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Spectral estimation problem

Spectral estimation problem

y = {yk ; k ∈ Z} zero mean, Cm−valued, stationary and purely

nondeterministic Gaussian process

{y(k)}Nk=1 available �nite data sequence

TASK Estimate the power spectral density (psd) Φy (e jϑ) of y

?
{y(k)}Nk=1 Φ̂y
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Generalized covariance extension problem

?
Generalized covariance

extension problem

{y(k)}Nk=1 ? Φ̂y

SPLIT the problem!
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Generalized covariance extension problem

Generalized covariance extension problem

G (z) = (zI − A)−1B Bank of �lters

A ∈ Cn×n strictly stable, B ∈ Cn×m full column rank

G (z)
y x = {xk , k ∈ Z}

Σ = E[xkx
∗
k ] =

∫
GΦyG

∗ Output covariance matrix
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Generalized covariance extension problem

Generalized covariance extension problem (cont'd)

Problem statement

Given Σ, �nd a psd Φ̂y (e jϑ) such that
∫
G Φ̂yG

∗ = Σ

G (z)
ŷ x̂ , Σ = E[x̂k x̂

∗
k ]

Once given Σ, does Φ̂y exist?
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Generalized covariance extension problem

Example: G (z) bank of delays
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Covariance extension problem
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Generalized covariance extension problem

How to choose Φ̂y?

Entropy rate of a stochastic process with psd Φ

H(Φ) =

∫
log detΦ(e jϑ)

Maximum entropy solution (Byrnes-Georgiou-Lindquist,2000)

Φ̂THREE (e jϑ) = argmax
Φ∈S :

∫
GΦG∗=Σ

H(Φ) RATIONAL!

Special case: �Classical� maximum entropy solution when G (z)

bank of delays (Burg, 1967)
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Generalized covariance extension problem

How to choose G (z)?

ϑ̄

<[·]

=[·]

Poles of G(z)

If poles close to |z| = 1, get

higher resolution of Φ̂y(e
jϑ) at ϑ̄

High resolution in prescribed frequency bands!
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Generalized covariance extension problem

Other THREE-type solutions

Kullback-Leibler relative entropy

(Georgiou-Lindquist,2003)

Hellinger distance

(Ferrante-Pavon-Ramponi,2008)

Relative entropy rate

(Ferrante-Masiero-Pavon,2012)

Beta divergence

(Zorzi,submitted,2012)

Alpha divergence

(Zorzi,submitted,2013)

Φ̂y = Ψ
G∗ΛG

Φ̂y = (I + G∗ΛG)−1Ψ(I + G∗ΛG)−1

Φ̂y = (Ψ−1 + G∗ΛG)−1

Φ̂y = (Ψ−
1

ν + G∗ΛG)−ν

Φ̂y = Ψ
(1+ 1

ν
G∗ΛG)ν

Ψ a priori spectral density

Λ Lagrange multiplier
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Generalized covariance extension problem

Remarks

Given entries for the spectral estimation problem (by choosing
THREE-type solutions)

{y(k)}Nk=1 → Sample data

G (z) → Fixed

Σ =
∫
GΦyG

∗ is not given!

?
THREE-type

solution

{y(k)}Nk=1 Σ̂ Φ̂THREE
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Structured covariance problem

Structured covariance

estimation problem

THREE-type

solution

{y(k)}N
k=1 Σ̂

Φ̂THREE = argmax

Φ∈S :
∫
GΦG∗=Σ̂

H(Φ)
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Structured covariance problem

Structured covariance estimation problem

Problem statement

Given G (z) and {y(k)}Nk=1, �nd Σ̂ > 0 such that

Σ̂ =
∫
GΦG ∗ ∃Φ ∈ S

Γ : C → Hn×n, ∆ 7→
∫
G∆G ∗

Range Γ := {M ∈ Hn×n | ∃∆ ∈ C s.t.
∫
G∆G ∗ = M}

Σ̂ ∈ Range Γ and positive de�nite i� there exists Φ ∈ S such

that
∫
GΦG ∗ = Σ̂ (Georgiou, 2002)

Problem

Given G (z) and {y(k)}Nk=1, �nd a positive de�nite matrix

Σ̂ ∈ Range Γ
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Structured covariance problem

Example: G (z) bank of delays

Σ =


R0 R1 . . . R
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 Range Γ ≡ Toeplitz matrices
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R̂∗
1
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.
.
.

.

.

.
.
.
.

.
.
.

 not positive de�nite!

Σ̂2 := 1
N

∑N

k=1 x(k)x(k)∗ /∈ Range Γ G (z)
{y(k)}N

k=1
{x(k)}N

k=1
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Structured covariance problem

Approaches for estimating structured covariances

Blackman-Tukey method (Blackman-Tukey,1959)

Maximum likelihood method (Burg-Luenberger-Wenger,1982)

Projection method (Ferrante-Pavon-Ramponi,2008)

Our contribution:

Maximum entropy method

Input covariance lags method

Transportation distance method (Ning-Jiang-Georgiou, in press)
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Structured covariance problem

Maximum likelihood method (Burg et al.,1982)

Information divergence between two Gaussian distribution

pQ1
, pQ2

on Cn with zero mean and covariance Q1,Q2

D(Q1‖Q2) :=
1

2
[log det(Q−11 Q2) + Tr(Q1Q

−1
2 )− n]

ML method

Given G (z) and Σ̂C =
∑N

k=1 x(k)x(k)∗ > 0, compute

Σ̂ML := argmin
S>0, S ∈Range Γ

D(Σ̂C‖S)

Numerical method for �nding a local minimum is presented
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Structured covariance problem

Maximum entropy method

ME method

Given G (z) and Σ̂C

∑N

k=1 x(k)x(k)∗ > 0, compute

Σ̂ME := argmin
S>0, S ∈Range Γ

D(S‖Σ̂C )

Constrained convex optimization problem!

S ∈ RangeΓ i� Π⊥B (S − ASA∗)Π⊥B = 0, Π⊥B = I − B(B∗B)−1B∗

LΣ̂C
(S ,Λ) = D(S‖Σ̂C ) + Tr

[
ΛΠ⊥B (S − ASA∗)Π⊥B

]
The optimal solution has the form Σ̂ME (Λ) = (Σ̂−1C + 2QΛ)−1
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Structured covariance problem

Maximum entropy method (cont'd)

Dual problem

Find Λ◦ by solving

Λ◦ := argmax
Λ∈I

LΣ̂C
(Σ̂ME (Λ),Λ) = argmax

Λ∈I

{
1

2
Tr log

(
Σ̂−1C + 2QΛ

)}
,

I = {Λ ∈ Hn×n | Σ̂ME (Λ) > 0}

It can be proved that Λ◦ exists

Λ◦ can be computed via a globally convergent matricial

Newton-like algorithm
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Structured covariance problem

Input covariance lags method

G (z) = (zI − A)−1B

Σ is given by

Σ− AΣA∗ = AQRB
∗ + BQRA

∗ + BR0B
∗

with QR :=
∑∞

l=1 A
l−1BR∗l , Rl := E [yk+ly

∗
k ] (Georgiou,2002).

CL method

An estimate Σ̂CL ≥ 0 of Σ is given by solving the Lyapunov equation

Σ̂CL − AΣ̂CLA
∗ = AQR̂B

∗ + BQR̂A
∗ + BR̂0B

∗

with {R̂l}∞l=−∞ input covariance lags sequence estimated by

employing the Blackman-Tukey method
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Simulation results

Estimated psd comparison

THREE

solution

Σ Φ̂Σ

PJ method

THREE

solution

+

−Φ̂Σ

‖ · ‖
{y(k)}N

k=1 Σ̂PJ Φ̂PJ EPJ

ME method

THREE

solution

+

−Φ̂Σ

‖ · ‖
{y(k)}N

k=1 Σ̂ME Φ̂ME EME

CL method

THREE

solution

+

−Φ̂Σ

‖ · ‖
{y(k)}N

k=1 Σ̂CL Φ̂CL ECL
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Simulation results

Scalar process (m=1) with THREE solution
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Simulation results

Bivariate process (m=2) with THREE solution

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

ϑ

 

 

E
PJ

E
ME

E
CL

Mean of the error norm comparison averaged over 500 experiments with N = 500

Mattia Zorzi (University of Padova) Structured covariance estimation February 28th, 2013 22 / 24



Simulation results

Conclusions

Psd estimation reliability strongly depends on the estimate of Σ

(by employing THREE-like solutions)

The ME and CL methods have been presented

The ME and CL methods provide better performances than the

PJ method in THREE-like spectral estimation paradigms
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Simulation results

Thank you for your attention
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Appendix

Other THREE-type solutions

G (z) Bank of �lters

Σ Output covariance matrix of G

Ψ(e jϑ) A priori power spectral density

Entropic-type solution (Georgiou-Lindquist, 2003)

Φ̂KL−THREE (e jϑ) = argmin
Φ∈S :

∫
GΦG∗

DKL(Ψ‖Φ) RATIONAL!

Kullback-Leibler divergence between power spectral densities

DKL(Ψ‖Φ) =

∫
Ψ log

(
Ψ

Φ

)
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Appendix

Other THREE-type solutions (cont'd)

Other divergences employed

Hellinger distance (Ferrante-Pavon-Ramponi,2008)

DH(Ψ,Φ) = [inf ‖WΨ −WΦ‖22 : WΨ,WΦ ∈ Lm×m2 ,

WΨW
∗
Ψ = Ψ, WΦW

∗
Φ = Φ]

1
2

Relative entropy rate divergence (Ferrante-Masiero-Pavon,2012)

DRER(Φ‖Ψ) =
1

2

∫
log det(Φ−1Ψ) + Tr[Ψ−1(Φ−Ψ)]
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Appendix

Other THREE-type solutions (cont'd)

Other divergences employed

Beta divergence family (Zorzi,submitted,2012)

Dβ(Φ‖Ψ) = Tr

∫
1

β − 1
(Φβ − ΦΨβ−1)− 1

β
(Φβ −Ψβ)

Alpha divergence family (Zorzi,submitted,2013)

Dα(Φ‖Ψ) =

∫
1

α(α− 1)
ΦαΨ1−α − 1

α− 1
Φ +

1

α
Ψ
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Appendix

Projection method (Ferrante et al,2008)

We can compute a basis of Range Γ (Georgiou,2002)

PJ method

Let Σ̂Γ be the projection of Σ̂C := 1
N

∑N

k=1 x(k)x(k)∗ onto Range Γ.

Then,

Σ̂PJ := Σ̂Γ + εΣ+

with ε ≥ 0 so large that Σ̂PJ > 0 and Σ+ ∈ Range Γ positive de�nite
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Appendix

Input covariance lags method

How to estimate QR and R0?

Blackman-Tukey correlogram

R̂l =

{
1
N

∑N−l
k=1 y(k + l)y(k)∗, 0 ≤ l < L

0m×m, l ≥ L

→ R̂0 =
1

N

N∑
k=1

y(k)y(k)∗

→ Q̂R =
1

N

L−1∑
l=1

N−l∑
k=1

Al−1By(k)y(k + l)∗

The corresponding Σ̂CL is positive semi-de�nite

CL method can be generalized to G (z) = (zI − A)−1B + D
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Appendix

Transportation distance method (Ning et. al, in

press)

Transportation distance between two Gaussian distribution

pQ1
, pQ2

on Rn with zero mean and covariance Q1,Q2

DTD(Q1,Q2) = min
T

{
Tr(Q1 + Q2 − T − T ∗) |

[
Q1 T

T ∗ Q2

]
≥ 0

}

TD method

Given G (z) and Σ̂C > 0, compute

Σ̂TD := argmin
S>0, S ∈Range Γ

DTD(Σ̂C , S)
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Appendix

Relative matrix error norm comparison

N sample length

µ mean of the relative matrix error norm e := ‖Σ̂−Σ‖
‖Σ‖

σ variance of the relative error norm e

]F times that the projection ΣΓ ≯ 0

N µCL µPJ µME σ2
CL σ2

PJ σ2
ME ]F

300 0.18 0.81 0.18 0.018 2.65 0.02 73

500 0.16 0.47 0.15 0.013 1.37 0.013 37

700 0.13 0.29 0.13 0.001 0.74 0.009 18

Table 2
Parameters µCL, µPJ , µME , σ2

CL, σ2
PJ , σ2

ME , ]F for G(z)
considered in Subsection 6.3.

Accordingly, its performance gets remarkably poor with
respect to the other methods when N is not large. Also
in this case each estimate Σ̂CL is positive definite.

Remark 5 As for the computational burden, the PJ
method described in Section 5.2 normally compensates
for the poor performances with a very high numerical
efficiency. The ME and CL methods are very hardly
comparable. In fact, the number of operations of the ME
and CL methods is highly dependent on the problem’s pa-
rameters. Moreover, the ME method is an optimization
procedure whose computational burden is also dependent
on the tolerance threshold fixed for the convergence of
the algorithm. On the other hand the CL does not require
any optimization procedure. For example, in the cases
illustrated above the two methods perform very similarly
also with respect to the computational burden (while the
PJ method is much faster). On the other hand, extensive
simulation shows that the ME method presents numeri-
cal problems and leads to extremely slow convergence, if
we consider a case when the state covariance Σ is close
to singularity. Our method, on the contrary, does not
require any optimization procedure and does not present
any of these problems.

7 Conclusion

In this paper, we have proposed an efficient and natu-
ral approach to estimate the covariance matrix Σ of the
output processes of a given linear filter under the con-
straints of positivity and consistency with the structure
imposed by the filter. Our approach, called CL, hinges
on an explicit representation of Σ in terms of the given
filter and the covariance lags sequence of the input pro-
cess. Not only the estimated matrix was shown to be
positive semi-definite, but extensive simulation suggests
also that the estimate is strictly positive definite with
high probability when Σ > 0. We have also extended
the PJ method to the general setting discussed in this
paper and we have compared our CL method with this
extended PJ method. It appears that, in several critical
cases the CL method outperforms the other one.
In order to have a wider comparison, we have tested
our method also against the maximum entropy approach
(Subsection 5.1.2) in the restrictive framework where
the latter method can be used. While the performances
of these two methods are normally very similar, the CL
method outperforms (in terms of computational burden)
the ME method when Σ is close to singularity.
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Appendix

Scalar process (m=1) with KL-THREE solution
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Appendix

Further simulation results: scalar process (m=1)

with THREE solution
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Appendix

Further simulation results: Scalar process (m=1)

with THREE solution
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Appendix

Further simulation results: Scalar process (m=1)

with KL-THREE solution
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Appendix

Further simulation results: Bivariate process

(m=2) with THREE solution
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