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nonnegative state and output variables
for every nonnegative initial condition
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pressures
absolute temperatures
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where
x is the n-dimensional state vector
u is the m-dimensional input vector
A, B are matrices of consistent dimensions

System (1) is a Positive System if and only if

A is a Metzler matrix
A square matrix is Metzler if all its off-diagonal entries are nonnegative.

B is a positive matrix
A matrix is positive if all its entries are nonnegative.
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i

...

... N

N identical Positive Single-Input Systems:

ẋi(t) = Axi(t) +Bui(t), i ∈ [1, N ]

Undirected, weighted and connected com-
munication graph:

G = (V, E ,A)

Assume that A is non-Hurwitz and that (A,B) is stabilizable.
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Positive Bilinear Systems: application areas

Positive Bilinear Systems have been fruitfully employed in a variety of
application areas:

system biology

a Positive Bilinear System can be adopted to describe the
behaviour of a group of self-replicating genotypes
⇒ determing the optimal control means determing the best drugs
concentration profile
network theory
optimal control issues concern the proper selection of leaders in a
directed graph
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ing variables are intrinsically nonnegative and obey some conserva-
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Compartmental Systems: definition

Compartmental Systems represent physical systems whose describ-
ing variables are intrinsically nonnegative and obey some conserva-
tion law (e.g., mass, energy, fluid).

A Positive System
ẋ(t) = Ax(t) +Bu(t)

is a Compartmental System if the Metzler matrix A is such that the en-
tries of each of its columns sum up to a nonpositive number

1>nA ≤ 0,

i.e., A is a compartmental matrix.
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Compartmental Systems: motivations

Compartmental Systems arise in the description of a good number of
dynamical processes:

liquids flowing in a network of interconnected tanks
time evolution of temperatures in adjacent rooms
kinetics of substances in tracer experiments
cell proliferation through mitosis
physiological processes, e.g., insulin secretion, glucose
absorption
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haviour, under different operating conditions, of systems modeling the
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exchange of material between different compartments.

A Compartmental Switched System is described by

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t)

and consists of:
a family of compartmental models (the subsystems)
(Ai, Bi), i ∈ [1,M ]

a switching function describing which of the subsystems is active
at every time instant
σ : R+ → [1,M ]
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Compartmental Switched Systems: motivations

Compartmental Switched Systems can be employed to describe:

a fluid network undergoing different open/closed configurations of
the pipes connecting the tanks
a thermal system whose heat transmission coefficients depend
on the open/closed configurations of doors and windows
the lung dynamics alternating between inspiration and expiration
phases
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Compartmental Switched Systems: stabilizability

Compartmental Switched System with autonomous subsystems

ẋ(t) = Aσ(t)x(t), σ : R+ → [1,M ]
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Compartmental Switched Systems: stabilizability

Compartmental Switched System with autonomous subsystems

ẋ(t) = Aσ(t)x(t), σ : R+ → [1,M ]

Stabilizability:
under what conditions on the matrices Ai, i ∈ [1,M ], for every pos-
itive initial state x(0) > 0, there exists a switching function σ that
makes x(t) asymptotically converge to zero?
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Compartmental Switched Systems: stabilizability

Compartmental Switched System with autonomous subsystems

ẋ(t) = Aσ(t)x(t), σ : R+ → [1,M ]

Stabilizability:
under what conditions on the matrices Ai, i ∈ [1,M ], for every pos-
itive initial state x(0) > 0, there exists a switching function σ that
makes x(t) asymptotically converge to zero?

IFF there exists a Hurwitz convex combination of Ai, i ∈ [1,M ]
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Compartmental Switched Systems: stability

Compartmental Switched System with autonomous subsystems

ẋ(t) = Aσ(t)x(t), σ : R+ → [1,M ]

Asymptotic stability under arbitrary switching:
under what conditions on the matrices Ai, i ∈ [1,M ], the state tra-
jectory x(t) asymptotically converges to zero for every positive ini-
tial state x(0) > 0 and for every switching function σ?
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Compartmental Switched System with autonomous subsystems

ẋ(t) = Aσ(t)x(t), σ : R+ → [1,M ]

Asymptotic stability under arbitrary switching:
under what conditions on the matrices Ai, i ∈ [1,M ], the state tra-
jectory x(t) asymptotically converges to zero for every positive ini-
tial state x(0) > 0 and for every switching function σ?

IFF all matrices Ai, i ∈ [1,M ], are Hurwitz
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The non-autonomous case

Autonomous case:
ẋ(t) = Aσ(t)x(t)

Non-autonomous case:
ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t)

Asympt. stable under arbitrary switching
IFF Ai is Hurwitz for every i ∈ [1,M ]
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ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t)

Asympt. stable under arbitrary switching
IFF Ai is Hurwitz for every i ∈ [1,M ]

Feedback stabilization problem:
under what conditions on the pairs (Ai, Bi), i ∈ [1,M ], there
exist feedback matrices Ki, i ∈ [1,M ], such that the control law
u(t) = Kix(t) makes the closed-loop system compartmental and
asymptotically stable under arbitrary switching?
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exist feedback matrices Ki, i ∈ [1,M ], such that the control law
u(t) = Kix(t) makes the closed-loop system compartmental and
asymptotically stable under arbitrary switching?

IFF ∃Ki, i ∈ [1,M ], s.t. Ai +BiKi is compartmental and Hurwitz

Irene Zorzan Stability, stabilizability and control of Positive Systems 17/31



Positive Systems and Compartmental Systems
Feedback stabilization of Compartmental Systems

Mathematical preliminaries
Hurwitz stability of compartmental matrices
The case when A is irreducible
The case when A is reducible

State-feedback stabilization problem

Irene Zorzan Stability, stabilizability and control of Positive Systems 18/31



Positive Systems and Compartmental Systems
Feedback stabilization of Compartmental Systems

Mathematical preliminaries
Hurwitz stability of compartmental matrices
The case when A is irreducible
The case when A is reducible

State-feedback stabilization problem

Consider a Compartmental System

ẋ(t) = Ax(t) +Bu(t)
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State-feedback stabilization problem

Consider a Compartmental System

ẋ(t) = Ax(t) +Bu(t)

and assume that the compartmental matrix A is non-Hurwitz.
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State-feedback stabilization problem

Consider a Compartmental System

ẋ(t) = Ax(t) +Bu(t)

and assume that the compartmental matrix A is non-Hurwitz.

State-feedback stabilization problem:
determine K ∈ Rm×n such that the state-feedback control law
u(t) = Kx(t) makes the closed-loop system

ẋ(t) = (A+BK)x(t)
compartmental and asymptotically stable.
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from the external environment.
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Assume that the system is thermally isolated
from the external environment.

xi = (ith room temp− desired temp) ≥ 0

Irene Zorzan Stability, stabilizability and control of Positive Systems 19/31



Positive Systems and Compartmental Systems
Feedback stabilization of Compartmental Systems

Mathematical preliminaries
Hurwitz stability of compartmental matrices
The case when A is irreducible
The case when A is reducible

Example: room temperature regulation
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Assume that the system is thermally isolated
from the external environment.

xi = (ith room temp− desired temp) ≥ 0

Compartmental model describing tempera-
tures evolution:
ẋ(t) =Ax(t) +Bu(t)

=

−(α+β) α β
α −(α+γ) γ
β γ −(γ+β)

x(t)+
0 0
1 0
0 1

u(t)
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Example: room temperature regulation

Room 1 Room 2

Room 3

u2
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α

β γ

Assume that the system is thermally isolated
from the external environment.

xi = (ith room temp− desired temp) ≥ 0

Compartmental model describing tempera-
tures evolution:
ẋ(t) =Ax(t) +Bu(t)

=

−(α+β) α β
α −(α+γ) γ
β γ −(γ+β)

x(t)+
0 0
1 0
0 1

u(t)
Room temperaturte regulation problem:
determine a state-feedback control law that regulates all temperatures
by making use only of the temperature in Room 1.
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Preliminary definitions

In the following we will denote by:

ei the ith canonical vector
1n the n-dimensional vector with all entries equal to 1

Si ∈ R(n−1)×n the selection matrix obtained by removing the ith
row in the identity matrix In, i.e.,

Si =

[
Ii−1 0 0

0 0 In−i

]

For any vector v ∈ Rn, Siv is the vector obtained from v by
removing the ith entry.
For any matrix A ∈ Rn×m, SiA denotes the matrix obtained from
A by removing the ith row.

Irene Zorzan Stability, stabilizability and control of Positive Systems 20/31



Positive Systems and Compartmental Systems
Feedback stabilization of Compartmental Systems

Mathematical preliminaries
Hurwitz stability of compartmental matrices
The case when A is irreducible
The case when A is reducible

Preliminary definitions

In the following we will denote by:
ei the ith canonical vector

1n the n-dimensional vector with all entries equal to 1

Si ∈ R(n−1)×n the selection matrix obtained by removing the ith
row in the identity matrix In, i.e.,

Si =

[
Ii−1 0 0

0 0 In−i

]

For any vector v ∈ Rn, Siv is the vector obtained from v by
removing the ith entry.
For any matrix A ∈ Rn×m, SiA denotes the matrix obtained from
A by removing the ith row.

Irene Zorzan Stability, stabilizability and control of Positive Systems 20/31



Positive Systems and Compartmental Systems
Feedback stabilization of Compartmental Systems

Mathematical preliminaries
Hurwitz stability of compartmental matrices
The case when A is irreducible
The case when A is reducible

Preliminary definitions

In the following we will denote by:
ei the ith canonical vector
1n the n-dimensional vector with all entries equal to 1

Si ∈ R(n−1)×n the selection matrix obtained by removing the ith
row in the identity matrix In, i.e.,

Si =

[
Ii−1 0 0

0 0 In−i

]

For any vector v ∈ Rn, Siv is the vector obtained from v by
removing the ith entry.
For any matrix A ∈ Rn×m, SiA denotes the matrix obtained from
A by removing the ith row.

Irene Zorzan Stability, stabilizability and control of Positive Systems 20/31



Positive Systems and Compartmental Systems
Feedback stabilization of Compartmental Systems

Mathematical preliminaries
Hurwitz stability of compartmental matrices
The case when A is irreducible
The case when A is reducible

Preliminary definitions

In the following we will denote by:
ei the ith canonical vector
1n the n-dimensional vector with all entries equal to 1

Si ∈ R(n−1)×n the selection matrix obtained by removing the ith
row in the identity matrix In, i.e.,

Si =

[
Ii−1 0 0

0 0 In−i

]

For any vector v ∈ Rn, Siv is the vector obtained from v by
removing the ith entry.
For any matrix A ∈ Rn×m, SiA denotes the matrix obtained from
A by removing the ith row.

Irene Zorzan Stability, stabilizability and control of Positive Systems 20/31



Positive Systems and Compartmental Systems
Feedback stabilization of Compartmental Systems

Mathematical preliminaries
Hurwitz stability of compartmental matrices
The case when A is irreducible
The case when A is reducible

Preliminary definitions

In the following we will denote by:
ei the ith canonical vector
1n the n-dimensional vector with all entries equal to 1

Si ∈ R(n−1)×n the selection matrix obtained by removing the ith
row in the identity matrix In, i.e.,

Si =

[
Ii−1 0 0

0 0 In−i

]
For any vector v ∈ Rn, Siv is the vector obtained from v by
removing the ith entry.

For any matrix A ∈ Rn×m, SiA denotes the matrix obtained from
A by removing the ith row.

Irene Zorzan Stability, stabilizability and control of Positive Systems 20/31



Positive Systems and Compartmental Systems
Feedback stabilization of Compartmental Systems

Mathematical preliminaries
Hurwitz stability of compartmental matrices
The case when A is irreducible
The case when A is reducible

Preliminary definitions

In the following we will denote by:
ei the ith canonical vector
1n the n-dimensional vector with all entries equal to 1

Si ∈ R(n−1)×n the selection matrix obtained by removing the ith
row in the identity matrix In, i.e.,

Si =

[
Ii−1 0 0

0 0 In−i

]
For any vector v ∈ Rn, Siv is the vector obtained from v by
removing the ith entry.
For any matrix A ∈ Rn×m, SiA denotes the matrix obtained from
A by removing the ith row.

Irene Zorzan Stability, stabilizability and control of Positive Systems 20/31



Positive Systems and Compartmental Systems
Feedback stabilization of Compartmental Systems

Mathematical preliminaries
Hurwitz stability of compartmental matrices
The case when A is irreducible
The case when A is reducible

Preliminary definitions (cont’d)

A Metzler matrix A is reducible if there exists a permutation matrix
Π such that

Π>AΠ =

[
A11 A12

0 A22

]
where A11 and A22 are square nonvacuous matrices, otherwise it
is irreducible.
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Frobenius normal form

For every Metzler matrix A a permutation matrix Π can be found such
that

Π>AΠ =


A11 A12 . . . A1s

0 A22 . . . A2s
...

. . .
...

0 . . . Ass

 (2)

where each diagonal block Aii, of size ni × ni, is either scalar (ni = 1)
or irreducible.
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Frobenius normal form

For every Metzler matrix A a permutation matrix Π can be found such
that

Π>AΠ =


A11 A12 . . . A1s

0 A22 . . . A2s
...

. . .
...

0 . . . Ass

 (2)

where each diagonal block Aii, of size ni × ni, is either scalar (ni = 1)
or irreducible. The block form (2) is usually known as Frobenius nor-
mal form of A.
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Communication classes

Compartmental matrix A ∈ Rn×n

A =


a11 a12 . . . a1n

a21
. . .

...
...

. . .
...

an1 . . . . . . ann
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Compartmental matrix A ∈ Rn×n

A =
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. . .
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an1 . . . . . . ann


Directed graph G(A) := {V, E}
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A =
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Directed graph G(A) := {V, E}
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Communication classes

Compartmental matrix A ∈ Rn×n

A =


a11 a12 . . . a1n

a21
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...
...

. . .
...

an1 . . . . . . ann


Directed graph G(A) := {V, E}

set of edges

1 2

...

j `

... n

aj` > 0
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Directed graph G(A) := {V, E}

1 2

...

j `

... n

Communication class:
a set of vertices that communicate with
every other vertex in the class and with
no other vertex.
The corresponding subgraph is strongly
connected.
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Compartmental matrix A ∈ Rn×n

A =


a11 a12 a1j a1n

a21
. . .
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. . .
...

an1 . . . anj ann


Directed graph G(A) := {V, E}

1 2
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j `

... n

1>nAej < 0

Lemma 1:
A compartmental matrix A is Hurwitz if
and only if all compartments are outflow
connected.
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The case when A is irreducible

Proposition 1:

Consider a Compartmental System and assume that the state-space
matrix A is irreducible and non-Hurwitz.
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Proposition 1:

Consider a Compartmental System and assume that the state-space
matrix A is irreducible and non-Hurwitz.
The state-feedback stabilization problem is solvable if and only if there
exist h ∈ [1, n] and v ∈ Rm such that

Sh (Aeh +Bv) ≥ 0 (3)

1>nBv < 0 (4)
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Consider a Compartmental System and assume that the state-space
matrix A is irreducible and non-Hurwitz.
The state-feedback stabilization problem is solvable if and only if there
exist h ∈ [1, n] and v ∈ Rm such that

Sh (Aeh +Bv) ≥ 0 (3)

1>nBv < 0 (4)

When so, any matrix K = εve>h with ε ∈ (0, 1) is a possible solution.

compartmental property

graph (strong) connectedness

outflow to environment
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Proposition 1:

Consider a Compartmental System and assume that the state-space
matrix A is irreducible and non-Hurwitz.
The state-feedback stabilization problem is solvable if and only if there
exist h ∈ [1, n] and v ∈ Rm such that

Sh (Aeh +Bv) ≥ 0 (3)

1>nBv < 0 (4)

When so, any matrix K = εve>h with ε ∈ (0, 1) is a possible solution.

Every compartment is outflow connected!
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Remarks

When A is irreducible and the state-feedback stabilization
problem is solvable, there always exists a solution K with a
unique nonzero column.

However, not all columns (i.e., not all
indices h ∈ [1, n]) play an equivalent role.

In the Single-Input case (m = 1), problem solvability does not
depend on the specific values of the entries of A and B but only
on their nonzero pattern.

The nonzero pattern of a matrix A ∈ Rn×m is the set
ZP(A) := {(i, j) ∈ [1, n]× [1,m] : [Aij ] 6= 0}.
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The case when A is reducible

Proposition 2:
Consider a Compartmental System and assume that the state-space
matrix A is reducible and non-Hurwitz.
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Proposition 2:
Consider a Compartmental System and assume that the state-space
matrix A is reducible and non-Hurwitz.
Assume w.l.o.g. that A is in Frobenius normal form:

A =



A11 . . . 0 . . . A1s

0
. . .

...
... Arr Ars
...

. . .
...

0 . . . 0 Ass
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Aii, i ∈ [1, r], irreducible non-Hurwitz
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Proposition 2:
Consider a Compartmental System and assume that the state-space
matrix A is reducible and non-Hurwitz.
Assume w.l.o.g. that A is in Frobenius normal form:

A =



A11 . . . 0 . . . A1s

0
. . .
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Aii, i ∈ [1, r], irreducible non-Hurwitz

Aii, i ∈ [r + 1, s], irreducible Hurwitz

Let Ωi, i ∈ [1, s], be the set of all column indices corresponding to Aii.
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The case when A is reducible (cont’d)

If for every i ∈ [1, r] there exist `i ∈ Ωi and vi ∈ Rm such that

S`i (Ae`i +Bvi) ≥ 0 (5)

1>nBvi < 0 (6)

then the state-feedback stabilization problem is solvable.
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Remarks

Let r be the number of non-Hurwitz communication classes.

The previous proposition provides only a sufficient (but not
necessary) condition for the problem solvability.

If the feedback
stabilization problem is solvable, the minimum number of nonzero
columns of any solution K is at least r but it might be greater.

Algorithm that allows to assess problem solvability and
provides a solution whenever it exists.

In the Single-Input case (m = 1) a necessary condition for the
problem solvability is that r = 1.
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Conclusions

Positive Systems provide an effective mathematical description of
a variety of real phenomena/processes.

Positivity constraint makes it possible to tackle many control
issues by resorting to ad hoc tools and techniques that in the
general case cannot be employed.

Think positive, be positive!
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Thank you!

Prof. Maria Elena Valcher

Prof. Anders Rantzer
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