuous directional derivatives of
any order, i.e. Jν ∈ Ck(LΓ

ν ) for any k. Finally, it remains to be shown that
Jν is strictly convex on the open set LΓ

ν . Since Jν ∈ C∞(LΓ
ν ), it is sufficient

to show that HΛ(δΛ, δΛ) ≥ 0 for each δΛ ∈ Range Γ and equality holds if
and only if δΛ = 0. Since ν > 0 and the integrands in (2.49) are positive
semidefinite when δΛ1 = δΛ2, we have HΛ(δΛ, δΛ) ≥ 0. If HΛ(δΛ, δΛ) = 0,
then G∗δΛG ≡ 0 namely δΛ ∈ [Range Γ]⊥ (see [56, Section III]). Since
δΛ ∈ Range Γ, it follows that δΛ = 0. In conclusion, the Hessian is positive
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definite and the dual functional is strictly convex on LΓ
ν .

In view of Theorem 2.9, the dual problem min
Λ

{
Jν(Λ) | Λ ∈ LΓ

ν

}
admits

at most one solution Λ◦. Since LΓ
ν is an open set, such a Λ◦ (if it does exist)

annihilates the first directional derivative (2.46) for each δΛ ∈ Qn〈
I −

∫
[G(Ψ−

1
ν +

1

ν
G∗Λ◦G)−νG∗, δΛ

〉
= 0 ∀δΛ ∈ Qn (2.50)

or, equivalently,

I =

∫
G(Ψ−

1
ν +

1

ν
G∗Λ◦G)−νG∗ =

∫
GΦν(Λ

◦)G∗. (2.51)

This means that Φν(Λ
◦) ∈ Sm+ (T) satisfies the constraint in (2.3) and Φν(Λ

◦)
is therefore the unique solution to Problem 2.1.

The next step concerns the existence issue for the dual problem. Although
the existence question is quite delicate, since set LΓ

ν is open and unbounded,
we will show that a Λ◦ minimizing Jν over LΓ

ν does exist.

Theorem 2.10. Let ν ∈ N+ \ {1}, then the dual functional Jν has a unique
minimum point in LΓ

ν .

Proof. Since the solution of the dual problem (if it does exist) is unique, we
only need to show that Jν takes a minimum value on LΓ

ν . First of all, note
that Jν is continuous on LΓ

ν , see Theorem 2.9. Secondly, we show that tr[Λ]
is bounded from below on LΓ

ν . Since Problem 2.1 is feasible, there exists
ΦI ∈ Sm+ (T) such that

∫
GΦIG

∗ = I. Thus,

tr[Λ] = tr

[∫
GΦIG

∗Λ

]
= tr

[∫
G∗ΛGΦI

]
. (2.52)

Defining α = −νtr
∫

Ψ−
1
ν ΦI , we obtain

tr[Λ] = νtr

[∫
(Ψ−

1
ν +

1

ν
G∗ΛG)ΦI

]
+ α. (2.53)

Since Ψ−
1
ν + 1

ν
G∗ΛG is positive definite on T for Λ ∈ LΓ

ν , there exists a

right spectral factor ∆ such that Ψ−
1
ν + 1

ν
G∗ΛG = ∆∗∆. Moreover, ΦI

is a coercive spectrum, namely there exists a constant µ > 0 such that
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ΦI(e
jϑ) ≥ µI, ∀ ejϑ ∈ T. Starting from the fact that the trace and the

integral are monotonic functions, we get

tr[Λ] = νtr

[∫
∆ΦI∆

∗
]

+ α ≥ νµtr

[∫
∆∆∗

]
+ α

= νµtr

[∫
Ψ−

1
ν +

1

ν
G∗ΛG

]
+ α > α (2.54)

where we have used the fact that tr
∫

Ψ
1
ν + 1

ν
G∗ΛG > 0 when Λ ∈ LΓ

ν . Finally,

notice that Jν(0) = − ν
1−ν

∫
tr(Ψ

ν−1
ν ). Accordingly, we can restrict the search

of a minimum point to the set
{

Λ ∈ LΓ
ν | Jν(Λ) ≤ Jν(0)

}
. We now show that

this set is compact. Accordingly, the existence of the solution to the dual
problem follows from the Weierstrass’ Theorem. To prove the compactness
of the set, it is sufficient to show that:

1. lim
Λ→∂LΓ

ν

Jν(Λ) = +∞;

2. lim
‖Λ‖→∞

Jν(Λ) = +∞.

1) Firstly, RΛ(z) := Ψ−
1
ν (z) + 1

ν
G(z)∗ΛG(z) is a rational matrix function,

thus RΛ(z)1−ν is rational as well. Observe that ∂LΓ
ν is the set of Λ ∈ Range Γ

such that RΛ(ejϑ) ≥ 0 on T and there exists ϑ such that RΛ(ejϑ) is singular.
Thus, for Λ → ∂LΓ

ν all the eigenvalues of RΛ(z)−1 are positive on T and at
least one of them has a pole tending to the unit circle. Since 1 − ν < −1,
then also RΛ(z)1−ν has at least one eigenvalue with a pole tending to T.
Accordingly, tr[

∫
R1−ν ] → ∞ as Λ → ∂LΓ

ν . In view of (2.54), we conclude
that Jν(Λ) = − ν

1−ν tr
[∫
R1−ν]+ tr[Λ]→∞ as Λ→ ∂LΓ

ν .

2) Consider a sequence {Λk}k∈N ∈ LΓ
ν , such that

lim
k→∞
‖Λk‖ =∞. (2.55)

Let Λ0
k = Λk

‖Λk‖
. Since LΓ

ν is convex and 0 ∈ LΓ
ν , if Λ ∈ LΓ

ν then ξΛ ∈ LΓ
ν

∀ ξ ∈ [0, 1]. Therefore Λ0
k ∈ LΓ

ν for k sufficiently large. Let η := lim inf tr[Λ0
k].

In view of (2.54),

tr[Λ0
k] =

1

‖Λk‖
tr[Λk] >

1

‖Λk‖
α→ 0, (2.56)

for k → ∞, so η ≥ 0. Thus, there exists a subsequence of {Λ0
k} such that

the limit of its trace is equal to η. Moreover, this subsequence remains on
the surface of the unit ball ∂B =

{
Λ = ΛT | ‖Λ‖ = 1

}
which is compact.
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Accordingly, it has a subsequence {Λ0
ki
} converging in ∂B. Let Λ∞ ∈ ∂B

be its limit, thus lim
i→∞

tr[Λ0
ki

] = tr[Λ∞] = η. We now prove that Λ∞ ∈ LΓ
ν .

First of all, note that Λ∞ is the limit of a sequence in the finite dimensional
linear space Range Γ, hence Λ∞ ∈ Range Γ. It remains to be shown that
Ψ−

1
ν + 1

ν
G∗Λ∞G is positive definite on T. Consider the unnormalized sequence

{Λki} ∈ LΓ
ν : We have that Ψ−

1
ν + 1

ν
G∗ΛkiG > 0 on T so that 1

‖Λki‖
Ψ−

1
ν +

1
ν
G∗Λ0

ki
G is also positive definite on T for each i. Taking the limit for i→∞,

we get that G∗Λ∞G is positive semidefinite on T so that Ψ−
1
ν + 1

ν
G∗Λ∞G > 0

on T. Hence, Λ∞ ∈ LΓ
ν . Since Problem 2.1 is feasible, there exists ΦI ∈ Sm+ (T)

such that I =
∫
GΦIG

∗, accordingly

η = tr[Λ∞] = tr

∫
GΦIG

∗Λ∞ = tr

∫
Φ

1
2
I G
∗Λ∞GΦ

1
2
I . (2.57)

Moreover, G∗Λ∞G is not identically equal to zero. In fact, if G∗Λ∞G ≡ 0,
then Λ∞ ∈ [Range Γ]⊥ and Λ∞ 6= 0 since it belongs to the surface of the unit
ball. This is a contradiction because Λ∞ ∈ Range Γ. Thus, G∗Λ∞G is not
identically zero and η > 0. Finally, we have

lim
k→∞

Jν(Λk)

= lim
k→∞

− ν

1− ν tr

[∫
(Ψ−

1
ν +

1

ν
G∗ΛkG)1−ν

]
+ tr[Λk]

≥ lim
k→∞
‖Λk‖tr[Λ0

k] = η lim
k→∞
‖Λk‖ =∞. (2.58)

It remains to deal with the case ν ∈ Z such that ν < 0. In this situation, the
dual problem may not have solution: The minimum point for Jν(Λ) may lie
on ∂LΓ

ν , since Jν takes finite values on the boundary of LΓ
ν .

2.6 Computation of Λ◦

We showed that the dual problem always admits a unique solution Λ◦ on LΓ
ν

for ν ∈ N+. In order to find Λ◦, we exploit the following matricial Newton
algorithm with backtracking stage proposed in [56]:

1. Set Λ0 = I ∈ LΓ
ν ;

2. At each iteration, compute the Newton step ∆Λi by solving the linear
equation Hν,Λi(∆Λi , ·) = −∇Jν,Λi(·) where, once fixed Λi, ∇Jν,Λi(·) and
Hν,Λi(·, ·) must be understood as a linear and bilinear form of (2.46)
and (2.49), respectively;
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3. Set t0i = 1 and let tk+1
i = tki /2 until both of the following conditions

hold:

Λi + tki ∆Λi ∈ LΓ
ν (2.59)

Jν(Λi + tki ∆Λi) < Jν(Λi) + αtki 〈∇Jν,Λi ,∆Λi〉 (2.60)

with 0 < α < 1/2;

4. Set Λi+1 = Λi + tki ∆Λi ∈ LΓ
ν ;

5. Repeat steps 2, 3 and 4 until ‖∇Jν,Λi(·)‖ < ε where ε is a tolerance
threshold. Then set Λ◦ = Λi.

The computation of the search direction ∆Λi is the most delicate part of the
procedure. The corresponding linear equation reduces to

1

ν

ν∑
l=1

∫
GQl

Λi
G∗∆ΛiGQ

ν+1−l
Λi

G∗ =

∫
GQν

Λi
G∗ − I (2.61)

where QΛ = W (I + G∗1ΛG1)−1W ∗. By similar argumentations used in [27,
Proposition 8.1], it is possible to prove that there exists a unique solution
∆Λi ∈ Range Γ to (2.61). Accordingly, we can easily compute ∆Λi in this
way:

1. Compute

Y =

∫
GQν

Λi
G∗ − I; (2.62)

2. Let {Σ1 . . .ΣM} a basis for Range Γ (to see how to compute it, refer to
equation (3.7) in Section 3.2) and for each Σk, k = 1 . . .M , compute

Yk =
1

ν

ν∑
l=1

∫
GQl

Λi
G∗ΣkGQ

ν+1−l
Λi

G∗; (2.63)

3. Find {αk} such that Y =
∑

k αkYk. Then set ∆Λi =
∑

k αkΣk.

Concerning the evaluation of the integrals in (2.60), (2.62) and (2.63), a
sensible and efficient method based on spectral factorization techniques may
be employed. For further details, including the checking of condition (2.59),
we refer to Section VI in [56].

Finally, it is possible to prove that:

1. Jν(·) ∈ C∞(LΓ
ν ) is strongly convex on the sublevel set K = {Λ ∈ LΓ

ν |
Jν(Λ) ≤ Jν(Λ0)};
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2. The Hessian is Lipschitz continuous in K.

The proof follows the ones in [56, Section VII] and [26, Section VI-C] faith-
fully. These properties allow us to conclude that the proposed Newton al-
gorithm globally converges, see Proposition 3.13. In particular the rate of
convergence is quadratic during the last stage. In this way, the solution to
Problem 2.1 may be efficiently computed.

2.7 Simulations results

In order to test the features of the family of solutions Φν with ν ∈ N+, we
take into account the following comparison procedure:

1. Choose a zero mean wide sense stationary process y = {yk; k ∈ Z} with
spectral density Ω ∈ Sm+ (T);

2. Design a filters bank G(z) as in (1.3);

3. Set Ψ =
∫

Ω (Ψ is constant and equal to the zeroth moment of Ω)

4. Compute Σ =
∫
GΩG∗;

5. Solve Problem 2.1 (with Sν) by means of the proposed algorithm with

the chosen Ψ and Σ−
1
2G(z) as filters bank.

In the above comparison procedure we assume to know Σ and
∫

Ω. In this
way, we avoid the approximation errors introduced by the estimation of Σ
and

∫
Ω from the finite-length data y(1) . . . y(N). Concerning the design of

the filter, its role consists in providing the interpolation conditions for the
solution to the spectrum approximation problem. More specifically, a higher
resolution can be attained by selecting poles in the proximity of the unit
circle with arguments in the range of frequency of interest, [14].

2.7.1 Scalar case

We start by taking into account Example described in [56, Section VIII-B]
(the unique difference is that we assume to know Σ and

∫
Ω). Consider the

following ARMA process:

y(t) = 0.5y(t− 1)− 0.42y(t− 2) + 0.602y(t− 3)

− 0.0425y(t− 4) + 0.1192y(t− 5)

+ e(t) + 1.1e(t− 1) + 0.08e(t− 2)− 0.15e(t− 3) (2.64)
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Figure 2.1: Approximation of an ARMA (6, 4) spectral density.

where e is a zero-mean Gaussian white noise with unit variance. In Figure
2.1, the spectral density Ω ∈ S1

+(T) of the ARMA process is depicted (gray
line). G(z) is structured according to the covariance extension setting (1.7)
with 6 covariance lags (i.e. n = 6). In Figure 2.1 the different solutions
obtained by fixing ν = 1, dashed line, ν = 2, solid line, and ν = 3, thick line,
are shown. The solution obtained by minimizing the multivariate Itakura-
Saito distance (ν = 1) is characterized by peaks which are taller than these
in Ω. In fact, this solution seems the most adequate for detecting spectral
lines, see example of Section VII-A in [26]. On the contrary, the peaks are
reduced by increasing ν. Note that, the solutions with ν = 2 and ν = 3 are
closer to Ω than the one with ν = 1.

As second example we consider the scalar bandpass random process with
spectral density Ω depicted in Figure 2.2 (gray curve). The cutoff frequencies
are ϑ1 = 0.89 and ϑ2 = 2.46. Moreover, Ω(ejϑ) ≥ 2 · 10−3 in the stopband,
accordingly Ω ∈ S1

+(T). MatrixB is a column of ones. Matrix A is chosen as a
block-diagonal matrix with one eigenvalue equal to zero and eight eigenvalues
equispaced on the circle of radius 0.8

±0.8, 0.8e±j
π
4 , 0.8e±j

π
2 , 0.8e±j

3
4
π. (2.65)

Here, Ψ =
∫

Ω ' 1.5284. Figure 2.2 also shows the obtained solutions. The
one with ν = 1 turns out inadequate. The solutions with ν = 2 and ν = 3
are, instead, similar and closer to Ω.
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Figure 2.2: Approximation of the spectral density of a scalar bandpass ran-
dom process.

2.7.2 Multivariate case

We consider a bivariate bandpass random process with spectral density Ω
plotted in Figure 2.3 (gray curve). Here, the cutoff frequencies are ϑ1 = 0.42
and ϑ2 = 1.94, and Ω(ejϑ) ≥ 2 · 10−3I in the whole range of frequencies. The
constant prior is

Ψ =

∫
Ω '

(
0.9313 0.3314
0.3314 0.5128

)
. (2.66)

The matrix A of the filters bank has one eigenvalue equal to zero, two eigen-
values in ±0.8 and three pairs of complex eigenvalues closer to the passband
0.8e±j0.4, 0.8e±j1.2, 0.8e±j2. The solutions for ν = 1 (dashed line) ν = 2
(solid line) and ν = 3 (thick line) are shown in Figure 2.3. It is apparent
that the solution for ν = 2 and ν = 3 are the most appropriate.
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Figure 2.3: Approximation of the spectral density of a bivariate bandpass
random process.
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Chapter 3

Structured covariance
estimation problem

3.1 Introduction

In THREE-like estimation procedures, a known filters bank G(z) = (zI −
A)−1B is driven by an unknown stochastic process y = {yk; k ∈ Z}. Let
Σ = E[xkx

T
k ] be the covariance matrix of the output process x = {xk; k ∈

Z}. Here, we firstly have to compute an estimate Σ̂ of the covariance Σ from
a finite-length collection of sample data y(1) . . . y(N) of the process y. This
estimate must be positive definite and such that Problem 1.2 is feasible, i.e.
there exists Φ ∈ Sm+ (T) satisfying the constraint in (2.1). In this way, by

replacing G with G = Σ̂−
1
2G and (A,B) with (A = Σ̂−

1
2 Â̂Σ

1
2 , B = Σ̂−

1
2B),

we obtain Problem 2.1 (previously analyzed) which provides an estimate of
the spectral density of y. This Chapter is devoted to the computation of
such a Σ̂.

To analyze the features of this task, we take into account the covariance
extension problem introduced in Section 1.2.1. In this case, the covariance
matrix Σ = E[xkx

T
k ] of the output x has the form of a symmetric Toeplitz

matrix having the first n covariance lags of y on the first row:

Σ :=


r0 r1 . . . rn−1

r1 r0

. . . rn−2

...
. . .

. . .
. . .

rn−1

. . . r1 r0

 , rh := E[yk+hyk]. (3.1)

It is natural to impose that the estimate Σ̂ be positive definite and have
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Toeplitz structure. On the one hand, one can consider the estimate

Σ̂ =


r̂0 r̂1 . . . r̂n−1

r̂1 r̂0

. . . r̂n−2

...
. . .

. . .
. . .

r̂n−1

. . . r̂1 r̂0

 , r̂h =
1

N − h
N−h∑
k=1

y(k + h)y(k) (3.2)

which is a Toeplitz matrix. This estimate, however, is not guaranteed to be
positive definite. On the other hand, one can compute the sample covari-
ance Σ̂C := 1

N

∑N
k=1 x(k)x(k)T of the output process x where x(1) . . . x(N)

is obtained by filtering y(1) . . . y(N) through G(z). The latter is typically,
by construction, positive semi-definite but is not guaranteed to be Toeplitz.
Notice, in passing, that the orthogonal projection of this estimate onto the
linear space of Toeplitz matrices is no longer guaranteed to be positive defi-
nite. This problem, yet important, is very special due to the FIR structure
of G(z) in (1.7). In this case, it is well-known that the problem can be solved
by computing, from y(1) . . . y(N), the estimates r̂h of the rh in (3.1), with
the biased correlogram spectral estimator [61].
The estimation of positive definite Toeplitz matrices is just an instance of
the structured covariance estimation problem which will be introduced in the
following section. Here, we consider the general case wherein the process y
is Cm-valued, A ∈ Cn×n, B ∈ Cn×m, and Σ is a positive definite Hermitian
matrix. In Section 3.3 we introduce an optimization approach for estimating
Σ based on the infomation divergence index. In Section 3.4 we extend the
previous approach to the Beta matrix divergence index. Finally, in Section
3.5 we present a different method for computing Σ̂ which can be viewed as a
generalization of the Blackman-Tukey approach, [7].

3.2 Structured covariance estimation problem

Consider a transfer function

G(z) = (zI − A)−1B, A ∈ Cn×n, B ∈ Cn×m, n > m, (3.3)

where A has all its eigenvalues in the open unit disk, B has full column
rank, and (A,B) is a reachable pair. Suppose G(z) models a bank of filters
fed by a zero mean, wide sense stationary, purely nondeterministic, Cm-
valued process y with spectral density Ω which is coercive. Let x be the
n-dimensional stationary output process

xk+1 = Axk +Byk, k ∈ Z. (3.4)
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We denote by Σ the covariance of xk. Notice that Σ > 0 since A is a stable
matrix, (A,B) is reachable and Φ is coercive. We denote by V(Sm+ (T)) the
linear space generated by Sm+ (T)1. Consider now the linear operator

Γ : V(Sm+ (T)) → Hn

Φ 7→
∫
GΦG∗, (3.5)

where integration takes place on T with respect to normalized Lebesgue mea-
sure dϑ/2π as in Chapter 2. Note that Σ belongs to the linear space

Range Γ : = {P ∈ Hn| ∃Φ ∈ V(Sm+ (T))

such that

∫
GΦG∗ = P}. (3.6)

Assume that a collection of sample data y(1) . . . y(N) of the stochastic
process y is available and let Σ̂ be an estimate of Σ computed starting from
y(1) . . . y(N). It turns out that Problem 1.2 is feasible if and only if Σ̂ ∈
Range Γ ∩ Hn,+ [36],[27]. Hence, we have to face the following structured
covariance estimation problem.

Problem 3.1. Compute an estimate Σ̂ of Σ from y(1) . . . y(N) such that
Σ̂ ∈ Range Γ ∩Hn,+.

First of all, we introduce the characterizing properties of the above vector
space. In [33], [36] (see also [57]), it was shown that P ∈ Hn belongs to
Range Γ if and only if there exists H ∈ Cm×n such that

P − APA∗ = BH +H∗B∗ (3.7)

or equivalently if and only if the following rank condition holds

rank

[
P − APA∗ B

B∗ 0

]
= 2m. (3.8)

The dimension of Range Γ may now be established along the lines of [38,
Lemma 4], which deals with the scalar case, and [34, Page 137], which treats
the multivariate real case.

Proposition 3.2. The linear space Range Γ has real dimension m(2n−m).

1Here, Sm+ (T) denotes the family of bounded and coercive Cm×m-valued spectral den-
sity functions on T.
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Proof. The dimension of the linear space Range Γ is invariant under a change
of basis in the state space of G. Since B is assumed to be full column-rank,

we can then assume that B :=

[
Im
0

]
. From (3.7), we get that dim Range Γ

equals the real dimension of the linear space of matrices that can be written
in the form BH + H∗B∗, or, equivalently (given the structure of B), in the

form

[
Q H2

H∗2 0

]
, with Q ∈ Hm and H2 ∈ Cm×(n−m). Such a dimension is

m(2n−m).

In [27, Proposition 2.1], it was shown that, after normalizing P > 0
to the identity matrix, condition (3.8) could be replaced by a geometric
condition. We show next that the latter condition is equivalent to (3.8) for
any Hermitian P .

Proposition 3.3. Given P ∈ Hn, a necessary and sufficient condition for
P ∈ Range Γ is that the following condition holds

(I − ΠB)(P − APA∗)(I − ΠB) = 0, (3.9)

where we denote by ΠB := B(B∗B)−1B∗ the orthogonal projection onto
RangeB.

Proof. Necessity: We know that there exists H ∈ Cm×n such that

P − APA∗ = BH +H∗B∗. (3.10)

Pre and post-multiplying this relation by I − ΠB, we obtain

(I − ΠB)(P − APA∗)(I − ΠB)

= (I − ΠB)(BH +H∗B∗)(I − ΠB)

= (I − ΠB)BH(I − ΠB)

+[(I − ΠB)BH(I − ΠB)]∗ = 0.

Sufficiency: We exploit condition (3.8). Let us first consider the matrix

T :=
[
C B

]
∈ Cn×n, (3.11)

where C ∈ Cn×(n−m) has full column rank and is such that (RangeC)⊥(RangeB),
so that T is invertible. Moreover, C can be expressed as C = (I − ΠB)V ,
where V ∈ Cn×(n−m) has full column rank. In view of (3.9), we have

C∗(P − APA∗)C = 0. (3.12)

34



We now consider the matrices[
P − APA∗ B

B∗ 0

]
(3.13)

and

∆ : =

[
T ∗ 0
0 I

] [
P − APA∗ B

B∗ 0

] [
T 0
0 I

]
=

[
T ∗(P − APA∗)T T ∗B

B∗T 0

]
. (3.14)

By (3.11) and (3.12), we get

∆ =

 C∗(P − APA∗)C C∗(P − APA∗)B C∗B
B∗(P − APA∗)C B∗(P − APA∗)B B∗B

B∗C B∗B 0


=

 0 ? 0
? ? B∗B
0 B∗B 0

 (3.15)

where B∗B is an invertible matrix, since B has full column rank. Recalling
that the rank of a matrix is invariant under multiplication by an invertible
matrix, we conclude that

rank

[
P − APA∗ B

B∗ 0

]
= rank∆ = 2m (3.16)

namely, by (3.8), P ∈ Range Γ.

Our way to attack Problem 3.1 consists in considering the following sit-
uation:

• The filter G(z) is fed by the m-dimensional data y(1) . . . y(N) and we
collect the n-dimensional output data x(1) . . . x(N).

• We compute the sample covariance Σ̂C of Σ in the usual way

Σ̂C :=
1

N

N∑
k=1

x(k)x(k)∗. (3.17)

Notice that Σ̂C ∈ Hn and Σ̂C ≥ 0. Moreover, for N ≥ n, Σ̂C is positive
definite with probability 1. In general, Σ̂C does not belong to Range Γ.
Indeed, m < n and Range Γ has only dimension m(2n−m) < n2 (Proposition
3.2). Moreover Σ̂C → Σ as N →∞. Thus, the estimate Σ̂ ∈ Range Γ∩Hn,+

should be, in a suitable sense, as close as possible to Σ̂C .
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Projection method

In [27, Section 8] a simple-minded approach has been presented. It consists
in projecting Σ̂C given by (3.17) onto Range Γ thereby obtaining a new
Hermitian matrix Σ̂Γ. For a large number N of samples, we expect Σ̂Γ to
be close to Σ̂C since the true state covariance Σ does belong to Range Γ.
The projection Σ̂Γ, however, might turn out to be indefinite and this is
particularly likely when N is not large. In this case, Σ̂Γ may be further
adjusted by adding to it a matrix of the form εΣ+ with Σ+ ∈ Range Γ, Σ+ >
0 and ε > 0 so large that

Σ̂PJ := Σ̂Γ + εΣ+ > 0. (3.18)

In this way, a positive definite matrix belonging to Range Γ is obtained.
Notice that a positive definite matrix Σ+ ∈ Range Γ indeed exists and can
be easily computed as follows. Set H+ := 1

2
B∗ and consider the equation

Σ+ − AΣ+A
∗ = BH+ +H∗+B

∗ = BB∗. (3.19)

Since (A,B) is reachable and A is a stable matrix, we have that (3.19) admits
a unique solution Σ+ and such a solution is indeed positive definite. In view
of (3.7), Σ+ also belongs to Range Γ.

3.3 An optimization approach to estimating

Σ

In this section, we present a new systematic procedure to find Σ̂ ∈ Range Γ∩
Hn,+ as close as possible to Σ̂C , [29]. Recall that a most fundamental
(pseudo)-distance in mathematical statistics is the information divergence
(Kullback-Leibler index, relative entropy), [23]. For two Gaussian distribu-
tions pP , pΣ̂ on Rn with zero mean and covariance matrices P > 0 and Σ̂ > 0,
respectively, it is given by

DI(pP‖pΣ̂) :=
1

2

[
log det(P−1Σ̂) + tr(Σ̂−1P )− n

]
. (3.20)

Notice that the right-hand side of (3.20) provides a natural pseudo-distance,
denoted henceforth by DI(P‖Σ̂), on the space Hn,+. This fact leads us to
consider the following problem.

Problem 3.4. Given Σ̂C ∈ Hn,+ and G(z) with the previous properties, solve

minimize DI(P‖Σ̂C) over P ∈ (Hn,+ ∩ Range Γ) . (3.21)

36



The solution to Problem 3.4 provides the required estimate of Σ.

Remark 3.5. In [34], the Umegaki-von Neumann relative entropy [53] was
proposed instead, restricting the search to covariances having the same trace
as the sample covariance Σ̂C . In alternative, it was there suggested that
one could use as distance the one induced by a matrix norm. Our choice
is supported by the following considerations. First, as observed in [12,
p.963], DI(·‖·) “really comes from maximum-likelihood considerations and
thus should, in some sense, give us a reasonable answer, even if the process
is not Gaussian and the vector samples are not independent”. Second, with
this distance, the solution turns out to have a simple form and the variational
analysis can be carried through to the very end, see below. Finally, simula-
tion shows that THREE-like procedures initialised with the found estimate
work extremely well.

In what follows, we assume that Σ̂C > 0 and use the compact notation
Π⊥B := I − ΠB. In view of Proposition 3.3, Problem 3.4 finds P ∈ Hn,+

minimizing DBG(P‖Σ̂C) := 2DI(P‖Σ̂C) subject to the linear constraint

Π⊥B(P − APA∗)Π⊥B = 0. (3.22)

Here, DBG is the Burg matrix divergence, [25]. Thus, our problem resem-
bles a most standard maximum entropy (or, equivalently, minimum relative
entropy) problem [43], [23]. As a first step, we introduce the Lagrangian
function

LBG(P,∆) = DBG(P‖Σ̂C)− log det Σ̂C + n+ tr
[
∆Π⊥B(P − APA∗)Π⊥B

]
= − log detP + tr(Σ̂−1

C P ) + tr
[
∆Π⊥B(P − APA∗)Π⊥B

]
(3.23)

where we exploited the fact that the terms log det Σ̂C and n play no role
in the optimization problem. We consider the unconstrained minimization
problem

min
P
{LBG(P,∆) | P ∈ Hn,+}. (3.24)

Since LBG(·,∆) is strictly convex over Hn,+, its unique minimum point is
given annihilating its first variation in each direction δP ∈ Hn:

δLBG(P,∆; δP ) = −tr
[
P−1δP

]
+ tr

[
Σ̂−1
C δP

]
+tr

[
∆Π⊥B(δP − AδPA∗)Π⊥B

]
= tr[(−P−1 + Σ̂−1

C + Π⊥B∆Π⊥B
−A∗Π⊥B∆Π⊥BA)δP ]. (3.25)
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Thus (3.25) is zero for each δP ∈ Hn if and only if

P−1 = Σ̂−1
C + Π⊥B∆Π⊥B − A∗Π⊥B∆Π⊥BA. (3.26)

It is then natural to restrict our attention to multiplier matrices belonging
to the following set

LBG = {∆ ∈ Hn | Σ̂−1
C + V∆ > 0}, (3.27)

where
V∆ := Π⊥B∆Π⊥B − A∗Π⊥B∆Π⊥BA. (3.28)

Thus, given ∆ ∈ LBG, we get that the unique minimum point of the Lagrange
functional has the form

PBG(∆) :=
(

Σ̂−1
C + V∆

)−1

. (3.29)

It is quite interesting to notice that V∆ gives another characterization of
Range Γ as stated by the following proposition.

Proposition 3.6. Let ∆ ∈ Hn and V∆ be defined by (3.28). Then V∆ ∈
Range Γ⊥.

Proof. Let be P ∈ Range Γ, ∆ ∈ Hn and consider

〈V∆, P 〉 = tr(V∆P ) = tr
[
(Π⊥B∆Π⊥B − A∗Π⊥B∆Π⊥BA)P

]
= tr

[
(Π⊥BPΠ⊥B − Π⊥BAPA

∗Π⊥B)∆
]

= tr
[
Π⊥B(P − APA∗)Π⊥B∆

]
= 0 (3.30)

where we employed condition (3.9).

To sum up, we showed that PBG(∆) is the unique minimum point of LBG(·,∆),
namely

LBG(PBG(∆),∆) ≤ LBG(P,∆), ∀ P ∈ Hn,+. (3.31)

Hence, if we produce ∆◦ ∈ LBG such that PBG(∆◦) satisfies constraint (3.22),
then inequality (3.31) implies

DBG(PBG(∆◦)‖Σ̂C) ≤ DBG(P‖Σ̂C), ∀ P ∈ Range Γ ∩Hn,+. (3.32)

Thus, such a Σ̂ME := PBG(∆◦) is the unique solution to Problem 3.4. Here,
we denote PBL(Λ◦) as Σ̂ME (instead of Σ̂BG) in order to maintain the same
notation employed in [29]. The abbreviation ME is employed to remark that
Problem 3.4 resembles a most standard maximum entropy problem.
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It remains to show the existence of such a ∆◦. This is accomplished
via duality theory. The dual problem consists in maximizing the following
functional over LBG

inf
P∈Hn,+

LBG(P,∆) = LBG(PBG(∆),∆) = log detPBG(∆)−1 + tr(Σ̂−1
C PBG(∆))

+tr
[
∆Π⊥B(PBG(∆)− APBG(∆)A∗)Π⊥B

]
= tr

[
logPBG(∆)−1 + Σ̂−1

C PBG(∆)

+∆Π⊥B(PBG(∆)− APBG(∆)A∗)Π⊥B
]

= tr
[
logPBG(∆)−1 +

(
Σ̂−1
C + Π⊥B∆Π⊥B

−A∗Π⊥B∆Π⊥BA
)
PBG(∆)

]
= tr

[
logPBG(∆)−1 + PBG(∆)−1PBG(∆)

]
= tr

[
logPBG(∆)−1 + I

]
= tr

[
log
(

Σ̂−1
C + V∆

)
+ I
]
. (3.33)

Thus, it is equivalent to minimize the following function, hereafter referred
to as dual functional:

JBG(∆) := −tr log
(

Σ̂−1
C + V∆

)
. (3.34)

To perform this minimization it is convenient to restrict our attention to a
subset of LBG defined as follows. Consider the map

ϕ : Hn → Hn

∆ 7→ Π⊥B∆Π⊥B. (3.35)

Such a map is self-adjoint because

〈ϕ(∆),∆〉 = tr
(
Π⊥B∆Π⊥B∆

)
= tr

(
∆Π⊥B∆Π⊥B

)
= 〈∆, ϕ(∆)〉 .

Thus, kerϕ = [Rangeϕ]⊥. Suppose now that JBG takes the minimum value
in ∆◦ ∈ LBG and let M ∈ [Rangeϕ]⊥. It is easy to see that

JBG(∆◦ +M) = JBG(∆◦) (3.36)

so that the search for the solution of the dual problem can be restricted to
the set

LϕBG := LBG ∩ Rangeϕ. (3.37)

Lemma 3.7. Consider JBG : LBG → R. Then:
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1. JBG is strictly convex on LϕBG.

2. JBG ∈ C∞(LBG).

Proof. 1. First of all, observe that LBG is an open, convex subset of Hn.
Moreover, since JBG is the negative of inf

P
LBG(P,∆), it is convex. For δ∆1 ∈

Hn, we compute its directional derivative

δJBG(∆; δ∆1) = −tr
[
PBG(∆)(Π⊥Bδ∆1Π⊥B − A∗Π⊥Bδ∆1Π⊥BA)

]
= −tr [PBG(∆)Vδ∆1 ] . (3.38)

The second variation, in directions δ∆1, δ∆2 ∈ Hn, is given by

δ2JBG(∆; δ∆1, δ∆2) = tr
[
PBG(∆)(Π⊥Bδ∆2Π⊥B − A∗Π⊥Bδ∆2Π⊥BA)

×PBG(∆)(Π⊥Bδ∆1Π⊥B − A∗Π⊥Bδ∆1Π⊥BA)
]

= tr [PBG(∆)Vδ∆2PBG(∆)Vδ∆1 ] . (3.39)

Consider now

δ2JBG(∆; δ∆, δ∆) = tr [PBG(∆)Vδ∆PBG(∆)Vδ∆]

= tr
[
PBG(∆)

1
2Vδ∆PBG(∆)Vδ∆PBG(∆)

1
2

]
(3.40)

which, as expected, is a nonnegative quantity since PBG(∆) is positive defi-
nite. Suppose now that δ∆ ∈ Rangeϕ. The equation

Π⊥Bδ∆Π⊥B = A∗Π⊥Bδ∆Π⊥BA+ Vδ∆ (3.41)

is the Lyapunov equation associated to the (A∗, Vδ∆) pair where we regard
as the unknown Π⊥Bδ∆Π⊥B. It follows that Π⊥Bδ∆Π⊥B can be expressed as

Π⊥Bδ∆Π⊥B =
∞∑
t=0

(A∗)tVδ∆A
t. (3.42)

Since δ∆ ∈ Rangeϕ = [kerϕ]⊥, from Π⊥Bδ∆Π⊥B = 0 it follows that δ∆ = 0.
Thus, taking (3.42) into account, we have that Vδ∆ = 0 implies δ∆ = 0.
Accordingly, we have that δ2JBG(∆; δ∆, δ∆) is strictly positive for any non
zero δ∆ ∈ Rangeϕ, and consequently, JBG is strictly convex on LϕBG.
2. Notice that the first and the second variation of JBG exist and are
continuous on LBG. The same applies to the third variation in directions
δ∆1, δ∆2, δ∆3 ∈ Hn:

δ3JBG(∆; δ∆1, δ∆2, δ∆3) = tr[δPBG(∆; δ∆3)Vδ∆2PBG(∆)Vδ∆1

+ PBG(∆)Vδ∆2δPBG(∆); δ∆3)Vδ∆1 ]

= −tr[PBG(∆)Vδ∆3PBG(∆)Vδ∆2PBG(∆)Vδ∆1

+ PBG(∆)Vδ∆2PBG(∆)Vδ∆3PBG(∆)Vδ∆1 ].
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Similarly, since δPBG(∆; δ∆) = −PBG(∆)Vδ∆PBG(∆), it can be shown that
JBG has continuous directional derivatives of any order in LBG. Thus JBG ∈
Ck(LBG) for any k ≥ 0.

Corollary 3.8. The dual problem

Find ∆ ∈ LϕBG minimizing J(∆) (3.43)

is a convex optimization problem which admits at most one solution.

We now tackle the existence issue for the dual problem. To this aim, we
prove that LϕBG is bounded. In doing that, we need to show a preliminary
technical result.

Lemma 3.9. Let V∆ be given by (3.28) and let ϕ be given by (3.35). Given
a sequence {∆k}k≥0 with ∆k ∈ Rangeϕ, if ‖∆k‖ → +∞ then ‖V∆k

‖ → +∞.

Proof. The proof is divided into two steps.
Step 1: Consider a sequence {∆k}k≥0, ∆k ∈ Rangeϕ such that ‖∆k‖ → +∞
as k → +∞. Since Rangeϕ = [kerϕ]⊥, the minimum singular value ρ of the
map ϕ restricted to Rangeϕ is strictly positive. Accordingly,

‖Π⊥B∆kΠ
⊥
B‖ ≥ ρ‖∆k‖ → +∞. (3.44)

Step 2: It now remains to show that, if ‖Π⊥B∆kΠ
⊥
B‖ → +∞ as k tends to in-

finity, then also ‖V∆k
‖ → +∞. We prove the following equivalent statement.

Given a sequence {V∆k
}k≥0, if there exists α such that ‖V∆k

‖ ≤ α ∀k ≥ 0
then, there exists β such that ‖Π⊥B∆kΠ

⊥
B‖ ≤ β ∀k ≥ 0. Notice that equation

V∆k
= Π⊥B∆kΠ

⊥
B − A∗Π⊥B∆kΠ

⊥
BA (3.45)

is a discrete-time Lyapunov equation corresponding to the pair (A∗, V∆k
).

Since A is a stable matrix, we have

Π⊥B∆kΠ
⊥
B =

∞∑
t=0

(A∗)tV∆k
At. (3.46)

Hence, ∀ k ≥ 0 we have

‖Π⊥B∆kΠ
⊥
B‖ = ‖

∞∑
t=0

(A∗)tV∆k
At‖ ≤

∞∑
t=0

‖(A∗)tV∆k
At‖

≤
∞∑
t=0

‖(A∗)t‖‖V∆k
‖‖At‖

=

(
∞∑
t=0

‖At‖2

)
‖V∆k

‖ ≤ γα < +∞ (3.47)
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where

γ :=
∞∑
t=0

‖At‖2. (3.48)

The latter is a finite quantity since A is a stable matrix.

Proposition 3.10. LϕBG is an open and bounded set.

Proof. By (3.27) and (3.37), it follows that LϕBG is an open set. We know
that each ∆ ∈ LBG must satisfy the following inequality

V∆ > −Σ̂−1
C . (3.49)

Therefore
minσ (V∆) > −ε2 (3.50)

where σ(X) denotes the spectrum of the matrix X and

ε2 := maxσ(Σ̂−1
C ). (3.51)

We now show that a sequence {∆k}k≥0, with ∆k ∈ Rangeϕ, and ‖∆k‖ →
+∞, cannot belong to LϕBG, i.e., LϕBG is bounded. To this end, it suffices to
show that the minimum eigenvalue of V∆k

tends to −∞ so that, for k large
enough, ∆k does not satisfy (3.50). By Lemma 3.9, ‖∆k‖ → +∞ implies
that, as k approaches infinity, ‖V∆k

‖ → +∞. Hence,

‖P 1
2V∆k

P
1
2‖ → +∞, (3.52)

for any given positive definite matrix P > 0. In particular, if we choose
P ∈ Range Γ, since V∆k

∈ Range Γ⊥ (see Proposition 3.6), we have

〈V∆k
, P 〉 = tr(V∆k

P ) = tr(P
1
2V∆k

P
1
2 ) = 0. (3.53)

Since P
1
2V∆k

P
1
2 is Hermitian, from (3.52) and (3.53) it follows that P

1
2V∆k

P
1
2 ,

and hence V∆k
, have at least one eigenvalue tending to −∞ as k approaches

infinity. In conclusion, there exist an integer k̄ > 0 and an eigenvalue λk of
V∆k

such that
λk ≤ −ε2 ∀ k > k̄. (3.54)

Hence, in view of (3.50), ∆k /∈ LϕBG, ∀ k > k̄, and we may conclude that LϕBG
is a bounded set.

We are now ready to prove existence of the minimum point.
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Theorem 3.11. The dual functional (3.34) has a unique minimum point in
LϕBG.

Proof. In view of Corollary 3.8, we only need to show that J takes a minimum
value on LϕBG. First we observe that JBG is continuous on its domain. We
now demonstrate that JBG is inf-compact, i.e., the image of (−∞, r] under
the map J−1

BG is a compact set. It is then sufficient to apply Weierstrass’
theorem which states that a continuous function defined on a compact set
admits a minimum. Indeed, observing that JBG(0) = log det Σ̂C , we can
restrict the search for a minimum point to the image of (−∞, log det Σ̂C ]
under J−1

BG. Since, as stated in Proposition 3.10, LϕBG is a bounded set, to
prove inf-compactness of JBG it is sufficient to show that

lim
∆→∂LϕBG

JBG(∆) = +∞. (3.55)

Notice that ∂LϕBG is the set of ∆ ∈ Rangeϕ for which

Σ̂−1
C + V∆ (3.56)

is a singular positive semidefinite matrix. Thus, for ∆ → ∂LϕBG all the
eigenvalues of (3.56) remain bounded and at least one of them tends to 0+.
We denote with λ1, . . . , λn > 0 the eigenvalues of Σ̂C + V∆ and, without loss
generality, we suppose that, for ∆→ ∂LϕBG, λ1 → 0+. Hence

lim
∆→∂LϕBG

JBG(∆) = lim
λ1→0+

− log
n∏
i=1

λi

= lim
λ1→0+

n∑
i=1

log
1

λi
= +∞. (3.57)

Corollary 3.12. The set

S̃ := {∆ ∈ LϕBG | JBG(∆) ≤ JBG(0) = log det Σ̂C} (3.58)

is compact.

3.3.1 A matricial Newton algorithm

In this section, we present a matricial Newton algorithm with backtrack-
ing stage for finding the minimum point of JBG over LϕBG. To this end we
introduce the linear functional

∇J∆ = ∇J∆(·) := δJBG(∆, ·) (3.59)
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which may be interpreted as the gradient of JBG at ∆. Here, δJBG(∆; δ∆) is
the first variation of JBG at ∆ in direction δ∆. The bilinear form

H∆ = H∆(·, ·) := δ2JBG(∆; ·, ·) (3.60)

may be interpreted as the Hessian of JBG at ∆. Here, δ2JBG(∆; δ∆1, δ∆2)
is the second variation of JBG at ∆ in directions δ∆1, δ∆2. The algorithm
steps are the following:

1. Set the initial condition ∆0 = 0 ∈ LϕBG.

2. At each iteration, compute the Newton step δ∆i over Rangeϕ by solv-
ing the following equation

H∆i
(δ∆i, ·) = −∇J∆i

(·), (3.61)

where the gradient ∇J∆i
and the HessianH∆i

are defined by (3.59) and
(3.60), respectively. Taking into account (3.38) and (3.39), the latter
equation may be written explicitly as

Π⊥B [PBG(∆i)Vδ∆i
PBG(∆i)− APBG(∆i)Vδ∆i

PBG(∆i)A
∗] Π⊥B =

= −Π⊥B(APBG(∆i)A
∗ − PBG(∆i))Π

⊥
B. (3.62)

3. Set t0i = 1, and let tk+1
i = tki /2 until both of the following conditions

hold:

Σ̂−1
C + V∆i+tki δ∆i

> 0 (3.63)

J(∆i + tki δ∆i) < J(∆i) + αtki tr [∇J∆i
δ∆i] (3.64)

where α ∈ (0, 1
2
) is a real constant. Notice that, since ∆i + tki δ∆i ∈

Rangeϕ, condition (3.63) implies that

∆i + tki δ∆i ∈ LϕBG. (3.65)

4. Set ∆i+1 = ∆i + tki δ∆i.

5. Repeat steps 2, 3 and 4 until the condition ‖∇J∆i
‖2 < ε is satisfied,

where ε is a (small) tolerance threshold, then set ∆◦ = ∆i.

We suggest the following procedure to solve Equation (3.61) by taking into
account the explicit form (3.62):

1. Take a basis {L1, . . . , Ll} of Rangeϕ.
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2. Compute
Y = Π⊥B(PBG(∆i)− APBG(∆i)A

∗)Π⊥B (3.66)

3. For each Lk, compute:

Yk = Π⊥B [PBG(∆i)VLkPBG(∆i)− APBG(∆i)VLkPBG(∆i)A
∗] Π⊥B (3.67)

4. Solve, by means of linear algebraic methods (the Moore-Penrose pseu-
doinverse), the equation ∑

k

αkYk = Y (3.68)

5. By linearity, the solution to (3.61) is:

δ∆i =
∑
k

αkLk ∈ Rangeϕ. (3.69)

Since the minimum of JBG exists and is unique, we investigate the global
convergence of our Newton algorithm. To prove the convergence we need of
the following result.

Proposition 3.13. Consider a function f : D ⊂ Rk → R twice differentiable
on D with Hx the Hessian of f at x. Suppose moreover that f is strongly
convex on a set S ⊂ D, i.e. there exists a constant m > 0 such that Hx ≥
mI for x ∈ S, and Hx is Lipschitz continuous on S. Let {xi} ∈ S be
the sequence generated by the Newton algorithm. Under these assumptions,
Newton’s algorithm with backtracking converges globally. More specifically,
{xi} decreases in linear way for a finite number of steps, and converges in a
quadratic way to the minimum point after the linear stage.

Proof. See [11, 9.5.3, p. 488].

To prove the convergence of our algorithm, we proceed in the following man-
ner: Identify a compact set S̃ such that ∆i ∈ S̃ and prove that the second
variation is coercive and Lipschitz continuous on S̃. We then apply Proposi-
tion 3.13 in order to prove convergence.
Since ∆0 = 0, we consider the set

S̃ := {∆ ∈ LϕBG | JBG(∆) ≤ JBG(∆0) = log det Σ̂C} (3.70)

which is compact (see Corollary 3.12). The presence of the backtracking
stage in the algorithm guarantees that the sequence JBG(∆0), JBG(∆1), . . . is
decreasing. Thus ∆i ∈ S̃, ∀i ≥ 0.
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Proposition 3.14. Consider the Hessian H∆ defined in (3.60) and the as-
sociated quadratic form. The following facts hold:

1. As a quadratic form, H∆ is coercive and bounded on S̃, namely there
exist m,M > 0 such that

m‖δ∆‖2 ≤ H∆(δ∆, δ∆) ≤M‖δ∆‖2, ∀ ∆ ∈ S̃. (3.71)

2. H∆ is Lipschitz continuous on S̃.

Proof. 1. First, observe that S̃ ⊂ LBG. Since S̃ is a compact set, there exists
ε > 0 such that

PBG(∆) =
(

Σ̂C + V∆

)−1

≥ εI. (3.72)

Accordingly, for δ∆ 6= 0,

H∆(δ∆, δ∆) = tr[PBG(∆)
1
2Vδ∆PBG(∆)Vδ∆PBG(∆)

1
2 ]

≥ εtr[PBG(∆)
1
2Vδ∆Vδ∆PBG(∆)

1
2 ] = εtr[Vδ∆PBG(∆)Vδ∆]

≥ ε2tr[Vδ∆Vδ∆] = ε2γ > 0,

where γ := tr[Vδ∆Vδ∆] > 0, since Vδ∆ is not the zero matrix when δ∆ 6= 0, as
observed in the proof of Lemma 3.7. Since JBG ∈ C∞(LBG), it follows that
H∆ is continuous on the compact S̃ where it is also strictly positive definite.
Hence, H∆ is coercive and bounded on S̃.
2. H∆ ∈ C1(S̃) and ‖H∆‖ ≤ M ∀ ∆ ∈ S̃, therefore H∆ is Lipschitz continu-
ous on S̃.

Proposition 3.15. The sequence {∆i}i≥0 generated by the proposed Newton
algorithm converges to the unique minimum point of JBG in LϕBG.

Proof. Proposition 3.13 applied to functions with domain contained in Rk,
k ∈ N. The functional JBG is defined over a subset of the linear space
Rangeϕ which has finite dimension d on R. We define x := vect(X) as the
column vector (with n2 entries) obtained by stacking the columns of X one
over the other, and we consider the following change of representation

∆ 7→ λ = vect(∆). (3.73)

Let be D,S, f,Hλ the corresponding representation of LBG, S̃, JBG,H∆. It
follows that:

• By Lemma 3.7, f : D ⊂ Rd → R is twice differentiable on S ⊂ D
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• By Proposition 3.14 and since H∆(·, ·) is a bilinear form, follows that
f is strongly convex on S and Hλ is Lipschitz continuous on S.

Therefore all the hypothesis of Proposition 3.13 are satisfied and the conclu-
sion follows.

3.3.2 Performance comparison

In this section, we use the following notation:

• PJ method to denote the projection method outlined in the last part
of Section 3.2;

• ME method to denote the maximum entropy method based on the
minimization of the information divergence (or equivalently the Burg
matrix divergence).

A performance comparison procedure

Suppose that we have a finite sequence y(1) . . . y(N) extracted from a sample
path of a zero-mean, weakly stationary discrete-time process y. We want to
compare the estimates Σ̂PJ and Σ̂ME obtained by the PJ and ME methods,
respectively. In order to make the comparison reasonably independent of the
specific data set, we average over M = 500 experiments performed with se-
quences extracted from different sample paths. We are now ready to describe
the comparison procedure:

• Fix the transfer function G(z).

• At the k-th experiment G(z) is fed by the data yk(1) . . . yk(N) and we
collect the output data xk(1) . . . xk(N).

• Compute the consistent estimate Σ̂C(k) of the covariance matrix of the
output from xk(Ñ) . . . xk(N), with Ñ < N , as in (3.17). Note that the
first Ñ−1 output samples xk(1) . . . xk(Ñ−1) are discarded so that the
filter can be considered to operate in steady state.

• From Σ̂C(k), estimate Σ̂PJ(k) and Σ̂ME(k) using PJ and ME method
respectively.
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• Compute the relative error norm2 between Σ and its estimates Σ̂PJ(k)
and Σ̂ME(k)

ePJ(k) =
‖Σ̂PJ(k)− Σ‖

‖Σ‖ , eME(k) =
‖Σ̂ME(k)− Σ‖

‖Σ‖

• When the experiments are completed, compute the mean and the vari-
ance of the relative error norm

µPJ =
1

M

M∑
k=1

ePJ(k), µME =
1

M

M∑
k=1

eME(k),

σ2
PJ =

1

M

M∑
k=1

(ePJ(k)− µPJ)2,

σ2
ME =

1

M

M∑
k=1

(eME(k)− µME)2. (3.74)

• Count the times that the PJ method adjusts the projected estimation
Σ̂Γ(k) by adding to it the quantity εΣ+. This number is denoted as
]F .

The output of this procedure are the parameters µj, σ
2
j and ]F . Clearly, the

smaller these parameters, the better estimation is expected.

Simulation results for the real scalar case

We choose a real scalar process y with a high-order spectral density Ω (rep-
resented by the solid line in Figure 3.1). The bank of filters has the following
structure.

A =


a1 1 0 0 0 0
0 a2 1 0 0 0
0 0 a3 1 0 0
0 0 0 a4 1 0
0 0 0 0 a5 1
0 0 0 0 0 a6

 , B =


0
1
0
1
0
1

 . (3.75)

First we choose

a1 = a2 = a3 = 0.4, a4 = a5 = a6 = 0.5. (3.76)

2Here the norm ‖·‖ is the spectral norm. i.e. the matrix norm induced by the Euclidean
norm in Cn.
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In this case, the true covariance Σ of the process x has the following eigenval-
ues λ1 = 0.2408, λ2 = 0.4775, λ3 = 1.9235, λ4 = 2.8125, λ5 = 21.1455, λ6 =
285.2539. Thus Σ has a condition number of the order of 103. In Table 3.1,
we present the results obtained for different lengths N of the observed se-
quences y(1) . . . y(N). In this case, the ME method appears produce only a

N µPJ µME σ2
PJ σ2

ME ]F
300 0.19827 0.19045 0.026206 0.018779 11
500 0.14329 0.14169 0.013137 0.011047 1
700 0.12701 0.1269 0.0092071 0.0091365 0
1000 0.10679 0.10677 0.0064781 0.0064709 0

Table 3.1: Parameters µPJ , µME, σ2
PJ , σ2

ME, ]F for A,B given by (3.75)-
(3.76).

very marginal improvement with respect to the projection method. More-
over, as N increases, µ and σ2 decrease for both methods: In fact, Σ̂C → Σ
with probability one as N → +∞. Therefore, as N increases, the perfor-
mances of the two methods are more and more similar. This picture, however,
changes dramatically if the time-constants of the dynamics of the filter G(z)
are significatively different. Consider, for example, a filters bank with the
same structure (3.75) but with

a1 = 0.3, a2 = 0.4, a3 = 0.5, a4 = 0.6, a5 = 0.7, a6 = 0.8. (3.77)

In this case, the eigenvalues of Σ are λ1 = 0.3, λ2 = 0.7, λ3 = 2.1, λ4 =
8.5, λ5 = 123.8, λ6 = 3862.3. Thus, the condition number of Σ is of the order
of 104. In Table 3.2 we present the results obtained for different lengths N
of the observed sequences y(1) . . . y(N).

N µPJ µME σ2
PJ σ2

ME ]F
300 1.6509 0.24068 8.1929 0.030232 197
500 0.99964 0.17711 3.1593 0.018377 141
700 0.60446 0.15266 1.2813 0.01464 99
1000 0.49333 0.13648 0.95235 0.011395 78

Table 3.2: Parameters µPJ , µME, σ2
PJ , σ2

ME, ]F for A,B given by (3.75)-
(3.77).

In this situation, the condition number of Σ is larger than in the previous
case. Thus, the projection of Σ̂C (that is a perturbed version of Σ) onto
Range Γ yields a matrix Σ̂Γ that, in many cases, fails to be positive definite
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(or even positive semidefinite). This explains why the number of failures ]F
is significant. Recall that, when the projection fails to be positive definite,
the PJ method adjusts Σ̂Γ by adding a positive definite matrix Σ+ belonging
to Range Γ. For each experiment, Σ+ is the same. Hence, the adjustment
cannot provide a good estimate of Σ. This is the heuristic reason why, in
this case, the estimates provided by our method largely outperform those ob-
tained by the projection method. Indeed, even increasing N to 1000 (so that
the observed sequences are pretty long), the differences in the performances
remain remarkable.

Remark 3.16. We hasten to anticipate that even in the case of the filters
bank (3.75)-(3.76), with N = 500 or larger, when the estimation errors of
the PJ and ME methods have practically the same mean and variance, the
THREE-like spectral estimator performs much better when initialized with
Σ̂ME than when initialized with Σ̂PJ (see next section).

Simulation results for the real multivariable case

We consider a bivariate real process y with a high-order spectral density Ω.
As for the scalar case, we consider two filters banks with the same structure:

A =


a1 1 0 0 0 0
0 a1 1 0 0 0
0 0 a1 0 0 0
0 0 0 a2 1 0
0 0 0 0 a2 1
0 0 0 0 0 a2

 , B =


0 0
1 0
0 1
0 0
1 0
0 1

 . (3.78)

In the first case
a1 = 0.55, a2 = 0.65. (3.79)

In this case, the true Σ has the following eigenvalues: λ1 = 0.0031, λ2 =
0.0120, λ3 = 0.9863, λ4 = 2.3744, λ5 = 8.1872, λ6 = 84.0289. The corre-
sponding error means and variances for the two estimation methods PJ and
ME are reported in Table 3.3 for different values of the length N of the
observed data sequences y(1) . . . y(N).

The second filters bank has the same structure (3.78), but the eigenvalues
of A are closer to the unit circle:

a1 = 0.6, a2 = 0.7. (3.80)

In this case, the true Σ has the following eigenvalues: λ1 = 0.0034, λ2 =
0.0169, λ3 = 1.4706, λ4 = 2.9195, λ5 = 11.8157, λ6 = 159.1730. The corre-
sponding error means and variances are reported in the Table 3.4. As it
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N µPJ µME σ2
PJ σ2

ME ]F
300 0.3372 0.17694 0.46351 0.017164 33
500 0.16107 0.1431 0.043056 0.011703 6
700 0.12044 0.11778 0.010054 0.006674 1
1000 0.09712 0.09696 0.005345 0.005333 0

Table 3.3: Parameters µPJ , µME, σ2
PJ , σ2

ME, ]F for A,B given by (3.78)-
(3.79).

N µPJ µME σ2
PJ σ2

ME ]F
300 1.0234 0.20392 3.5055 0.022113 93
500 0.45285 0.14658 1.4239 0.013541 35
700 0.25175 0.12041 0.55549 0.0082425 16
1000 0.16576 0.11102 0.22098 0.006274 7

Table 3.4: Parameters µPJ , µME, σ2
PJ , σ2

ME, ]F for A,B given by (3.78)-
(3.80).

can be observed from the tables, the scenario is the same as in the scalar
case: The ME method performs remarkably better than the PJ method,
particularly for the second filters bank.

Simulation results for the complex case

So far we have considered only real examples because this situation is more
common in control engineering applications. Since the theory has, however,
been developed for the more general complex case, we also include the fol-
lowing complex example where the process y is a high order (the McMillan
degree of the corresponding spectral density Ω is 80) complex-valued scalar
process. Let A and B be defined by:

A =


a1 1 0 0 0 0
0 a2 1 0 0 0
0 0 a3 1 0 0
0 0 0 a4 1 0
0 0 0 0 a5 1
0 0 0 0 0 a6

 , B =


0
0
0
0
0
1

 , (3.81)

where ai = 0.7ejωi and ω1 := 0.8148, ω2 := 0.9058, ω3 := 0.1270, ω4 :=
0.9133, ω5 := 0.6324, ω6 := 0.0976. The eigenvalues of the matrix Σ are
λ1 = 0.5, λ2 = 3.06, λ3 = 17.65, λ4 = 132.79, λ5 = 1.55 · 103, λ6 = 2.67 · 104.
Table 3.5, where the performances of our method are compared to those of the
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projection method, shows that also in this case our approach is particularly
convenient:

N µPJ µME σ2
PJ σ2

ME ]F
300 0.6861 0.1481 0.79881 0.011669 148
500 0.32225 0.11871 0.3374 0.006533 59
700 0.20526 0.10044 0.18662 0.004495 29
1000 0.13541 0.08525 0.0919 0.003015 14

Table 3.5: Parameters µPJ , µME, σ2
PJ , σ2

ME, ]F for A,B given by (3.81).

3.3.3 Application to spectral estimation

Next, we compare the estimated spectral densities, obtained by one of the
THREE-like spectral estimation procedures, when initialized with the true
variance Σ and with the two estimates Σ̂PJ and Σ̂ME. We stress that, while
the results of Section 3.3.2 compare the estimated covariance Σ̂ME or Σ̂PJ

to the true Σ, the following comparison evaluates the different performances
directly in terms of the main applications of the methods, i.e. spectral esti-
mation.

Simulation results for the scalar case using the Prior-THREE al-
gorithm

From the procedure presented in Subsection 3.3.2, we get the state covari-
ance estimates Σ̂PJ(k) and Σ̂ME(k) for k = 1 . . . ,M . Thus, we exploit this
set of estimates (with M = 500 experiments and N = 500) as input state co-
variances for the spectrum approximation problem with SKL0(Ψ‖Φ) in (2.6):

• We consider a prior spectral density Ψk(e
jϑ) that may depend on the

data yk(1) . . . yk(N) and hence is indexed on k.

• For each experiment k, we compute the spectrum estimate Φ̂T,k(e
jϑ)

solving the spectrum approximation problem associated to SKL0(Ψ‖Φ)
with inputs Ψk(e

jϑ) and the true variance Σ.

• For each experiment k, we compute the spectrum estimates Φ̂PJ,k(e
jϑ),

and Φ̂ME,k(e
jϑ) which are solution to the spectrum approximation prob-

lem associated to SKL0(Ψ‖Φ) using the same “a priori” spectral density
Ψk(e

jϑ) and taking Σ̂PJ(k) and Σ̂ME(k), respectively, as state variance.
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• When the spectral estimates are completed, we compute the mean es-
timates

ΦT (ejϑ) :=
1

M

M∑
k=1

Φ̂T,k(e
jϑ)

ΦPJ(ejϑ) :=
1

M

M∑
k=1

Φ̂PJ,k(e
jϑ)

ΦME(ejϑ) :=
1

M

M∑
k=1

Φ̂ME,k(e
jϑ) (3.82)

and the mean of the error norm for each method with respect to
Φ̂T,k(e

jϑ)

EPJ(ϑ) : =
1

M

M∑
k=1

|Φ̂PJ,k(e
jϑ)− Φ̂T,k(e

jϑ)|

EME(ϑ) : =
1

M

M∑
k=1

|Φ̂ME,k(e
jϑ)− Φ̂T,k(e

jϑ)|. (3.83)

Remark 3.17. Notice that the very same procedure may be employed to deal
with the solution (2.5) which is just the special case of the (2.7) corresponding
to the choice Ψk(e

jϑ) ≡ 1 for the prior spectral density.
Notice also that, in the above procedure, an essential degree of freedom is
the filter bank G(z). Indeed, the choice of G(z) has profound implications
(see [14],[38],[28] and [27]). As noticed before, it turns out that the spectrum
estimate has better resolution in those sectors of the unit circle where more
eigenvalues are located close to the unit circle.

To perform the comparison, we have chosen the two filters (3.75)-(3.76),
(3.75)-(3.77) and we have set the prior spectral density to be Ψk(z) :=

Wk(z)W ∗
k (z) where Wk(z) =

[
σ̂e

c(z)
a(z)

]
k

is a three-order AR model estimated

from the sequence yk(1) . . . yk(N) extracted from the k-th sample path of the
process y.

In Figure 3.1 the mean spectra corresponding to the filters bank (3.75)-
(3.76) are depicted. In Figure 3.2 the corresponding mean error norms are
represented.

It is apparent that our method produces an estimate Σ̂ME for which the
corresponding spectral density ΦME approximates the true Φ almost as well
as the estimation produced starting from the true Σ, while the estimation
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Figure 3.1: Mean spectra comparison using the solution (2.7), with the bank
of filters (3.75)-(3.76).

corresponding to Σ̂PJ is highly unsatisfactory. Notice also that, although
in this case Σ̂PJ and Σ̂ME appear quite similar (see the table in the previ-
ous section), the estimated spectra are very different and the ME method
provides a considerable improvement, cf. Remark 3.16.

Figures 3.3 and 3.4 show the mean spectra and the mean error norm,
respectively, when the filters bank (3.75)-(3.77) is employed. As expected,
in this case the inferior performance of the PJ method when compared to
the ME method is more salient while the ME method practically performs
as well as the estimation ΦΣ produced by employing the true Σ. Similar
results are obtained when we consider solution in (2.5), i.e. Ψk(e

jϑ) ≡ 1.

Simulation results for the multivariable case

We have carried out this comparison along the very same lines of the previous
simulation employing the same Ω(z) and the same two filters G(z) used in
Subsection 3.3.2. The only differences with respect to the above simulation
for the scalar case are the following:

1. For the spectral estimation, we have employed the maximum entropy
solution (2.5) in which we have plugged the true variance Σ and the
two estimates Σ̂PJ and Σ̂ME.
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Figure 3.2: Mean error norm comparison using the solution (2.7), with the
bank of filters (3.75)-(3.76).
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Figure 3.3: Mean spectra comparison using the solution (2.7), with the bank
of filters (3.75)-(3.77).
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Figure 3.4: Mean error norm comparison using the solution (2.7), with the
bank of filters (3.75)-(3.77).
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2. We have modified (3.83) by using the matrix induced norms in place
of the absolute values.

3. We have illustrated only the mean of the errors norm since comparing
the 2× 2 spectral densities would require four pictures for each case.

Figure 3.5 shows the mean of the error norm in the case of filters bank
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Figure 3.5: Mean of the error norm comparison using the maximum entropy
solution (2.5), with the bank of filters (3.78)-(3.79).

(3.78)-(3.79). Although Σ̂PJ and Σ̂ME are quite similar in this case (see the
table in the previous section), the difference among the mean error norms is
more evident and the ME method provides an estimate closer to the estimate
obtained using the “true” Σ. Finally, in Figure 3.6, the mean of the error
norm is depicted for the case of the filters bank (3.78)-(3.80). The spectral
estimate obtained using Σ̂PJ is clearly unsatisfactory with respect to the one
obtained using Σ̂ME. In conclusion, the significant improvement in spectral
estimation brought about by our method occurs also in the multivariable
setting.

We conclude that, in several critical cases, the projection method of Sec-
tion 3.2 provides a poor estimate of the covariance matrix Σ, compromising
the quality of the spectral estimator. Moreover, simulation shows that, even
when the projection-based estimate Σ̂PJ looks close to our estimate Σ̂ME, the
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Figure 3.6: Mean of the error norm comparison using the maximum entropy
solution (2.5), with the bank of filters (3.78)-(3.80).

spectral estimator initialized with Σ̂ME significantly outperforms the other
one. Indeed, it often performs nearly as well as the estimator initialized with
the true state covariance Σ.

3.4 Estimates with the Beta matrix diver-

gence

Problem 3.4 may be extended by considering a generic index divergence D
among (positive definite) covariance matrices.

Problem 3.18. Given Σ̂C ∈ Hn,+ and G(z) with the previous properties,
solve

minimize D(P‖Σ̂C) over P ∈ (Hn,+ ∩ Range Γ) . (3.84)

One possible matrix divergence index is the Beta matrix divergence (fam-
ily) which is defined as follows:

Dβ(P‖Σ̂) := tr[
1

β − 1
(P β − P Σ̂β−1)− 1

β
(P β − Σ̂β)] (3.85)
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where P, Σ̂ ∈ Hn,+ and β ∈ R \ {0, 1}. In fact, Dβ(P‖Σ̂) is the Beta diver-
gence Sβ(Φ‖Ψ), introduced in Section 2.3, among the two constant spectral

densities Φ(ejϑ) ≡ P and Ψ(ejϑ) ≡ Σ̂ 3. Since Dβ is a special case of Sβ,
it is strictly convex with respect to the first argument. Moreover, it is a
continuous function of real variable β ∈ R with

lim
β→0
Dβ(P‖Σ̂) = DBG(P‖Σ̂)

lim
β→1
Dβ(P‖Σ̂) = DKL(P‖Σ̂) (3.86)

where
DKL(P‖Σ̂) := tr[P (log(P )− log(Σ̂))− P + Σ̂] (3.87)

is the extension of the Umegaki-von Neumann’s relative entropy, [53], to non
equal-trace matrices.

In what follows, we consider the parametrization β = − 1
ν
+1 with ν ∈ N+,

and we define Dν(P‖Σ̂C) := Dβ(P‖Σ̂C) with β = − 1
ν

+ 1. In Section 3.3,

we already showed that there exists a unique solution, say Σ̂ME, to Problem
3.18 with Dν and ν = 1. Consider now Problem 3.18 with ν ∈ N+ \{1}. The
corresponding Lagrange functional is

Lν(P,∆) := Dν(P‖Σ̂C) +
ν

1− ν tr(Σ̂
ν−1
ν

C ) + tr[∆Π⊥B(P − A∗PA)Π⊥B]

= Dν(P‖Σ̂C) +
ν

1− ν tr(Σ̂
ν−1
ν

C ) + tr(PV∆). (3.88)

Since Lν(P,∆ + ∆̄) = Lν(P,∆) ∀∆̄ ∈ kerϕ = [Rangeϕ]⊥, we can assume
that ∆ ∈ Rangeϕ. Moreover, Lν(·,∆) is strictly convex overHn,+. Thus, the
unique minimum point of Lν(·,∆) is given by annihilating the first directional
derivative of Lν(·,∆) in each direction δP ∈ Hn

δLν(P,∆; δ∆) = tr[(−νP− 1
ν + νΣ̂

− 1
ν

C + V∆)δP ]. (3.89)

Thus, (3.89) is zero for each δP ∈ Hn if and only if

P−
1
ν = Σ̂

− 1
ν

C +
1

ν
V∆. (3.90)

Since P−
1
ν ∈ Hn,+, the set of the admissible Lagrange multipliers is

Lϕν :=

{
∆ ∈ Hn | Σ̂−

1
ν

C +
1

ν
V∆ > 0

}
∩ Rangeϕ. (3.91)

3In this case the spectral densities conrresponds to Cm-valued processes and the defi-
nition of Sβ in (2.23) is still well-defined.
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We conclude that the unique minimum point for Lν(·,∆) is

Pν(∆) := [Σ̂
− 1
ν

C +
1

ν
V∆]−ν . (3.92)

Similarly to the case ν = 1, if we produce ∆◦ ∈ Lϕν such that Pν(∆
◦) satisfies

constraint (3.22), then Σ̂ν := Pν(∆
◦) is the unique solution to Problem 3.18

with Dν and ν ∈ N+ \ {1}. Such a Λ◦ is given by minimizing the dual
functional

(3.93)

Jν(∆) := −Lν(Pν(∆),∆) =
ν

ν − 1
tr[Σ̂

− 1
ν

C +
1

ν
V∆]1−ν . (3.94)

Theorem 3.19. The dual problem

Find ∆ ∈ Lϕν minimizing Jν(∆) (3.95)

admits a unique solution.

Proof. Firstly, note that Lϕν is open and bounded. The proof follows the one
of Proposition 3.10 faithfully.
Secondly, Jν ∈ C2(Lϕν ). In fact, its first and second variation, respectively,

δJν(∆; δ∆) = −tr[(Σ̂
− 1
ν

C +
1

ν
V∆)−νVδ∆]

δ2Jν(∆; δ∆, δ∆) =
1

ν

ν∑
l=1

tr[(Σ̂
− 1
ν

C +
1

ν
V∆)−lVδ∆(Σ̂

− 1
ν

C +
1

ν
V∆)l−ν−1Vδ∆]

are continuous over Lϕν . Note that δJν(∆; δ∆, δ∆) ≥ 0. Since Vδ∆ 6= 0 for
each δ∆ 6= 0 with δ∆ ∈ Rangeϕ (as observed in the proof of Lemma 3.7)

and Σ̂
− 1
ν

C + 1
ν
V∆ > 0, it follows that δ2Jν(∆; δ, δ∆) is strictly positive over Lϕν .

Thus, Jν is strictly convex over Lϕν , and the dual problem admits at most
one solution.
Finally, it remains to prove the existence of such a solution. Note that

Jν(0) = ν
ν−1

tr(Σ̂
ν−1
ν

C ) and we can restrict therefore the search of a minimum
point to the set L? := {∆ ∈ Lϕν | Jν(∆) ≤ Jν(0)} ⊂ Lϕν which is bounded.
Following the same lines in the proof of Theorem 3.11 it is possible to prove
that lim

∆→∂Lϕν
Jν(∆) = +∞ (the limit diverges because the exponent in (3.94)

is negative). Thus, L? is a compact set (i.e. closed and bounded) and Jν ,
which is continuous over Lϕν , admits a minimum point ∆◦ over L? by the
Weierstrass’ Theorem.

Also in this case, a globally convergent matricial Newton algorithm for finding
∆◦, similar to the one of Section 3.3.1, may be employed. Finally, the same
analysis may be extended to DKL. In this case, PKL(∆) = elog(Σ̂C)−V∆ .
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3.4.1 Application to spectral estimation

In Section 2.7, we tested the features of the family of solutions Φν with ν ∈ N+

to Problem 2.1 by exploiting the knowledge of the covariance matrix Σ. Here,
we consider the bivariate bandpass random process y of Section 2.7.2 and we
consider the corresponding THREE-like spectral estimation procedure:

1. We start from a finite sequence y(1) . . . y(N) extracted from a realiza-
tion of the process y;

2. Fix G(z) as in Section 2.7.2;

3. Set Ψ = 1
N

∑N
k=Ñ y(k)y(k)T with Ñ < N ;

4. Feed the filters bank with the data sequence y(1) . . . y(N), collect the
output data x(1) . . . x(N) and compute Σ̂C = 1

N

∑N
k=Ñ x(k)x(k)T ;

5. Compute Σ̂ν ∈ Range Γ ∩Qn,+ with ν ∈ N+

6. Compute Φν by solving Problem 2.1 (with Sν) with the chosen Ψ and

Σ̂
− 1

2
ν G(z) as filters bank.

Note that, in point 5 of the above procedure we assume that Σ̂ν = Σ̂ME

when ν = 1.
In Figure 3.7, the obtained estimates with N = 50 (i.e. we have con-

sidered a short-length data) are depicted. Also in this case, the peaks of
the estimates are reduced by increasing ν. For the extracted sequence, the
estimators for ν = 2 and ν = 3 appear to perform better than the one for
ν = 1. Finally, the same procedure can be applied to the other processes con-
sidered in Section 2.7. We conclude that the presented family of estimators
Φν provides a relevant tool in multivariate spectral estimation.

3.5 Generalization of the Blackman-Tukey

method

The structured covariance estimation problem introduced in Section 3.2 is
just an instance of a class of problems in digital signal processing where the
covariance matrix of the output process of a general linear filter has to be
estimated with the knowledge of the input sample data.

For the special case of linear filters G(z) whose output is the state of
the filter, the problem of characterizing the output covariance Σ has been
addressed by Georgiou in [33] and [36]. In Section 3.3 and Section 3.4 we

61



0 0.5 1 1.5 2 2.5 3
0

5

10

15

[⋅]
11

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

ℜ[⋅]
12

0 0.5 1 1.5 2 2.5 3

0

2

4

6

ℑ[⋅]
12

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

[⋅]
22

 

 

Ω
Φ
1

Φ
2

Φ
3

Figure 3.7: Estimation of the spectral density of a bivariate bandpass random
process.

employed this characterization in order to estimate the state covariance by
solving an optimization problem. Notice that these techniques require that
the state covariance Σ and the sample covariance Σ̂C are strictly positive
definite and that the filter’s output and state coincide. On the other hand,
these techniques do not exploit the knowledge of y(1) . . . y(N) that, in the
THREE-like methods, are the problem data.
In this section we introduce a different approach, [67] (see also [44] and [30]),
based on the knowledge of the input sample data y(1) . . . y(N), to compute
a positive semi-definite estimate Σ̂ whose structure is consistent with an
arbitrary, finite dimensional, stable, linear filter G(z). This method, which is
an extension of the one for estimating the Toeplitz covariance matrix of order
M of the process y based on the Blackman-Tukey estimator [7], hinges on
the characterization of Σ in terms of the filter G(z) and the covariance lags
sequence of the input process y. Thus, given an estimate of the covariance
lags sequence of the input process, we can compute an estimate Σ̂ consistent
with the structure imposed by the filter. It will be shown that if we consider
the sample covariance lags used in the biased correlogram spectral estimator
we can guarantee that Σ̂ ≥ 0.

In what follows, we present a more precise formulation of the problem
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with G(z) arbitrary, finite dimensional, stable, linear filter. We successively
introduce the approach based on the covariance lags.

3.5.1 Generalized structured covariance estimation prob-
lem

Consider a linear filter

xk+1 = Axk +Byk

wk = Cxk +Dyk, k ∈ Z, (3.96)

where A ∈ Cn×n, B ∈ Cn×m, C ∈ Cp×n, D ∈ Cp×m and A has all its eigen-
values in the open unit disk. The input process y is zero mean, Cm-valued,
wide sense stationary and purely nondeterministic. Σ = Σ∗ = E[wkw

∗
k] ≥ 0

denotes the covariance matrix of the (stationary) output process w and we
denote by

G(z) = C(zI − A)−1B +D (3.97)

the filter transfer function. We denote by C(T,Hm) the family Hm-valued,
continuous functions on the unit circle T. Consider now the linear operator

Γ : C(T,Hm)→ Hp

Φ 7→
∫
GΦG∗. (3.98)

It follows that Σ must belong to the linear space

Range Γ := {M ∈ Hp| ∃Φ ∈ C(T,Hm)

such that

∫
GΦG∗ = M}. (3.99)

Note that the above definition of Γ hinges on the filter G(z) = C(zI −
A)−1B +D. Thus, (3.98) generalizes the definition in (3.5).

Suppose now that A,B,C,D are known and a sample data y(1) . . . y(N)
is given. We therefore consider the following problem.

Problem 3.20. Compute an estimate Σ̂ of Σ from y(1) . . . y(N) such that

Σ̂ ∈ Range Γ ∩Hp,+. (3.100)

If we feed G(z) with the data y(1) . . . y(N) and we collect the output
data w(1) . . . w(N), an estimate of Σ is given by the sample covariance
Σ̂C := 1

N

∑N
k=1 w(k)w(k)∗ ≥ 0. This estimate, as it happened in the ex-

ample discussed in Section 3.1, normally fails to belong to Range Γ. In fact,
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Range Γ is a linear vector subspace usually strictly contained in Hp. One

could project Σ̂C onto Range Γ obtaining a new Hermitian matrix Σ̂Γ. This
matrix Σ̂Γ, however, may be indefinite and this is particularly likely when
N is not large. In addition, when the linear filter G(z) does not satisfies
particular properties, the computation of a basis for Range Γ is not trivial.

3.5.2 Characterization of Range Γ.

We start by considering a particular, yet very relevant, situation. We will
later deal with the general case.

State covariance matrices

Next we restrict attention to the case when C = In and D = 0n×m, with m <
n, so that Σ is a state covariance matrix. Under the additional assumptions
that (A,B) is a reachable pair and B has full column rank, we know that a
matrix M ∈ Hn belongs to Range Γ if and only if condition (3.7) holds for
some H ∈ Cm×n. Moreover, Range Γ has real dimension equal to m(2n−m).

We now want to relax the reachability assumption. To this end, we derive
a preliminary result. Consider an (A,B) pair and the operator Γ correspond-
ing to G(z) = (zI−A)−1B. We perform a state space transformation induced
by an invertible matrix T ∈ Cn×n,

Ã := T−1AT, B̃ := T−1B. (3.101)

We define the corresponding operator

Γ̃ : C(T,Hm)→ Hn

Φ 7→
∫
G̃ΦG̃∗ (3.102)

with G̃(z) = (zI − Ã)−1B̃ = T−1G(z). Note that∫
GΦG∗ =

∫
TG̃ΦG̃∗T ∗, ∀Φ ∈ C(T,Hm). (3.103)

Thus, Range Γ and Range Γ̃ are isomorphic vector spaces and

M̃ ∈ Range Γ̃ ⇔ TM̃T ∗ ∈ Range Γ. (3.104)

Theorem 3.21. Consider an (A,B) pair with B full column rank. Let T ∈
Cn×n be a state space transformation such that the pair (T−1AT, T−1B) is in
standard reachability form. Let l be the dimension of the reachable subspace.
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Assume l > m. Then, Range Γ has real dimension equal to m(2l −m) and
M ∈ Range Γ if and only if there exists H1 ∈ Cm×l such that

M − AMA∗ = B
[
H1 0

]
T ∗ + T

[
H∗1
0

]
B∗. (3.105)

Proof. The proof is divided in three steps.
Step 1) By assumption, we have

Ã := T−1AT =

[
A1 A12

0 A2

]
, B̃ := T−1B =

[
B1

0

]
(3.106)

where A1 ∈ Cl×l, A12 ∈ Cl×(n−l), A2 ∈ C(n−l)×(n−l), B1 ∈ Cl×m, (A1, B1)
reachable and B1 full column rank. Then, it is easy to see that

G̃(z) = (zI − Ã)−1B̃ =

[
G1(z)

0

]
(3.107)

with G1(z) = (zI − A1)−1B1. Moreover, for each Φ ∈ C(T,Hm) we have∫
G̃ΦG̃∗ =

[ ∫
G1ΦG∗1 0

0 0

]
. (3.108)

Accordingly,

Range Γ̃ =

{[
M1 0
0 0

]
s.t. M1 ∈ Range Γ1

}
(3.109)

where

Γ1 : C(T,Hm)→ Hl

Φ 7→
∫
G1ΦG∗1. (3.110)

It follows that Range Γ has the same dimension of Range Γ1 and, since
(A1, B1) is reachable and B1 full column rank, as recalled before, such di-
mension is equal to m(2l −m).
Step 2) Since (A1, B1) is reachable and B1 full column rank, exploiting con-
dition (3.7), we have that M̃ ∈ Range Γ̃ if and only if

M̃ =

[
M1 0
0 0

]
, M1 ∈ Cl×l (3.111)

and there exists H1 ∈ Cm×l such that

M1 − A1M1A
∗
1 = B1H1 +H∗1B

∗
1 . (3.112)

65



The above condition is equivalent to the existence of H1 ∈ Cm×l such that

M̃ − ÃM̃Ã∗ = B̃
[
H1 0

]
+

[
H∗1
0

]
B̃∗

=

[
B1H1 +H∗1B

∗
1 0

0 0

]
. (3.113)

Here, we have exploited the fact that the (unique) solution M̃ of the Lya-
punov equation (3.113) has the block-diagonal structure (3.111) with M1

being the solution of (3.112).
Step 3) Pre and post multiplying (3.113) by T and T ∗, respectively, we see
that M̃ ∈ Range Γ̃ if and only if ∃H1 ∈ Cm×l such that M := TM̃T ∗ satisfies
(3.105). Exploiting (3.104) we obtain the statement.

The previous theorem enables us to easily compute a basis for Range Γ also
when the pair (A,B) is not reachable.

Characterization of Range Γ in the general case

We now consider a general linear filter G(z) = C(zI − A)−1B + D and the
corresponding linear operator Γ defined in (3.98). Moreover, we define the
linear operator

Θ : C(T,Hm)→ Hn+p

Φ 7→
∫
LΦL∗ (3.114)

where

L(z) :=

(
zI −

[
A 0
C 0

])−1 [
B
D

]
=

[
GS(z)
z−1G(z)

]
(3.115)

and GS(z) = (zI − A)−1B.

Theorem 3.22. M ∈ Range Γ if and only if there exist P ∈ Cn×n and
Q ∈ Cn×p such that

X :=

[
P Q
Q∗ M

]
∈ Range Θ. (3.116)

Proof. Assume that M ∈ Range Γ, then there exists Φ ∈ C(T,Hm) such that
M =

∫
GΦG∗. Define

P :=

∫
GSΦG∗S, Q :=

∫
eiϑGSΦG∗. (3.117)
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It follows that

X :=

[
P Q
Q∗ M

]
=

[ ∫
GSΦG∗S

∫
eiϑGSΦG∗∫

e−iϑGΦG∗S
∫
GΦG∗

]
=

∫ [
GS

e−iϑG

]
Φ
[
G∗S eiϑG∗

]
=

∫
LΦL∗. (3.118)

Accordingly X ∈ Range Θ.
Conversely, assume that there exist P and Q such that (3.116) holds. Then
there exists Φ ∈ C(T,Hm) such that

X =

[
P Q
Q∗ M

]
=

∫
LΦL∗

=

[ ∫
GSΦG∗S

∫
eiϑGSΦG∗∫

e−iϑGΦG∗S
∫
GΦG∗

]
. (3.119)

Accordingly, M =
∫
GΦG∗, namely M ∈ Range Γ.

Note that, L(z) satisfies the hypothesis of Theorem 3.21. Accordingly, we
can compute a basis for Range Θ.

3.5.3 Projection method in the general case

We now show how to exploit the results of Section 3.5.2 to extend the pro-
jection method considered in Section 3.2 to the general setting.
Let us first consider the situation where (A,B) may be non reachable (so
that Σ ≥ 0 may be singular) but still C = I and D = 0. In view of Theorem
3.21, we can easily compute a basis for Range Γ. Accordingly, we are able to
compute the corresponding projected matrix Σ̂Γ of Σ̂. Here Σ+ ≥ 0 may be
singular because we have removed the reachability condition. However, when
Σ̂Γ is indefinite, there always exists ε > 0 such that Σ̂PJ := Σ̂Γ + εΣ+ ≥ 0
because the null space of Σ+ coincides with the orthogonal complement of
the reachable subspace of the pair (A,B).
In view of Theorem 3.22, we can now extend the projection method to the
general case. Consider the linear filter L(z) as in (3.115). Let v be the output
process when L(z) is fed by y

vk+1 =

[
A 0
C 0

]
vk +

[
B
D

]
yk, k ∈ Z. (3.120)

Define then X := E[vkv
∗
k] as the corresponding output covariance matrix.

We are now ready to outline the generalization of the projection method.
Let v(1) . . . v(N) be the output data when L(z) is fed with the sample data
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y(1) . . . y(N). Compute then the sample matrix X̂C := 1
N

∑N
k=1 v(k)v(k)∗.

Notice that X is a state covariance matrix. Applying the projection method
presented in Section 3.2, we obtain an estimate X̂PJ ≥ 0 belonging to
Range Θ. Finally, exploiting Theorem 3.22, we have

Σ̂PJ :=
[

0 Ip
]
X̂PJ

[
0
Ip

]
. (3.121)

3.5.4 Constrained covariance estimation method

In this section we first characterize the output covariance Σ in terms of the
filter parameters and the covariance lags {Rj}∞j=0 of y (Theorem 3.23). This

enables us to define an estimate Σ̂CL of the output covariance depending on
an estimate R̂j of the input covariance lags and to characterize the key feature

Σ̂CL ∈ Range Γ in terms of a property of the R̂j’s (Corollary 3.24). Finally,

we present a method to compute the R̂j’s guaranteeing Σ̂CL ∈ Range Γ ∩
Hn,+.

Let Rj := E[yk+jy
∗
k], j ∈ Z, be the j-th covariance lag of y. Notice that

Rj = R∗−j.

Theorem 3.23. Let y and w be the input and output processes of the linear
filter G(z) as defined in (3.97). Then, the covariance matrix of wk is given
by

Σ = CPC∗ + CQD∗ +DQ∗C∗ +DR0D
∗ (3.122)

where

Q :=
∞∑
j=1

Aj−1BR∗j (3.123)

and P is the (unique) solution of the Lyapunov equation

P − APA∗ = AQB∗ +BQ∗A∗ +BR0B
∗. (3.124)

Proof. From (3.96) we have

wkw
∗
k = Cxkx

∗
kC
∗ + Cxky

∗
kD
∗ +Dykx

∗
kC
∗ +Dyky

∗
kD
∗.

Taking expectations on both sides, we get (3.122), where P := E[xkx
∗
k].

Equation (3.124) follows from [36, Theorem 1].

We now define the block-Toeplitz matrix

TM(R) :=


R0 R−1 R−M

R1

. . .
. . .

. . .
. . . R−1

RM R1 R0

 (3.125)
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as the covariance matrix of order M of the process y. Notice that, TM(R) ≥ 0
for each M ∈ N.

Corollary 3.24. Let {R̂j}∞j=0 be a sequence of m × m matrices such that

TM(R̂) ≥ 0 for each M ∈ N. Define

Σ̂CL := CP̂C∗ + CQ̂D∗ +DQ̂∗C∗ +DR̂0D
∗ (3.126)

where Q̂ :=
∑∞

j=1A
j−1BR̂∗j and P̂ is the (unique) solution to the Lyapunov

equation

P̂ − AP̂A∗ = AQ̂B∗ +BQ̂∗A∗ +BR̂0B
∗. (3.127)

Then, Σ̂CL ∈ Range Γ ∩Hn,+.

Proof. Since TM(R̂) ≥ 0 for each M ∈ N, there exists a wide sense stationary
Cm-valued process ŷ with covariance lags sequence {R̂j}∞j=0. If we feed the
filter G(z) with ŷ, we get a stationary output process ŵ. In view of Theorem
3.23, it follows that the covariance matrix of ŵ is Σ̂CL ∈ Range Γ ∩Hn,+.

Thus, once we have an estimate {R̂j}∞j=0 of the covariance lags sequence

of y satisfying TM(R̂) ≥ 0 for each M ∈ N, a positive semi-definite estimate
Σ̂CL ∈ Range Γ of the true covariance Σ is given by (3.126). It remains to
choose a method to estimate {R̂j}∞j=0 from the sample data y(1) . . . y(N) in

such a way that TM(R̂) ≥ 0 for each M ∈ N. We consider the correlogram
spectral estimator, [61], Φ̂ =

∑∞
j=−∞ R̂je

−iϑj where

R̂j =

{
1
N

∑N−j
k=1 y(k + j)y∗(k), 0 ≤ j < N

0m×m, j ≥ N.
(3.128)

This method suffers from the drawback that the reliability of the estimate R̂j

decreases considerably as j grows, especially for relatively short time series,
[46]. The corresponding estimated joint correlation Q̂ is, however, a finite
sum. Moreover, it is easy to see that TM(R̂) = YMY

∗
M ≥ 0 where YM = 1√

N
C

with C ∈ CmM×(M−1+N) being the left block-circulant (block Hankel) matrix,
with m block rows, having

[
0m×1 . . . . . . 0m×1 y(1) . . . y(N)

]
as the

first block row. Notice that, in view of (3.122), (3.123) and (3.124), the
term Aj−1 in Σ̂CL acts as “reliability index” for the estimate R̂j: Due to the

presence of the term Aj−1, the influence of R̂j on Σ̂CL decreases as j increases.
Accordingly, we can truncate the covariance lags sequence in (3.128) to L

R̂j =

{
1
N

∑N−j
k=1 y(k + j)y∗(k), 0 ≤ j < L

0m×m, j ≥ L.
(3.129)
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L is chosen in such way that ‖AL−1‖ < ε, where ε is a threshold constant.
Notice that (3.129) is the covariance lags sequence obtained by the Blackman-
Tukey method [7] using a rectangular lag window of width equal to L. Thus,
the corresponding block-Toeplitz matrix TM(R̂) is positive semi-definite for
each M , see [61]. Hence, (3.129) is a natural choice for computing Σ̂CL.

The previous results suggest the following simple procedure, which we
shall refer to as input covariance lags method, to compute Σ̂CL given the
sample data y(1) . . . y(N):

1. Choose L such that ‖AL−1‖ < ε

2. Compute

R̂0 =
1

N

N∑
k=1

y(k)y∗(k), Q̂ =
1

N

L−1∑
j=1

N−j∑
k=1

Aj−1By(k)y∗(k + j)

3. Solve in P̂ the Lyapunov equation (3.127)

4. Compute the estimate Σ̂CL of the true covariance Σ using (3.126).

Note that, in the covariance extension setting (1.7) we have

Σ̂CL =
1

N

 . . . . . . 0 y(1) . . . y(L)
. . . 0 y(1) . . . y(L) 0

. .
.
. .
.

. .
.

. .
.

. .
.

. .
.





...
... . .

.

... 0 . .
.

0 y∗(1) . .
.

y∗(1)
... . .

.

... y∗(L) . .
.

y∗(L) 0 . .
.


which coincides with the one given by the Blackman-Tukey method. Thus,
the above method generalizes the Blackman-Tukey approach.

3.5.5 Performance comparison

In this section, we want to test the method presented in Section 3.5.4 with
the other methods introduced in the Chapter. We use the following notation:
• CL method to denote the input covariance lags method.
• PJ method to denote the extended projection method presented in Section
3.5.3.
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• ME method to denote the maximum entropy method (only employed to
estimate state covariance matrices).
For a fair interpretation of the comparison results, we hasten to point out
that while other methods exploits only a finite sample of the output of the
linear filter, our method uses only the corresponding sample of the input
process. Notice that in the case of estimate of state covariance matrices
(and assuming the matrix B to be full column rank) the sample of the input
process are easily obtainable from that of the output process and the converse
is also true. Therefore, the available information is really the same for the
three methods. On the contrary, for general filters the available information
may be different. Notice also that in the applications related with THREE-
like estimation methods the available data are a finite sample of the input
process.

A performance comparison procedure

Suppose that we have a finite sequence y(1) . . . y(N) extracted from a sample
path of a zero-mean, weakly stationary discrete-time process y. We want to
compare the estimates Σ̂CL, Σ̂PJ , Σ̂ME obtained by employing CL, PJ and
ME method, respectively. In order to make the comparison reasonably inde-
pendent of the specific data set, we average over 500 experiments performed
with sequences extracted from different sample paths. We are now ready to
describe the comparison procedure:
• Fix the transfer function G(z).
• At the j-th experiment G(z) is fed by the data yj(1) . . . yj(N). From
yj(1) . . . yj(N) estimate Σ̂CL(j), Σ̂PJ(j) and Σ̂ME(j) using CL, PJ and ME
method respectively.
• Compute the relative error norm4 between Σ and the estimate Σ̂CL(j)

eCL(j) =
‖Σ̂CL(j)− Σ‖

‖Σ‖ . (3.130)

In similar way, compute the relative error norms ePJ(j) and eME(j) between
Σ and the estimates Σ̂PJ(j) and Σ̂ME(j) respectively.
• Once completed the experiments, compute the means µCL, µPJ , µME and
the variances σ2

CL, σ
2
PJ , σ

2
ME of the corresponding sequences {eCL(j)}500

j=1,
{ePJ(j)}500

j=1, {eME(j)}500
j=1. For example, for the CL method:

µCL =
1

500

500∑
j=1

eCL(j), σ2
CL =

1

500

500∑
j=1

(eCL(j)− µCL)2.

4Here the norm ‖·‖ is the spectral norm i.e. the matrix norm induced by the Euclidean
norm in Cp
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N µCL µPJ σ2
CL σ2

PJ ]F
300 0.1360 0.4130 0.0089 2.0937 174
500 0.1016 0.2127 0.0045 0.5544 126
700 0.0865 0.1893 0.0031 0.8592 97

Table 3.6: Parameters µCL, µPJ , σ2
CL, σ2

PJ , ]F for G(z) considered in Sub-
section 3.5.5.

• Count the number ]F of times that the PJ method adjusts the estimate
X̂Γ by adding the quantity εX+. Notice that the ME method can be only

used when Σ is a state covariance matrix (and not in the general case). For
the sake of comparison, we consider the parameters µi, σ

2
i and ]F . Clearly,

the smaller these parameters, the better estimation is expected.

Simulation results: The general case

We have considered a bivariate real process y with a high-order spectral
density Ω(z) and a filter G(z) with a 3-dimensional output with 4 poles equi-
spaced on the circle of radius 0.8. The true covariance matrix Σ is positive
definite with eigenvalues: λ1 = 3.12 · 104, λ2 = 1.15 · 102, λ3 = 3.33 · 102.
The corresponding error means and variances for PJ and CL method are
reported in Table 3.6 for different values of the length N of the observed data
sequences y(1) . . . y(N). It is clear that the CL method largely outperform
the PJ method. The heuristic reason follows. As noted in Section 3.3.2,
the projection of X̂C (that is a perturbed version of the state covariance
X) onto Range Θ yields a matrix X̂Θ that, in many cases, in particular
when N is small, fails to be positive definite (or even positive semi-definite).
This, explains why the number of failures ]F is significant. Moreover, when
X̂Θ is indefinite the projection method add it the positive definite matrix
X+ ∈ Range Θ. For each experiment, X+ is the same. In view of (3.121),
the adjustment cannot be expected to provide a good estimate of Σ̂PJ . Note
that µPJ , σ

2
PJ decrease as N increases: In fact, X̂C → X with probability one

as N →∞. Notice that also µCL and σ2
CL decrease as N grows. Indeed, each

R̂j approaches the true covariance lag Rj as N →∞. Accordingly Σ̂CL → Σ.

Moreover, each estimate Σ̂CL is positive definite. We conclude that the CL
method is remarkably preferable to the PJ method.
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N µCL µPJ µME σ2
CL σ2

PJ σ2
ME ]F

300 0.18 0.81 0.18 0.018 2.65 0.02 73
500 0.16 0.47 0.15 0.013 1.37 0.013 37
700 0.13 0.29 0.13 0.001 0.74 0.009 18

Table 3.7: Parameters µCL, µPJ , µME, σ2
CL, σ2

PJ , σ2
ME, ]F forG(z) considered

in Subsection 3.5.5.

Simulation results: State covariance estimation

Consider G(z) corresponding to C = I6, D = 06×2,

A =


0.6 1 0 0 0 0
0 0.6 1 0 0 0
0 0 0.6 0 0 0
0 0 0 0.7 1 0
0 0 0 0 0.7 1
0 0 0 0 0 0.7

 , B =


0 0
1 0
0 1
0 0
1 0
0 1

 .

We choose the bivariate real process y with a coercive high-order spectral
density Ω(z) considered in Section 3.3.2. The true covariance Σ is posi-
tive definite with eigenvalues: λ1 = 3.4 · 10−3, λ2 = 1.69 · 10−2, λ3 = 1.47,
λ4 = 2.92, λ5 = 1.18 · 10, λ6 = 1.59 · 102. In Table 3.7, we present the results
obtained for different lengths N of the observed sequences y(1) . . . y(L). CL
and ME methods provide quite similar performances. The PJ method pro-
vides bad estimates when N is small. In this situation, the PJ method must
adjust the projection Σ̂C onto Range Γ in many experiments. Accordingly, its
performance gets remarkably poor with respect to the other methods when
N is not large. Also in this case each estimate Σ̂CL is positive definite.

Remark 3.25. As for the computational burden, the PJ method described
in Section 3.5.3 normally compensates for the poor performances with a
very high numerical efficiency. The ME and CL methods are very hardly
comparable. In fact, the number of operations of the ME and CL methods is
highly dependent on the problem’s parameters. Moreover, the ME method
is an optimization procedure whose computational burden is also dependent
on the tolerance threshold fixed for the convergence of the algorithm. On the
other hand the CL does not require any optimization procedure. For example,
in the cases illustrated above the two methods perform very similarly also
with respect to the computational burden (while the PJ method is much
faster). On the other hand, extensive simulation shows that the ME method
presents numerical problems and leads to extremely slow convergence, if we
consider a case when the state covariance Σ is close to singularity. The CL
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method, on the contrary, does not require any optimization procedure and
does not present any of these problems.

To conclude, the CL approach hinges on an explicit representation of Σ
in terms of the given filter and the covariance lags sequence of the input
process. Not only the estimated matrix was shown to be positive semi-
definite, but extensive simulation suggests also that the estimate is strictly
positive definite with high probability when Σ > 0.
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Chapter 4

Quantum process tomography

4.1 Introduction

In this Chapter, we consider an identification problem arising in the recon-
struction of quantum dynamical models from experimental data. This is a
key issue in many quantum information processing tasks [53],[10], [54],[50],
[9]. For example, a precise knowledge of the behavior of a channel to be used
for quantum computation or communications is needed in order to ensure
that optimal encoding/decoding strategies are employed, and verify that the
noise thresholds for hierarchical error-correction protocols, or for effective-
ness of quantum key distribution protocols, are met [53],[10]. In many cases
of interest, for example in free-space communication [63], channels are not
stationary and to ensure good performances, repeated and fast estimation
steps would be needed as a prerequisite for adaptive encodings. In addition
to this, when the goal is to embed the system used for probing the channel
in a moving vehicle or a satellite, one seeks the simplest implementation,
or at least a compromise between estimation accuracy and the number of
experimental resources needed.

To this aim, we here focus on: (i) characterizing the minimal experi-
mental setting (in terms of available probe states and measured observables)
needed for a consistent estimation of the channel; (ii) exploring how a mini-
mal parametrization of the models can be exploited to reduce the complexity
of the estimation algorithm; and (iii) simulating the minimal experimental
setting, and comparing it to “richer” experimental resources. In doing this,
we present a general framework for the estimation of physically-admissible
trace preserving quantum channels by minimizing a suitable class of (con-
vex) loss functions which contains, as special cases, commonly used maxi-
mum likelihood (ML) functionals. In the large body of literature regarding
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channel estimation, or quantum process tomography (see e.g. [54],[50] and ref-
erences therein), the experimental resources are usually assumed to be given.
Mohseni et al. [50] compare different strategies, but focus on the role of hav-
ing entangled states as an additional resource. However, it can be argued (see
e.g. [65]) that the information acquired through an entanglement-assisted
method by measuring a certain number K of independent observables can
be equivalently gathered by the method we describe, by properly choosing L
probe states and M observables such that L·M = K. Accordingly, our result
on the minimal resources for TPCP map estimation can be easily adapted to
this approach. The problem we study is close in spirit to that taken in [62]
while studying minimal state tomography.
Our analysis of the problem and the standard tomography methods (includ-
ing “inversion” and ML methods) leads to a necessary and sufficient condition
for identifiability of the channel and to the characterization of the minimal ex-
perimental resources (or quorum, in the language of [24]) for Trace-Preserving
(TP) channels estimation, [68],[69]. While the existing ML approaches intro-
duce the TP constraint through a Lagrange multiplier [54],[50], the method
we propose constrains the set of channels of the optimization problem to TP
maps from the beginning. In a d level quantum system, this allow for an
immediate reduction from d4 to d4 − d2 free parameters in the estimation
problem. However, determining which conditions on probe states and out-
put measurements must be satisfied to ensure identifiability has not been
made explicit so far. Our analysis can also be considered as complementary
to the one presented in [8], where the TP assumption is relaxed to include
losses. We pursue a rigorous presentation of the results and we try, whenever
possible, to make contact with ideas and methods of (classical) system iden-
tification. The same explicit parametrization for TP channels is also used to
develop a Newton-type algorithm with barriers, which ensures convergence
in the set of physically-admissible maps. Numerical simulation evidences
that experimental settings richer than the minimal one do not lead to better
performances, once the total number of available “trials” is fixed.

4.2 Preliminaries: Quantum channels and χ-

representation

As explained in Section 1.2.2, a quantum channel (in Schrödinger’s picture)
is a map E : D(H)→ D(H) with D(H) = {ρ ∈ Hn,+|tr(ρ) = 1}. Moreover, a
physically admissible quantum channel must be linear and Completely Posi-
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tive (CP), namely it must admit an Operator-Sum Representation (OSR)

E(ρ) =
d2∑
j=1

KjρK
∗
j (4.1)

where Ki ∈ Cd×d are called Kraus operators, [47]. In order to be Trace
Preserving (TP), a necessary condition to map states to states, it must also
hold that

d2∑
j=1

K∗jKj = Id (4.2)

where Id is the d×d identity matrix. TPCP maps can be thought as the quan-
tum equivalent of Markov transition matrices in the classical setting. An al-
ternative way to describe a CPTP channel is offered by the χ-representation.
Each Kraus operator Kj ∈ Cd×d can be expressed as a linear combination
(with complex coefficients) of {Fm}d2

m=1, Fm being the elementary matrix
Ejk, (whose entries are all zero except the one in position jk which is 1) with
m = (j − 1)d+ k. Accordingly, the OSR (4.1) can be rewritten as

E(ρ) =
d2∑

m,n=1

χm,nFmρF
∗
n . (4.3)

Let χ be the d2 × d2 matrix with element χm,n in position (m,n). It is easy
to see that it must satisfy

χ = χ∗ ≥ 0 (4.4)

and (following from (4.2))

d2∑
m,n=1

χm,nF
∗
nFm = Id. (4.5)

The map E is completely determined by the matrix χ. The χ matrix can
be used directly to calculate the effect of the map on a given state, and
the probability measurements outcomes, as well as observable expectations1.
Before providing the explicit formulas in the next lemmas we need to recall
the definition of partial trace. Consider two finite-dimensional vector spaces

1These results implicitly relate the χ matrix emerging from the basis of elementary
matrices we chose to the Choi matrix CE =

∑
mnEmn ⊗ E(Emn)[55]. In fact, either by

direct computation or by confronting formula (4.8) with its equivalent for the Choi matrix
CE (see e.g. [54], chapter 2), it is easy to see that CE = OχO∗, where O is the unique
unitary such that O(X ⊗ Y )O∗ = Y ⊗X [6].
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V1 V2, with dimV1 = n1, dimV2 = n2. Let us denote by Mn the set of
complex matrices of dimension n × n. Let {Mj} be a basis for Mn1 , and
{Nj} be a basis forMn2 , representing linear maps on V1 and V2, respectively.
ConsiderMn1×n2 =Mn1 ⊗Mn2 : It is easy to show that the n2

1×n2
2 linearly

independent matrices {Mj ⊗Nk} form a basis forMn1×n2 , where ⊗ denotes
the Kronecker product. Thus, one can express any X ∈Mn1×n2 as

X =
∑
jk

cjkMj ⊗Nk.

The partial trace over V2 is the linear map

trV2 : Mn1×n2 →Mn1 (4.6)

X 7→ trV2(X) :=
∑
j,k

(cjktr(Nk))Mj. (4.7)

An analogous definition can be given for the partial trace over V1. If the two
vector spaces have the same dimension, n1 = n2, we will indicate with tr1

and tr2 the partial traces over V1 and V2, respectively. The partial trace can
be also implicitly defined (without reference to a specific basis) as the only
linear function such that for any pair X ∈Mn1 , Y ∈Mn2 :

trV2(X ⊗ Y ) = tr(Y )X.

By linearity, this clearly implies

tr((A⊗ I)B) = tr(A tr2(B)).

Lemma 4.1. Let Eχ be a CPTP map associated with a given χ. Then for
any ρ ∈ D(H)

Eχ(ρ) = tr2(χ(Id ⊗ ρT )). (4.8)

Proof. Let us rewrite each Fj as the corresponding elementary matrix Elm,
with j = (l− 1)d+m, k = (n− 1)d+ p, and relabel χjk as χ̂lmnp accordingly.
Hence we get

χ =
∑
l,m,n,p

χ̂lmnpEln ⊗ Emp, (4.9)

and

Eχ(ρ) =
∑
l,m,n,p

χ̂lmnpElmρEpn.
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We can also expand ρ =
∑

rs ρrsErs, and substitute it in the above expression.
Taking into account that ElmEnp = δmnElp, and tr(ρTErs) = ρrs, we get:

Eχ(ρ) =
∑
l,m,n,p

χ̂lmnpElmρE
∗
np =

∑
l,m,n,p,r,s

ρrsχ̂lmnpElmErsEpn (4.10)

=
∑
l,n,r,s

ρrsχ̂lrnsEln =
∑
l,n,r,s

χ̂lrnstr(ρ
TErs)Eln

= tr2

(∑
l,n,r,s

χ̂lrnsEln ⊗ ErsρT
)

= tr2

(∑
l,n,r,s

χ̂lrns(Eln ⊗ Ers)(I ⊗ ρT )

)
= tr2(χ(I ⊗ ρT )). (4.11)

This leads to a useful expression for the computation of the expectations.

Corollary 4.2. Let us consider a state ρ, a projector Π and a quantum
channel E with associated a χ-representation matrix χ. Then

pE(ρ)(Π) = tr(E(ρ)Π) = tr(χ(Π⊗ ρT )).

Proof. It suffices to substitute (4.8) in pχ,ρ(Π) = tr(E(ρ)Π), and use the
identity tr((X ⊗ I)Y ) = tr(Xtr2(Y )).

The TP condition (4.5) can also be re-expressed directly in terms of the
χ matrix.

Corollary 4.3. Let us consider a CP map Eχ with associated χ-representation
matrix χ. Then Eχ is TP if and only if

tr1(χ) = Id. (4.12)

Proof. Using the same notation we used in the proof of Lemma 4.1, we can
re-espress the TP condition (4.5) as:

Id =
∑
l,m,n,p

χ̂lmnpEpnElm =
∑
l,m,p

χ̂lmlpEpm = tr1(χ).
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4.3 Main Results: Identifiability Condition

and Minimal Setting

4.3.1 The Channel Identification Problem

Consider the following setting: A quantum system prepared in a known pure
state ρ 2 is fed to an unknown channel E . The system in the output state
E(ρ) is then subjected to a projective measurement of an observable. By
noting that an observable (being represented by an Hermitian matrix in
our setting) admits a decomposition in orthogonal projections representing
mutually incompatible quantum events, we can without loss of generality
restrict ourselves to consider measurements associated to orthogonal projec-
tions Π = Π∗ = Π2. For each one of these, the outcome x is in the set {0, 1},
and can be interpreted as a sample of the (classical) random variable X which
has distribution

Pχ(x),ρ =

{
pχ,ρ(Π), if x = 1
1− pχ,ρ(Π), if x = 0

(4.13)

where pχ,ρ(Π) = tr(Eχ(ρ)Π) is the probability that the measurement of Π
returns outcome 1 when the state is Eχ(ρ).

Assume that the experiment is repeated with a series of known input
(pure) states {ρk}Lk=1, and to each trial the same orthogonal projections
{Πj}Mj=1 are measured N times, obtaining a series of outcomes {xjkl }. We
consider the sampled frequencies to be our data, namely

fjk :=
1

N

N∑
l=1

xjkl . (4.14)

The channel identification problem we are concerned with consists in con-
structing a Kraus map Eχ̂ that fits the experimental data (in some optimal
way), in particular estimating a matrix χ̂ satisfying constraints (4.4), (4.5).

4.3.2 Necessary and sufficient conditions for identifia-
bility

It is well known [58],[54] that by imposing linear constraints associated to
the TP condition (4.5), or equivalently (4.12), one reduces the d4 real degrees
of freedom of χ to d4 − d2. This will be made explicit in the following, by

2A state is called pure if ρ is an orthogonal projection matrix on a one-dimensional
subspace.
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parameterizing χ in a “generalized” Pauli basis (also known as gell-mann
matrices, Fano basis or coherence vector representation in the case of states
[3], [5],[54]). Usually the trace preserving constraint is not directly included
in the standard tomography method [50], since in principle it should emerge
from the physical properties of the channel, or it is imposed through a (non-
linear) Lagrange multiplier in the maximum likelihood approach [54]. Here,
in order to investigate the minimum number of probe (input) states and mea-
sured projectors needed to uniquely determine χ, it is convenient to include
this constraint from the very beginning. Doing so, we lose the possibility of
exploiting a Cholesky factorization in order to impose positive semidefinite-
ness of χ: Noentheless, we show in Section 4.4 that semidefiniteness of the
solution can be imposed algorithmically by using a barrier method [11].

Before proceeding to the main results, a number of definitions are in order.
Consider an orthonormal basis for d2 × d2 Hermitian matrices of the form
{σj ⊗ σk}j,k=0,1,...,d2−1, where σ0 = 1/

√
dId, while {σj}j=1,...,d2−1 is a basis for

the traceless subspaces. We can now write

χ =
∑
jk

sjkσj ⊗ σk.

If we now substitute it into (4.12), we get:

Id = tr1(χ) =
∑
jk

sjktr(σj)σk =
∑
k

√
d s0kσk,

and hence, since the σj are linearly independent, we can conclude that s00 =
1, s0j = 0 for j = 1, . . . , d2− 1. Hence, the free parameters for a TP map (at
this point not necessarily CP, since we have not imposed the positivity of χ

yet) are d4−d2, and we can write any TP χ as χ = d−1Id2 +
∑d2−1,d2−1

j=1,k=0 sjkσj⊗
σk, or, in a more compact notation,

χ(θ) = d−1Id2 +
d4−d2∑
`=1

θ`Q`, (4.15)

by rearranging the double indexes j, k in a single index `, and defining the
corresponding Q` = σj ⊗ σk. Thus, there exists a one to one correspondence

among χ and the d4 − d2-dimensional real vector ϑ =
[
ϑ1 . . . ϑd4−d2

]T
,

and the χ matrices corresponding to TP maps form an affine space, its linear
part being

STP := span {Q`} = span {σj ⊗ σk}j=1,...,d2−1,k=0,...,d2−1 .
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In order to find necessary and sufficient conditions for identifiability, it is
convenient to define

Bjk = (Πj −
rj
d
I)⊗ ρTk (4.16)

where rj is the rank of Πj and tr(Πj) = rj. Moreover, we define B =
span {Bjk}j=1,...,M,k=1,...,L . Intuitively, B represents the space of input/output
combination that can be probed by the set of experimental resources {ρk}, {Πj}
we choose. The definition of the Bjk is motivated by the fact that, since
Q` = σj 6=0 ⊗ σk, it holds that

tr(Q`(Πj ⊗ ρTk )) = tr(Q`Bjk). (4.17)

By recalling that σj, j = 1, . . . d2 − 1 is a basis for the traceless subspace of
Hermitian matrices it is immediate to show that B ⊆ STP . Finally, let us in-
troduce the function g that maps the space of TP channels in the (theoretical)
set of probabilities for the input states/measured projectors combinations:

g : Rd4−d2 → RM×L

ϑ 7→ g(ϑ) (4.18)

where the component of g(ϑ) in position (j, k) is defined as

gjk(ϑ) = pχ(ϑ),ρk(Πj) = tr(χ(ϑ)(Πj ⊗ ρTk )). (4.19)

The key result on identifiability is the following:

Proposition 4.4. g is injective if and only if STP = B.

Proof. Given (4.19), we have that

gjk(ϑ1)− gjk(ϑ2) = tr[(χ(ϑ1)− χ(ϑ2))(Πj ⊗ ρTk )] (4.20)

= tr[S(ϑ1 − ϑ2)Bjk]

= 〈S(ϑ1 − ϑ2), Bjk〉 (4.21)

where S(ϑ1 − ϑ2) = χ(ϑ1) − χ(ϑ2) =
∑d4−d2

l=1 (ϑ1,l − ϑ2,l)Ql ∈ STP . So, we
have that

g(ϑ1) = g(ϑ2) ⇔ 〈S(ϑ1 − ϑ2), Bjk〉 = 0 ∀ j, k. (4.22)

Assume STP = B : The only element of STP for which the r.h.s. of (4.22)
could be true is zero. Since by definition S(ϑ1−ϑ2) = 0 if and only if ϑ1 = ϑ2,
g is injective. On the other hand, assume that B ( STP : Therefore there
exists T 6= 0 ∈ STP

⋂B⊥ such that

T =
∑
`

γ`Q`, 〈T,Bjk〉 = 0 ∀j, k.
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But this would mean that ϑ and ϑ+ γ have the same image g(ϑ), and hence
g is not injective.

We anticipate here that g being injective is a necessary and sufficient
condition for a priori identifiability of χ, and thus for having a unique solution
of the problem for both inversion (standard process tomography) and convex
optimization-based (e.g. maximum likelihood) methods, up to some basic
assumptions on the cost functional. The proof of these facts is given in full
detail in Section 4.3.3 and 4.3.4.

As a consequence of these facts, we can determine the minimal experimen-
tal resources, in terms of input states and measured projectors, needed for
faithfully reconstructing χ from noiseless data {f ◦jk}, where f ◦jk = pχ,ρk(Πj).
In the light of Proposition 4.4, the minimal experimental setting is charac-
terized by a choice of {Πj, ρk} such that STP = B. Recalling the definition
of B, through (4.16), it is immediate to see that STP = B if and only if
span

{
Πj − rj

d
Id
}

= span {σj, j = 1, . . . , d2 − 1} and span {ρk} = Hd. We
can summarize this fact as a corollary of Proposition 4.4.

Corollary 4.5. g is injective if and only if we have at least d2 linearly
independent input states {ρk}, and d2 − 1 measured {Πj} such that

span
{

Πj −
rj
d
Id

}
= span

{
σj, j = 1, . . . , d2 − 1

}
.

We call such a set a minimal experimental setting. Notice that, using the
terminology of [54],[24], the minimal quorum of observables consists of d2−1
properly chosen elements. While in most of the literature at least d2 observ-
ables are considered [31],[50], we showed it is in principle possible to spare
a measurement channel at the output. A physically-inspired interpretation
for this fact is that, since we a priori know, or assume, that the channel is
TP, measuring the component of the observables along the identity does not
provide useful information. This is clearly not true if one relaxes the TP con-
dition, as it has been done in [8]: In that case, by the same line of reasoning,
d2 linearly independent observables are the necessary and sufficient for g to
be injective.

As an example relevant to many experimental situation, consider the
qubit case, i.e. d = 2. A minimal set of projector has to span the traceless
subspace of H2: one can choose e.g.:

Πj =
1

2
(I2 + σj), j = x, y, z.

ρx,y =
1

2
(I2 + σx,y), ρ± =

1

2
I2 ± σz. (4.23)
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It is clear that there is an asymmetry between the role of output and inputs:
In fact, exchanging the number of {Πj} and {ρk} can not lead to an injective
g.

4.3.3 Process Tomography by inversion

Assume that STP = B, and that the data {fjk} have been collected. Since
fjk is an estimate of pχ(ϑ),ρk(Πj), consider the following least mean square
problem

min
ϑ∈Rd4−d2

‖g(ϑ)− f‖ (4.24)

where g(ϑ) and f are the vectors obtained by stacking the gjk(ϑ) and fjk
j = 1 . . .M, k = 1 . . . L, respectively. In view of (4.15) and (4.19) we have
that g(ϑ) = Tϑ+ d−1r where

T =


. . .

...
tr(BjkQ`)

...
. . .

 (4.25)

and
r =

[
r1 . . . rM

]T
. (4.26)

Notice that the `th column of T is formed with the inner products of Q` with
each Bjk. Since STP = B, the Q` are linearly independent and the Bjk are
the generators of B, then T is full column rank, namely has rank d4 − d2.
Hence, in principle, one can reconstruct ϑ̂ as

ϑ̂ = T#(f − 1

d
r), (4.27)

T# being the Moore-Penrose pseudo inverse of T [42]. If the experimental
setting is minimal, the usual inverse suffices. However, as it is well known,
when computing χ this way from real (noisy) data, the positivity character
is typically lost [54],[1]. We better illustrate this fact in Section 4.5, through
numerical simulations.

4.3.4 Convex methods: general framework

More robust approaches for the estimation of physically-acceptable χ (or
equivalent parametrizations) have been developed, most notably by resorting
to Maximum Likelihood methods [31],[58],[54],[64]. The optimal channel
estimation problem can be stated, by using the parametrization for χ(θ) =
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d−1Id2 +
∑

` ϑ`Q` presented in the previous section, as it follows: Consider
a set of data {fjk} as above, and a cost functional J(ϑ) := h ◦ g(ϑ) where
h : RM×L → R is a suitable function which depends on the data {fjk}. We
aim to find

ϑ̂ = arg min
ϑ
J(ϑ) (4.28)

subject to ϑ belonging to some constrained set C ⊂ Rd4−d2
. In our case

C = A+ or C = A+ ∩ I,
with A+ = {ϑ | χ(θ) ≥ 0}, while I = {ϑ | 0 < tr(χ(ϑ)(Πj ⊗ ρTk )) <
1, ∀ j, k}. The second constraint may be used when a cost functional which
is not well-defined for extremal probabilities, or in order to ensure that the
estimated channel exhibits some noise in each of the measured directions, as
it is expected in realistic experimental settings. Since the analysis does not
change significantly in the two settings, we will not distinguish between them
where it is not strictly necessary. The following result will be instrumental
to prove the existence of a unique solution.

Proposition 4.6. C is a bounded set.

Proof. First, we remark that C is neither closed nor open in general. Since
C ⊂ A+, it is sufficient to show that A+ is bounded or, equivalently, that
a sequence {ϑj}j≥0, with ϑj ∈ Rd4−d2

, and ‖ϑj‖ → +∞, cannot belong to
A+. To this end, it is sufficient to show that, as ‖ϑj‖ → +∞, the minimum
eigenvalue of χ(ϑj) tends to −∞ so that, for j large enough, ϑj does not
satisfy condition χ(ϑj) ≥ 0. Notice that the map ϑ 7→ χ(ϑ) is affine. More-
over, since theQ` are linearly independent, this map is injective. Accordingly,
‖χ(ϑj)‖ approach infinity as ‖ϑj‖ → +∞. Since χ(ϑj) is a Hermitian matrix,
χ(ϑj) has an eigenvalue λj such that |λj| → +∞ as ‖χ(ϑj)‖ → +∞. Recall
that χ(ϑj) satisfies (4.12) by construction which implies that tr(χ(ϑj)) = d
namely the sum of its eigenvalues is always equal to d. Thus, there exists an
eigenvalue of χ(ϑj) which approaches −∞ as j → +∞, which is in contrast
with its positivity. So, C is bounded.

Here we focus on the following issue: Under which conditions on the
experimental setting (or, mathematically, on the set B defined above) do the
optimization approach have a unique solution? In either of the cases above,
C is the intersection of convex nonempty sets: In fact, STP and χ ≥ 0 are
convex and so must be the corresponding sets of ϑ, and it is immediate to
verify that I is convex as well; all of these contain θ = 0, corresponding
to 1

d
Id2 , and hence they are non empty. In the light of this, it is possible to

derive sufficient conditions on J for existence and uniqueness of the minimum
in the presence of arbitrary constraint set C. Define ∂C0 := ∂C \ (∂C ∩ C).
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Proposition 4.7. Assume h is continuous and strictly convex on g(C), and

lim
ϑ→∂C0

J(ϑ) = lim
ϑ→∂C0

h ◦ g(ϑ) = +∞. (4.29)

If STP = B, then the functional J has a unique minimum point in C.

Proof. Since h is strictly convex on g(C) and the linear function g, in view
of Proposition 4.4, is injective on C, J is strictly convex on C. So, we only
need to show that J takes a minimum value on C. In order to do so, it is
sufficient to show that J is inf-compact, i.e., the image of (−∞, k] under the
map J−1 is a compact set. Existence of the minimum for J then follows from

Weierstrass’ theorem. Define ϑ0 :=
[

0 . . . 0
]T ∈ Rd4−d2

. Observe that
χ(ϑ0) = d−1Id2 ≥ 0. Moreover,

tr(χ(ϑ0)Πj ⊗ ρTk ) =
rj
d
< 1 ∀j, k. (4.30)

Therefore, ϑ0 ∈ C and call J(ϑ0) = J0 <∞. So, we can restrict the search for
a minimum point to the image of (−∞, J0] under J−1. Since C is a bounded
set by construction, to prove inf-compactness of J it is sufficient to guarantee
that

lim
ϑ→∂C0

J(ϑ) = +∞.

4.3.5 ML Binomial functional

Assume a certain set of data {fjk} have been obtained, by repeating N
times the measurement of each pair (ρk,Πj). For technical reasons (strict
convexity of the ML functional on the optimization set) and experimental
considerations (noise typically irreversibly affects any state), it is typically
assumed that 0 < fjk < 1. The probability of obtaining a series of outcomes
with cjk = fjkN ones for the pair (j, k) is then

Pχ(cjk) =

(
N

cjk

)
tr(χΠj ⊗ ρTk )cjk [1− tr(χΠj ⊗ ρTk )]N−cjk (4.31)

so that the overall probability of {cjk}, may be expressed as: Pχ({cjk}) =∏M
j=1

∏L
k=1 Pχ(cjk). By adopting the Maximum Likelihood (ML) criterion,

once fixed the {cjk} describing the recorded data, the optimal estimate χ̂
of χ is given by maximizing Pχ({cjk}) with respect to χ over a suitable set
C. Let us consider our parametrization of the TP χ(ϑ) as in (4.15) . If we
assume 0 < tr(χ(ϑ)(Πj⊗ρTk )) < 1, since the logarithm function is monotone,
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it is equivalent (up to a constant emerging from the binomial coefficients) to
minimize over C = A+ ∩ I 3 the function

J(ϑ) = − 1

N
logPχ(ϑ)({cjk}) +

1

N

∑
j,k

log

(
N
cjk

)
= −

∑
j,k

fjk log[tr(χ(ϑ)(Πj ⊗ ρTk )]

+(1− fjk) log[1− tr(χ(ϑ)(Πj ⊗ ρTk ))]. (4.32)

Here, h(X) = −∑j,k fjk log(xjk) + (1− fjk) log(1− xjk) with xjk = [X]jk
and X ∈ RM×L is strictly convex on RM×L because 0 < fjk < 1 by as-
sumption. Notice that ∂C0 is the set of ϑ ∈ A+ for which there exists
at least one pair (̃i, k̃) such that tr(χ(ϑ)(Πj̃ ⊗ ρT

k̃
)) = 0, 1. Suppose that

tr(χ(ϑ)(Πj̃⊗ρTk̃ ))→ 0 as ϑ→ ∂C0. Therefore, log[tr(χ(ϑ)(Πj⊗ρTk ))]→ −∞.
Since cj̃,k̃ > 0 by assumption, we have that

lim
ϑ→∂C0

J(ϑ) = −lim
ϑ→∂C0

∑
j,k

fjk log[tr(χ(ϑ)(Πj ⊗ ρTk ))] (4.33)

+(1− fjk) log[1− tr(χ(ϑ)(Πj ⊗ ρTk ))]

= −fj̃,k̃ lim
ϑ→∂C0

log[tr(χ(ϑ)(Πj̃ ⊗ ρTk̃ ))] (4.34)

= +∞. (4.35)

In similar way, we obtain the same result from the other case, and the con-
ditions for existence and uniqueness of the minimum of Proposition 4.7 are
satisfied.

We now discuss consistency of this method. Let ϑ◦ be the “true” param-
eter and χ = χ(ϑ◦) be the corresponding χ-matrix of the “true” channel.
First observe that, once fixed the sample frequencies fjk (or, equivalently,
cjk),

J(ϑ) ≥ −
∑
j,k

fjk log[fjk] + (1− fjk) log[1− fjk],

so that if there exists ϑ̂ ∈ C such that tr[χ(ϑ̂)(Πj̃⊗ρTk̃ )] = fjk, then such a ϑ̂ is
optimal. Hence, in particular, the (unique) optimal solution corresponding
to the fjk equal to the “true” probabilities tr[χ(Πj ⊗ ρTk )] is exactly ϑ◦.
On the other hand, as the number of experiments N increases, the sample
frequencies fjk tend to the “true” probabilities tr[χ(Πj ⊗ ρTk )]. Therefore, in

3If the optimization is constrained to A+ ∩ I, we are guaranteed that fjk will tend to
be positive for a sufficiently large numbers of trials.
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view of convexity of J and of the continuity of J and its first two derivatives,
the corresponding optimal solution tends to the “true” parameter ϑ◦. This
proves consistency.

4.3.6 ML Gaussian functional

Assume a certain data {fjk} have been obtained. For each ρk consider the

sample vector f
k

=
[
f1k . . . fMk

]T ∈ RM , that can be thought as a

sample of pk
χ

=
[

tr(χ(Π1 ⊗ ρTk )) . . . tr(χ(ΠM ⊗ ρTk ))
]T

. Accordingly, we

can consider the probabilistic model f
k

= pk
χ

+ vk where vk ∼ N (0,Σ),Σ >

0 is gaussian noise. This noise model is a good representation of certain
experimental settings in quantum optics, where the sampled frequencies are
obtained with high number of counts cj and the gaussian noise is due to
the electronic of the measurement devices, typically photodiodes. In our
model, we can think that to each measured Πj is associated a different device
with noise component vj. Notice that, the noise components are in general
correlated. Let Dj denote the device associated to Πj. Then, Dj will measure
the data fj1, . . . , fjL. Since f

k
∼ N (pk

χ
,Σ), the probability of obtaining the

outcomes f
k

is then

P k
χ (f

k
) =

1√
(2π)M det Σ

exp{−1

2
(f

k
− pk

χ
)Σ−1(f

k
− pk

χ
)T} (4.36)

so that the overall probability of {fjk} is equal to Pχ({fjk}) =
∏L

k=1 P
k
χ (f

k
).

By adopting the ML criterion, given {fjk}, the optimal estimate χ̂ of χ is
given by maximizing Pχ({fjk}) with respect to χ. Taking into account the
parametrization χ(ϑ) as in (4.15), it is equivalent to minimize over C = A+

the function

J(ϑ) = −2 log
(√

(2π)M det(Σ)Pχ(ϑ)({fjk})
)

=
L∑
k=1

(f
k
− pk

χ(ϑ)
)Σ−1(f

k
− pk

χ(ϑ)
)T . (4.37)

Then, it easy to see that the conditions of Proposition 4.7 are satisfied.
Accordingly, the minimum ϑ̂ of J is unique. Also in this case it is possible to
show, along the same lines used for the previous functional, the consistency
of the method.
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4.4 A convergent Newton-type algorithm

In Sections 4.3.5 and 4.3.6 we have presented two ML functionals and showed
the uniqueness of their solution. Now, we face the problem of (numerically)
finding the solution ϑ̂ minimizing J over the prescribed set. In the following
we will refer to the binomial functional (4.32), but the results can be easily
extended for the Gaussian case.

Consider J as in (4.32) and assume that STP = B. Problem (4.28), with
C = A+ ∩ I, is equivalent to minimize J over I with the linear inequality
constraint χ(ϑ) ≥ 0. Rewrite the problem, making the inequality constraint
implicit in the objective

ϑ̂ = min
ϑ∈I

J(ϑ) + I−(ϑ) (4.38)

where I− : Rd4−d2 → R is the indicator function for the non positive semidef-
inite matrices χ(ϑ)

I−(ϑ) :=

{
0, ϑ s.t. χ(ϑ) ≥ 0
+∞, elsewhere.

(4.39)

The basic idea is to approximate the indicator function I− by the convex
function

Î−(ϑ) := −1

q
log det(χ(ϑ)) (4.40)

where q > 0 is a parameter that sets the accuracy of the approximation (the
approximation becomes more accurate as q increases). Then, we take into
account the approximated problem

ϑ̂
q

= min
ϑ∈ int(C)

Gq(ϑ) (4.41)

where int (C) denotes the interior of C and the convex function

Gq(ϑ) := qJ(ϑ)− log det(χ(ϑ)). (4.42)

The solution ϑ̂
q

can be computed employing the following Newton algorithm
with backtracking stage:

1. Set the initial condition ϑ0 ∈ int (C).

2. At each iteration, compute the Newton step

∆ϑl = −H−1
ϑl
∇Gϑl

∈ Rd4−d2

(4.43)
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where

[∇Gϑ ]
s

:=
∂Gq(ϑ)

∂ϑs

= q
∑
j,k

{
1− fjk

1− tr[χ(ϑ)Bjk]
− fjk

tr[χ(ϑ)Bjk]

}
× (4.44)

×tr(QsBjk)− tr[χ(ϑ)−1Qs] (4.45)

[Hϑ ]
r,s

:=
∂Gq(ϑ)

∂ϑrϑs

=q
∑
j,k

{
1− fjk

[1− tr(χ(ϑ)Bjk)]2
+

fjk
[tr(χ(ϑ)Bjk)]2

}
× (4.46)

×tr(QrBjk)tr(QsBjk) + tr[χ(ϑ)−1Qrχ(ϑ)−1Qs] (4.47)

are the element in position s of the gradient (understood as column
vector) and the element in position (r, s) of the Hessian of Gq both
computed at ϑ.

3. Set t0l = 1, and let tp+1
l = tpl /2 until all the following conditions hold:

0 < tr[χ(ϑl + tpl ∆ϑl)Bjk] < 1 ∀ j, k (4.48)

χ(ϑl + tpl ∆ϑl) ≥ 0 (4.49)

Gq(ϑl + tpl ∆ϑl) < Gq(ϑl) + γtpl∇GT
ϑl

∆ϑl (4.50)

where γ is a real constant, 0 < γ < 1
2
.

4. Set ϑl+1 = ϑl + tpl ∆ϑl ∈ int (C).

5. Repeat steps 2, 3 and 4 until the condition ‖∇Gϑl
‖ < ε is satisfied,

where ε is a (small) tolerance threshold, then set ϑ̂
q

= ϑl.

To prove the convergence of our Newton algorithm we exploit Proposition
3.13. We proceed in the following way: Identify a compact set D such that
ϑl ∈ D and prove that the Hessian is coercive and Lipschitz continuous on
D. We then apply Proposition 3.13 in order to prove the convergence.
Since ϑ0 ∈ int (C) we consider the set

D := {ϑ ∈ Rd4−d2 | Gq(ϑ) ≤ Gq(ϑ0)}. (4.51)

The presence of the backtracking stage in the algorithm guarantees that the
sequence Gq(ϑ0), Gq(ϑ1), . . . is decreasing. Thus ϑl ∈ D, ∀l ≥ 0.

Proposition 4.8. The following facts hold:
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1. D is a compact set.

2. Hϑ is coercive and bounded on D, namely there exist s, S > 0 such that

sI ≤ Hϑ ≤ SI ∀ ϑ ∈ D. (4.52)

3. Hϑ is Lipschitz continuous on D.

Proof. 1) D is contained into the bounded set C. Since D is a finite dimen-
sional space, it is sufficient to show that

lim
ϑ→∂C

Gq(ϑ) = +∞. (4.53)

Here, we have three kind of boundary: ∂I ∩ int (A+), int (I) ∩ ∂A+ and
∂I ∩ ∂A+. Notice that, log det(χ(ϑ)) takes finite values on ∂I ∩ int (A+).
Accordingly, taking (4.29) into account,

lim
ϑ→∂I∩ int(A+)

Gq(ϑ) = q lim
ϑ→∂I∩ int(A+)

J(ϑ) = +∞. (4.54)

Then, int (I) ∩ ∂A+ is the set of ϑ for which J is bounded and there exists
at least one eigenvalue of χ(ϑ) equal to zero. Thus,

lim
ϑ→ int(I)∩∂A+

Gq(ϑ) = − lim
ϑ→ int(I)∩∂A+

log det(χ(ϑ)) = +∞. (4.55)

Finally, from (4.54) and (4.55) it follows that Gq(ϑ) diverges as ϑ approach
∂I ∩ ∂A+.
2) First, observe that D ⊂ int (C). Since D is a compact set, there exists
s > 0 such that

χ(ϑ)−1 ≥ sI ∀ ϑ ∈ D. (4.56)

Define

δjk :=
1− fjk

[1− tr(χ(ϑ)Bjk)]2
+

fjk
[tr(χ(ϑ)Bjk)]2

> 0

[Mjk]r,s := tr(QrBjk)tr(QsBjk) (4.57)

where Mjk is a positive semidefinite matrix with rank equal to one. Accord-
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ingly,

[Hϑ]r,s = q
∑
j,k

δjk[Mjk]r,s +

+tr[χ(ϑ)−
1
2Qrχ(ϑ)−1Qsχ(ϑ)−

1
2 ]

≥ q
∑
j,k

δjk[Mjk]r,s + str[Qrχ(ϑ)−1Qs] (4.58)

≥ q
∑
j,k

δjk[Mjk]r,s + s2tr[QrQs]

≥ q
∑
j,k

δjk[Mjk]r,s + s2〈Qr, Qs〉. (4.59)

Since {Ql}12
l=1 are orthonormal matrices and δjkMjk ≥ 0, we have that

Hϑ ≥ q
∑
j,k

δjkMjk + s2I ≥ s2I. (4.60)

Notice that, Hϑ is continuous on int (C). Since D ⊂ int (C), it follows that
Hϑ is continuous on the compact D. Hence, there exists S > 0 such that
Hϑ ≤ SI ∀ ϑ ∈ D. We conclude that Hϑ is coercive and bounded on D.
3) Hϑ is continuous on D and ‖Hϑ‖ ≤ S ∀ ϑ ∈ D, therefore Hϑ is Lipschitz
continuous on D.

Since all the hypothesis of the Proposition 3.13 are satisfied, we have the
following proposition.

Proposition 4.9. The sequence {ϑl}l≥0 generated by the Newton algorithm

converges to the unique minimum point ϑ̂
q ∈ int (C) of Gq.

Then, it is possible to show [11, p. 597] that

J(ϑ̂) ≤ J(ϑ̂
q
) ≤ J(ϑ̂) +

d

q
. (4.61)

Hence, d/q is the accuracy (with respect to ϑ̂) of the solution ϑ̂
q

found. This
method, however, works well only setting a moderate accuracy.

An extension of the previous procedure is given by the Barrier method
[11, p. 569] which solves (4.38) with a specified accuracy ξ > 0:

1. Set the initial conditions q0 > 0 and ϑq0 =
[

0 . . . 0
]T ∈ int (C).

2. Centering step: At the k-th iteration compute ϑ̂
qk ∈ int (C) by minimiz-

ing Gqk with starting point ϑ̂
qk−1

using the Newton method previously
presented.
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3. Set qk+1 = µqk.

4. Repeat steps 2 and 3 until the condition d
qk
< ξ is satisfied, then set

ϑ̂ = ϑ̂
qk

.

So, at each iteration we compute ϑ̂
qk

starting from the previously computed
point ϑ̂

qk−1
, and then increase qk by a factor µ > 1. The choice of the value

of the parameters q0 and µ is discussed in [11, p. 574]. Since the Newton

method used in the centering step globally converges, the sequence {ϑ̂qk}k≥0

converges to the unique minimum point ϑ̂ of J with accuracy ξ. Moreover,
the number of centering steps required to compute ϑ̂ with accuracy ξ starting

with q0 is equal to

⌈
log d

ξq0

log µ

⌉
+ 1, [11, p. 601].

4.5 Simulation results

4.5.1 Performance comparison

We use the following notation:
• IN method to denote the process tomography by inversion of Section 4.3.3.
•ML method to denote the ML method, using the functional (4.32) of Section
4.3.4.
Here, we want to compare the performance of IN and ML method for the
qubit case d = 2. Consider a set of CPTP map {χl}100

l=1 randomly generated
and the minimal setting (4.23). Once the number of measurementsN for each
couple (ρk,Πj) is fixed, we consider the following comparison procedure:
• At the l-th experiment, let {cljk} be the data corresponding to the map χl.

Then, compute the corresponding frequencies f ljk = cljk/N .

• From {f ljk} compute the estimates χ̂INl and χ̂ML
l using IN and ML method

respectively.
• Compute the relative errors

eIN(l) =
‖χ̂INl − χl‖
‖χl‖

, eML(l) =
‖χ̂ML

l − χl‖
‖χl‖

. (4.62)

• When the experiments are completed, compute the mean of the relative
error

µIN =
1

100

100∑
l=1

eIN(l), µML =
1

100

100∑
l=1

eML(l). (4.63)

In Figure 4.1 the results obtained for different lengths N of measurements
related to {cljk} are depicted. The mean error norm of ML method is smaller
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Figure 4.1: Comparison performance IN vs ML method. N is the total
number of measurements for each (ρk,Πj), µ is the mean relative error as in-
troduced in (4.63), while ]F denotes the number of failures of the IN method,
i.e. the times in which the reconstructed χ is not positive.
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than the one corresponding to the IN method, in particular when N is small
(typical situation in the practice). In addition, more than half of the esti-
mates obtained by the IN method are not positive semidefinite, i.e not phys-
ically acceptable, even when N is sufficient large. Finally, we observe that
for both methods the mean error decrease as N grows. This fact confirms in
the practice their consistency.

4.5.2 Minimal setting

Let TM,L denote the set of the experimental settings with L input states
and M observables satisfying Proposition 4.4. Accordingly the set of the
minimal experimental settings is Td2−1,d2 . Here, we consider the case d = 2.
We want to compare the performance of the minimal settings in T3,4 with
those settings that employ more input states and observables. We shall do so
by picking a test channel, finding a minimal setting that performs well, and
comparing its performance with a non minimal setting in TM,L, M > 3, L ≥ 4
that performs well in this set while the total number NT of trials is fixed.

Consider the Kraus map (4.1) representing a perturbed amplitude damp-
ing operation (γ = 0.5) with

K1 =
√

0.9

[ √
0.5 0
0 0

]
, K2 =

√
0.9

[
1 0

0
√

0.5

]
,

K3 =
√

0.1/2I2, Kj =
√

0.1/2σl(j), j = 4, 5, 6, l(j) = x, y, z corresponding to
the χ-representation

χ =


0.95 0 0 0.6364

0 0.5 0 0
0 0 0.05 0

0.6364 0 0 0.5

 .
We set the total number of trials NT = 3600. Fixed the set TM,L M ≥ 3
L ≥ 4, we take into account the following procedure:
• Set N = NT \ (LM) and choose a randomly generated collection {Tm}100

m=1,
Tm ∈ TM,L.
• Perform 50 experiments for each Tm. At the l-th experiment we have a
sample data {fmjk(l)} corresponding to χ and Tm. From {fmjk(l)} compute
the estimate χ̂m(l) using the ML method and the corresponding error norm
em(l) = ‖χ̂m(l)− χ‖/‖χ‖.
• When the experiments corresponding to Tm are completed, compute the
mean error norm µm = 1

50

∑50
l=1 em(l).
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• When we have µm for m = 1 . . . 100, compute

µ̄L,M = min
m∈{1,...,100}

µm.

In Figure 4.2, µ̄L,M is depicted for different values of M and L. As we

    
0

0.02

0.04

0.06

0.08

µ̄3,4

µ̄4,3 µ̄4,4 µ̄5,4 µ̄5,5

Figure 4.2: µ̄L,M for different values of L and M .

can see, incrementing the number of input states/observables does not lead
to an improvement in the performance index. Analogous results have been
observed with other choices of test maps and NT . Finally, in Figure 4.3 is
depicted the true χ and the averaged estimation χ̄ML = 1

50

∑50
l=1 χm(l) with

m = arg minm∈{1,...,100} µm for M = 3 and L = 4.
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Figure 4.3: Real and imaginary part of χ (top) and the averaged estimation
χ̄ML (bottom). In order to improve readability, the vertical scale of the
imaginary part has been magnified in order to show the errors are below
0.01.
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Appendix A

On the exponentiation of
positive definite matrices

We collect some technical result concerning the exponentiation of positive
definite matrices to an arbitrary real number. We start by introducing the
differential of the matrix exponential and the matrix logarithm (see [37]).

Proposition A.1. Given Y ∈ Qn, the differential of Y 7→ eY in the direction
∆ ∈ Qn is given by the linear map

MY : ∆ 7→
∫ 1

0

e(1−τ)Y ∆eτY dτ. (A.1)

Proposition A.2. Given Y ∈ Qn,+, the differential of Y 7→ log (Y ) in the
direction ∆ ∈ Qn is given by the linear map

NY : ∆ 7→
∫ ∞

0

(Y + tI)−1∆(Y + tI)−1dt. (A.2)

Let us consider now a positive definite matrixX ∈ Qn,+ and a real number
c. The exponentiation of X to c may be rewritten in the following way

Xc = ec logX . (A.3)

Accordingly, by applying the chain rule, the differential of X 7→ Xc in the
direction ∆ ∈ Qn is given by

Mc logX(cNX(∆)) = c

∫ 1

0

Xc(1−τ)

∫ ∞
0

(X + tI)−1∆(X + tI)−1dtXcτdτ.

We summarize this result below.

99



Proposition A.3. The differential of X 7→ Xc in direction ∆ ∈ Qn is given
by the linear map

OX,c : ∆ 7→ c

∫ 1

0

Xc(1−τ)

∫ ∞
0

(X + tI)−1∆(X + tI)−1dtXcτdτ. (A.4)

Corollary A.4. The first variation of X 7→ tr(Xc) in direction ∆ ∈ Qn is

δ(tr(Xc); ∆) = ctr(Xc−1∆). (A.5)

Proof. Since Xcτ and (X + tI) commute, we get

δ(tr(Xc); ∆) = tr(OX,c(∆))

= ctr

{
Xc

∫ ∞
0

(X + tI)−2dt∆

}
= ctr

{
XcX−1∆

}
= ctr

{
Xc−1∆

}
.
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