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Spectral estimation problem

vy ={yk; k € Z} zero mean, C™—valued, stationary and purely
nondeterministic Gaussian process

o {y(k)}Y_, available finite data sequence

TASK Estimate the power spectral density (psd) ®,(e'”) of y

S
<

{y(k)}y 2
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Generalized covariance extension problem

>
<

{y(k) };(V:]_ ? ? Generalized covariance

. extension problem

SPLIT the problem!
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Generalized covariance extension problem

e G(z)=(z21 —A)'B Bank of filters

o A€ C™" strictly stable, B € C"*™ full column rank

y 6(2) x = {xx, k € Z}

o Y =E[xx;] = | G®,G* Output covariance matrix
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Generalized covariance extension problem

Generalized covariance extension problem (cont'd)

Problem statement

Given X, find a psd ®, (/) such that [ Gd,G*

L

<>

G(z2)

%, ¥ =E|

P

Once given X, does &>y exist?
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Example: G(z) bank of delays

0 Im 0 0 Yk—14+1
- . 0 Yk—1+4+2
e A= | - . , B= : = X, =
0 0 ... Im :
0 o 0 Im Vi
— /
vV
I'x I blocks
[ Ro Ry R Ri_y ]
Ry Ro Ri R,
Y = Ry : : ' ' ) R/ - ]E[.yk-i-/yk]
L Ri_y R, - E Ro a

Covariance extension problem

1MNue
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How to choose ®, 7

@ Entropy rate of a stochastic process with psd ¢

H(®) = /Iogdet <D(ej’9)

Maximum entropy solution (Byrnes-Georgiou-Lindquist,2000)

Sruree(e?’) =  argmax  H(P) RATIONAL!
PES: [ GOG*=X

@ Special case: “Classical” maximum entropy solution when G(z)
bank of delays (Burg, 1967)
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How to choose G(z)?

1%

x Poles of G(z)

X R[]
If poles close to |z| = 1, get
higher resolution of <i>y(e“9) at o

High resolution in prescribed frequency bands!
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Other THREE-type solutions

@ Kullback-Leibler relative entropy b, =Y
(Georgiou-Lindquist,2003)

@ Hellinger distance
(Ferrante-Pavon-Ramponi,2008)

b, = (1 + G*AG) " "W(I + G*AG) !

@ Relative entropy rate @ &, = (V14 G*AG)!
(Ferrante-Masiero-Pavon,2012)

@ Beta divergence ® b, = (Wt 4G AG)
(Zorzi,submitted,2012)

@ Alpha divergence o b, — "

(1+1 GGy

(Zorzi,submitted,2013)

W a priori spectral density

A Lagrange multiplier
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Generalized covariance extension problem

Remarks

@ Given entries for the spectral estimation problem (by choosing

THREE-type solutions)
o {y(k)}Y_, — Sample data
o G(z) - Fixed

e X =[Gd,G"is not given!

™M>

{y(F)} 2
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Structured covariance problem

drHREE = argmax  H(®)
PES : [ GOG*=%

—_—

{,V(k)}":lzl Structured covariance s THREE-type

—_—

estimation problem solution

nNue
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Structured covariance estimation problem

Problem statement

Given G(z) and {y(k)}¥_,, find £ > 0 such that
S=[GoG* IvesS

o:C—H™" A~ [GAG*

e Rangel :={M e H™" |3A cCst. [ GAG* =M}

@ 3 € Rangel and positive definite iff there exists ® € S such
that [ G®G* = ¥ (Georgiou, 2002)

Problem
Given G(z) and {y(k)}¥_,, find a positive definite matrix
Y e Rangel
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Example: G(z) bank of delays

Ro R1
Ry Ro
o) =
X
le1
Ro Ry
(] Zl = Rf Ro

Ry_y

Ri_»

Rangel = Toeplitz matrices

R Ro

not positive definite!

(MY, {x()HY,

o £2:= L0, x(K)x(k)* ¢ Rangel — | 6(2)
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Structured covariance problem

Approaches for estimating structured covariances

e Blackman-Tukey method (Blackman-Tukey,1959)
@ Maximum likelihood method (Burg-Luenberger-Wenger,1982)

@ Projection method (Ferrante-Pavon-Ramponi,2008)

Our contribution:

e Maximum entropy method

e Input covariance lags method

e Transportation distance method (Ning-Jiang-Georgiou, in press)
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Maximum likelihood method (Burg et al.,1982)

@ Information divergence between two Gaussian distribution
Po,, Pg, on C" with zero mean and covariance Q;, @

D(QUIQ) = 5llogdet(@; Q) + TH(QuQ;") —

ML method
Given G(z) and ¢ = SO0, x(k)x(k)* > 0, compute

Yp = argmin ]D)(iCHS)
5>0, S€Rangel

@ Numerical method for finding a local minimum is presented
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Structured covariance problem

Maximum entropy method

ME method
Given G(z) and ¢ S8, x(k)x(k)* > 0, compute

Swe:= argmin D(S|L¢)
5>0, S€Rangel

Constrained convex optimization problem!

o S € Rangel iff M4(S — ASA*)1s =0, M} =/ — B(B*B)~1B*
o Ls (S.A)=D(S|[Xc)+ Tr [AN5(S — ASA*)NE]
o The optimal solution has the form ¥ye(A) = (X2 +2Qa)t &
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Maximum entropy method (cont'd)

Dual problem
Find A° by solving

R 1 &
A° := argmax Eic(zf\/’f(/\)’ A) = argmax {_ Trlog (ZEI + QQ/\>} ,
AeT rer (2

T ={NeH™"|Lye(N) >0}

@ It can be proved that A° exists

@ A° can be computed via a globally convergent matricial
Newton-like algorithm
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Input covariance lags method
e G(z)=(z21 —A)'B
@ XY is given by
Y — AY A" = AQgrB* + BQrA™ + BRyB*
with Qg :=>"°, A'BR}, Ry := Elyk11y;] (Georgiou,2002).

CL method
An estimate S¢; > 0 of X is given by solving the Lyapunov equation

Sc— AL AT = AQyB* + BQiA* + BRyB*

with {R;}7°___ input covariance lags sequence estimated by :
employing the Blackman-Tukey method

v
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Simulation results

Estimated psd comparison

5 THREE by
—_—  E—
solution
— b5
k)N 3 &
{y(K)}p_q Spy THREE bpy Epy
—> PJ method E— ” . || >
solution
— b5
O, e THREE Sme Eme
e ME method — | . | >
solution
— b5
(O, Ser THREE der EcL
—> CL method — | . ‘ —
solution
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Simulation results

Scalar process (m=1) with THREE solution

Mean of the error norm comparison averaged over 500 experiments with N
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Simulation results

Bivariate process (m=2) with THREE solution

’ [ d

Mean of the error norm comparison averaged over 500 experiments with N = 500 =
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Simulation results

Conclusions

@ Psd estimation reliability strongly depends on the estimate of *
(by employing THREE-like solutions)

@ The ME and CL methods have been presented

@ The ME and CL methods provide better performances than the
PJ method in THREE-like spectral estimation paradigms
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Simulation results

Thank you for your attention
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Other THREE-type solutions

e G(z) Bank of filters
@ Y Output covariance matrix of G

@ W(el”) A priori power spectral density

Entropic-type solution (Georgiou-Lindquist, 2003)

—  argmin Dy (V]|®) RATIONAL!

~ "
q)KL—THREE(eJ )
PES: [ GPG™

o Kullback-Leibler divergence between power spectral densities

Dia(¥]®) = [ Wlog (%)
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Other THREE-type solutions (cont'd)

Other divergences employed
@ Hellinger distance (Ferrante-Pavon-Ramponi,2008)

Dy(V,®) = [inf||Wy — W3 : Wy, We € LT,
W W5 = W, WeW; = o]z

@ Relative entropy rate divergence (Ferrante-Masiero-Pavon,2012)

Drer(®[| W) = % / log det(®~1W) + Tr[U~1 (¢ — V)]

1MNue
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Other THREE-type solutions (cont'd)

Other divergences employed
o Beta divergence family (Zorzi,submitted,2012)

Ds(®[|V) = Tr/ ﬁ(qﬁ — oYh) %(d)ﬂ — vh)

@ Alpha divergence family (Zorzi,submitted,2013)

1 . 1 1
Da(q)H\U) — /m(bawl — a—1¢+aw
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Projection method (Ferrante et a/,2008)

@ We can compute a basis of Range " (Georgiou,2002)

PJ method
Let 3 be the projection of ¢ := T LSV x(k)x(k)* onto RangeT .

Then,
ZPJ = Zr + €Z+

with £ > 0 so large that $p, > 0 and £, € Rangel positive definite

A

1MNue
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Input covariance lags method

How to estimate Qg and Ry?
@ Blackman-Tukey correlogram

B _ { 5 i vk + Dy(ky, 0< <L
Omxm, I>L
A 1
— RO_NZY(/‘)Y(I()*
i
— QR:NZZAHBy(k) (k+1)
I=1 k=1

The corresponding > ¢; is positive semi-definite

= (zl —A)'B+D
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Transportation distance method (Ning et. al, in
press)

@ Transportation distance between two Gaussian distribution
Po,, Pg, on R” with zero mean and covariance Q;, @

Dro(0r, Q) = min {TH@ + - T- ) [ & 7] >0}

TD method
Given G(z) and ¥¢ > 0, compute

ZTD = argmin ]DTD(Zc,S) !
5>0, S€Rangel '
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Relative matrix error norm comparison

@ N sample length

@ 1 mean of the relative matrix error norm e := ”%;ﬁ”

@ o variance of the relative error norm e

@ #iF times that the projection X # 0
N | per | pps | pue | 0&p | 0by | olre | BF
300 | 0.18 | 0.81 | 0.18 | 0.018 | 2.65 | 0.02 73
500 | 0.16 | 0.47 | 0.15 | 0.013 | 1.37 | 0.013 | 37
700 | 0.13 | 0.29 | 0.13 | 0.001 | 0.74 | 0.009 | 18
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Scalar process (m=1) with KL-THREE solution

25

o
o
g
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Further simulation results: scalar process (m=1)

with THREE solution

| I
2 25 3
]

Mean of the error norm comparison averaged over 500 experiments with N = 100 =
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Further simulation results: Scalar process (m=1)
with THREE solution

3

I I I
-3 -2 -1 [ 1 2
a

Mean spectra comparison averaged over 500 experiments with N = 500
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Further simulation results: Scalar process (m=1)
with KL-THREE solution

[ J
=)

Mean spectra comparison averaged over 500 experiments with N = 500
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Further simulation results: Bivariate process
(m=2) with THREE solution

—bpy

AN —

<)
T T T

° % .
L L L

[ex J

Mean spectra comparison averaged over 500 experiments
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