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Abstract

In this thesis we address the problem of distributed unconstrained convex opti-
mization under separability assumptions, i.e., the framework where a network
of agents, each endowed with local private convex cost and subject to com-
munication constraints, wants to collaborate to compute the minimizer of the
sum of the local costs. We propose a design methodology that combines aver-
age consensus algorithms and separation of time-scales ideas. This strategy is
proven, under suitable hypotheses, to be globally convergent to the true min-
imizer. Intuitively, the procedure lets the agents distributedly compute and
sequentially update an approximated Newton-Raphson direction by means of
suitable average consensus ratios. We consider both a scalar and a multidi-
mensional scenario of the Synchronous Newton-Raphson Consensus, proposing
some alternative strategies which trade-off communication and computational
requirements with convergence speed. We provide analytical proofs of conver-
gence and we show with numerical simulations that the speed of convergence
of this strategy is comparable with alternative optimization strategies such as
the Alternating Direction Method of Multipliers, the Distributed Subgradient
Method and Distributed Control Method.

Moreover, we consider the convergence rates of the Synchronous Newton-
Raphson Consensus and the Gradient Descent Consensus under the simpli-
ficative assumption of quadratic local cost functions. We derive sufficient
conditions which guarantee the convergence of the algorithms. From these
conditions we then obtain closed form expressions that can be used to tune
the parameters for maximizing the rate of convergence. Despite these formulas
have been derived under quadratic local cost functions assumptions, they can
be used as rules-of-thumb for tuning the parameters of the algorithms.
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Finally, we propose an asynchronous version of the Newton-Raphson Con-
sensus. Beside having low computational complexity, low communication re-
quirements and being interpretable as a distributed Newton-Raphson algo-
rithm, the technique has also the beneficial properties of requiring very little
coordination and naturally supporting time-varying topologies. Again, we an-
alytically prove that under some assumptions it shows either local or global
convergence properties. Through numerical simulations we corroborate these
results and we compare the performance of the Asynchronous Newton-Raphson
Consensus with other distributed optimization methods.



Sommario

In questa tesi viene affrontato il problema dell’ottimizzazione distribuita non
vincolata di funzioni convesse. Lo scenario è costituito da una rete di agenti
interconnessi, ognuno dei quali è dotato di una funzione costo locale convessa
ed è soggetto a vincoli di comunicazione. Ogni agente vuole collaborare per
calcolare il minimo della somma dei costi locali.

Viene proposta una soluzione che combina algoritmi di average consensus
con concetti di separazione delle scale temporali, propri della teoria del con-
trollo non lineare. Tale strategia, denotata come Newton-Raphson Consen-
sus, si dimostra convergere globalmente al minimo richiesto, sotto opportune
ipotesi. Intuitivamente, l’algoritmo permette agli agenti di calcolare in maniera
distribuita e di aggiornare sequenzialmente una direzione approssimata alla
Newton-Raphson, tramite specifici rapporti di average consensus. Viene pro-
posta una versione sincrona del Newton-Raphson Consensus, validata sia per
funzioni scalari che vettoriali, proponendo nel secondo caso alcune strategie al-
ternative volte a bilanciare le prestazioni, in termini di requisiti computazionali
e di comunicazione, con una adeguata velocità di convergenza. Vengono presen-
tate prove analitiche di convergenza e simulazioni numeriche che evidenziano
come la velocità di convergenza del Synchronous Newton-Raphson Consensus
è comparabile con strategie di ottimizzazione alternative quali l’Alternating
Direction Method of Multipliers, il Distributed Subgradient Method e il Dis-
tributed Control Method.

La trattazione si completa con l’analisi della velocità di convergenza del
Synchronous Newton-Raphson Consensus, comparata con quella di un Gradi-
ent Descent Consensus (GDC), sotto l’ipotesi semplificativa di funzioni costo
quadratiche. Vengono derivate condizioni sufficienti che garantiscono la conver-
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genza di tali algoritmi. Da queste condizioni si ottengono espressioni in forma
chiusa che possono essere utilizzate per regolare i parametri che caratterizzano
gli algoritmi e per massimizzare la velocità di convergenza. Si evidenzia che
nonostante queste formule siano derivate assumendo funzioni di costo (locali)
quadratiche, esse possono essere usate come metodologie di riferimento per la
regolazione dei parametri degli algoritmi in situazioni generali.

Infine, viene proposta una versione asincrona del Newton-Raphson Consen-
sus. Oltre ad avere una ridotta complessità computazionale e minimi requisiti
di comunicazione, questa tecnica richiede poca coordinazione tra gli agenti
e si mantiene valida in topologie tempo-varianti. Ancora una volta, viene di-
mostrato analiticamente, sotto opportune ipotesi, che l’Asynchronous Newton-
Raphson Consensus ha proprietà di convergenza locali o globali. Mediante
simulazioni numeriche vengono corroborati tali risultati e vengono confrontate
le prestazioni di tale algoritmo con altri metodi di ottimizzazione distribuita
quali l’Asynchronous Fast Newton-Raphson Consensus, l’Asynchronous Dis-
tributed Subgradient Method, l’Asynchronous Alternating Direction Method
of Multipliers e il Pairwise Equalizing Method.



Introduction

Optimization is a pervasive concept underlying many aspects of modern life
(Shor (1985); Bertsekas et al. (2003); Boyd and Vandenberghe (2004)), and it
also includes the management of distributed systems, i.e., artifacts composed
by a multitude of interacting entities often referred to as “agents”. Examples
are transportation systems, where the agents are both the vehicles and the
traffic management devices, smart electrical grids (see, e.g., Bolognani and
Zampieri (2011)), where the agents are the energy producers-consumers and
the power transformers-transporters, and distributed estimation and learning
techniques. But this variety of applications fostered the development of several
different strategies, each tailored for a specific niche of assumptions.

The interests on systems where agents collaborate to pursue a common
goal, which is difficult or impossible to an individual agent, are driven by
the possibility of synergies, i.e., coordinated actions whose total effects are
bigger than the ones achievable without coordination. An entire class of con-
trol problems has been casted into the framework of the Networked Control
Systems (NCSs), agent-based system in which the controller elements are not
centralized but distributed over the entire system via parallel and distributed
processing (Antsaklis and Baillieul (2007)).

In particular, in the past years an increasing attention from various research
communities has been posed on distributed optimization, being it a building
block for all the distributed decision making processes.

Here we consider exactly the problem of distributed optimization, i.e., the
class of algorithms suitable for networked systems and characterized by the
absence of a centralized coordination unit (see Tsitsiklis (1984); Bertsekas and
Tsitsiklis (1997); Bertsekas (1998)). The interest on distributed optimization
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tools has become wider and wider, concurrently with the research on networked
control systems, because the former methods let the networks self-organize and
adapt to surrounding and changing environments, and that they are necessary
to manage extremely complex systems in an autonomous way with only limited
human intervention. In particular we focus on unconstrained convex optimiza-
tion, although there is a rich literature also on distributed constrained opti-
mization such as Linear Programming Bürger et al. (2012). Nonetheless there
has been a general trend in trying to find algorithms with, at the same time,
faster and faster convergence properties, and milder and milder requirements
on the coordination among the agents. In this thesis we contribute to this
trend by showing how a certain fast optimization technique can be based on
completely asynchronous communication schemes. To position our findings in
the existing literature we now briefly survey the existing optimization schemes
and their properties.

Literature review

The literature on distributed unconstrained convex optimization is extremely
vast. We specifically consider distributed derivative-based optimization meth-
ods, which roots can be traced back to the seminal work Tsitsiklis (1984). We
thus assume small complexity and high accuracy in sampling the Jacobians
and Hessians of the objectives.

The literature on derivative-based methods can be factorized in various
macro-categories (e.g., methods based on contraction mappings or not, meth-
ods exploiting Lagrangian formalism or not, methods based on heuristic or
ad-hoc methods or not) and micro-categories (e.g., methods exploiting La-
grangian formalisms and based on dual averaging techniques or not, methods
not exploiting Lagrangian formalisms and based on second-order derivatives
or not). A complete analysis of all these methods is beyond the scope of this
thesis, and we thus limit in describing just the most famous ones. In partic-
ular, we focus on distributed nonlinear optimization technique and thus do
not consider distributed linear programming algorithms; for recent advances
in this framework see Bürger et al. (2012) and references therein.

Distributed Subgradient Methods (DSMs): among the distributed methods
not exploiting Lagrangian formalisms, the most popular ones are the DSMs
(Dem’yanov and Vasil’ev (1985)). Here the optimization of non smooth costs
is performed by means of descent/ascent directions based on first order deriva-
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tives information and suitable projection operations to maintain feasibility
during the evolution. These methods arise in both primal and dual formula-
tions, since sometimes it is better to perform dual optimization.

DSM can be implemented using the same communication protocols involved
in this thesis, and its convergence properties have been deeply investigated by
several authors (e.g., Nedić and Bertsekas (2001); Nedić et al. (2001); Nedić
and Ozdaglar (2008)), see Kiwiel (2004) for a unified view of many convergence
results. There exist several slightly different versions, mainly with variations
on the stepsizes, on the communication protocol, and on the management of
the local constraint sets (Johansson et al. (2009); Lobel et al. (2011); Nedić
et al. (2010); Zhu and Martínez (2012)). We also notice a renewed effort in
increasing its convergence speed properties by exploiting augmented memory
(Ghadimi et al. (2012)) and in lessening the dependence of the convergence
properties on the choice of the stepsizes, see Lu et al. (2011).

Subgradient methods have been exploited for several practical purposes,
e.g., to optimally allocate resources in Wireless Sensors-Actuators Networks
(see Johansson (2008)), to maximize the convergence speeds of gossip algo-
rithms as in Boyd et al. (2006), to manage optimality criteria defined in terms
of ergodic limits (Ribeiro (2010)). We can also find analyses for several ex-
tensions of the original idea, e.g., directions that are computed combining
information from other agents Blatt et al. (2007); Xiao and Boyd (2006) and
stochastic errors in the evaluation of the subgradients Ram et al. (2009). Ex-
plicit characterizations can also show trade-offs between desired accuracy and
number of iterations Nedić and Ozdaglar (2009).

Alternating Direction Method of Multipliers (ADMM): the most widely
known dual method, i.e., method that exploits decompositions of the dual
problem and that operates explicitly both on primal and dual variables, is
ADMM, whose roots can be traced back to Hestenes (1969). It is based on an
opportune modification of the Lagrangian of the original problem that gives
rise to the possibility of alternate and distributedly execute primal descent and
dual ascent steps (Bertsekas and Tsitsiklis, 1997; Bertsekas, 1982, pp. 253-261).

Its efficacy in several practical scenarios is undoubted, see, e.g., Boyd et al.
(2010) and references therein. A notable size of the dedicated literature fo-
cuses on the analysis of its convergence performance and on the tuning of
its parameters for optimal convergence speed, see, e.g., Erseghe et al. (2011)
for least-squares estimation scenarios or He and Yuan (2011) for linearly con-
strained convex programs. It is known for having in general (but not always,
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see Ghadimi et al. (2012)) faster convergence properties than DSMs, and to
be employable in various different frameworks (see Mota et al. (2012)). Even
if proven to be an effective algorithm, ADMM suffers from requiring a careful
implementation and synchronized communication protocols, although some
recent attempts for asynchronous and distributed implementations have ap-
peared Wei and Ozdaglar (2012); Mota et al. (2012); Jakovetić et al. (2011).

Newton-like methods: it is known that second order information, if used,
can improve the convergence properties of optimization methods. Recently
some distributed algorithms have exploited inexact Newton directions, result-
ing from the Laplacian of the communication graph, to compute dual ascent
steps (see Jadbabaie et al. (2009); Zargham et al. (2011); Wei et al. (2010)).
Since the Laplacian cannot be computed exactly, the convergence rates of these
schemes rely on the analysis of inexact Newton methods Dembo et al. (1982).
These methods, tailored and applicable only to network flow problems, have
super-linear convergence under specific assumptions. Nonetheless they are em-
bedded into primal-dual algorithms and can not be considered general-purpose
distributed optimization tools.

Contraction mappings: these methods exploit consecutive projections of
the local guesses into opportune sets. An example is Fischione (2011), leverag-
ing some particular assumptions on the local costs to construct a distributed
contraction mapping that converges superlinearly to the global optimum.

Other approaches: other important techniques, only partially falling in the
previous categories, are the one proposed in Wang and Elia (2010), that refor-
mulate distributed optimization as a controlled system with the local gradients
as inputs, and the one in Duchi et al. (2012), based on dual averaging and
with the noticeable contribution of linking directly the convergence properties
of the algorithm with the spectral properties of the communication network.
It is worth to mention the distributed randomized Kaczmarz method Freris
and Zouzias (2012) for quadratic cost functions and the Pairwise Equalizing
Method (PEM) and Pairwise Bisectioning (Lu et al. (2011)), two gossip al-
gorithms that are easy to implement, bypass limitations of the subgradient
algorithms, and produce switched, nonlinear, networked dynamical systems
that asymptotically converge to a global minima. We also notice the pres-
ence of various heuristic or ad-hoc methods, e.g., Van Ast et al. (2008), which
convergence properties are unfortunately difficult to be characterized.
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Statement of contributions

The previously described algorithms require different degrees of coordination
among the agents. For example, DSMs may be implemented without requiring
synchronized communications (see Nedić and Ozdaglar (2009)), while ADMM
generally requires the preservation of the order of the operations.

Considering that a benchmark for the applicability of distributed algo-
rithms relates to how much agents must coordinate, our aim is to consider
the Newton-Raphson Consensus (NRC), a promising primal-based distributed
optimizer originally proposed in Zanella et al. (2011, 2012b,d,c), and lessen
its coordination requirements. More specifically, we propose an asynchronous
version of it and prove its convergence properties (Zanella et al. (2012a)).

The distributed Newton-Raphson optimization procedure we propose ad-
dresses the exact minimization of smooth multidimensional convex separable
problems, where the global function is a sum of private local costs. With
respect to the categorization proposed before, the strategy exploits neither
Lagrangian formalisms nor Laplacian estimation steps. More specifically, it is
based on average consensus techniques Garin and Schenato (2011) and on the
principle of separation of time-scales (Khalil, 2001, Chap. 11). The main idea
is that agents compute and keep updated, by means of average consensus pro-
tocols, an approximated Newton-Raphson direction that is built from suitable
Taylor expansions of the local costs. Simultaneously, agents move their local
guesses towards the Newton-Raphson direction. It is proven that, if the rate of
change of the local update steps is sufficiently slow to allow the consensus algo-
rithm to converge, then the Synchronous Newton-Raphson Consensus (SNRC)
algorithm exponentially converges to global minimizer.

The interest on the NRC technique can be motivated as follows. First of all,
at the best of our knowledge it is the unique primal-based distributed algorithm
whose estimates evolve as driven by a Newton-Raphson optimization scheme,
and that can be implemented without requiring a-priori knowledge about the
topology of the network (see, e.g., Jadbabaie et al. (2009)). Secondly, the NRC
exploits average consensus algorithms (Fagnani and Zampieri, 2008; Garin and
Schenato, 2011, and references therein). Thus it inherits all their favorable
properties, like immediate adaptation to time-varying topologies and extreme
simplicity of implementation (Hadjicostis and Charalambous (2012, 2011)).
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Structure

The thesis is organized as follows.
Chapter 1 collects the notation used through the whole paper, gives some

background theory useful for the dissertation, formulates the problem and
reports some preliminary results necessary for the proofs.

Chapter 2 proposes the main optimization algorithm in a scalar scenario
based on sensible intuitions and provides convergence and robustness results.
Furthermore it generalizes this algorithm to multidimensional domains and of-
fers some strategies to reduce communication and computational complexity.
Nonetheless, it analytically characterize the convergence rates of the proposed
algorithm and of a novel gradient-descent implementation under the posed
simplificative assumptions. Lastly it compares the performance of the pro-
posed algorithm with several distributed optimization strategies available in
the literature via numerical simulations.

Chapter 3 describe an asynchronous version of the original algorithm.
Again, proofs of convergence are given considering different kind of commu-
nication circumstances. To completion, some numerical comparisons are per-
formed between well-known asynchronous methods, assessing the performance
of the proposed strategy.
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List of acronyms

WSAN Wireless Sensors-Actuators Network

NCS Networked Control System

LTI Linear Time Invariant

NR Newton-Raphson

NRC Newton-Raphson Consensus

SNRC Synchronous Newton-Raphson Consensus

JC Jacobi Consensus

GDC Gradient Descent Consensus

SFNRC Synchronous Fast Newton-Raphson Consensus

DSM Distributed Subgradient Method

DCM Distributed Control Method

ADMM Alternating Direction Method of Multipliers

ANRC Asynchronous Newton-Raphson Consensus

AFNRC Asynchronous Fast Newton-Raphson Consensus

ADSM Asynchronous Distributed Subgradient Method

PEM Pairwise Equalizing Method

AADMM Asynchronous Alternating Direction Method of Multipliers
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1
Basics

1.1 Background

In this section we introduce the fundamentals of the theories that will be
extensively exploited throughout the thesis.

We briefly review some concepts about consensus and singular perturbation
theories. Interested readers can more details in Garin and Schenato (2011);
Saber and Murray (2003); Olfati-Saber et al. (2007a); Olshevsky and Tsitsiklis
(2009a) and Kokotović et al. (1999); Skinner (2011). We refer to the thesis
work of Bolognani (2011) for the concepts of consensus theory and to standard
textbooks like Khalil (2001) for the concepts of nonlinear dynamical systems.

1.1.1 Consensus theory

In recent years, the academic community has devoted a huge research effort on
distributed and network controlled systems, especially those employing mobile
and wireless devices. While on the one side, this context has been nourished
by the growing popularity of Wireless Sensors-Actuators Networks (WSANs)
as a common tool for both the academic and the industrial worlds, on the
other it has pushed expectations and perspective for intensive diffusion and
application of this technology (see, e.g., Akyildiz and Kasimoglu (2004)).

A WSAN is commonly modeled as a graph G = (V , E), where the ordered
set V = {1, . . . , N} of the vertexes depicts N agents that communicate along
the edges, i.e. the communication links specified by the set E . This simple
model for agent-to-agent communication does not take into account many of
the phenomena that characterize the communication channels that are avail-
able in real-life NCS: communication noise, packet losses and data errors,
quantization, just to mention few. In some specific cases (e.g. when agents
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move in the space and communication is limited to a given maximum range)
the communication graph can also depend on the state of the agents.

A graph G is called undirected when (i, j) ∈ E ⇒ (j, i) ∈ E . An undirected
graph is complete when it has an edge between every pair of vertexes. We
denote with Ni := {j | (i, j) ∈ E , i 6= j} ⊆ V the set of neighbors of agent i and
with di = |Ni| its cardinality, usually known as the degree of the agent.

In a directed graph, a walk on a graph is an alternating series of vertexes
and edges, beginning and ending with a vertex, in which each edge is incident
with the vertex immediately preceding it and the vertex immediately following
it. A path is a walk in which all vertexes are distinct. We say that a graph is
connected if every pair of agents (i, j) is connected by a path. In particular, a
directed graph is called strongly connected if there is a path from each vertex
in the graph to every other vertex.

The access of the agents to the communication media1 can be regulated ac-
cording to different strategies. The communication strategy among the agents
in the network, which is also intended as an activation policy, can fall into two
categories: broadcast communication, where one agent i transmits a message
to all its neighbors Ni (receiving nothing in response), and gossip communi-
cation, where a agent i transmits a message to a specific agent j ∈ Ni (while
the rest of the system is unaware of the exchange of data).

The gossip communication can be either symmetric (if the graph is undi-
rected) or asymmetric, respectively meaning that the transmitting agent awaits
for an answer from the receiver or not (i.e. the exchange of information is al-
ways bidirectional). Symmetry in the data transmission can be required by
some algorithms to guarantee some particular features (e.g. average consensus
schemes). However ensuring symmetry of operation when the channel suffers
from non zero packet drop rate or error probability is a challenging goal to
achieve. Broadcast communications, instead, can require more resources (e.g.
energy, bandwidth, time) than the gossip strategy, because a larger number of
agents is involved.

In addition, the communication (broadcast or gossip) can be synchronous,
in which all agents communicate at the same time, or asynchronous, when
agents are triggered one at a time. In this case the resulting sequence of agents
can be randomized or deterministic, with respect to the activation of a agent

1Note that all the consensus algorithms rely upon the assumption that each agent trans-
mits to its neighboring agents the precise value of its state; this means that the communi-
cation network is not constituted of quantized or noisy links.
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to send messages to the neighbors. The synchronous approach usually returns
global behaviors that are easier to analyze, but can be unpractical to achieve,
as it requires a great level of coordination among the agents. In asynchronous
algorithms, on the other hand, agents are triggered one at a time. Building a
deterministic sequence on the set of agents can require some supervision in the
system, but it can simplify the algorithm analysis. In randomized algorithms,
instead, the sequence of activation of the agents is the realization of a random
process. In this situation, the remarkable feature is that no coordination is
necessary. However, the design (and analysis) of algorithms based on random-
ized asynchronous operation is generally more challenging.

Now suppose the WSAN endowed with a state2 xi(t) : R→ R, ∀i ∈ V .
The consensus problem can be summarized as the problem of allowing the

agents to reach an agreement regarding a quantity of common interest that
is function of the state of all agents. The theoretical framework for posing
and solving consensus problems for networked dynamic systems was formerly
introduced in Fax and Murray (2004) and Olfati-Saber et al. (2007b).

A consensus algorithm is an interaction rule that specifies the information
exchange between an agent i ∈ V and its neighbors Ni in the communication
graph. Specifically, a consensus algorithm is presented in the form.

x(t+ 1) = P (t)x(t), (1.1)

where x(0) is given, x(t) = [x1(t), . . . , xN(t)]T ∈ RN and P (t) ∈ RN×N . In
general, it is assumed that the matrix P is compatible with the graph G,
meaning that its associated graph GP = (V , EP ) is such that EP ⊆ E , with
EP := {(j, i) | [P ]ij > 0}. Considering the formulation in (1.1), the consensus
problem can be posed more formally as the following:

Definition 1 (consensus problem) Consider algorithm (1.1). P (t) solves
the consensus problem if limt→∞ xi(t) = τ , where τ is a generic function of
the system initial state x(0). P (t) solves the average consensus problem if
τ = 1

N

∑N
i=1 xi(0). If P (t) is a random variable, (1.1) solves the probabilistic

(average) consensus problem if the limit above exists almost surely.

2In the more general case of a multidimensional state, the system state is obtained by
stacking all the individual agents’ states.
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This definition includes a wide class of consensus strategies: strategies with
a time-invariant matrix P (t) = P , deterministic time-varying strategies P (t),
and randomized strategies where P (t) is drawn from some distributions on a
set of stochastic3 matrices.

The next theorems describe some sufficient conditions which guarantee de-
terministic and probabilistic (average) consensus.

Theorem 2 Consider a sequence of constant matrices P (t) = P . If the
graph GP is strongly connected, then P solves the consensus problem. If in
addition P is doubly stochastic, then GP is strongly connected and P solves
the average consensus problem. Moreover, the convergence rate in both cases
is exponential and it is given by second largest eigenvalue in absolute value
of the matrix P .

Theorem 2 is concerned with constant consensus matrix, P (t) = P, ∀t ≥ 0,
i.e. the update strategy is the same at each time step t. In particular, we say
that P ∈ RN×N is an average consensus matrix if it is stochastic, symmetric
and it includes all edges, i.e., pij > 0 if and only if (i, j) ∈ E . In fact, under
the aforementioned hypotheses, the Perron-Frobenius theorem guarantees that
limt→∞ P t = 1

N
11T , which means that limt→∞ x(t) = 1

N

∑N
i=1 x(0).

The next theorem addresses the consensus problem in a probabilistic con-
text that arises from randomized communication strategies, as in Fagnani and
Zampieri (2008), or networks subject to random external disturbances, such
as link or agent failure.

Theorem 3 Consider a random independent and identically distributed se-
quence of stochastic matrices {P (t)}t≥0 drawn according to some distribution
from the set of all stochastic matrices, and the stochastic matrix P = E[P (t)].
If GP is strongly connected, and [P ]ii > 0 almost surely for any i ∈ V , then
the sequence {P (t)}t≥0 achieves probabilistic consensus. If in addition all the
P (t) are doubly stochastic, they solve the probabilistic average consensus.

3We recall that P ∈ RN×N is a stochastic matrix if [P ]ij ≥ 0 and
∑N

j=1[P ]ij = 1,∀j,
i.e. each row sums to unity. Equivalently, a matrix P is stochastic if its elements are non-
negative, it is such that P1 = 1 where 1 := [1 1 · · · 1]T ∈ RN , and it is consistent with
the graph G, in the sense that each entry pij of P is pij > 0 only if (i, j) ∈ E . A stochastic
matrix P is said doubly stochastic if also

∑N
i=1[P ]ij = 1,∀i, i.e. each column sums to unity.

Clearly if a stochastic matrix is symmetric then it is also doubly stochastic.
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According to the communication strategies previously presented, various
consensus algorithms can be implemented, resulting in different {P (t)}t≥0.

In the broadcast strategy the consensus matrix P (t) when an agent i trans-
mits at time t is given by:

[P (t)]mn =





1 if m = n /∈ Ni
1− w if m = n ∈ Ni
w if m ∈ Ni, n = i

0 otherwise

where w ∈ (0, 1) is a tuning parameter.
In the symmetric gossip, when the edge (i, j) is selected, the consensus

matrix P (t) is given by:

[P (t)]mn =





1 se m = n 6= j and m = n 6= i

1− w if m = n = j or m = n = i

w if (m,n) = (i, j) or (m,n) = (j, i)

0 otherwise

Typically w = 1/2, and the consensus matrices defined above are based on
the assumption that there is no link failure during the communication. Since
agents usually communicate using a wireless channel, the transmission is not
reliable, i.e. there is a non-zero packet loss probability. Let this communication
unreliability modeled with the connectivity matrix C ∈ RN×N , where [C]ij =

cij ∈ [0 1] is the probability that agent j can successfully transmit a message
to agent i. Since the wireless channel is approximately symmetric, we assume
that C = CT and cii = 1, ∀i. We define the c-connectivity graph GC = (N , EC)

associated to the connectivity matrix C as the graph s.t. (i, j) ∈ EC if and
only if cij ≥ c. This graph is undirected (i.e. ∀i, j ∈ N (i, j) ∈ E ⇔ (j, i) ∈ E)
since the matrix C is symmetric.

When link failure happens in broadcast communication, the matrix P (t)

needs to be modified with [P (t)]jj = 1, [P (t)]ji = 0, for some t. Instead, when
it happens in symmetric gossip, there is no communication at all, and then no
update is performed (i.e. P (t) = I for some t ≥ 0).

Based on the randomized communication modeling with link failure prob-
ability, it results that the expected consensus matrix P = E[P (t)] generated
for the broadcast strategy is given by:

[P ]mn =





1− cw dn
N

if m = n
cw

N
if m ∈ Nn

0 otherwise
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Note that P = (P )T is symmetric and hence doubly stochastic, although
the matrices Pi are never symmetric. Moreover GP = GC , i.e. the graph as-
sociated with the expected consensus matrix P , coincides with the underlying
communication graph GC . As assured by Theorem 3, if GP is strongly con-
nected then the algorithm achieves consensus with probabilty 1. If moreover
the matrices P (t) are all doubly stochastic then the algorithm achieves aver-
age consensus with probability 1. Therefore, if GC is strongly connected, then
this implies that the randomized broadcast guarantees probabilistic consensus.
Although, it does not guarantee average consensus for all possible realizations
of P (t). Even if the gossip matrices are not doubly stochastic, the expected
consensus matrix P is doubly stochastic, therefore the elements converge to
the average of the initial conditions in mean sense.

The expected consensus matrix for the symmetric gossip is given by:

[P ]mn =





1−
∑

i∈Ni

2 cw

N(dn + di)
if m = n

2 cw

N(dm + dn)
if (m,n) ∈ EC , m 6= n

0 otherwise

Obviously P = (P )T since all the gossip matrices P (t), t ≥ 0, from which
the distribution is drawn are symmetric by construction. Similarly to the
broadcast, we have GP = GC . Thus, if GC is strongly connected, the randomized
symmetric gossip guarantees probabilistic average consensus, i.e., almost surely

lim
t→∞

xi(t) =
1

N

N∑

i=1

xi(0) =
1

N
1x(0) ∀i ∈ V .

Compared to the randomized broadcast, the randomized symmetric gossip
guarantees average consensus for all realizations, but it is more expensive from
a communication point of view. Indeed, at least two packets with reception
acknowledge need to be exchanged at every step of the consensus iteration,
while for the broadcast only one is needed (with no acknowledge). Further-
more, with the symmetric gossip just two agents receive informations while
with the broadcast strategy all the neighbor agents of the broadcaster do.

An extensive analysis has been done in the literature about the convergence
rate of the consensus algorithms (see, e.g., Olshevsky and Tsitsiklis (2009b);
Blondel et al. (2005); Nedić and Ozdaglar (2010)). For the scope of this thesis,
it is sufficient to know that, for a (strongly) connected undirected graph, the
consensus is globally exponentially reached with a speed that is faster or equal
to the second largest eigenvalue of (P + P T )/2.
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1.1.2 Singular perturbation theory

Suppose that a given nonlinear system is posed in the form ẋ = f(t,x, ε),
where x ∈ RN represents the global state, t ∈ R+ the time, and ε ∈ R is a
parameter chosen opportunely small. Suppose that, under certain conditions,
the equation has an exact solution x(t, ε). It is well known that, dealing with
nonlinear differential equations, there are only a limited number of special
classes of differential equations that allow to have (exact) analytic solutions in
closed-form. In general, we need to resort to approximate solutions.

Asymptotic methods are one of the well-known approximation methodology
for the analysis of this kind of nonlinear system. An asymptotic method aims
to obtain a solution x̃(t, ε), which is an approximation of x(t, ε), such that
the approximation error x(t, ε) − x̃(t, ε) is small (for small |ε| and in some
norm) and that x̃(t, ε) is expressed in terms of equations simpler than the
original ones. Usually, the solution of this nonlinear system is characterized
by the fact that some variables move in time faster than other variables. The
singular perturbation method deals with the interaction of this two types of
variables, namely slow and fast behaviors, in a discontinuous dependence of
system properties on the perturbation parameter ε.

The singular perturbation method faces the so-called standard singular per-
turbation model

ẋ = f(t,x, z, ε), x(t0) = ξ(ε) (1.2)

εż = g(t,x, z, ε), z(t0) = η(ε) (1.3)

where ξ(ε) and η(ε) depend smoothly on ε and t0 ∈ [0, t1). In this context,
setting ε = 0 causes an abrupt change in the dynamic properties of the sys-
tem, as the differential equation εż = g degenerates into 0 = g(t,x, z, 0).
The meaning behind the singular perturbation theory is that analyzing these
perturbations in separate time scales let to avoid the discontinuity of solutions
generated by the singularities.

In the following, recalling slavishly the concepts in Khalil (2001), we de-
fine the standard singular perturbation model, presenting the two time-scale
properties of this model. Moreover, we give a trajectory approximation, that
is based on the decomposition into two different models related to the slow
and fast dynamics: the reduced model and boundary-layer model. Lastly, we
mention a a result of conceptual importance with regard to the exponential
stability of the nonautonomous system described by (1.2)-(1.3).
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We have already introduced the singular perturbation model with the equa-
tions (1.2) and (1.3), where the dynamical system is denoted by the fact that
the derivatives of some states are multiplied by a small positive parameter ε,
assumed to be small. Starting from that, we assume that the functions f and
g are continuously differentiable for (t,x, z, ε) ∈ [0, t1] × Dx × Dz × [0, ε0],
where Dx ⊂ RN and Dz ⊂ RM are open connected sets. Setting ε = 0 in (1.2)
and (1.3), the differential equation (1.3) degenerates into

0 = g(t,x, z, 0), (1.4)

which means that the dimension of the state equation is reduced from N +M

to N . Now, the model (1.2)-(1.3) is said to be in standard form if (1.4) has
r ≥ 1 isolated real roots

z = hi(t,x), i = l, 2, . . . , r (1.5)

for each (t,x) ∈ [0, t1]×Dx. This fact ensures that each i-th root of (1.4) will
correspond to a N -dimensional i-th reduced model

ẋ = f(t,x,hi(t,x), 0) (1.6)

obtained by substitution from (1.5) and (1.2). The model (1.6) is known
as the slow model and it is also called a quasi-steady-state model, because z,
whose velocity ż = g/ε can be large when ε is small and g 6= 0, may rapidly
converge to a root of (1.4) (which is the equilibrium of (1.3)).

Singular perturbations cause a multitime-scale behavior of dynamical sys-
tems characterized by the presence of slow and fast transients in the system’s
response to external stimuli. In other words, the slow response corresponds
approximatively to the reduced model (1.6), while the fast response is given by
the discrepancy between the behaviour of the reduced model and that of the
full model (1.2)-(1.3). To better understand this point, consider to solve the
full problem4 (1.2)-(1.3). Naturally, we retain the initial state for x to obtain
the reduced problem5

ẋ = f(t,x,h(t,x), 0), x(t0) = ξ0 := ξ(0) (1.7)
4When we define the corresponding problem for the reduced model (1.6), we can only

specify N initial conditions.
5From now on we drop the subscript i from h. It will be clear from the context which

root of (1.4) we are considering.
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Since z has been substituted by its quasi-steady-state h(t,x), the only ob-
tainable information about it by solving (1.7) is to compute z(t) := h(t,x(t)),
where x(t) denote the solution of (1.7). z(t) describes the quasi-steady-state
behavior of z when x = x. The quasi-steady-state z is not free to start from
a prescribed value, as instead occurs to the original variable z starting at t0
from a prescribed η(ε), and there may be a large gap between its initial value
z(t0) = h(t0, ξ0) and the initial state η(ε). Hence, z(t) cannot be a uniform
approximation of z(t, ε).

The best we can expect is that the estimate z(t, ε)−z(t) = O(ε) will hold on
an interval excluding t0, that is, for t ∈ [tb, t1], where tb > t0. Unfortunately, we
cannot translate the order of magnitude6 statement into a numerical bound on
the error. Knowing that the error is O(ε) means that its norm is less than k|ε|
for some positive constant k that is independent of ε, therefore, for sufficiently
small |ε|, the error will be small.

On the other hand, it is reasonable to expect x(t, ε)−x(t) = O(ε) to hold
uniformly for all t ∈ [t0, t1], since x(t0, ε)− x(t0) = ξ(ε)− ξ(0) = O(ε). If the
error z(t, ε)−z(t) is indeed O(ε) over [tb, t1], then it must be true that during
the initial interval [t0, tb], corresponding to the boundary-layer dynamics, the
variable z approaches z. Since the velocity of z can be high7, because ż = g/ε,
it should be clear that we cannot expect z to converge to its quasi-steady-state
z̄, unless certain stability conditions are satisfied. We will see through the
forthcoming analysis what kind of conditions are necessary for the stability.
To do that, it is more convenient to perform the change of variables

y = z − h(t,x) (1.8)

that shifts the quasi-steady-state of z to the origin. In the new variables (x,y),
the full problem is

ẋ = f(t,x,y + h(t,x), ε) (1.9)

εẏ = g(t,x,y + h(t,x), ε)− ε∂h
∂t
− ε∂h

∂x
f(t,x,y + h(t,x), ε) (1.10)

with initial conditions

x(t0) = ξ(ε)

y(t0) = η(ε)− h(t0, ξ(ε))

6δ1(ε) = O(δ2(ε)) if there exist constants k, c > 0 such that |δ1(ε)| ≤ k|δ2(ε)|, ∀|ε| < c.
7Indeed, setting ε = 0 in (1.3), the transient of z becomes instantaneous whenever g 6= 0.
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The quasi-steady-state of (1.10) is now y = 0, which when substituted into (1.9)
results in the reduced model (1.7). To analyze (1.10), let us note that εẏ may
remain finite even when ε tends to zero and ẏ tends to infinity. We set

ε
dy

dt
=
dy

dτ
;

hence, dτ/dt = 1/ε and use τ = 0 as the initial value at t = t0. The new time
variable τ = (t− t0)/ε is stretched, meaning that if ε tends to zero, τ tends to
infinity even for finite t, only slightly larger than t0, by a fixed difference. In
this new time scale, (1.10) is given by

dy

dτ
= g(t,x,y + h(t,x), ε)− ε∂h

∂t
− ε∂h

∂x
f(t,x,y + h(t,x), ε) (1.11)

with y(0) = η(ε)−h(t0, ξ(ε)). What happens is that t and x in the foregoing
equation will be slowly varying since, in the τ time scale, they are given by

t = t0 + ετ, x = x(t0 + ετ, ε)

Requiring ε = 0 freezes these variables at t = t0 and x = ξ0, and reduces (1.11)
to the autonomous system

dy

dτ
= g(t0, ξ0,y+h(t0, ξ0), 0), y(0) = η(0)−h(t0, ξ0) := η0−h(t0, ξ0) (1.12)

which has equilibrium at y = 0. If this equilibrium point is asymptotically
stable and y(0) belongs to its region of attraction, it is reasonable to expect
that the solution of (1.12) will reach an O(ε) neighborhood of the origin during
the boundary-layer interval. Beyond this interval, it is necessary a stability
property that guarantees that y(τ) will remain close to zero, while the slowly
varying parameters (t,x) move away from their initial conditions (t0, ξ0). This
overall trend can be analyze allowing the frozen parameters to take values in
the region of the slowly varying parameters (t,x). Assume that the solution
x(t) of the reduced problem is defined for t ∈ [0, t1] and x(t) ∈ Dx ⊂ RN , for
some domain Dx. Rewrite (1.12) in the form of the boundary-layer model (or
boundary-layer system)

dy

dτ
= g(t,x,y + h(t,x), 0) (1.13)

where (t,x) ∈ [0, t1]×Dx are treated as fixed parameters.
The crucial stability property for (1.13) is the exponential stability of its

origin, uniformly in the frozen parameters, as stated in the next definition.
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Definition 4 The equilibrium point y = 0 of the boundary-layer system
(1.13) is exponentially stable, uniformly in (t,x) ∈ [0, t1]×Dx, if there exist
positive constants k, γ, and ρ0 such that the solutions of (1.13) satisfy

‖y(τ)‖ ≤ k‖y(0)‖e−γτ , ∀‖y(0)‖ ≤ ρ0, ∀(t,x) ∈ [0, t1]×Dx ∀τ ≥ 0 (1.14)

The following theorem, widely known as Tikhonov’s theorem, is of major
importance in nonlinear singular perturbation theory, because it implies that
whether the solution of system (1.2)-(1.3) can be approximated by the solu-
tions of the reduced system and the boundary-layer system depends on the
exponential stability of the boundary-layer system, and (or) the stability of
the reduced system.

Theorem 5 Consider the singular perturbation problem of (1.2) and (1.3)
and let z = h(t,x) be an isolated root of (1.13). Assume that the following
conditions are satisfied far all [t,x, z−h(t,x), ε] ∈ [0, t1]×Dx×Dy × [0, ε0]

for some domains Dx ⊂ RN and Dy ⊂ RealsM , in which Dx is convex and
Dy contains the origin:

• The functions f , g, their first partial derivatives with respect t o
(x, z, ε), and the first partial derivative of g with respect to t are con-
tinuous; the function h(t,x) and the Jacobian [∂g(t,x, z, 0)/∂z] have
continuous first partial derivatives with respect t o their arguments; the
initial data ξ(ε) and η(ε) are smooth functions of ε.

• The reduced problem (1.7) has a unique solution x(t) ∈ S, for t ∈ [t0, t1]

where S is a compact subset of Dx.

• The origin is an exponentially stable equilibrium point of the boundary-
layer model (1.13), uniformly in (t,x); let Ry ⊂ Dy be the region of
attraction of 1.12 and Ωy be a compact subset of Ry.

Then, there exists a positive constant ε∗ such that for all η0 −h(t0, ε0) ∈ Ωy

and 0 < ε < ε∗, the singular perturbation problem of (1.2) and (1.3) has a
unique solution x(t, ε), z(t, ε) on [t0, t1], and

x(t, ε)− x(t) = O(ε) (1.15)

z(t, ε)− h(t,x(t))− ŷ(t/ε) = O(ε) (1.16)



28 1.1 Background

hold uniformly for t ∈ [t0, t1], where ŷ(τ) is the solution of the boundary-
layer model (1.13). Moreover, given any tb > t0, there is ε∗∗ ≤ ε∗ such that
z(t, ε)− h(t,x(t)) = O(ε) holds uniformly for t ∈ [tb, t1] whenever ε < ε∗∗.

Theorem 6, that follows, is important because it establishes robustness
of exponential stability to unmodeled fast dynamics. The technicalities of
assuming exponential stability instead of only asymptotic stability, or assum-
ing that exponential stability holds uniformly, are quite reasonable in most
applications. When the origin of the reduced model is exponentially stable,
Theorem 6 assures us that the origin of the actual system will be exponentially
stable (provided the neglected fast dynamics are sufficiently fast).

Theorem 6 Consider the singularly perturbed system

ẋ = f(t,x, z, ε) (1.17)

εż = g(t,x, z, ε) (1.18)

Assume that the following assumptions are satisfied for all

(t,x, ε) ∈ [0,∞)×Br × [0, ε0]

• f(t,0,0, ε) = 0 and g(t,0,0, ε) = 0.

• The equation 0 = g(t,x, z, 0) has an isolated root z = h(t,x) such
that h(t,0) = 0.

• The functions f , g, h, and their partial derivatives up to the second
order are bounded far z − h(t,x) ∈ BPρ.

• The origin of the reduced system

ẋ = f(t,x,h(t,x), 0)

is exponentially stable.

• The origin of the boundary-layer system

dy

dτ
= g(t,x,y + h(t,x), 0)

is exponentially stable, uniformly in (t,x).

Then, there exists ε∗ > 0 such that for all ε < ε∗, the origin of (1.17)-(1.18)
is exponentially stable.
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1.2 Notation

We model the communication network as a graph G = (V , E) whose vertexes
V := {1, 2, . . . , N} represent the agents and whose edges (i, j) ∈ E represent
the available communication links. We denote with Ni = {j | (i, j) ∈ E , i 6= j}
the set of neighbors of node i. Unless stated differently, we assume that any
graph G is undirected, connected, not time-varying and includes all self-arcs,
i.e. (i, i) ∈ E ,∀i ∈ V .

We use to indicate with P ∈ RN×N an average consensus matrix. We recall
that if P is stochastic, symmetric and includes all edges, i.e., pij > 0 if and
only if (i, j) ∈ E , it is guaranteed that limk→∞ P k = 1

N
11T . We assume that

the spectrum of P , eig (P ) = {λ1 = 1, λ2, . . . , λN}, is known, and that the
eigenvalues are sorted in decreasing order. To compact the notation, we let
Λ := diag [λ1, . . . , λN ]. We will indicate with

σ := max
i,λi 6=1

|λi|

the essential spectral radius of P , which under the connectivity hypothesis of
the communication graph is s.t. σ < 1. ρ := 1− σ denotes instead its spectral
gap. We also assume that no communication or quantization errors occur (i.e.,
information can be exchanged with infinite precision).

We use plain italic lower case fonts to indicate scalar quantities or functions
whose range is a scalar (e.g., x, y, z), bold italic lower case fonts to indicate
vectorial quantities or functions whose range is vectorial (e.g., x, y, z), plain
italic capital letters to denote matrices (sometimes even scalar parameters).

Nonetheless, plain italic capital letters refer to outcomes of Kronecker prod-
ucts (e.g., X, Y , Z). We use Kronecker products also to indicate component-
wise consensus steps. That is, if

Ai =



a
(i)
11 · · · a

(i)
1L

...
...

a
(i)
M1 · · · a

(i)
ML


 i = 1, . . . , N

is a genericM×Lmatrix associated to agent i, i = 1, . . . , N , and if these agents
want to distributedly compute 1

N

∑N
i=1Ai by means of the communication

matrix P , then to indicate the whole set of the single component-wise steps


a
(1)
ml(k + 1)

...
a
(N)
ml (k + 1)


 = P



a
(1)
ml(k)
...

a
(N)
ml (k)




m = 1, . . . ,M

l = 1, . . . , L
(1.19)
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we use the equivalent matrix notation


A1(k + 1)

...
AN(k + 1)


 = (P ⊗ IM)



A1(k)

...
AN(k)


 (1.20)

where IM is the identity in RM×M and ⊗ is the Kronecker product. Notice
that this notation is suited also for vectorial quantities.

The notation diag [v], where v = [v1 · · · vN ] is a generic vector, denotes a
diagonal matrix with v1, . . . , vN on its diagonal. I := diag [1].

We use the usual symbol� to indicate the component-wise Hadamard prod-
uct, and the fraction bars to indicate Hadamard divisions, i.e. the component-
wise division of vectors of vectorial functions (e.g., if a = [a1, . . . , aN ]T and

b = [b1, . . . , bN ]T then
a

b
=

[
a1
b1

. . .
aN
bN

]T
). Also, M indicates the dimension-

ality of the domain, k a discrete time index, t a continuous time index.

If f is a scalar function, we denote differentiation with

f ′ :=
df

dx
and f ′′ :=

d2f

dx2

when the domain is scalar, and with ∇ operators when it is not. The symbol
‖ · ‖ will denote the Euclidean norm in RN , and the induced norm in RN×N .
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All the additional notation is collected in the following:

(scalar case)

gi
(
xi(k)

)
:= f ′′i

(
xi(k)

)
xi(k)− f ′i

(
xi(k)

)

hi
(
xi(k)

)
:= f ′′i

(
xi(k)

)

x(k) := [x1(k) · · · xN(k)]T (data from all the agents)

y(k) := [y1(k) · · · yN(k)]T

z(k) := [z1(k) · · · zN(k)]T

g
(
x(k)

)
:=
[
g1
(
x1(k)

)
· · · gN

(
xN(k)

)]T

h
(
x(k)

)
:=
[
h1
(
x1(k)

)
· · · hN

(
xN(k)

)]T

f ′(x) := [f ′1 (x1) , . . . , f
′
N (xN)]

T

(vectorial case)

xi(k) := [xi,1(k) · · · xi,M(k)]T ∈ RM (data from a single agent)

X(k) :=
[
x1(k)T · · · xN(k)T

]T ∈ RMN (data from all the agents)

∇f
(
xi(k)

)
:=

[
∂f

∂x1

∣∣∣∣
xi(k)

· · · ∂f

∂xM

∣∣∣∣
xi(k)

]T
∈ RM

∇2f (xi(k)) :=




. . . ...

· · · ∂2f

∂xm∂xn

∣∣∣∣
xi(k)

· · ·
... . . .



∈ RM×M

Y (k) :=
[
y1(k)T · · · yN(k)T

]T ∈ RMN

Z(k) :=
[
Z1(k)T · · · ZN(k)T

]T ∈ RMN×M

Hi

(
xi(k)

)
:= Equations (2.60) or (2.61) or (2.62) ∈ RM×M . See Algorithm 3

H
(
X(k)

)
:=
[
H1

(
x1(k)

)T · · · HN

(
xN(k)

)T]T ∈ RMN×M

gi
(
xi(k)

)
:= Hi

(
xi(k)

)
xi(k)−∇fi

(
xi(k)

)
∈ RN

G
(
X(k)

)
:=
[
g1
(
x1(k)

)T · · · gN
(
xN(k)

)T]T ∈ RMN
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1.3 Problem formulation

We study the problem of unconstrained distributed optimization in the context
of multi-agents systems (subject to limited communication connectivity). We
focus on the minimization of a sum of cost functions, where each component of
the global function is available only to a specific agent and can thus be seen as
a private local cost. The agents need to cooperate to compute the minimizer
of the sum of all costs. More formally, we deal with the following problem:

Problem 7 Assume that N agents are part of a WSAN modeled as a a
graph that is undirected, connected and not time-varying, in a (randomized)
symmetric gossip type communication network. The agents are endowed with
cost functions fi : RM 7→ R so that

f : R 7→ R, f (x) :=
1

N

N∑

i=1

fi (x) (1.21)

is a well-defined global cost.
The aim of the agents is to cooperate and distributedly compute the min-

imizer of f , namely
x∗ := arg min

x
f (x) . (1.22)

We now enforce the following simplificative assumptions in the scalar do-
main, stated in general for the multidimensional case, see, e.g., Xiao and Boyd
(2006); Ho et al. (1980), and valid throughout the rest of the paper:

Assumption 8 (Convexity) The function f : R 7→ R defined in (1.21) is

of class C2, coercive, and strictly convex, i.e., f ′′(x) :=
d2f(x)

dx2
> 0, ∀x ∈ R

and so that x∗ in (1.22) exists and is unique.

The positive second derivative is a mild sufficient condition to guarantee
that the minimum x∗ defined in (1.22) will be exponentially stable under the
continuous Newton-Raphson dynamics described in the following Theorem 10.
Notice that in principle just the average function f needs to have specific
properties, and thus no conditions for the single fi’s are required: in fact they
might even be non convex.
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Practical examples

The need of solving large-scale problems exploiting several parallel processors
has pioneered the research in the area of distributed optimization. This subject
has historically been intended as the problem of dispatching part of a large
scale optimization algorithm to different computational units (see the semi-
nal work Tsitsiklis et al. (1986), and Bertsekas and Tsitsiklis (1997)). In the
last decade, distributed optimization has been applied to NCSs, posing new
issues to be addressed. The key point is that each agent has to implement
an optimization procedure that must depend both on local data and on the
information that each agent can gather from its neighboring agents, let say the
agents in its communication range. Nonetheless the agents have to take into
account the local measurements that they can perform.

Plenty of algorithms have been designed for convex optimization problems,
and a strong and useful theory has been derived (see Boyd et al. (2010); Hastie
et al. (2008); Boyd and Vandenberghe (2004) and the many references therein).
Hereafter we propose two typical scenarios, significative examples of the many
different problems that can be casted into this framework.

Regression

Consider a linear model with measurements yi of the form yi = uTi x+vi, where
ui is the i-th feature vector and the measurement noises vi are independent
with log-concave or Gaussian densities. The goal is to find an optimal convex
estimate of the regression function, i.e. solving the residuals minimization

min
x

∑N
i=1 φ(yi − uTi x)

where x ∈ RM is the minimizer parameter, ui ∈ RM is the feature (i.e. in-
dependent variable) vector for agent i, yi ∈ R is the output or response of i,
φ : R→ R is a convex loss function, as the following:

φ(r) = |r|2 (least squares)

φ(r) = |r| (least absolute deviations)

φ(r) =

{
0 if |r| < 1

|r| − 1 otherwise
(V apnik)

φ(r) =

{
|r|2 if |r| < 1

2(|r| − 1) otherwise
(Huber)

(1.23)

Notice that φ(·) is the same for each agent, which is usually the case in practice,
although it is not excluded it may be different for each specific agent. See
Figure 1.1 for an example of estimated linear regression and cost functions.
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Figure 1.1: On the left, example of a linear regression derived from random
data points; on the right, plots of the different loss functions as in (1.23).

Classification

Let ui ∈ RM denote the feature vector of the i-th example and let yi ∈ {−1, 1}
denote the binary outcome, for i = 1, . . . , N . The goal is to find a weight vector
x ∈ RM that satisfies

min
x

N∑

i=1

li
(
yiu

T
i x
)

+ λ ‖x‖2

where li : R→ R is the convex loss for the i-th training example and λ ‖x‖2 is a
separable regularization function known as Tikhonov regularization. Common
loss functions are the hinge loss [1− yiuTi x]+, denoting with [ · ]+ the positive

part of the corresponding term, and the exponential loss e−yiu
T
i x.

In general, the support vector machine corresponds to hinge loss with a
quadratic penalty, while exponential loss yields boosting.

See Figure 1.2 for an example of two-class classification accompanied by
the aforementioned loss functions.
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Figure 1.2: On the left, example of a linear two-class classification; on the right,
plots of the hinge and exponential loss functions.
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1.4 Preliminary results

The following theorems will be used to prove the convergence properties of the
algorithms proposed hereafter.

Consider the non autonomous system

ẋ = u(t,x) (1.24)

where u : [0,∞)×D → RN , is piecewise continuous in t and locally Lipschitz
in x on [0,∞)×D, and D ⊂ RN is a domain that contains the origin x = 0.
The origin is an equilibrium point for (1.24) at t = 0 if u(t,0) = 0, ∀t ≥ 0.

Theorem 9 recalls a stability theorem offered in (Khalil, 2001, p. 154), that
is exploited hereafter in Theorem 10.

Theorem 9 Let x = 0 be an equilibrium point for (1.24) and D ⊂ RN be
a domain containing x = 0. Let V : [0,∞) × D → R be a continuously
differentiable function such that

c1‖x‖c ≤ V (t,x) ≤ c2‖x‖c (1.25)
∂V

∂t
+
∂V

∂x
u(t,x) ≤ −c3‖x‖c (1.26)

∀t ≥ 0 and ∀x ∈ D, where c, c1, c2, c3 are positive constants. Then, x = 0 is
exponentially stable. If the assumptions hold globally, then x = 0 is globally
exponentially stable.

Theorem 10 is a preliminary result on the applicability of Newton-Raphson
(NR) optimization procedures8.

Moreover, along with the C2 requirements in Assumption 8, the theorem
will allow us to apply standard singular perturbation analysis techniques.

Theorem 10 For every r > f(x∗), let Dr :=
{
x ∈ R

∣∣ f(x) ≤ r
}
. Let more-

over

ẋ(t) = − f
′(
x(t)

)

f
′′(
x(t)

) =: ψ
(
x(t)− x∗

)
, x(0) ∈ Dr (1.27)

8Other asymptotic properties of continuous time NR methods can be found, e.g., in Tan-
abe (1985); Hauser and Nedić (2005).
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describe a continuous-time Newton-Raphson algorithm with f satisfying As-
sumption 8. Then x∗ is an exponentially stable equilibrium, i.e., |x(t)−x∗| ≤
ce−γt|x(0)− x∗|, ∀ t’s and ∀x(0) ∈ Dr, for suitable positive constants c and γ
possibly depending on r.

Proof We proceed showing that f is itself a suitable Lyapunov function
for (1.27). We now show that f is suitable Lyapunov function for (1.27).
Then, since f is smooth, closed, proper and convex, the set Dr is closed,
convex and compact. Moreover x∗ ∈ Dr. Let then a1 := min

x∈Dr

f
′′
(x) and

a2 := max
x∈Dr

f
′′
(x), whose existence is assured being Dr closed and compact.

Moreover 0 < a1 ≤ a2, since f
′′
(x) > 0 by hypothesis.

Consider then a generic x ∈ Dr, and the Taylor expansion of f around x∗

with remainder in Lagrange form, i.e.,

f(x) = f(x∗) + f
′
(x∗)(x− x∗) +

f
′′
(x̃)

2
(x− x∗)2 (1.28)

for a suitable x̃ between x and x∗ (thus x̃ ∈ Dr by convexity). Since f ′(x∗) = 0,

we can transform (1.28) into f(x)− f(x∗) =
f
′′
(x̃)

2
(x− x∗)2, i.e.,

a1
2

(x− x∗)2 ≤ f(x)− f(x∗) ≤ a2
2

(x− x∗)2, ∀x ∈ Dr. (1.29)

Moreover, differentiating (1.28) we obtain f ′(x) = f
′
(x∗)+f

′′
(x̃)(x−x∗), which

implies
a1 |x− x∗| ≤

∣∣∣f ′(x)
∣∣∣ ≤ a2 |x− x∗| , ∀x ∈ Dr. (1.30)

Consider then system (1.27). Exploiting (1.30) it follows, ∀x(t) ∈ Dr − {x∗},

ḟ
(
x(t)

)
= f

′(
x(t)

)
ẋ(t) = −

(
f
′(
x(t)

))2

f
′′(
x(t)

) ≤ −a
2
1

a2

(
x(t)− x∗

)2
< 0. (1.31)

Consider then Theorem 9. Here (1.29) corresponds to (1.25), (1.31) corre-
sponds to (1.25), and all the other hypotheses are satisfied. Thus f is a valid
Lyapunov function and x∗ is exponentially stable for all x(0) ∈ Dr. ♦

We notice that Theorem 10 states that x∗ is practically globally stable.
Thus one can start from any point and have an exponential convergence, al-
though a convergence rate that is uniform for all initial conditions might not
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exist. Nonetheless we can notice that, locally and around the optimum, the
rate of convergence of the Newton-Raphson dynamics is γ = 1 independently
of the convex function f . In fact, if we linearize ψ around 0 (i.e., the dynamics
of (1.27) around x∗) we obtain

ψ(x) = ψ(0) + ψ′(0)x+ o(x)

= − f
′
(x∗)

f
′′
(x∗)

− f
′′
(x∗)f

′′
(x∗)− f ′(x∗)f ′′′(x∗)
(
f
′′
(x∗)

)2 x+ o(x)

= −x+ o(x)

since f ′(x∗) = 0 and f ′′(x∗) 6= 0.
The hypotheses of Theorem 11.4 in (Khalil, 2001, p. 456) (i.e., Theorem 6

in Section 1.1) and of the converse Lyapunov Theorem 4.14 of (Khalil, 2001,
pp. 162) are critical conditions to assess the convergence of the NRC, in the
synchronous and asynchronous case respectively. They will be recalled later in
Sections 2.1 and 3.1. Theorem 4.14 of (Khalil, 2001, pp. 162) is reported here
in its original form, in the guise of Theorem 11.

Theorem 11 Let x = 0 be an equilibrium point for the nonlinear sys-
tem (1.24), where u : [0,∞) × D → RN is continuously differentiable,
D = {x ∈ RN | ‖x‖ < r}, and the Jacobian matrix [∂u/∂x] is bounded
on D, uniformly in t. Let k, λ, and r0 be positive constants with r0 < r/k.
Let D0 = {x ∈ RN | ‖x‖ < r0}. Assume that the trajectories of the system
satisfy

‖x(t)‖ ≤ k‖x(t0)‖e−λ(t−t0), ∀x(t0) ∈ D0, ∀t ≥ t0 ≥ 0

Then there is a function V : [0,∞)×D0 → R that satisfies the inequalities

c1‖x‖2 ≤ V (t,x) ≤ c2‖x‖2
∂V

∂t
+
∂V

∂x
u(t,x) ≤ −c3‖x‖2
∥∥∥∥
∂V

∂x

∥∥∥∥ ≤ c4‖x‖

for some positive constants c1,c2,c3,c4. Moreover, if r = ∞ and the origin is
globally exponentially stable, then V (t,x) is defined and satisfies the afore-
mentioned inequalities on RN . Furthermore, if the system is autonomous, V
can be chosen independent of t.
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Lemma 12, that recalls Lemma 9.1 of (Khalil, 2001, pp. 341), will be ex-
ploited to state the the global stability of the Asynchronous Newton-Raphson
Consensus (ANRC).

Lemma 12 Consider the system

ẋ = u(t,x) + d(t,x) (1.32)

where u : [0,∞)×D → RN and d : [0,∞)×D → RN are piecewise continuous
in t and locally Lipschitz in x on [0,∞)×D, and D ⊂ RN is a domain that
contains the origin x = 0. Let x = 0 be an exponentially stable equilibrium
point of the nominal system ẋ = u(t,x). Let V : [0,∞) × D → R be a
Lyapunov function of the nominal system that satisfies

c1‖x‖2 ≤ V (t,x) ≤ c2‖x‖2

for some constants c1, c2 through
∥∥∥∥
∂V

∂x

∥∥∥∥ ≤ c4‖x‖

in [0,∞)×D. Suppose the perturbation term d(t,x) satisfies

‖d(t,x)‖ ≤ γ‖x‖, ∀x ∈ D
γ <

c3
c4

for some constants c3, c4. Then, the origin is an exponentially stable equilib-
rium point of the perturbed system (1.32). Moreover, if all the assumptions
hold globally, then the origin is globally exponentially stable.

Theorem 1 and Theorem 2 in Sundarapandian (2002) will be extensively
adopted into the proofs of convergence of the NRC methods. These theorems
give state the global asymptotic stability of continuous-time and discrete-time
nonlinear cascade systems. They are here recalled as Theorem 13 and Theo-
rem 14 respectively.

Theorem 13 Consider the continuous-time nonlinear cascade system of the
form

ẋ = u(x,ω)

ω̇ = s(ω)
(1.33)
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where x ∈ RN , ω ∈ RW . Assume that u : RN×RW → RN and s : RW → RW

are both of class C1. Moreover, assume that u(0,0) = 0, s(0) = 0, so that
(x,ω) = (0,0) is an equilibrium of the cascade system (1.33).

Suppose that x = 0 is a globally asymptotically stable equilibrium of the
subsystem ẋ = u(x,0), ω = 0 is a globally asymptotically stable equilibrium
of the subsystem ω̇ = s(ω), and that the trajectories (x(t),ω(t)) of (1.33)
are bounded for t > 0. Then (x,ω) = (0,0) is a globally asymptotically
stable equilibrium of the cascade system (1.33).

Theorem 14 Consider the discrete-time nonlinear cascade system of the
form

x(k + 1) = u(x(k),ω(k))

ω(k + 1) = s(ω(k))
(1.34)

where x ∈ RN , ω ∈ RW . Assume that u : RN×RW → RN and s : RW → RW

are both of class C1. Moreover, assume that u(0,0) = 0, s(0) = 0, so that
(x,ω) = (0,0) is an equilibrium of the cascade system (1.34).

Suppose that x = 0 is a globally asymptotically stable equilibrium of the
subsystem x(k + 1) = u(x(k),0), ω = 0 is a globally asymptotically stable
equilibrium of the subsystem ω(k + 1) = s(ω(k)), and that the trajectories
(x(k),ω(k)) of (1.34) are bounded for k ∈ N. Then (x,ω) = (0,0) is a
globally asymptotically stable equilibrium of the cascade system (1.34).

The Implicit Function Theorem, here presented as Theorem 15, will be used
in Section 2.1 to show that non-null, but sufficiently small initial conditions
on the NRC let the algorithm converge to a neighborhood of the optimum.

Theorem 15 (Basic Implicit Function Theorem) Suppose ψ : D → R,
D ⊂ R3, has ψ(α, β, x) = c, for some (α, β, x) ∈ D and c ∈ R, and satisfies(
∂ψ

∂x1
,
∂ψ

∂x2
,
∂ψ

∂x3

)
6= (0, 0, 0). Then the following hold.

i) There is a function ξ(x1, x2), defined near (α, β) ∈ D∩ (R2×{x}), such
that ψ(x1, x2, ξ(x1, x2)) = c.

ii) Near (α, β, x) the given equation has no solutions other than the ones
described in (i).
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iii) Near (α, β, x), the level set {(x1, x2, x3) ∈ D | ψ(x1, x2, x3) = c} is a bi-
dimensional manifold, and its tangent plane at (α, β, x) is perpendicular
to ∇ψ(α, β, x).

iv) The derivative of ξ at (α, β) is given by

ξ
′
(α, β) =

[
∂ξ
∂x1

∂ξ
∂x2

]
(α, β) =


−

∂ψ

∂x1
(α, β, x)

∂ψ

∂x3
(α, β, x)

−
∂ψ

∂x2
(α, β, x)

∂ψ

∂x3
(α, β, x)


 .



2
Synchronous Newton-Raphson Consensus

2.1 The scalar case

For a better understanding of the algorithm we are going to propose, we add
some additional assumptions and we later generalize these ideas into the gen-
eral framework.

We start analyzing the following simplified scenario: the local costs are
quadratic and scalar, i.e., fi(x) = 1

2
ai(x − bi)2, with ai > 0 and x ∈ R. It is

known that, in this case, x∗ = arg min
x∈R

f(x) can be computed using two average

consensus algorithms in parallel, see, e.g., Xiao et al. (2005); Bolognani et al.
(2010). In fact

x∗ =

N∑

i=1

aibi

N∑

i=1

ai

=

1

N

N∑

i=1

aibi

1

N

N∑

i=1

ai

, (2.1)

i.e., x∗ corresponds to the ratio of two arithmetic means. Thus, under quadratic
costs assumptions, if each agent defines the local variables yi(0) := aibi and
zi(0) := ai and updates them cycling the steps

y(k + 1) = Py(k)

z(k + 1) = Pz(k)

x(k + 1) =
y(k + 1)

z(k + 1)
,

(2.2)

it follows that, given the fact that P is an average consensus matrix,

lim
k→∞

x(k) = x∗1

(under mild assumptions, with the same convergence speed of the consensus
algorithm induced by P ). Since xi(k) = yi(k)/zi(k)→ x∗ for all i’s, the xi(k)’s
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computed through (2.2) can be thought as the local estimates at time k of the
global minimizer x∗.

We can now generalize (2.2) to the case where the local cost functions fi
are not quadratic. To this point we observe that, for all x, in the quadratic
case it holds that aibi = f ′′i (x)x− f ′i(x) =: gi(x) and that ai = f ′′i (x) =: hi(x).
As a consequence, we could let each agent choose an xi(0) for all i, then set
yi(0) = f ′′i

(
xi(0)

)
xi(0) − f ′i

(
xi(0)

)
and zi(0) = f ′′i

(
xi(0)

)
, apply (2.2) up to

convergence and thus compute

x̂∗ =

1

N

N∑

i=1

(
f ′′i
(
xi(0)

)
xi(0)− f ′i

(
xi(0)

))

1

N

N∑

i=1

f ′′i
(
xi(0)

)
=

1

N

N∑

i=1

gi
(
xi(0)

)

1

N

N∑

i=1

hi
(
xi(0)

)
. (2.3)

Figure 2.1 gives a pictorial hint that x̂∗ may be an accurate guess of x∗.

x1 x̂∗ x∗ x2

f
(x
)

f1(x)

f2(x)

f(x)

q1(x)

q2(x)

q(x)

Figure 2.1: Graphical intuition underlying the SNRC. Starting from the local
guesses x1 and x2, the agents locally compute the second order Taylor expansions
of the local costs f1(x) and f2(x), namely q1(x) and q2(x). The minimum x̂∗ of
q(x) :=

∑
i qi(x)/2 can then be computed with (2.3). Interpreting q(x) as an

approximation of f(x), x̂∗ is an approximation of x∗.

Because of the intuitions given before, we expect x̂∗ to be a sensible estima-
tion for the true minimizer x∗. However, x̂∗ depends on the initial conditions
xi(0) and, in general, if the fi’s are not quadratic then x̂∗ 6= x∗. There-
fore, (2.2) cannot be applied directly. Nonetheless we notice that if all the
xi(0)’s are equal, i.e., xi(0) = x, ∀i, then

x̂∗ = x− f
′
(x)

f
′′
(x)

which is a standard NR update step. Thus, if all the agents agree on the
xi(0)’s and the consensus step (2.2) is given enough time to converge, then x̂∗
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provides the right descent direction. If instead the agents do not agree on the
xi(0)’s, then x̂∗ provides just an approximation of the right descent direction.

To design the main algorithm we then observe the following:

• (2.2) shall be modified so that it computes meaningful Newton direc-
tions even if the xi(k)’s change over time. Since time-varying xi(k)’s
imply time-varying gi

(
xi(k)

)
’s and hi

(
xi(k)

)
’s, the yi(k)’s and zi(k)’s

must track the changing averages
1

N

N∑

i=1

gi
(
xi(k)

)
and

1

N

N∑

i=1

hi
(
xi(k)

)
;

• the computation of the averages of the various gi
(
xi(k)

)
’s and hi

(
xi(k)

)
’s

must have a convergence rate that is sufficiently faster than the rate of
change of the different xi(k)’s.

These ideas are captured in the following Algorithm 1, where the vectorial
notation also for the functions g

(
x(k)

)
and h

(
x(k)

)
is introduced.

Algorithm 1 Synchronous Newton-Raphson Consensus (SNRC) – scalar case
(storage allocation and constraints on the parameters)

1: x(k), y(k), z(k) ∈ RN ,∀k ∈ N
2: ε ∈ (0, 1)

(initialization)
3: x(0) = 0

4: y(0) = g
(
x(−1)

)
= 0, z(0) = h

(
x(−1)

)
= 1

(main algorithm)
5: for k = 1, 2, . . . do

6: x(k) = (1− ε)x(k − 1) + ε
y(k − 1)

z(k − 1)
(local update)

7: ỹ(k) = y(k − 1) + g
(
x(k − 1)

)
− g
(
x(k − 2)

)
(local update)

8: z̃(k) = z(k − 1) + h
(
x(k − 1)

)
− h

(
x(k − 2)

)
(local update)

9: y(k) = P ỹ(k) (consensus step)
10: z(k) = P z̃(k) (consensus step)

The following remarks highlight the peculiar structure of Algorithm 1:

• the initialization in line 4 is critical for convergence to the global mini-
mizer. However robustness analysis on possible numerical errors in the
initial conditions or quantization noise is discussed below;

• lines 7-8 let the various agents modify their local yi and zi in order to take
into account the effects induced by changing xi(k)’s before the consensus
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steps on the yi’s and zi’s in lines 9-10.
Basically, lines 7-8 correspond to a high-pass filter with respect to time

to track the changing averages
1

N

N∑

i=1

gi(xi) and
1

N

N∑

i=1

hi(xi);

• line 6 substitutes the local guess update step xi(k) = yi(k)/zi(k) in (2.2)
with a low-pass filter dominated by the parameter ε. This is necessary
because the consensus process on yi’s and zi’s must be faster than the
tendency of xi(k)’s to spread apart while the various yi’s and zi’s are not
close. If this spreading mechanism is not dominated by the consensus on
the yi’s and zi’s, the algorithm could eventually diverge. In other words,
line 6 softens possible too aggressive updates of the local estimates. It
is also similar to what is usually done in NR approaches where only a
small step is taken towards the newly estimated global minimum;

• if ε = 1 and the functions fi are quadratic, then Algorithm 1 reduces to
the system (2.2).

Before providing a formal proof of the convergence properties of Algo-
rithm 1 we give some intuitions on its behavior. The dynamics of Algorithm 1
can be written in state space as follows:





v(k) = g
(
x(k − 1)

)

w(k) = h
(
x(k − 1)

)

y(k) = P
[
y(k − 1) + g

(
x(k − 1)

)
− v(k − 1)

]

z(k) = P
[
z(k − 1) + h

(
x(k − 1)

)
−w(k − 1)

]

x(k) = (1− ε)x(k − 1) + ε
y(k − 1)

z(k − 1)
,

(2.4)

which can be interpreted as the forward-Euler discrete-time version of continuous-
time system





εv̇(t) = −v(t) + g
(
x(t)

)

εẇ(t) = −w(t) + h
(
x(t)

)

εẏ(t) = −Ky(t) + (I −K)
[
g
(
x(t)

)
− v(t)

]

εż(t) = −Kz(t) + (I −K)
[
h
(
x(t)

)
−w(t)

]

ẋ(t) = −x(t) +
y(t)

z(t)

(2.5)

where ε is the discretization time interval and K := I −P . As a consequence,
for sufficiently small ε the dynamic behavior of (2.4) is approximated by the
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one of (2.5), i.e., x(t/ε) ≈ x(k), where, with a little abuse of notation, we used
the same symbols for the continuous and discrete time variables.

It is now possible to recognize the existence of a two-time scales dynamical
system regulated by the parameter ε. Therefore, we can split the dynamics in
the two time scales and study them separately for sufficiently small ε.

As for the fast dynamics, by construction K is positive semidefinite with
kernel spanned by 1 and with eigenvalues 0 = λ1 < Re [λ2] ≤ · · · ≤ Re [λN ] <

2. That is, the first four equations of system (2.5) imply that

y(t) ≈
(

1

N
1Tg

(
x(t)

))
1 and z(t) ≈

(
1

N
1Th

(
x(t)

))
1.

If these equations are inserted into the slow dynamics, i.e., into the last
equation of system (2.5), then it follows that x(t) ≈ x(t)1, where x(t) is
a scalar quantity that approximately evolves following the continuous-time
Newton-Raphson update

ẋ(t) = − f
′(
x(t)

)

f
′′(
x(t)

) . (2.6)

Summarizing, for sufficiently small values of ε Algorithm 1 can be described
by (2.5), it is such that xi(k) ≈ x(t/ε) for all i’s, and thus by Theorem 10 it
converges to the global optimum x∗.

We now move from intuitions to a formal proof of convergence. We start
by considering the robustness of the algorithm in terms of possible different
initial conditions x(0).

Theorem 16 Consider Algorithm 1 with arbitrary initial conditions x(0)

and let Assumption 8 hold true. For every ball Bx∗
r := {x | ‖x− x∗1‖ < r}

there exist two positive constants εr, cr such that if ε < εr, then there exists
γε > 0 such that, for all x(0) ∈ Bx∗

r ,

‖x(k)− x∗1‖ ≤ cre
−γεk ‖x(0)− x∗1‖

for all k ∈ N.

Proof Since assumptions for Theorem 2 in Teel et al. (1998)1 are satisfied,
we are ensured that if ε is sufficiently small then the discretized system (2.4)

1Teel et al. (1998) show that if a continuous time input-to-state stabilizing controller
is sampled fast enough, the obtained sampled-data nonlinear system still has the same
properties as the continuous time system.
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inherits the same stability properties of (2.5). Therefore we focus on proving
that Theorem 16 holds true considering system (2.5) rather than Algorithm 1.

The proof is based on characterizing system (2.5) through classical multi-
time-scales approaches for standard singular perturbation model analysis (Koko-
tović et al., 1999; Khalil, 2001, Chap. 11). It is divided in the following steps:

a) perform some suitable changes of variables;

b) analyze the boundary layer system (fast dynamics);

c) analyze the reduced system (slow dynamics).

In the following we will use the additional notation

Π‖ :=
11T

N
Π⊥ := I − 11T

N

x :=
1

N

N∑

i=1

xi x‖ := Π‖x = x1 x⊥ := Π⊥x.

Moreover, to ease the proof of the following Theorem 17 we initially consider
the more general case where g

(
x(−1)

)
, h
(
x(−1)

)
, y(0), z(0) are generic ele-

ments in RN . To this aim we use the additional notation

α :=
1

N
1T
(
y(0)− v(0)

)
β :=

1

N
1T
(
z(0)−w(0)

)
. (2.7)

a) changes of variables (to show that the boundary layer system has a
single isolated root): let d(t) := y(t) − v(t), so that ẏ(t) = ḋ(t) + v̇(t). This
implies

ε
(
ḋ(t) + v̇(t)

)
= −K

[
d(t) + v(t)

]
+ (I −K)

[
g
(
x(t)

)
− v(t)

]

and thus, since εv̇(t) = −v(t) + g
(
x(t)

)
,

εḋ(t) = −K
[
d(t) + g

(
x(t)

)]
. (2.8)

We now decompose d(t) into d(t) = d‖+d⊥, d‖ := Π‖d, d⊥ := Π⊥d, i.e., into
“mean component plus deviations from mean”. Since Π‖K = 0 and Π⊥K =

KΠ⊥ = K, then (2.8) can be decomposed as
{
εḋ‖(t) = 0 (2.9)

εḋ⊥(t) = −K
[
d⊥(t) + g

(
x(t)

)]
(2.10)

with (2.9) implying d‖(t) = d‖(0) = Π‖
(
y(0)−v(0)

)
= α1, α defined in (2.7).
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The same derivations can be applied to the variables b(t) := z(t) −w(t),
z and w, so that system (2.5) becomes





εv̇(t) = −v(t) + g (x(t))

εẇ(t) = −w(t) + h (x(t))

εḋ⊥(t) = −K
[
d⊥(t) + g (x(t))

]

εḃ⊥(t) = −K
[
b⊥(t) + h (x(t))

]

ẋ(t) = −x(t) +
d⊥(t) + α1 + v(t)

b⊥(t) + β1 +w(t)

(2.11)

Notice that the values for α and β reflect the numerical values of the initial
conditions of the variables v, w, y, z.

b) analysis of the boundary layer system: in this case x(t) is considered to
be constant in time, so that g

(
x(t)

)
= g (x) and h

(
x(t)

)
= h (x). To analyze

the stability properties of system




εv̇(t) = −v(t) + g (x)

εẇ(t) = −w(t) + h (x)

εḋ⊥(t) = −K
[
d⊥(t) + g (x)

]

εḃ⊥(t) = −K
[
b⊥(t) + h (x)

]
(2.12)

we start by applying the changes of variables and timescales

ṽ(t) := v(t)− g (x) d̃⊥(t) := d⊥(t) + Π⊥g (x)

w̃(t) := w(t)− h (x) b̃⊥(t) := b⊥(t) + Π⊥h (x)

τ :=
t

ε
⇒ dτ

dt
=

1

ε

the former induced by the isolated root of (2.12) and the latter by the low-pass
filtering parameter ε. We thus obtain the equivalent boundary layer system





˙̃v(τ) = −ṽ(τ)
˙̃w(τ) = −w̃(τ)

˙̃
d⊥(τ) = −Kd̃⊥(τ)
˙̃
b⊥(τ) = −Kb̃⊥(τ)

(2.13)

where the stability properties are equivalent to the ones of (2.12).
We now show that (2.13) is exponentially stable. This is clear for the

dynamics of the first two equations, while for the last two we claim that V (ζ) =
1
2
‖ζ‖2 is a valid Lyapunov function for both d̃⊥ and b̃⊥. For, consider that

V̇ (d̃⊥) = −(d̃⊥)TKd̃⊥ ≤ −λ2‖d̃⊥‖2 ≤ −λ2V (d̃⊥),
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where λ2 > 0 is the smallest non-zero eigenvalue of the matrix K (d̃⊥ by
construction lives in ker (K)⊥; similar reasonings hold for b̃⊥).

Applying this result back to (2.12), we are ensured that (2.12) is globally
exponentially stable with equilibrium given by

lim
t→∞




v(t)

w(t)

d⊥(t)

b⊥(t)


 =




g (x)

h (x)

−Π⊥g (x)

−Π⊥h (x)


 (2.14)

for every initial condition and x.
c) analysis of the reduced system: substituting (2.14) into the last equation

of system (2.11) we obtain the reduced system

ẋ(t) = −x(t) +
α1− Π⊥g

(
x(t)

)
+ g
(
x(t)

)

β1− Π⊥h
(
x(t)

)
+ h

(
x(t)

) .

Let now g
(
x(k)

)
:=

1

N

N∑

i=1

gi
(
xi(k)

)
, h

(
x(k)

)
:=

1

N

N∑

i=1

hi
(
xi(k)

)
, so that we

can exploit the equivalence

−Π⊥g
(
x(t)

)
+ g
(
x(t)

)
= Π‖g

(
x(t)

)
= g
(
x(t)

)
1

in the numerator and a similar equivalence for h
(
x(t)

)
in the denominator.

We can thus rewrite the reduced system as

ẋ(t) = −x(t) +
α + g

(
x(t)

)

β + h
(
x(t)

) 1 . (2.15)

This eventually implies that (2.15) can then be rewritten as

ẋ(t) = Ψ
(
x(t), α, β

)
(2.16)

where Ψ is a smooth function of its arguments.
To address the stability of (2.16) we then decompose its dynamics along

the projections given by Π⊥ and Π‖, obtaining the continuous time non-linear
cascade system





ẋ‖(t) = −x‖(t) +
g
(
x‖(t) + x⊥(t)

)
+ α

h
(
x‖(t) + x⊥(t)

)
+ β

1

ẋ⊥(t) = −x⊥(t)

(2.17)

where x⊥(t) is independent on x‖(t) and exponentially decaying to zero.
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We now notice that, by construction, x‖(t) = x(t)1, i.e., x‖(t) is a vector
with identical entries. Therefore the dynamic behavior of the first equation
in (2.17) is summarized by

ẋ(t) = −x(t) +
g
(
x‖(t) + x⊥(t)

)
+ α

h
(
x‖(t) + x⊥(t)

)
+ β

. (2.18)

By Theorem 13 (i.e., Theorem 1 in Sundarapandian (2002))2, proof of
exponential stability of system (2.17) can be reduced to proof of exponential
stability of system (2.18) with x⊥(t) = 0, so that our case reduces to analyze

ẋ(t) = −x(t) +
g
(
x(t)

)
+ α

h
(
x(t)

)
+ β

= ψ
(
x(t), α, β

)
. (2.19)

We now consider the case α = β = 0, which is guaranteed by the initialization
of line 4 in Algorithm 1. Given α = β = 0 and considering the definitions of
g(x) and h(x), (2.19) reduces to the continuous-time Newton-Raphson method

ẋ(t) = − f
′(
x(t)

)

f
′′(
x(t)

) (2.20)

that, due to Theorem 10, exponentially converges to x∗. Moreover, given α =

β = 0, the strict positivity of h(·) and the properness of g(·), the trajectories
of system (2.18) are all bounded. Thus the hypotheses of Theorem 13 are all
satisfied and we can claim that (2.18) exponentially converges to x∗1.

It is immediate now to check that the hypotheses of Theorem 6 are satisfied,
and this guarantees our claims. ♦

In the previous theorem, the critical value for the parameter εr depends on r
and the function f . The explicit computation of the critical value based on
Lyapunov theory is in general very pessimistic and therefore of no practical
use. However, the proof shows that if r and ε are sufficiently small, the rate of
convergence of the algorithm tends to γε = ε, and the dynamics of the estimates
is approximately given by xi(k) ≈ x∗+

(
x(0)−x∗

)
e−εk , if x(0) := 1

N

∑N
i=1 xi(0).

As noticed before, Theorem 16 holds only for the specific initial conditions
given in line 4 of Algorithm 1. Although these initial conditions can be ar-
bitrarily designed, nonetheless it is important to evaluate the robustness of

2Formally, Theorem 1 in Sundarapandian (2002) considers just simple stability. Nonethe-
less it is immediate to check that its proof is such that if the subsystems are exponentially
stable then the overall system is again exponentially stable.
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the algorithm with respect to them, since small numerical errors and quanti-
zation noise might lead to some perturbations. The following theorem shows
that non-null but sufficiently small initial conditions on the variables v(0),
w(0), y(0), z(0) let the solution of the algorithm exponentially converge to a
neighborhood of the true optimum:

Theorem 17 Consider Algorithm 1 with arbitrary initial conditions, x(0)

v(0), w(0), y(0), z(0). Let Assumption 8 hold true and

α :=
1

N
1T
(
y(0)− v(0)

)
, β :=

1

N
1T
(
z(0)−w(0)

)
.

Then there exist two positive constants α, β ∈ R+ and a scalar smooth
function ξ(α, β) with ξ(0, 0) = x∗ such that if |α| < α and |β| < β then
Theorem 16 holds true with x∗ substituted with ξ(α, β).

Proof The proof follows exactly as in Theorem 16 up to equation (2.19), where
ψ is a smooth function of its arguments and ẋ(t) = ψ

(
x(t), 0, 0

)
globally and

exponentially converges to x∗.
Given our smoothness assumptions, since ψ(x∗, 0, 0) = 0 we can apply

Theorem 15 (i.e. the implicit function theorem) and be ensured that there
must exist, in a neighborhood of α = β = 0, a smooth function ξ(α, β) such
that ξ(0, 0) = x∗ and ψ

(
ξ(α, β), α, β

)
= 0, i.e., ξ(α, β) returns the equilibria

of system (2.19) for sufficiently small values of α, β.
Then, by performing the change of variables χ = x− ξ(α, β) and following

the same derivations to prove the stability of slowly varying systems in (Khalil,
2001, Section 9.6), it readily follows that the equilibrium points ξ(α, β) are
exponentially stable in a neighborhood of α = β = 0. ♦

The previous theorem shows that the initialization of the variables v(0),
w(0), y(0), z(0) is critical to the convergence of the correct minimum, but it
also assures that sufficiently small errors will have no dramatic effects such as
instability. Numerical simulations in fact suggest that the algorithm is robust
with respect to numerical errors and quantization noise.

Before turning to the multidimensional scenario, we notice that Theorem 16
guarantees the existence of a critical value εr but does not provide indications
on its value. This is a known issue in all the systems dealing with separation
of time scales. A standard rule of thumb is then to let the rate of convergence
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of the fast dynamics be sufficiently faster than the one of the slow dynamics,
typically 2-10 times faster. In our algorithm the fast dynamics inherits the
rate of convergence of the consensus matrix P , given by its spectral gap ρ, i.e.,
its spectral radius σ = 1− ρ. The rate of convergence of the slow dynamics is
instead governed by (2.6), which is nonlinear and therefore possibly depending
on the initial conditions. However, close the equilibrium point the dynamic
behavior is approximately given by ẋ(t) ≈ −

(
x(t) − x∗

)
, thus, since xi(k) ≈

x(t/ε), then the convergence rate of the algorithm approximately given by
1−ε. Thus we aim to let 1−σ � 1− (1−ε), which provides the rule of thumb

ε� ρ . (2.21)

We then notice that, although the spectral gap ρ might not be known in
advance, it is possible to distributedly estimate it, see, e.g., Sahai et al. (2012).
However, such rule of thumb might be very conservative. In fact, as pointed
out above, if all the fi’s are quadratic, then the algorithm would converge
even for ε = 1. As a consequence, the best rate of convergence of the whole
algorithm is likely to be achieved by values of εmuch larger than those dictated
by the rule, although it is very dependent on the functions fi and therefore
very difficult to estimate in advance.

2.2 Convergence Analysis

In this section we analytically characterize the stability and the rate of conver-
gence of the SNRC optimization approach (Algorithm 1) and a novel gradient-
descent implementation, say Gradient Descent Consensus (GDC), that is ob-
tained from a simplification of the previous Newton-Raphson approach (Al-
gorithm 2). This analysis is done in a opportune simplificative framework,
where the local cost functions are generic quadratic costs, the communications
are synchronous and the communication matrix P is an irreducible symmet-
ric stochastic matrix. Although these restrictions are substantial, nonetheless
they allow for analytic characterization and stability conditions and optimiza-
tion of the rate of convergence, which are in general not possible for general
convex functions.

The intent is thus to derive general rule-of-thumbs based on these analytical
results that could be useful for the design and tuning of the algorithm in the
context of general convex cost functions.

We consider an undirected, connected and static network composed by N



52 2.2 Convergence Analysis

agents, each endowed with a local scalar quadratic cost function

ψi : R 7→ R ψi(x) =
1

2
ai(x− bi)2

with ai > 0 (this implies ψi to be strictly convex). The global cost function

ψ : R 7→ R ψ (x) :=
1

N

N∑

i=1

ψi (x)

is thus still a quadratic cost. The goal of the agents is to collaborate in order
to compute the minimizer x∗ of the global cost function ψ, which is given
by (2.1). In this section we will use the following shorthands:

gi (xi (k)) := ψ′′i (xi (k))xi (k)− ψ′i (xi (k))

g̃i (xi (k)) := xi (k)− ψ′i (xi (k))

hi (xi (k)) := ψ′′i (xi (k))

x (k) := [x1 (k) · · · xN (k)]T

g (x(k)) := [g1 (x1 (k)) · · · gN (xN (k))]T

g̃ (x(k)) := [g̃1 (x1 (k)) · · · g̃N (xN (k))]T

h (x(k)) := [h1 (x1 (k)) · · · hN (xN (k))]T

a := [a1 · · · aN ]T

b := [b1 · · · bN ]T .

Distributed Newton-Raphson

We analyze the Newton-Raphson consensus algorithm reported in Algorithm 1.
Introduce the variables v(k) and w(k) to account respectively for g

(
x(k−

1)
)
and h

(
x(k − 1)

)
. Algorithm 1 can be rewritten as





v(k) = a� b
w(k) = a

y(k) = P
(
y(k − 1) + a� b− v(k − 1)

)

z(k) = P
(
z(k − 1) + a−w(k − 1)

)

x(k) = (1− ε)x(k − 1) + ε
y(k)

z(k)
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with initial conditions v(0) = w(0) = y(0) = z(0) = x(0) = 0. From




v(k) = a� b
w(k) = a

y(k) = P k (a� b)
z(k) = P ka

and

p(k) :=
P k+1 (a� b)

P k+1a
; p∗ :=

1
N

∑N
i=1 aibi

1
N

∑N
i=1 ai

1

we obtain the simplified system

x(k + 1) = (1− ε)x(k) + εp(k) , x(0) = 0 .

We notice that Theorem 10 assures the existence of an ε ∈ R+ such that if
ε < ε then Algorithm 1 distributedly and asymptotically computes the global
optimum x∗, i.e., limk→+∞ x(k) = x∗1.

In order to compute the rate of convergence, we want to express the systems
dynamics in terms of the local error of each agent with respect to the global
minimum, i.e., |x∗ − xi(k)|, therefore we consider the error vector ξ(k) :=

x(k)− p∗ whose dynamics can be written as

ξ(k + 1) = (1− ε)ξ(k) + ε
(
p∗ − p(k)

)
,

or equivalently as

ξ(k) =
k∑

`=1

ε(1− ε)k−`
(
p∗ − p(`− 1)

)
.

Consider now that, from consensus theory, it holds that

y(k)
σk

−→ 1

N

N∑

i=1

aibi1 and z(k)
σk

−→ 1

N

N∑

i=1

ai1.

Recall then that p(k) =
y(k)

z(k)
, and that the Hadamard division operator is

continuous and differentiable around the point p∗. This implies then that there
exist a positive constant c ∈ R+ which might depend on the initial condition
ξ(0) such that

‖p∗ − p(`)‖ ≤ cσ`, ∀`
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where σ is the essential spectral radius of P . Thus, we have that

‖ξ(k)‖ ≤ cε
(1− ε)k

σ

k∑

`=1

(
λ2

1− ε

)`

= cε
(1− ε)k − σk

1− ε− σ .

Considering then that

‖ξ(k)‖ ≤
∣∣∣∣

cε

1− ε− σ

∣∣∣∣ (1− ε)k +

∣∣∣∣
cε

1− ε− σ

∣∣∣∣σk

it follows that the convergence rate is dominated by the biggest between (1−ε)
and σ. The previous thus states that it is possible, by setting ε = 1, to directly
obtain ‖ξ(k)‖ ≤ cσk, i.e., for the quadratic case the unique factor limiting
the convergence rate of the algorithm is given by the speed of the consensus
algorithm induced by P .

We can summarize the results obtained above in the following:

Theorem 18 Under the assumption of local quadratic cost functions, Al-
gorithm 1 is ensured to converge for all ε ∈ (0, 2) for any positive vector
a. Moreover the fastest rate of convergence of the algorithm is given by the
essential spectral radius of P , namely σ, and it is achieved for any |ε| ≤ 1−σ.

Distributed Gradient Descent

In this section we consider a modified version of Algorithm 1, with the advan-
tage of requiring a smaller number of local variables and therefore a reduced
communication load. As we will see, this trades off with a more restricted
interval of ε’s guaranteeing the convergence to the global optimum, and thus
eventually with a slower convergence rate. The algorithm, initially proposed
in Zanella et al. (2012b) and here reported in Algorithm 2, is reminiscent of a
distributed gradient descent strategy based on a consensus algorithm.

The analytical derivations of the stability and convergence rate of Algo-
rithm 2 are more involved that those of the previous algorithm and rely on
two main steps:

1. the transformation of the algorithm into a Linear Time Invariant (LTI)
system, characterized by an additional parameter;
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Algorithm 2 Gradient Descent Consensus (GDC) - scalar case
(storage allocation and constraints on parameters)

1: x(k),y(k) ∈ RN for k = 0, 1, . . .

2: ε ∈ (0, 1)

(initialization)
3: x(0) = 0

4: y(0) = g̃ (x(−1)) = 0

(main algorithm)
5: for k = 1, 2, . . . do
6: ỹ(k) = y(k − 1) + g̃

(
x(k − 1)

)
− g̃
(
x(k − 2)

)

7: y(k) = P ỹ(k)

8: x(k) = (1− ε)x(k − 1) + εy(k)

2. the adoption of small-gain theory to derive analytical rules to compute
the optimal ε and the convergence rate based on σ and the vector a.

Be aware that in this context we let ε existing in the interval (0, 2).

Transformation of GDC into an LTI system

Define the new variable v(k) := g̃
(
x(k − 1)

)
, so that Algorithm 2 can be

rewritten as




v(k) = diag [1− a]x(k − 1) + diag [a] b (2.22)

y(k) = P
(
y(k − 1) + v(k)− v(k − 1)

)
(2.23)

x(k) = (1− ε)x(k − 1) + εy(k) (2.24)

with initial conditions v(0) = y(0) = x(0) = 0. Substituting (2.22) into (2.23)
we obtain

y(k) = Py(k − 1) + Pdiag [1− a]
(
x(k − 1)− x(k − 2)

)

that, substituted into (2.24), gives

x(k) =
(

(1− ε)I + εPdiag [1− a]
)
x(k − 1)+

+εPy(k − 1)− εPdiag [1− a]x(k − 2)
(2.25)
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Rearranging the update rule (2.24) we obtain3:

y(k − 1) =
1

ε
x(k − 1)− 1− ε

ε
x(k − 2) . (2.26)

Then by substituting (2.26) into (2.25) we eventually rewrite (2.24) as

x(k) =
(

(1 + ε)P + (1− ε)I − εPdiag [a]
)
x(k − 1)+

+
(
− P + εPdiag [a]

)
x(k − 2)

(2.27)

with initial conditions x(−1) = x(0) = 0.
Let us define the diagonal matrix ∆ := diag [1− a1, 1− a2, . . . , 1− aN ],

summarizing the deviations from the ideal condition where all parabolic cost
functions are identical and with unitary curvature. Clearly

δ := max
i
|1− ai| ⇒ ‖∆‖ = δ.

Let us now define the new state vector χ(k) :=

[
x(k)

x(k − 1)

]
and the follow-

ing matrices:

A :=

[
(1 + ε)P + (1− ε)I − εP εP − P

I 0

]
(2.28)

B :=

[
εP

0

]
C :=

[
−I I

]
. (2.29)

With these we can transform (2.27) into

χ(k + 1) = (A+B∆C)χ(k), (2.30)

i.e., into the LTI feedback system




χ(k + 1) = Aχ(k) +Bu(k)

ν(k) = Cχ(k)

u(k) = ∆ν(k)

(2.31)

Therefore x(k) converges to x∗1 if and only if χ(k) converges to x∗[1T 1T ]T .
Let us consider the unitary matrix U that diagonalizes the communication

matrix P , i.e., UTPU = Λ, and let us introduce χ :=

[
U 0

0 U

]
χ. With these

we can obtain the equivalent LTI system

χ(k + 1) = (A+B∆C)χ(k) (2.32)
3We notice that there is a causal connection between y(k) and x(k) since (2.24) can be

computed only after the computation of (2.23). Nonetheless we can exploit (2.26) being it
a relation between quantities that, at time k, are all known.
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where

A =

[
Λ + (1− ε)I (ε− 1)Λ

I 0

]
B =

[
εΛ

0

]
(2.33)

C = C ∆ = UT∆U . (2.34)

The previous system can be rewritten in block-diagonal form by adopting an
opportune change of variables χ̃ := V χ where V is a simple permutation
matrix. More precisely, let χ be χ = [χ′1 χ

′
2 . . . χ

′
N χ

′′
1 χ
′′
2 . . . χ

′′
N ]T . Then V can

be chosen such that χ̃ = [χ′1 χ
′′
1χ
′
2 χ
′′
2 . . . χ

′
N χ

′′
N ]T . In this way we obtain

χ̃(k + 1) = (Ã+ B̃ ∆̃ C̃)χ̃(k) (2.35)

where

Ã =



A1 · · · 0
... . . . ...
0 · · · AN


 B̃ =



B1 · · · 0
... . . . ...
0 · · · BN


 (2.36)

C̃ =



C1 · · · 0
... . . . ...
0 · · · CN


 ∆̃ = V TUT∆UV (2.37)

and where Ci := [−1, 1],

Ai :=

[
λi + (1− ε) (ε− 1)λi

1 0

]
Bi :=

[
ελi

0

]
. (2.38)

From the previous equation it can be seen that the global dynamics can
be decomposed into N parallel subsystem of dimension 2, which are coupled
by the uncertainty matrix ∆̃. Notice that the dynamics of the global system
is thus affine in the uncertainty matrix ∆̃, the latter thus amenable for the
stability and convergence properties of the whole algorithm.

To analyze these stability properties we now exploit classical small-gain
theory results (Desoer and Vidyasagar, 2009, Chap. 5), that guarantee the
stability of the global system if the following N perturbed subsystems (with
an abuse of notation on x, u and y)





x(k + 1) = Aix(k) +Biu(k)

y(k) = Cix(k)

u(k) = ∆iy(k),

(2.39)

with ∆i such that ‖∆i‖ ≤ ‖∆̃‖ = ‖∆‖ = δ, are stable. We remark that this
kind of results provide in general conservative bounds, since they do not take
into account the structure of ∆̃, but the knowledge of its Euclidean norm.
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Small-gain theory can also be used to analyze the rate of convergence by
recasting the computation of the rate of convergence as a stability problem.
In fact, by considering the transformation x(k) = θkx(k), it is immediate to
check that the convergence rate of (2.39) is at least as θ−k, θ > 1 if and only
if all the systems





x(k + 1) = θAix(k) + θBiu(k)

y(k) = Cix(k)

u(k) = ∆iy(k)

(2.40)

are asymptotically stable.
To this regard, the transfer functions of the input-output systems (2.40)

are given by

Fi(z) =





−εθ
z − θ(1− ε) if i = 1

−ελiθ(z − θ)
(z − θλi)(z − θ(1− ε))

if i = 2, . . . , N
(2.41)

i.e., θ modulates the position of the natural poles λi and (1−ε). Note that the
transfer function relative to the average component, i.e., the transfer function
relative to the subsystem i = 1, has order one due a zero-pole cancellation
relative to the eigenvalue z = θ. This is to be expected since it corresponds to
the unitary eigenvalue (multiplied by θ) of the global dynamics (2.30) which
guarantees that the consensus χ = 1 is an equilibrium point of the global
system. Such eigenvalue and its relative eigenspace χ = 1 should be excluded
from the stability analysis. This is indeed the case since this eigenvector is
independent of ∆, therefore it does not appear in the transfer functions above.

Stability analysis

Now our aim is to apply the small-gain theory, see, e.g., (Desoer and Vidyasagar,
2009, Chap. 5), to prove that the closed loop system 2.31 is finite gain stable.
Before doing that we need to introduce the following definition.

Definition 19 A function f : N+ 7→ RN is said to belong to the Banach
space l2(N+) if it is measurable and in addition

∑∞
n=0 ||f(n)||2 <∞.

The l2 norm of a function f ∈ l2(N+) is defined to be

√√√√
∞∑

n=0

||f(n)||2.
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Based on small-gain theory, the various systems (2.40) are ensured to be
asymptotically stable if the products of the l2 gains of the direct chains and
the feedbacks are strictly smaller than 1, i.e., if

max
ω∈[0,2π)

∥∥Fi
(
ejω
)∥∥ ‖∆i‖ < 1, i = 1, . . . , N. (2.42)

To check whether (2.42) holds we exploit the following:

Lemma 20 Given θ ≥ 1 and σ ≥ 0,

max
ω∈[0,2π)

∥∥F1

(
ejω
)∥∥ = F(θ, ε) =





|F1(1)| =
εθ

|1− θ(1− ε)| if ε ∈ (0, 1]

|F1(−1)| =
εθ

|1 + θ(1− ε)| if ε ∈ [1, 2)

(2.43)
max
ω∈[0,2π)

‖Fi(ejω)‖ ≤ G(θ, ε), i = 2, . . . , N (2.44)

where G(θ, ε) is defined as




εσθ

|1− θσ|

(
θ − 1

)

|1− θ(1− ε)| if ε ∈
(

0, 1− 1

θ2

]

εσθ

|1− θσ|

(
θ + 1

)

|1 + θ(1− ε)| if ε ∈
(

1− 1

θ2
, 2

)
.

(2.45)

Proof Consider the transfer functions of the input-output systems (2.40) for
i = 1. Its gain is given by

|F1(e
jω)| = εθ√

1− 2θ(1− ε) cosω + θ2(1− ε)2
.

If ε ≤ 1, it is clear from (4) that |F1(e
jω)| is maximized for ω = 0, and if ε > 1

the maximum is reached when ω = π, yielding easily to (2.43).
Consider the transfer function

(
z − θ

)
(
z − θ(1− ε)

) , (2.46)

and the quantities x, a(x) and b(x) defined in Figure 2.2. From simple geo-
metric considerations it follows that

(
a(x)

)2
= (θ − x)2 + (1− x2) , (2.47)
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1

1

Re

Im

a(x)b(x)

θ
xθ(1− ε)

Figure 2.2: Geometrical interpretation of the quantities involved in the compu-
tation of the gain of the transfer function in (2.46).

(
b(x)

)2
=
(
x− θ(1− ε)

)2
+ (1− x2) . (2.48)

The l2 gain of the transfer function in (2.46) can thus be computed as

max
x∈[−1,1]

a(x)

b(x)
(2.49)

where, after trivial simplifications,

a(x)

b(x)
=

√
1 + θ2 − 2θx

1 + θ2(1− ε)2 − 2θ(1− ε)x . (2.50)

It follows that if θ ≥ 1√
1− ε , ε ∈ (0, 1), then

a(x)

b(x)
is non-decreasing, oth-

erwise, it is non-increasing if θ <
1√
|1− ε|

, ε ∈ (0, 2), or θ ≥ 1√
1− ε for

ε ∈ (1, 2). Thus, depending on the values of θ and ε, the gain of (2.46) is ob-

tained either for z = 1 or z = −1, i.e.,
(
θ + 1

)
∣∣1 + θ(1− ε)

∣∣ when it is non-increasing

and
(
θ − 1

)
∣∣1− θ(1− ε)

∣∣ when it has a non-decreasing behavior. Equation (2.45) is

proven considering that

min
|z|=1
|z − θλ2| = |1− θσ| . (2.51)

Notice now that the argument minimizing |z−θλ2| is either z = +1 or z = −1,
depending on the sign of λ2. Thus (2.44) holds as an inequality, since it may
happen that the z maximizing the modulus of (2.46) is +1, while the one
solving (2.51) is −1, or vice versa. ♦
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With Lemma 20 and condition (2.42) we then bound the stability region
of the proposed algorithm (in terms of ε) and upper and lower bound its rate
of convergence. We start with the smallest ε guaranteeing stability, that can
be defined via the following optimization problem:

εc(σ, δ) := sup ε

such that F(1, ε)δ < 1

G(1, ε)δ < 1.

(2.52)

The smallest ε guaranteeing stability is then described by the following:

Theorem 21 Let

ε1 :=
2

1 + δ
, ε2 :=

2(1− σ)

1− σ + 2δσ
, εc := min{ε1, ε2}. (2.53)

If ε ∈ (0, εc) then Algorithm 2 converges to the global optimum.

Proof Assume that Lemma 20 holds, and notice that in this case θ = 1.
Solving (2.52) only considering the condition G(1, ε)δ < 1 it follows that

the algorithm is asymptotically stable if
2εσδ(

1− σ
)(

2− ε
) < 1 that easily leads

to ε = ε2. For F(1, ε)δ < 1, trivial computations, under the assumptions that
ε ∈ (0, 2), yield to ε = ε1 if δ > 1, and for all ε otherwise.

Combining together all the constraints the implication is that (2.52) is
solved by εc = min{ε1, ε2}. For the convergence, ε ∈ (0, εc) is immediate. ♦

It is also easy to verify that if σ > 1
2
then ε2 < ε1 and thus also εc = ε2. In

general, large networks are such that σ ≈ 1, thus in large networks the typical
limiting factor is ε2 (recall that ε1 is associated to the dynamics of the average
component). To complete the characterization in large networks we also notice

that, in the same situation, if δσ � 1 − σ then εc ≈
1− σ
δ

. That is, in this
case the critical εc is directly proportional to the spectral gap and inversely
proportional to the deviation from the ideal condition where all the costs are
jointly curved parabolas.
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Convergence rate analysis

Letting η := 1/θ, we can bound the rate of convergence by means of the
optimization problem

(ε∗, η∗) := arg infε,η η

such that F
(

1
η
, ε
)
δ < 1

G
(

1
η
, ε
)
δ < 1,

(2.54)

To solve (2.54) we divide it in two subproblems that are then analyzed
separately. In particular, defining

η1(ε) := inf η

such that F
(

1
η
, ε
)
δ < 1

(2.55)

η2(ε) := inf η

such that G
(

1
η
, ε
)
δ < 1

(2.56)

η(ε) := max{η1(ε), η2(ε)} (2.57)

It follows that the solution of (2.54) can be rewritten as

ε∗ = arg infε η(ε), η∗ = η(ε∗).

The solutions of (2.55) and (2.56) are then given by:

η1(ε) =

{
1− ε(1− δ) if 0 < ε ≤ 1

−1 + ε(1 + δ) if 1 < ε ≤ ε1
(2.58)

η2(ε) =

{
κ1(ε) if 0 < ε ≤ ε

κ2(ε) if ε < ε ≤ ε2.
(2.59)

where

κ1(ε) :=
σ + 1− ε(1 + σδ) +

√(
σ + 1− ε(1 + σδ)

)2 − 4σ
(
1− ε(1 + δ)

)

2

κ2(ε) :=
σ − 1 + ε(1 + σδ)−

√(
σ − 1 + ε(1 + σδ)

)2
+ 4σ

(
1− ε(1− δ)

)

2

ε :=
−σ2 + 2σδ + 2− σ

√
σ2 + 4σδ(1 + σδ)

2
(
σδ + 1

)2
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Figure 2.3: Numerical evaluation of function η1, η2, η as given in (2.58), (2.59)
and problem (2.57) for σ = δ = 0.6.

A graphical representation of the functions and variables defined above is given
in Figure 2.3 for a specific choice of the parameters δ and σ.

The optimal rate of converge η∗ as a function of the parameters σ and δ

cannot be given in closed form, however can be readily computed based on the
previous theorem as shown in Figure 2.4. This figure clearly shows that rate
of convergence decreases as either δ or σ are close to one.
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Figure 2.4: Optimal rate of convergence η∗ as a function of σ and δ parameters.

Considering that η2(ε) :=
σ +

√
σ2 + 4σδ(1 + σδ)

2(1 + σδ)
, as a completion of the

remark proposed after Theorem 21, (2.59) implies that in large networks and

for δ 6= 0, ε =
2(1− σ)

1 + 2δ
+o(1−σ),, η2(ε) = 1− 1− σ

1 + 2δ
+o(1−σ). As expected,

the convergence rate η is lower with small spectral gaps 1−σ and higher with
large deviations of the curvature of the local costs given by ai.
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2.3 The multidimensional case

In the previous sections we derived the algorithm for the scalar case considering
that, for scalar quadratic local costs, the optimum is given by (2.1). We
could derive the algorithm for the multidimensional case using exactly the
same intuitions: in fact considering multidimensional quadratic local costs

fi(x) =
1

2
(x − bi)TAi(x − bi), with x := [x1 · · · xM ]T and bi, Ai of suitable

dimensions, it follows immediately that

x∗ =

(
1

N

N∑

i=1

Ai

)−1(
1

N

N∑

i=1

Aibi

)
.

A sensible extension of the scalar algorithm to a multidimensional sce-
nario is to replace f ′i(xi) with the gradient ∇fi(xi) and the f ′′i (xi) with the
full Hessian ∇2fi(xi). However, this is not the only possible choice, and in-
deed, by suitablely defining functions gi(xi) and Hi(xi), which play the role of
gi(xi) and hi(xi) of the scalar case, one can obtain different procedures with
different convergence properties and different computational/communication
requirements. The following are (some) plausible choices for Hi ∈ RM×M :

Hi

(
xi(k)

)
= ∇2fi

(
xi(k)

)
(2.60)

Hi

(
xi(k)

)
= diag

[
∇2fi

(
xi(k)

)]
=




∂2fi
∂x21

∣∣∣∣
xi(k)

0

. . .

0
∂2fi
∂x2M

∣∣∣∣
xi(k)



(2.61)

Hi

(
xi(k)

)
= IM . (2.62)

The multidimensional version of Algorithm 1 is given by Algorithm 3, where
Hi is left undefined and depending on its choice, it leads to a different version
of the algorithm. The three proposed choices lead to the following algorithms:
• Equation (2.60)→ Synchronous Newton-Raphson Consensus (SNRC):
in this case it is possible to rewrite Algorithm 3 as done in Section 2.1 and show
that, for sufficiently small ε, xi(k) ≈ x(t/ε), where x(t) evolves according to
the continuous-time Newton-Raphson dynamics

ẋ(t) = −
[
∇2f

(
x(t)

)]−1
∇f
(
x(t)

)
,

which, analogously to its scalar version, can be shown to converge to the global
optimum x∗.
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Algorithm 3 Synchronous Newton-Raphson Consensus (SNRC), Jacobi Con-
sensus (JC), Gradient Descent Consensus (GDC) – multidimensional case

(storage allocation and constraints on the parameters)
1: xi(k),yi(k) ∈ RM , Zi(k) ∈ RM×M , ∀i ∈ V
2: ε ∈ (0, 1)

(initialization)
3: xi(0) = 0, ∀i ∈ V
4: yi(0) = gi

(
xi(−1)

)
= 0, Zi(0) = Hi

(
xi(−1)

)
= I, ∀i ∈ V

(main algorithm)
5: for k = 1, 2, . . . do
6: for i = 1, . . . , N do
7: xi(k) = (1− ε)xi(k − 1) + ε

(
Zi(k − 1)

)−1
yi(k − 1) (local update)

8: ỹi(k) = yi(k − 1) + gi
(
xi(k − 1)

)
− gi

(
xi(k − 2)

)
(local update)

9: Z̃i(k) = Zi(k − 1) +Hi

(
xi(k − 1)

)
−Hi

(
xi(k − 2)

)
(local update)

10: Y (k) =
(
P ⊗ IN

)
Y (k) (multidimensional consensus step)

11: Z(k) =
(
P ⊗ IN

)
Z(k) (multidimensional consensus step)

• Equation (2.61) → Jacobi Consensus (JC): choice (2.60) requires agents
to exchange information on O (M2) scalars, and this could pose problems un-
der heavy communication bandwidth constraints and largeM ’s. Choice (2.61)
instead reduces the amount of information to be exchanged via the underly-
ing diagonalization process, also called Jacobi approximation4. In this case,
for sufficiently small ε, xi(k) ≈ x(t/ε), where x(t) evolves according to the
continuous-time dynamics

ẋ(t) = −
(

diag
[
∇2f

(
x(t)

)])−1
∇f
(
x(t)

)
,

which can be shown to converge to the global optimum x∗ with a convergence
rate that in general is slower than the Newton-Raphson when the global cost
function is skewed.
• Equation (2.62) → Gradient Descent Consensus (GDC): this choice is
motivated in frameworks where the computation of the local second derivatives
∂2fi
∂x2m

∣∣∣∣
xi(k)

is expensive, or where the second derivatives simply might not be

continuous. With this choice Algorithm 3 reduces to a distributed gradient-
descent procedure. In fact, for sufficiently small ε, xi(k) ≈ x(t/ε) with x(t)

4In centralized approaches, nulling the Hessian’s off-diagonal terms is a well-known pro-
cedure, see, e.g., Becker and Le Cun (1988). See also, e.g., see Athuraliya and Low (2000);
Zargham et al. (2011), for other Jacobi algorithms with different communication structures.
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evolving according to the continuous-time dynamics

ẋ(t) = −∇f
(
x(t)

)
,

which one again is guaranteed to converge to the global optimum x∗.
The following Table 2.1 summarizes the various costs of the previously

proposed strategies.

Choice SNRC (2.60) JC (2.61) GDC (2.62)

Computational Cost O (M3) O (M) O (M)

Communication Cost O (M2) O (M) O (M)

Memory Cost O (M2) O (M) O (M)

Table 2.1: Computational, communication and memory costs of SNRC, JC,
GDC per single unit and single step (lines 5 to 7 of Algorithm 3).

The following theorem characterizes the convergence properties of Algo-
rithm 3 (see definitions in page 31) and it is the multidimensional version of
Theorem 16:

Theorem 22 Consider Algorithm 3 with arbitrary initial conditions xi(0),
Hi defined in (2.60) or (2.61) or (2.62), and Assumption 8 holding true. Then
for every open ball Bx∗

r :=
{
X ∈ RMN | ‖X − 1⊗ x∗‖ < r

}
there exist two

positive constants εr, cr such that if ε < εr then there exists γε > 0 such that

X(0) ∈ Bx∗

r ⇒ ‖X(k)− 1⊗ x∗‖ ≤ cre
−γεk ‖X(0)− 1⊗ x∗‖ .

for all k ∈ N.

Proof The proof follows closely the proof of Theorem 16 thus in the interest
of space we provide just a simple sketch. Notice that it involves the following
alternative notation:

Π‖ :=
11T

N
⊗ IM , Π⊥ :=

(
IN −

11T

N

)
⊗ IM ,

X‖(k) := Π‖X(k), X⊥(k) := Π⊥X(k).



Synchronous Newton-Raphson Consensus 67

To prove the theorem we start recognizing that, for sufficiently small ε, the
convergence properties of the algorithm are the same as the continuous time
system





εV̇ (t) = −V (t) +G
(
X(t)

)

εẆ (t) = −W (t) +H
(
X(t)

)

εẎ (t) = −KY (t) + (I −K)
[
G
(
X(t)

)
− V (t)

]

εŻ(t) = −KZ(t) + (I −K)
[
H
(
X(t)

)
−W (t)

]

ẋi(t) = −xi(t) +
(
Zi(t)

)−1
yi(t) i = 1, . . . , N

(2.63)

where K := IMN − (P ⊗ IM) (in gray indications for the dimensions of the
identity matrices) is again positive semidefinite. Then, with the substitutions
D(t) := Y (t) − V (t), B(t) := Z(t) −W (t) one can prove as before that
the boundary layer system of (2.63) admits the globally exponentially stable
equilibrium

lim
t→∞




V (t)

W (t)

D⊥(t)

B⊥(t)


 =




G(X)

H(X)

−Π⊥G(X)

−Π⊥H(X)


 . (2.64)

The stability of the reduced system can instead be analyzed decomposing
again its dynamics along the projections given by Π⊥ and Π‖, obtaining a
continuous time non-linear cascade system equivalent to (2.17) whose global
stability properties are ensured by Theorem 13. Similarly to the scalar version
of the algorithm, the dynamics of the average x(t) follow

ẋ(t) = −x(t) +
(
H
(
x(t)

))−1
g
(
x(t)

)
. (2.65)

For all the cases (2.60), (2.61) and (2.62), then, it follows that V (x) :=

f(x) − f(x∗) is a Lyapunov function for the reduced system which guaran-
tees exponential converges to x∗. ♦

We remark that εr in Theorem 22 depends also on the particular choice
for Hi. The list of choices for Hi given by (2.60), (2.61) and (2.62) is not
exhaustive. For example, future directions are to implement distributed quasi-
Newton procedures. To this regard, we recall that approximations of the Hes-
sians that do not maintain symmetry and positive definiteness or are bad
conditioned require additional modification steps, e.g., through Cholesky fac-
torizations Golub and Van Loan (1996). Finally, we notice that in scalar
scenarios JC and SNRC are equivalent, while GDC corresponds to algorithms
requiring just the knowledge of first derivatives.
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2.4 Numerical Examples

In this section we analyze the effects of different choices of ε on the scalar
SNRC and we numerically compare the performance of the multidimensional
SNRC, JC and GDC. Finally, the scalar SNRC is compared with some of
the most important distributed convex optimization algorithms available in
literature.

In all the simulations we consider a ring network of N agents that commu-
nicate only to their left and right neighbors through the consensus matrix

P =




0.5 0.25 0.25

0.25 0.5 0.25
. . . . . . . . .

0.25 0.5 0.25

0.25 0.25 0.5



. (2.66)

Here, σ ≈ 0.99 so that the spectral gap is ρ ≈ 0.01.

2.4.1 Scalar scenario

Here we consider scalar costs of the form

fi(x) = cie
aix + die

−bix,

i = 1, . . . , N , N = 30, with ai, bi ∼ U [0, 0.2], ci, di ∼ U [0, 1] (U indicates the
uniform distribution).

Figure 2.5 compares the evolution of the local states xi of the continuous
system (2.5) for different values of ε. When ε is not sufficiently small, then
the trajectories of xi(t) are different even if they all start from the same initial
condition xi(0) = 0. As ε decreases, the difference between the two time
scales becomes more evident and all the trajectories xi(k) become closer to the
trajectory given by the slow NR dynamics x(t/ε) given in (2.6) and guaranteed
to converge to the global optimum x∗.

In Figures 2.6-2.7 we address the robustness of the proposed algorithm
with respect to the choice of the initial conditions. In particular, Figure 2.6
shows that if α = β = 0 then the local states xi(t) converge to the opti-
mum x∗ for arbitrary initial conditions xi(0), as guaranteed by Theorem 16.
Figure 2.7 considers, besides different initial conditions xi(0), also perturbed
initial conditions v(0), w(0), y(0), z(0) leading to non null α’s and β’s. More
precisely we apply Algorithm 1 to different random initial conditions such that
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Figure 2.5: Temporal evolution of system (2.5) for different values of ε, with
N = 30. The black dotted line indicates x∗. The black solid line indicates the
slow dynamics x(t/ε) of Equation (2.6). As ε decreases. the difference between
the time scale of the slow and fast dynamics increases, and the local states xi(k)

converge to the manifold of x(t/ε).

α, β ∼ U [−υ, υ]. Figure 2.7 shows the boxplots of the errors xi(+∞)− x∗ for
different υ’s based on 300 Monte Carlo runs with ε = 0.01 and N = 30.

0 200 400
−2

−1

0

1

2

k

x
i(
k
)

x∗

x(t/ε)
xi(k)

Figure 2.6: Time evolution of the local states xi(k) with v(0) = w(0) = y(0) =

z(0) = 0 and xi(0) ∼ U [−2, 2]. In all the experiments ε = 0.01 and N = 30.

2.4.2 Multidimensional scenario

Here we consider bi-dimensional costs of the form

fi (x) = e(x−bi)
TAi(x−bi),



70 2.4 Numerical Examples

10−5 10−4 10−3
−0.05

0

0.05

σ

x
i(
+
∞
)
−
x
∗

Figure 2.7: Empirical distribution of the errors xi(+∞)− x∗ under artificially
perturbed initial conditions α(0), β(0) ∼ U [−υ, υ] for different values of υ. In all

the experiments ε = 0.01 and N = 30.

i = 1, . . . , 15, with bi ∼
[
U [−5, 5] U [−5, 5]

]T
, Ai = DiD

T
i > 0, and

Di :=

[
d11 d12

d21 d22

]
∈ R2×2 . (2.67)

Define the R-distribution as:

R[c, d] :=

{
c with probability 0.5

d with probability 0.5
.

We compare the performances of the previous algorithms in the following three
different scenarios:

S1 :





d11 = d22 ∼ U [−0.08, 0.08] R[−1, 1]

d12 ∼ U [−0.08, 0.08] R[−0.25, 0.5]

d21 ∼ U [−0.08, 0.08] R[−0.5, 0.25]

(2.68)

where the axes of each contour plot are randomly oriented in the bi-dimensional
plane.

S2 :





d11 ∼ U [−0.08, 0.08]

d12 = d21 = 0

d22 = 2 d11

(2.69)

where the axes of all the contour plots of the fi surfaces are aligned with the
axes of the natural reference system.
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Figure 2.8: First column on the left, contours plot of global function f̄ ’s for
scenarios S1, S2, S3, respectively (from top to bottom). Black dots indicate the
positions of the global minima x∗. Second, third and fourth columns, temporal
evolutions of the first components of the local states x1, for the case ε = 0.25 and
N = 15. In particular: second column, Synchronous Newton-Raphson Consensus.
Third column, Jacobi Consensus. Fourth column, Gradient Descent Consensus.
The black dashed lines indicate the first components of the global optima x∗.
Notice that we show a bigger number of time steps for the GDC (fourth column).

S3 :





d11 ∼ U [−0.08, 0.08]

d12 = d21 = −0.01

d22 ∼ R[0.9, 1.1] d11

(2.70)

i.e. the axes of each contour plot are randomly oriented along the bisection of
the first and third quadrant.

These cost functions are skewed, i.e., their level curves are close to ellipsoids
whose axes are oriented along the bisection of the first and third quadrant.

The contour plots of the global cost functions f̄ ’s generated using (2.68),
(2.69) and (2.70), and the evolution of the local states xi for the three algo-
rithms are shown in Figure 2.8. We notice that SNRC and JC have qualita-
tively the same behavior for the scenarios (2.68) and (2.69). This is because the
approximation introduced in JC is actually a good approximation of the ana-
lytical Hessians ∇2fi (xi(k)). Conversely, GDC presents a remarkably slower
convergence rate. Since the computational time of JC and GDC are compara-
ble, JC seems to represent the best choice among all the presented solutions.
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Figure 2.9: Contour plot of the global cost f and evolution of the errors choos-
ing (2.60), (2.61) or (2.62) in Algorithm 3. In this experiment, for SNRC and JC

ε = 0.25 while for GDC ε = 1. N = 15.

Figure 2.9 shows the contour plot of the global cost f for a typical re-
alization of the parameters and the corresponding evolution of the errors
choosing SNRC (definition (2.60)), JC (definition (2.61)), and GDC (defini-
tion (2.62)) in Algorithm 3. The parameter ε was manually tuned for each
algorithm to obtain the best performance. We notice that the differences be-
tween SNRC and JC are evident but not resounding, due to the fact that the
Jacobi approximations are in this case a good approximation of the analyti-
cal Hessians. Conversely, GDC presents a slower convergence rate which is a
known drawback of gradient descent algorithms. It is also interesting to notice
that, initially, the errors increase. This is not surprising since agents at the
beginning diverge from each other (see left panel of Figure 2.5), but eventually
consensus takes place and the errors reduce.

2.4.3 Comparisons

We compare Algorithm 1 and its accelerated version, denoted as Synchronous
Fast Newton-Raphson Consensus (SFNRC) and described in detail in Algo-
rithm 4, with three distributed convex optimization methods, namely the DSM,
the Distributed Control Method (DCM) and the ADMM, described respec-
tively in Algorithm 5, 6 and 7. The following discussion provides some details
about these strategies.

SFNRC The Synchronous Fast Newton-Raphson Consensus is an acceler-
ated version of Algorithm 1: it inherits the structure of the so called second
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order diffusive schedules, see, e.g., Muthukrishnan et al. (1998), that exploits
an additional level of memory (here the states y(k+1), z(k+1) of the various
agents) to speed up the convergence properties of the consensus strategy.

This method has been applied initially for a load balancing problem on
an undirected connected graph characterized by a weight distribution w(0) on
the nodes. In this scenario, the problem consists in determining a schedule
to move weights in each step across edges so as to balance the weights on
the nodes. The second order diffusive schedules are modeled as w(k + 1) =

ϕPw(k) + (1−ϕ)w(k− 1), w(1) = Pw(0), for some appropriate ϕ. It is well
known that if ϕ lies in the intervals (−∞, 0] and [2,+∞), the second order
schedule does not even converge. Hence, we focus on ϕ ∈ (0, 2). Specifically,
the parameter ϕ, that weights the gradient and the memory, is set to

ϕ =
2

1 +
√

1− λ22
,

1 < ϕ < 2, to guarantee the SFNRC to be faster than the SNRC. In our
simulations we assumed to know λ2, although it would be possible to estimate
it, see, e.g., Sahai et al. (2012). It is proven in Muthukrishnan et al. (1998)
that if ϕ is fixed, independent of P , to be 0 < ϕ < 1, memory provably does
not help, i.e., for each such fixed ϕ, there are P ’s such that SFNRC takes
longer to converge than SNRC.

Algorithm 4 SFNRC Muthukrishnan et al. (1998)
1: storage allocation, constraints on the parameters and initialization as in

Algorithm 1, plus ỹ(0) = g (x(0)) and z̃(0) = h (x(0))

(main algorithm)
2: for k = 1, 2, . . . do

3: ỹ(k) = y(k − 1) +
1

2− ϕ (g (x(k − 1))− g (x(k − 2))) (local update)

4: z̃(k) = z(k − 1) +
1

2− ϕ (h (x(k − 1))− h (x(k − 2))) (local update)

5: y(k) = ϕP ỹ(k) + (1− ϕ) ỹ(k − 1) (consensus step)
6: z(k) = ϕP z̃(k) + (1− ϕ) z̃(k − 1) (consensus step)

7: x(k) = (1− ε)x(k − 1) + ε
y(k)

z(k)
(local update)

DSM As proposed in Nedić and Ozdaglar (2009), the Distributed Subgra-
dient Method alternates consensus steps on the current estimated global min-
imum xi(k) with subgradient updates of each xi(k) towards the minimum of
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the local cost fi. To guarantee the convergence, it is required to appropriately
decrease the amplitude of the local subgradient steps. Algorithm 5 presents a
synchronous DSM implementation, where % is a tuning parameter (here man-
ually tuned for best convergence rates) and P is defined in (2.66).

Algorithm 5 DSM Nedić and Ozdaglar (2009)
(storage allocation and constraints on parameters)

1: x(c)(k),x(`)(k) ∈ RN

2: % ∈ R+

(initialization)
3: x(`)(0) = 0

(main algorithm)
4: for k = 0, 1, . . . do
5: x(c)(k) = Px(`)(k) (consensus step)
6: x(`)(k + 1) = x(c)(k)− %

k
f ′
(
x(c)(k)

)
(local update)

DCM As proposed inWang and Elia (2010), the Distributed Control Method
differentiates from the gradient searching because it forces the states to the
global optimum by controlling the sum of the subgradients of individual con-
vex cost functions. This model overcomes two limitations of the current algo-
rithms, namely, the diminishing step size, which is a fundamental limitation of
the performance of subgradient algorithms, and sensitivity to additive noise,
which is an intrinsic property of consensus algorithms based on convex mixing.
This approach views the subgradient as an input/output map and uses small
gain theorems to guarantee the convergence property of the system. Again,
each agents i locally computes and exchanges information with its neighbors,
collected in the set Ni. The state equations for all agents can be written as

x(k + 1) = x(k)− µ(L⊗ I)x(k)− µ(L⊗ I)z(k)− µνG(x(k)) (2.71)

z(k + 1) = z(k) + µ(L⊗ I)x(k) (2.72)

where G(·) is a concatenation of the subgradients gi(·), i = 1, . . . , N , and
L ∈ RN×N is the Laplacian of the graph, defined by its elements as:

[L]ij =





−1 if i ∈ Nj
di if i = j

0 otherwise.
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According to the definition, all row-sums of L are zero, and therefore L always
has a zero eigenvalue λ1 = 0. The corresponding eigenvector is 1. Moreover, L
is supposed to be symmetric ( that is the case of the undirected graph), thus
its eigenvalues satisfy 0 = λ1 ≤ λ2 ≤ . . . ≤ λN ≤ 2 max

i∈V
di.

DCM is summarized in Algorithm 6, where µ, ν > 0 are parameters to be
designed to ensure the stability property of the system. Note that in Algo-
rithm 6, µν is used as the constant scaling of the local subgradients. Specifi-
cally, µ is chosen in the interval

0 < µ <
2

2 max
i∈V

di + 1
, (2.73)

where di is the degree of each node, to bound the induced gain of the subgra-
dients. In Wang and Elia (2010) it has proven that choosing µ as in (2.73),
the system (2.72) is bounded input bounded output (BIBO) stable. Also here
the parameters have been manually tuned for best convergence rates.

Algorithm 6 DCM Wang and Elia (2010)
(storage allocation and constraints on parameters)

1: x(k), g(k), z(k) ∈ RN

2: µ, ν ∈ R+

(initialization)
3: x(0) = z(0) = g(0) = 0

(main algorithm)
4: for k = 0, 1, . . . do
5: for i = 1, . . . , N do
6: zi(k + 1) = zi(k) + µ

∑

j∈Ni

(
xi(k)− xj(k)

)

7:

xi(k + 1) = xi(k) + µ
∑

j∈Ni

(
xj(k)− xi(k)

)
+

+µ
∑

j∈Ni

(
zj(k)− zi(k)

)
− µ ν gi

(
xi(k)

)

ADMM The Alternating Direction Method of Multipliers requires the aug-
mentation of the system through additional constraints that do not change
the optimal solution but allow the Lagrangian formalism. Standard ADMM
decomposes the original problem into two sub-problems, sequentially solves
them and updates the dual variables associated with a coupling constraint at
each iteration. The best known rate of convergence for the classic ADMM
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algorithm is O(1/k). There exist different implementations of ADMM in dis-
tributed contexts, see, e.g., (Bertsekas and Tsitsiklis, 1997; Schizas et al., 2008;
Boyd et al., 2010, pp. 253-261). Here we consider the following Algorithm 7,
based on reformulating our optimization problem consistently with an undi-
rected ring communication graph, i.e., as

min
x1,...,xN ,z1,...,zN

N∑

i=1

fi(xi)

such that zi = xi−1 = xi = xi+1, i = 1, . . . , N

where x0 := xN and xN+1 := x1. With this reformulation the Lagrangian
becomes

Li(xi, k) := fi (xi) +

+y
(`)
i (k)

(
xi − zi−1(k)

)
+ y

(c)
i (k)

(
xi − zi(k)

)
+ y

(r)
i (k)

(
xi − zi+1(k)

)
+

+
δ

2

∣∣xi − zi−1(k)
∣∣2 +

δ

2

∣∣xi − zi(k)
∣∣2 +

δ

2

∣∣xi − zi+1(k)
∣∣2,

with δ a tuning parameter.

Algorithm 7 ADMM (Bertsekas and Tsitsiklis, 1997, pp. 253-261)
(storage allocation and constraints on parameters)

1: x(k), z(k),y(`)(k),y(c)(k),y(r)(k) ∈ RN

2: δ ∈ (0, 1)

(initialization)
3: x(0) = 0

4: y(`)(0) = y(c)(0) = y(r)(0) = 0

5: z(0) = 0

(main algorithm)
6: for k = 0, 1, . . . do
7: for i = 1, . . . , N do
8: xi(k + 1) = arg min

xi
Li(xi, k)

9:
zi(k + 1) =

1

3δ

(
y
(`)
i+1(k) + y

(c)
i (k) + y

(r)
i−1(k)

)
+

+
1

3

(
xi−1(k + 1) + xi(k + 1) + xi+1(k + 1)

)

10: y
(`)
i (k + 1) = y

(`)
i (k) + δ

(
xi(k + 1)− zi−1(k + 1)

)

11: y
(c)
i (k + 1) = y

(c)
i (k) + δ

(
xi(k + 1)− zi(k + 1)

)

12: y
(r)
i (k + 1) = y

(r)
i (k) + δ

(
xi(k + 1)− zi+1(k + 1)

)
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Results

Figure 2.10 shows a comparison of the five strategies for the same ring graph
(here all the tuning parameters of each algorithm are manually tuned for best
convergence rates). We notice that, for this specific simulation, all the al-
gorithms converge to the global optimum. While the DSM is the slowest to
converge, DCM is significantly faster than DSM but slower than SNRC. In-
stead, the SFNRC and ADMM methods converge to the global optimum in
a comparable amount of time. A virtue of our SNRC strategy is that it can
be easily adapted in an asynchronous scenarios where the topology of graph is
time-varying. Differently, even if ADMM can be implemented asynchronously
with some effort, it can hardly cope with time-varying topologies since the
dual variables yi strongly depend on the specific constrain imposed between
the variables zi and xi.
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Figure 2.10: Comparison of the square error ‖x(k)− x∗1‖2 in log10-scale for
the case N = 30 applied to the five algorithms: SNRC (Algorithm 1, ε = 0.9),
SFNRC (Algorithm 4, ε = 0.9), DCM (Algorithm 6, µ = 0.25, ν = 1.5), DSM

(Algorithm 5, % = 100), ADMM (Algorithm 7, δ = 0.01).
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3
Asynchronous Newton-Raphson Consensus

3.1 Iterative algorithm

In the following we extend the ideas behind the SNRC to be amenable to more
realistic asynchronous implementations.

As noticed before, steps 9 and 10 of Algorithm 1 rely on synchronous com-
munications and on the updates of the various yi’s and zi’s. Thus this im-
plementation requires a high degree of coordination among the agents, being
consequently of limited practical applicability.

Here we propose an asynchronous version of the Newton-Raphson Consen-
sus algorithm that is built upon the standard symmetric gossip consensus: at
every time a single agent is activated, then this agent selects one of its neigh-
bors and communicates with it. To describe precisely this process we use the
following notation:

N1) k = 1, 2, . . . correspond to the time instants t1, t2, . . . where a generic
agent i activates and communicates with one of its neighbors j ∈ Ni
(Ni := {j ∈ V | (i, j) ∈ E});

N2) v(k) : N 7→ V indicates which agent has been activated at time k;

N3) e(k) : N 7→ E indicates which edge have been activated at time k;

N4) wi(k) is a flag indicating whether agent i has been activated at time k
or not, i.e., wi(k) = 1 if v(k) = i, wi(k) = 0 otherwise;

N5) u(i,j)(k) is a flag indicating whether edge (i, j) has been activated at time
k or not, i.e., u(i,j)(k) = 1 if e(k) = (i, j), u(i,j)(k) = 0 otherwise.

Notice that we thus allow the activation of just a single agent and single edge
for each time instant k.
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As for the agent activation process, we exploit either uniform or persistent
agent activation hypotheses:

Assumption 23 (uniform activation) There exist a strictly decreasing
function ζ and a positive integer B such that

∣∣∣∣∣
1

T

T+h−1∑

k=h

wi(k)− 1

N

∣∣∣∣∣ ≤ ζ(T ), ∀i ∈ V ,∀h, T ∈ N (3.1)

B+h−1∑

k=h

u(i,j)(k) ≥ 1, ∀(i, j) ∈ E , ∀h ∈ N. (3.2)

Condition (3.1) basically states that, on the long run, all the agents are
activated the same number of times. Condition (3.2) instead states that ev-
ery edge is activated at least once in any window of length B, which can be
arbitrarily large but finite.

Assumption 24 (persistent activation) There exists a positive integer B
such that

B+h−1∑

k=h

wi(k) ≥ 1, ∀i ∈ V ,∀h ∈ N (3.3)

and (3.2) simultaneously hold.

(3.3) is weaker than (3.1) in the sense that the former states just that each
agent activates at least once in every sufficiently large time window.

Exploiting the previous definitions we introduce the agent selection matrix
S(k) ∈ RN×N , the edge selection matrix E(k) ∈ RN×N and the symmetric
gossip consensus matrix P (k) ∈ RN×N as follows:

b(i,j) := [0 · · · 0
(i)

1 0 · · · 0
(j)

−1 0 · · · 0]T ∈ RN (3.4)

S(k) := diag
(
w1(k), . . . , wN(k)

)
(3.5)

E(k) :=
(
diag(be(k))

)2 (3.6)

P (k) := I − αbe(k)bTe(k), α ∈ (0, 1). (3.7)



Asynchronous Newton-Raphson Consensus 81

Basically, S(k) is zero everywhere except for a one in the diagonal element (i, i)

corresponding to the activated agent i. E(k) is zero everywhere except for two
ones in the diagonal elements (i, i) and (j, j), corresponding to the agents of
the activated edge (i, j). P (k) is the standard symmetric gossip consensus
matrix with weight 1 − α on the diagonals elements (i, i) and (j, j), and α

on the (i, j) and (j, i) elements. With this notation it is possible to derive
the ANRC, presented in Algorithm 8, as a straightforward modification of the
SNRC.

Algorithm 8 Asynchronous Newton-Raphson Consensus (ANRC)
(storage allocation and constraints on parameters)

1: x,y, z, ỹ, z̃ ∈ RN

2: ε ∈ (0, 1)

(initialization)
3: x(0) = x0

4: y(0) = g (x(−1)) = 0, z(0) = h (x(−1)) = 1

5: ỹ(0) = g (x(0)), z̃(0) = h (x(0))

(main algorithm)
6: for k = 1, 2, . . . do

(update of the local guesses)

7: x(k) = x(k − 1) + εS(k)

(
−x(k − 1) +

y(k − 1)

z(k − 1)

)

(consensus)
8: y(k) = P (k) ỹ(k − 1)

9: z(k) = P (k) z̃(k − 1)

(update of the auxiliary variables)
10: ỹ(k) = y(k) + E(k)

(
g
(
x(k)

)
− g
(
x(k−1)

))

11: z̃(k) = z(k) + E(k)
(
h
(
x(k)

)
− h

(
x(k−1)

))

Lines 8-11 in Algorithm 8 compactly represent the fact that all agents do
not perform any action except for the selected ones i, j, updating their local
variables yi, yj as

yi(k+1) = (1−α)
(
yi(k)+gi

(
xi(k)

)
−gi

(
xi(k−1)

))
+αyj(k)

yj(k+1) = (1−α)
(
yj(k)+gj

(
xj(k)

)
−gj

(
xj(k−1)

))
+αyi(k)
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and zi, zj in a similar way. We notice that, among xi and xj, just the former
is updated: in the proposed version we require the local guess to be updated
just for the agent that initiates the communication. Line 7 in Algorithm 8
thus reads as

xi(k + 1) = xi(k) + ε

(
−xi(k) +

yi(k + 1)

zi(k + 1)

)
.

The convergence properties of Algorithm 8 are summarized by the two main
Propositions, namely 28 and 29. Before proving them we need to prove the
ancillary results given by Lemma 27, in its turn relying on Lemmas 25 and 26.
Throughout the rest of the treatment we will exploit the following definitions:
BN
r :=

{
x ∈ RN | ‖x‖ < r

}
and BN

r0
:=
{
x ∈ RN | ‖x‖ < r0

}
.

Lemma 25 Consider the nonlinear time-varying discrete-time system

x(k + 1) = x(k) + εφ
(
k,x(k)

)
(3.8)

with x(k) ∈ BN
r ⊂ RN , φ : N× BN

r 7→ RN and ε ∈ (0, ε0]. Assume that, for
every k, h ∈ N and x,x1,x2 ∈ BN

r ,

A1)

φave(x) := lim
T→∞

1

T

h+T∑

k=h+1

φ(k,x)

exists and is independent of h;

A2) φ(k,0) = φave(0) = 0, i.e., the origin x = 0 is an equilibrium point for

x(k + 1) = x(k) + εφave
(
x(k)

)
(3.9)

and for (3.8);

A3) φ(k, ·) and φave(·) have continuous and bounded first-order derivatives
for all k;

A4) φ(k, ·) and φave(·) are Lipschitz with respect to x ∈ BN
r uniformly in

k, i.e.,

‖φ(k,x1)− φ(k,x2)‖ ≤ ` ‖x1 − x2‖ ∀k ∈ N,

‖φave(x1)− φave(x2)‖ ≤ `ave ‖x1 − x2‖ ;
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A5) letting δ(k,x) := φ(k,x) − φave(x), δ(k,x) is piecewise continuous in
k, has bounded and continuous first partial derivatives in x, and is s.t.
δ(k,0) = 0 for all k ∈ N. Moreover there exists a strictly decreasing
bounded function σ : N 7→ R+ satisfying limT→∞ σ(T ) = 0 such that
∥∥∥∥∥

1

T

h+T∑

k=h+1

δ(k,x)

∥∥∥∥∥ ≤ ‖x‖σ(T ),

∥∥∥∥∥
1

T

h+T∑

k=h+1

∂δ(k,x)

∂x

∥∥∥∥∥ ≤ σ(T ),

for all k, h ∈ N, x ∈ BN
r ;

A6) the origin is exponentially stable in BN
r for (3.9), i.e., there exist positive

scalars c, γ such that for every x(0) ∈ BN
r the solutions of system (3.9)

satisfy ∥∥x(k)
∥∥ ≤ c

∥∥x(0)
∥∥γk.

Then there exist ε∗ ∈ (0, ε0] such that for all ε ∈ (0, ε∗] system (3.8) admits
a Lyapunov function V : N×BN

r 7→ R and positive constants a1, . . . , a4 such
that, for every k ∈ N, x,x1,x2 ∈ BN

r ,

a1 ‖x‖2 ≤ V (k,x) ≤ a2 ‖x‖2 (3.10)

V
(
k + 1,x+ φ(k,x)

)
− V (k,x) ≤ −εa3 ‖x‖2 (3.11)

∣∣V (k,x1)− V (k,x2)
∣∣ ≤ a4 ‖x1 − x2‖

(
‖x1‖+ ‖x2‖

)
(3.12)

Proof The lemma is a joint reformulation of the Converse Lyapunov Theo-
rem 2.1.1 and the Basic Averaging Theorem 2.2.2 in Bai et al. (1986). ♦

Lemma 26 Consider the nonlinear time-varying discrete-time system

y(k + 1) = ϕ
(
k,x,y(k)

)
(3.13)

with y(k) ∈ BM
r ⊂ RM , x ∈ Γ ⊂ RN and ϕ : N × Γ × BM

r 7→ RM . Assume
that, for every k ∈ N, x,x1,x2 ∈ Γ and y,y1,y2 ∈ BM

r ,

A1) ϕ(k,x,0) = 0, i.e., the origin 0 is an equilibrium point;

A2) ϕ(k, ·, ·) has continuous and bounded first-order derivatives in y ∈ BM
r

for every k and x ∈ Γ;
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A3) ϕ(k, ·, ·) is Lipschitz w.r.t. y ∈ BM
r and x ∈ Γ uniformly in k, i.e.,

∥∥ϕ(k,x,y1)−ϕ(k,x,y2)
∥∥ ≤ `1

∥∥y1 − y2
∥∥,

∥∥ϕ(k,x1,y)−ϕ(k,x2,y)
∥∥ ≤ `2 ‖y‖

∥∥x1 − x2

∥∥;

A4) the origin is exponentially stable in an opportune BM
r′ , i.e., there exist

positive scalars c, γ and r′ satisfying γ < 1, and r′ <
r

c
such that for

every y(0) ∈ BM
r′ the solutions of the system satisfy

∥∥y(k)
∥∥ ≤ c

∥∥y(0)
∥∥γk.

Then there exists a Lyapunov function W : N × Γ × BM
r′ 7→ R and posi-

tive constants a1, a2, a3, a4, a5 such that, for every k ∈ N, x,x1,x2 ∈ Γ and
y,y1,y2 ∈ BM

r′ ,

a1‖y‖2 ≤ W (k,x,y) ≤ a2‖y‖2 (3.14)

W
(
k + 1,x, g(k,x,y)

)
−W (k,x,y) ≤ −a3‖y‖2 (3.15)

∣∣W (k,x,y1)−W (k,x,y2)
∣∣ ≤ a4

∥∥y1 − y2
∥∥
(∥∥y1

∥∥+
∥∥y2
∥∥
)

(3.16)
∣∣W (k,x1,y)−W (k,x2,y)

∣∣ ≤ a5
∥∥y
∥∥2 ∥∥x1 − x2

∥∥. (3.17)

Proof The claim follows closely the ones of converse Lyapunov theorems for
continuous time perturbed systems, see (Khalil, 2001, Theorem 4.14, page
162), and is similar to the claims in (Khalil, 2001, Exercise 4.68, page 194)
and in (Jiang and Wang, 2002, Theorem 2). However, since some inequalities
are different, we report the detailed proof for sake of completeness.

The proof is divided in the following steps, marked by bullets:

a) introduce a candidate Lyapunov function,

b) verify the previous inequalities.

• introduction of a candidate Lyapunov function: let ψ(k : τ,x,y) denote
the solution of the system at time τ , obtained starting at time k with fixed
parameter x and initial condition y. That is, ψ(k : k,x,y) = y. Then the
candidate Lyapunov function is given by

W (k,x,y) :=
k+T∑

τ=k

∥∥ψ(k : τ,x,y)
∥∥2 (3.18)

where T is a nonnegative integer to be chosen.
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• proof of (3.14): In the first inequality, for every nonnegative integer T it
follows immediately

W (k,x,y) ≥
∥∥ψ(k : k,x,y)

∥∥2 =
∥∥y
∥∥2 = a1

∥∥y
∥∥2.

Regards the second inequality, Assumption A4 implies

W (k,x,y) ≤
k+T∑

τ=k

c2γ2(τ−k)
∥∥y
∥∥2 = c2

1− γ2(T+1)

1− γ2
∥∥y
∥∥2 = a2

∥∥y
∥∥2.

• proof of (3.15): assume T ≥ − log(c)

log(γ)
, and consider that

ψ
(
k + 1 : τ,x,ϕ(k,x,y)

)
= ψ

(
k : τ,x,y

)
.

Then

W
(
k + 1,x,ϕ(k,x,y)

)
−W (k,x,y) =

=
k+T+1∑

τ=k+1

∥∥ψ
(
k + 1 : τ,x,ϕ(k,x,y)

)∥∥2 −
k+T∑

τ=k

∥∥ψ(k : τ,x,y)
∥∥2

=
k+T+1∑

τ=k+1

∥∥ψ
(
k : τ,x,y

)∥∥2 −
k+T∑

τ=k

∥∥ψ(k : τ,x,y)
∥∥2

=
∥∥ψ
(
k : k + T + 1,x,y

)∥∥2 −
∥∥ψ
(
k : k,x,y

)∥∥2

≤ c2γ2(T+1)
∥∥y
∥∥2 −

∥∥y
∥∥2 ≤ −1

2

∥∥y
∥∥2 = −a3

∥∥y
∥∥2.

• proof of (3.16): consider that, thanks to assumption A4,

ψ(k : τ,x,y) ≤ cγτ−k
∥∥y
∥∥. (3.19)

Let moreover ψτ
1 := ψ(k : τ,x,y1), ψτ

2 := ψ(k : τ,x,y2) be shorthands
to compact the notation. Notice that ψτ

1 = ϕ
(
τ − 1,x,ψτ−1

1

)
. Thus, by

assumption A3,
∥∥ψτ

1 −ψτ
2

∥∥ =
∥∥ϕ
(
τ − 1,x,ψτ−1

1

)
−ϕ

(
τ − 1,x,ψτ−1

2

) ∥∥
≤ `1

∥∥ψτ−1
1 −ψτ−1

2

∥∥.

Consider then the reverse triangle inequality
∣∣∣
∥∥a
∥∥−

∥∥b
∥∥
∣∣∣ ≤

∥∥a− b
∥∥ ∀a, b.
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It thus follows, applying also assumption A4,
∣∣∣
∥∥ψτ

1

∥∥2 −
∥∥ψτ

2

∥∥2
∣∣∣ =

∣∣∣
∥∥ψτ

1

∥∥+
∥∥ψτ

2

∥∥
∣∣∣ ·
∣∣∣
∥∥ψτ

1

∥∥−
∥∥ψτ

2

∥∥
∣∣∣

≤ cγτ−k
(∥∥y1

∥∥+
∥∥y2
∥∥
)
·
∥∥ψτ

1 −ψτ
2

∥∥

≤ cγτ−k`1
(∥∥y1

∥∥+
∥∥y2
∥∥
)
·
∥∥ψτ−1

1 −ψτ−1
2

∥∥

≤ cγτ−k`21

(∥∥y1
∥∥+

∥∥y2
∥∥
)
·
∥∥ψτ−2

1 −ψτ−2
2

∥∥
...

≤ cγτ−k`τ−k1

(∥∥y1
∥∥+

∥∥y2
∥∥
)
·
∥∥y1 − y2

∥∥.

Consider then that, applying definition (3.18),

∣∣W (k,x,y1)−W (k,x,y2)
∣∣ =

∣∣∣∣∣
k+T∑

τ=k

(∥∥ψτ
1

∥∥2 −
∥∥ψτ

2

∥∥2
)∣∣∣∣∣ .

Combining with the previous result, this eventually implies

∣∣W (k,x,y1)−W (k,x,y2)
∣∣ ≤

k+T∑

τ=k

∣∣∣
∥∥ψτ

1

∥∥2 −
∥∥ψτ

2

∥∥2
∣∣∣

≤
(
c
k+T∑

τ=k

(γ`1)
(τ−k)

)(∥∥y1
∥∥+

∥∥y2
∥∥
)
·
∥∥y1 − y2

∥∥

= a4

(∥∥y1
∥∥+

∥∥y2
∥∥
)
·
∥∥y1 − y2

∥∥

• proof of (3.17): let now ψτ
1 , ψτ

1 be used as ψτ
1 := ψ(k : τ,x1,y), ψτ

2 :=

ψ(k : τ,x2,y), so that ψτ
1 = ϕ

(
τ − 1,x1,ψ

τ−1
1

)
, that implies

∥∥ψτ
1 −ψτ

2

∥∥ =
∥∥ϕ
(
τ − 1,x1,ψ

τ−1
1

)
−ϕ

(
τ − 1,x2,ψ

τ−1
2

) ∥∥
=

∥∥ϕ
(
τ − 1,x1,ψ

τ−1
1

)
−ϕ

(
τ − 1,x2,ψ

τ−1
1

)
+

+ϕ
(
τ − 1,x2,ψ

τ−1
1

)
−ϕ

(
τ − 1,x2,ψ

τ−1
2

) ∥∥.

Thus by the (direct) triangle inequality and assumption A3,
∥∥ψτ

1 −ψτ
2

∥∥ ≤ `2
∥∥ψτ−1

1

∥∥∥∥x1 − x2

∥∥
+`1
∥∥ψτ−1

1 −ψτ−1
2

∥∥.

Exploiting then (3.19) it follows
∥∥ψτ

1 −ψτ
2

∥∥ ≤ c`2γ
τ−k∥∥y

∥∥∥∥x1 − x2

∥∥
+`1
∥∥ψτ−1

1 −ψτ−1
2

∥∥.

Applying this inequality recursively it thus follows
∥∥ψτ

1 −ψτ
2

∥∥ ≤ `
∥∥y
∥∥∥∥x1 − x2

∥∥
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with
` = c`2γ

τ−k + c`1`2γ
τ−1−k + . . .+ c`τ−k1 `2.

Consider then that definition (3.18) implies

∣∣W (k,x1,y)−W (k,x2,y)
∣∣ =

∣∣∣∣∣
k+T∑

τ=k

(∥∥ψτ
1

∥∥2 −
∥∥ψτ

2

∥∥2
)∣∣∣∣∣ .

Focusing for simplicity on the single term
∥∥ψτ

1

∥∥2−
∥∥ψτ

2

∥∥2, assumption A3, the
reverse triangle inequality and the previous results thus imply
∣∣∣
∥∥ψτ

1

∥∥2 −
∥∥ψτ

2

∥∥2
∣∣∣ =

∣∣∣
∥∥ψτ

1

∥∥+
∥∥ψτ

2

∥∥
∣∣∣ ·
∣∣∣
∥∥ψτ

1

∥∥−
∥∥ψτ

2

∥∥
∣∣∣

≤
(

2cγτ−k
∥∥y
∥∥
)(
`
∥∥y
∥∥∥∥x1 − x2

∥∥
)

= `
′∥∥y
∥∥2∥∥x1 − x2

∥∥. ♦

Lemma 27 Consider the nonlinear time-varying perturbed system
{
x(k + 1) = x(k) + εφ

(
k,x(k), z(k)

)
(3.20a)

z(k + 1) = ϕ
(
k,x(k), z(k)

)
(3.20b)

with

• x(k) ∈ BN
r′ ⊂ RN ;

• z(k) ∈ BM
r′′ ⊂ RM ;

• φ : N×BN
r′ ×BM

r′′ 7→ RN ;

• ϕ : N×BN
r′ ×BM

r′′ 7→ RM ;

• ε ∈ (0, ε0].

Let then 0 indicate both the origins of RN and RM . Assume that, for every
k ∈ N, x ∈ BN

r′ and z ∈ BM
r′′ ,

A1) φ(k,0,0) = 0 and ϕ(k,0,0) = 0, i.e., the origin 0 is an equilibrium
for (3.20a) and for (3.20b);

A2) the equation ϕ(k,x, z) = z has an isolated root z = ϑ(x) with ϑ :

BN
r′ 7→ BM

r′′ independent of k and satisfying ϑ(0) = 0, and such that
the change of variables

y(k) = z(k)− ϑ
(
x(k)

)
(3.21)

is always well defined;
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A3) the functions φ,ϕ and ϑ have continuous and bounded first-order
derivatives;

A4) the functions φ,ϕ and ϑ are Lipschitz with respect to x ∈ BN
r′ and

z ∈ BM
r′′ uniformly in k;

A5) the reduced system

x(k + 1) = x(k) + εφ
(
k,x(k),ϑ

(
x(k)

))
(3.22)

satisfies the thesis of Lemma 25 – where, with a little abuse of notation,
φ(k,x) = φ

(
k,x,ϑ(x)

)
;

A6) the boundary-layer system

y(k + 1) = ϕ
(
k,x,y(k) + ϑ(x)

)
− ϑ(x) (3.23)

satisfies the thesis of Lemma 26 – where, with a little abuse of notation,
ϕ(k,x,y) = ϕ

(
k,x,y + ϑ(x)

)
− ϑ(x).

Then, there exists ε∗ ∈ (0, ε0] such that for all ε ∈ (0, ε∗] the origin
(x, z) = (0,0) is an exponentially stable equilibrium for the whole sys-
tem (3.20a)-(3.20b).

Proof The proof is divided in the following steps, marked by bullets:

a) introduce some notation and basic bounds, to be used as building blocks.

b) introduce two Lyapunov functions and some of their properties: one for
the reduced system (3.22) and one for the boundary layer (3.23).

d) build a Lyapunov function for the complete system (3.20a)-(3.20b).

• notation and basic bounds: consider the change of variables (3.21) and the
shortcuts x = x(k) and x+ = x(k + 1), so that the complete system (3.20a)-
(3.20b) becomes

{
x+ = x+ εφ

(
k,x,y + ϑ(x)

)

y+ = ϕ
(
k,x,y + ϑ(x)

)
− ϑ

(
x+ εφ

(
k,x,y + ϑ(x)

))
.

For notational brevity we moreover let

χ+ := x+ εφ
(
k,x,ϑ(x)

)
(3.24)
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so that χ+ is equal to x+ as soon as y = 0. The following basic bounds
follow immediately from the Lipschitz and vanishing properties of the various
functions:

∥∥φ
(
k,x,ϑ(x)

)∥∥ ≤ `1‖x‖ (3.25)
∥∥φ
(
k,x,y + ϑ(x)

)∥∥ ≤ `2
(
‖x‖+ ‖y‖

)
(3.26)

∥∥x+ − x
∥∥ ≤ ε`2

(
‖x‖+‖y‖

)
(3.27)

∥∥φ
(
k,x,y+ϑ(x)

)
−φ
(
k,x,ϑ(x)

)∥∥ ≤ `3‖y‖ (3.28)
∥∥x+ − χ+

∥∥ ≤ ε`3‖y‖ (3.29)
∥∥ϕ
(
k,x,y + ϑ(x)

)
− ϑ(x)

∥∥ ≤ `4‖y‖ (3.30)
∥∥ϑ(x+)− ϑ(x)

∥∥ ≤ ε`5
(
‖x‖+‖y‖

)
(3.31)

∥∥x+
∥∥ ≤ `6

(
‖x‖+ ‖y‖

)
(3.32)

∥∥χ+
∥∥ ≤ `7

(
‖x‖

)
(3.33)

∥∥ϑ(x)
∥∥ ≤ `8‖x‖ (3.34)

for suitable positive constants `1, . . . , `8.
• Lyapunov function for the reduced system (3.22): assumption A5 ensures

the existence of a Lyapunov function V (k,x) and a r′0 ≤ r′ such that, ∀x ∈ BN
r′0
,

c1‖x‖2 ≤ V (k,x) ≤ c2‖x‖2 (3.35)

V
(
k + 1,χ+

)
− V (k,x) ≤ − εc3‖x‖2 (3.36)

∣∣V (k,x1)− V (k,x2)
∣∣ ≤ c4‖x1 − x2‖

(
‖x1‖+ ‖x2‖

)
(3.37)

for some positive constants c1, . . . , c4. As for the temporal evolution of V (k,x),
exploiting definition (3.24) and properties (3.36) and (3.37) it follows that

∆V (k,x) := V
(
k + 1,x+

)
− V (k,x) =

= V
(
k + 1,x+

)
− V

(
k + 1,χ+

)
+ V

(
k + 1,χ+

)
− V (k,x)

≤ c4
∥∥x+ − χ+

∥∥
(∥∥x+

∥∥+
∥∥χ+

∥∥
)
− εc3‖x‖2

and thus, using properties (3.29), (3.32) and (3.33),

∆V (k,x) ≤ εc4`3‖y‖
(
`6
(
‖x‖+ ‖y‖

)
+ `7‖y‖

)
− εc3‖x‖2.

Letting then `9 = c4`3`6, `10 = c4`3(`6 + `7) we obtain the quadratic bound

∆V (k,x) ≤ −εc3‖x‖2 + ε2`9‖x‖‖y‖+ ε`10‖y‖2. (3.38)

• Lyapunov function for the boundary layer (3.23): let x ∈ BN
r′ be a

constant. Then assumption A6 ensures the existence of a Lyapunov function
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W (k,x,y) and a r′′0 < r′′ such that, for all y ∈ BM
r′′0
,

b1‖y‖2 ≤ W (k,x,y) ≤ b2‖y‖2 (3.39)

W
(
k + 1,x,ϕ

(
k,x,y + ϑ(x)

)
− ϑ(x)

)
−W (k,x,y) ≤ −b3‖y‖2 (3.40)

∣∣W (k,x,y1)−W (k,x,y2)
∣∣ ≤ b4‖y1 − y2‖

(
‖y1‖+ ‖y2‖

)
(3.41)

∣∣W (k,x1,y)−W (k,x2,y)
∣∣ ≤ b5‖y‖2‖x1 − x2‖ (3.42)

As for the temporal evolution of W (k,x,y), consider that

∆W (k,x,y) := W (k + 1,x+,y+)−W (k,x,y)

= W
(
k + 1,x+,ϕ

(
k,x,y + ϑ(x)

)
−ϑ(x+)

)
− W (k,x,y)

= W
(
k + 1,x+,ϕ

(
k,x,y + ϑ(x)

)
−ϑ(x+)

)

−W
(
k + 1,x+,ϕ

(
k,x,y + ϑ(x)

)
−ϑ(x)

)

+W
(
k + 1,x+,ϕ

(
k,x,y + ϑ(x)

)
−ϑ(x)

)

−W
(
k + 1,x,ϕ

(
k,x,y + ϑ(x)

)
−ϑ(x)

)

+W
(
k + 1,x,ϕ

(
k,x,y + ϑ(x)

)
−ϑ(x)

)
− W (k,x,y) .

(3.43)
We then exploit: (3.41) to bound the first two rows of the last r.h.s.; (3.42) to
bound the third and fourth rows; (3.40) to bound for the last two rows. This
implies that ∆W (k,x,y) ≤ β1 + β2 + β3, where the last three symbols are the
following shorthands:

β1 := b4
∥∥ϑ(x+)− ϑ(x)

∥∥
(∥∥ϕ

(
k,x,y + ϑ(x)

)
− ϑ(x+)

∥∥

+
∥∥ϕ
(
k,x,y + ϑ(x)

)
− ϑ(x)

∥∥
)

β2 := b5
∥∥ϕ
(
k,x,y + ϑ(x)

)
− ϑ(x)

∥∥2∥∥x+ − x
∥∥

β3 :=− b3‖y‖2 .

To bound β1 we apply the triangular inequality so that

β1 ≤ b4
∥∥ϑ(x+)− ϑ(x)

∥∥
(∥∥ϕ

(
k,x,y + ϑ(x)

)
− ϑ(x)

∥∥

+
∥∥ϑ(x+)− ϑ(x)

∥∥+
∥∥ϕ
(
k,x,y + ϑ(x)

)
− ϑ(x)

∥∥
)

and thus, exploiting (3.30) and (3.31), that

β1 ≤ εb4`5
(
‖x‖+ ‖y‖

)(
2`4‖y‖+ ε`5

(
‖x‖+ ‖y‖

))

≤ 2εb4`5
(
`4 + ε`5

)
‖x‖‖y‖+ ε2b4`

2
5‖x‖2 + εb4`5(2`4 + ε`5)‖y‖2.
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Concerning β2, consider that from ‖x‖ ≤ r′, ‖z‖ ≤ r0 and inequality 3.34 it
follows ‖y‖ ≤ ‖z‖+

∥∥ϑ(x)
∥∥. Moreover, using (3.27) and (3.30) we obtain

β2 ≤ εb5`2`5‖y‖2
(
‖x‖+ ‖y‖

)

≤ εb5`2`5
(
r0 + `8r

′)‖y‖2.

Given the previous, we can thus write

∆W (k,x,y) ≤
(
ε`11 − b3

)
‖y‖2 + ε2`12‖x‖‖y‖+ ε2`13‖x‖2 (3.44)

for suitable positive constants `11, `12, `13.
• Lyapunov function for the whole system (3.20a)-(3.20b): let the candi-

date be
U(k,x,y) = V (k,x) +W (k,x,y).

We must check whether, for all the plausible trajectories in BN
r′0
× BM

r′′0
, the

condition (x,y) 6= (0, 0) implies

∆U(k,x,y) := U
(
k + 1,x+,y+

)
− U

(
k,x,y

)
< 0.

Consider then that inequalities (3.38) and (3.44) form a quadratic form that
can be rewritten as

∆U(k,x,y) ≤ −
[
‖x‖ ‖y‖

]
A

[
‖x‖
‖y‖

]
(3.45)

where

A :=

[
εc3 − ε2`13 −ε(`9 + `12)

−ε(`9 + `12) b3 − ε(`10 + `11)

]
.

Consider now that the leading principal minors of A are, in Landau notation
and for ε→ 0,

εc3 +O
(
ε2), εc3b3 +O

(
ε2).

Thus there must exist a sufficiently small ε∗ ∈ (0, ε0] such that for every
ε ∈ (0, ε∗] A is positive definite, i.e.,

ε ∈ (0, ε∗] ⇒ A ≥ ε`14I, ε ∈ (0, ε∗) (3.46)

for an opportune positive scalar `14.
We can now prove the exponential convergence to the equilibrium as soon

as ε ∈ (0, ε∗]. In this case, in fact, from (3.35), (3.45), (3.39) and (3.46) it
follows that:

∆U(k,x,y) ≤ −ε`14
(
‖x‖2 + ‖y‖2

)

≤ −ε`14
(

1

c2
V (x) +

1

b2
W (k,x,y)

)

≤ −εγU(k,x,y)
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where γ := `14 min

{
1

b2
,

1

c2

}
. This eventually implies that

[
‖x(k)‖
‖y(k)‖

]
≤ `
(√

1− εγ
)k
[
‖x(0)‖
‖y(0)‖

]
,

where ` is an appropriate constant, and this concludes the proof. ♦

Now we are ready to prove the two propositions that ensure respectively
the global and local stability of Algorithm 8.

Proposition 28 (global stability) Consider Algorithm 8 and let Assump-
tions 8 and 23 hold true. Then for every r > 0 there exists two positive
constants εr, cr such that if ε < εr, then there exists γε > 0 such that

∥∥x(k)− x∗1
∥∥ ≤ cre

−γεk
∥∥x0 − x∗1

∥∥

for all x0 ∈ Bx∗
r :=

{
x |
∥∥x− x∗1

∥∥ < r
}
.

Proof The proof consists in different steps: rewriting Algorithm 8 in a con-
venient form, then separately analyze the boundary layer and the reduced
systems to check whether the assumptions of Lemma 27 are satisfied. In the
following every bullet corresponds to one of the previous steps. For ease of
notation we will not shift the equilibria to the origins.

We also notice that, to be able to claim global convergence, the proof must
let the open balls containing the initial conditions and the trajectories of the
boundary layer and reduced systems have arbitrary radii.

As before we use the shortcuts x = x(k), x+ = x(k + 1), x− = x(k − 1)

and similar notations also for the other quantities. Moreover we also let

Π‖ :=
11T

N
Π⊥ := I − 11T

N

x‖ := Π‖x = x1 x :=
1

N

N∑

i=1

xi x⊥ := Π⊥x

g(x) :=
1

N

N∑

i=1

(
f ′′i (xi)xi − f ′i (xi)

)
h (x) :=

1

N

N∑

i=1

f ′′i (xi)

so that

g
(
x‖
)

= g
(
x1
)

= f
′′
(x)x− f ′(x), (3.47)

h
(
x‖
)

= h
(
x1
)

= f
′′
(x). (3.48)
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• rewriting Algorithm 8: aiming to obtain a system like (3.20a)-(3.20b), we
rewrite Algorithm 8 as follows:





v(k + 1) = g
(
x(k)

)
(3.49a)

w(k + 1) = h
(
x(k)

)
(3.49b)

y(k + 1) = P (k)
[
y(k) + E(k)

(
g
(
x(k)

)
− v(k)

)]
(3.49c)

z(k + 1) = P (k)
[
z(k) + E(k)

(
h
(
x(k)

)
−w(k)

)]
(3.49d)

x(k + 1) = x(k) + εS(k)

(
−x(k) +

y(k)

z(k)

)
(3.49e)

Considering Lemma 27, (3.49a)–(3.49d) constitute (3.20b), while (3.49e) con-
stitute (3.20a). The corresponding functions φ(·) and ϕ(·) thus satisfy as-
sumptions A3 and A4.
• analysis of the boundary layer system: let ε = 0, so that x (assumed in

BN
r′ ) is constant and thus (3.49) reduces to

{
v(k) = g(x)

w(k) = h(x)
, k ≥ 0

{
y(k + 1) = P (k)y(k)

z(k + 1) = P (k)z(k)
,

y(0) = g(x)

z(0) = h(x)
.

It thus follows that the function ϑ(·) in Lemma 27 is defined by stacking g(x)1

and h(x)1. ϑ(x) thus satisfies assumptions A2, A3 and A4.
Consider now that assumption 23 implies assumption 24, and that the

latter ensures

lim
k→∞

y(k) =
1

N

N∑

i=1

gi(xi)1 = g(x)1

lim
k→∞

z(k) =
1

N

N∑

i=1

hi(xi)1 = h(x)1

with a convergence that is exponentially fast independently on r′′, see, e.g., Ol-
shevsky and Tsitsiklis (2009a) (even though the convergence rate might be not
uniform in r′′). This convergence is moreover global, and this implies that:
a) assumption A6 in Lemma 27 is satisfied; b) assumption A4 in Lemma 26
is satisfied with c = 1 (important because it implies that we can continue
considering the entire BM

r′′ and not subsets of it).
• analysis of the reduced system: let y(k) = g

(
x(k)

)
1 and z(k) = g

(
x(k)

)
1,

so that (3.49) reduces to

x(k + 1) = x(k) + εS(k)

(
−x(k) +

g
(
x(k)

)

h
(
x(k)

) 1
)
. (3.50)
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Following Lemma 25 we start studying the time average of (3.50) (namely
φave(·) in Lemma 25).

Considering sufficiently small ε, so that Theorem 14 (i.e. Theorem 2 in Sun-
darapandian (2002)) holds, the discretized average system inherits the same
stability properties of the equivalent continuous time average system

ẋ = fave(x) = Save

(
−x+

g
(
x
)

h
(
x
) 1
)
, (3.51)

where

Save := lim
T→∞

1

T

T∑

k=0

S(k).

Given Assumption 23 it then follows that

Save =
1

N
I,

so that assumptions A1, A3, A4 and A5 in Lemma 25 are satisfied.
We now verify that assumptions A2 and A6 in Lemma 25 hold, i.e., that (3.50)

and (3.51) share the same unique equilibrium, and that the system is expo-
nentially convergent to it.

Consider the decomposition x = x⊥ + x‖, so that (3.51) can be written as




ẋ⊥ = − 1

N
x⊥ (3.52a)

ẋ‖ = − 1

N
x‖ +

1

N

g
(
x⊥ + x‖

)

h
(
x⊥ + x‖

) 1. (3.52b)

It follows that (3.52a) is such that
∥∥x⊥(k)

∥∥ ≤ e−
k
N

∥∥x(0)
∥∥, i.e., x⊥(k) converges

to zero exponentially fast and independently of x‖.
To prove the exponential convergence properties of (3.52b) we thus in-

tended it as a perturbed version of

ẋ‖ = − 1

N
x‖ +

1

N

g
(
x‖
)

h
(
x‖
) 1. (3.53)

From (3.47) and (3.48) it then follows that system (3.53) is equivalent to

ẋ = − 1

N
x+

1

N

g
(
x1
)

h
(
x1
)

=
1

N

(
−x+

f
′′
(x)x− f ′(x)

f
′′
(x)

)

= − 1

N

f
′
(x)

f
′′
(x)

(3.54)
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that, under Assumption 8, satisfies the hypotheses of Theorem 10 and it is
thus globally exponentially converging to its unique equilibrium point x∗ =

arg maxx f(x).
To prove that (3.54) exponentially implies also (3.52b) to be exponentially

convergent we use standard perturbation analysis tools. Rewrite (3.52b) as

ẋ‖ = − 1

N
x‖ +

1

N

g
(
x‖
)

h
(
x‖
) 1 +

1

N
Υ
(
x⊥,x‖

)
1

with

Υ
(
x⊥,x‖

)
:=

g
(
x⊥ + x‖

)

h
(
x⊥ + x‖

) − g
(
x‖
)

h
(
x‖
) .

Consider then that Assumption 8 implies Υ to be Lipschitz over BN
r′ , and that

system (3.54) satisfies the hypotheses of Theorem 11. Thus it is possible to
apply Lemma 12 and state that (3.52b) converges exponentially to x∗1 for each
x(0) ∈ BN

r′ . Hence assumption A5 of Lemma 27 is satisfied, and this proves
the claim of proposition. ♦

Proposition 29 (local stability) Consider Algorithm 8 and let Assump-
tions 8 and 24 hold true. Then there exist r > 0 such that for every r ∈ (0, r)

there exists two positive constants εr, cr such that if ε < εr, then there exists
γε > 0 such that

∥∥x(k)− x∗1
∥∥ ≤ cre

−γεk
∥∥x0 − x∗1

∥∥

for all x0 ∈ Bx∗
r :=

{
x |
∥∥x− x∗1

∥∥ < r
}
.

Proof The proof is analogous to the one of Proposition 28, except for the
analysis of the reduced system. Consider then (3.50), and the fact that x = x∗1

is still an equilibrium point.
Notice then that Assumption (24) does not guarantee the existence of an

average system as in the proof of Proposition 28.
To prove the claim we thus linearize the dynamics of (3.50) around the

equilibrium x = x∗1. Consider that, given the definitions of g(·) and h(·),

[
∇
(
g(x)

h(x)

)]

j

=

f ′′′j (xj)
N∑

i=1

(
f ′′i (xi)(xj − xi) + f ′i(xi)

)

(
N∑

i=1

f ′′i (xi)

)2 .
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This implies that

∇
(
g(x)

h(x)

)∣∣∣∣
x=x∗1

= 0,

and thus that the linearized version of (3.50) is

xlin(k + 1) = xlin(k) + εS(k)
(
− xlin(k) + x∗1

)
.

Since S(k) is diagonal, c.f. (3.5), it follows that the dynamics of each local
variable xlin

i is decoupled from the dynamics of the others. That is, each xlin
i

evolves as
xlin
i (k + 1) = xlin

i (k)− εwi(k)
(
xlin
i (k)− x∗

)
,

i = 1, . . . , N , that eventually implies

xlin
i (k) = x∗ +

(
xlin
i (0)− x∗

)
· e
−

k−1∑

h=0

wi(h)

.

Consider then that Assumption 24 ensures the existence of an opportuneB ∈ N
such that

∑B+h−1
k=h wi(k) ≥ 1 for every h ∈ N. This implies that

∣∣∣xlin
i (k)− x∗

∣∣∣ ≤
∣∣∣xlin
i (0)− x∗

∣∣∣ · e−b k
Bc

where b·c is the floor operator. This shows that 0 is exponentially stable for
the linearized system, and thus that it is locally exponentially stable for (3.50).

This proves our claim, because this implies the thesis of Lemma 25 to be
satisfied, i.e., all the hypotheses of Lemma 27 to be satisfied. ♦

Under the hypothesis of both the previous propositions, for sufficiently
small ε and initial points xi(0) sufficiently close to the equilibrium point x∗,
the dynamics can be summarized in

(
xi(k)− x∗

)
≈
(
x(0)− x∗

)
e−ε

∑k−1
t=0 wi(t)

for all i ∈ V , i.e., all the local estimates show a linear convergence to the global
optimum, with rates depending both on ε and on the number of local updates.
As a consequence, one would like to increase ε as much as possible, however
large ε might lead the system to instability if the initial conditions are not
sufficiently close to the global optimum x∗.
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Remark 30 In Algorithm 8 we considered linear iterative average consensus
schemes for notational simplicity reasons. However, the proof of Proposi-
tion 28 does not rely on linear consensus updates on a undirected graph. The
only requirement is to update the yi’s and zi’s with an algorithm that achieves
average consensus exponentially uniformly fast. Therefore it is possible to ex-
ploit also convergence acceleration methods (see, e.g., Aysal et al. (2009)) or
average consensus algorithms for directed graphs Franceschelli et al. (2011);
Cai and Ishii (2012).

gi, hi

g1, h1

gN , hN

distributed
averaging

xi

x1

xN

local
computations

local
updates

Figure 3.1: Graphical representation of ANRC which emphasize the local and
global operations based on an arbitrary average consensus algorithm.

Remark 31 The previous propositions are based on Assumptions 23 and 24,
that are deterministic worst-case hypotheses on the agents and edges activa-
tions processes. We conjecture that substituting the previous deterministic
assumptions with randomized ones where i.i.d. agents and edges activations
satisfy

E[wi(k)] ≥ w > 0, ∀i ∈ V ,∀k ∈ N

E[u(i,j)] ≥ u > 0, ∀(i, j) ∈ E ,∀k ∈ N

for some positive constants w, u will lead to exponential bounds holding
almost surely.
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3.2 Performance

We compare the performance of the ANRC and its accelerated version, de-
noted as Asynchronous Fast Newton-Raphson Consensus (AFNRC) and de-
scribed in detail in Algorithm 12, with three distributed convex optimization
methods, namely the Asynchronous Distributed Subgradient Method (ADSM),
the PEM and the Asynchronous Alternating Direction Method of Multipli-
ers (AADMM), described respectively in Algorithm 9, 10 and 11. The follow-
ing discussion provides some details about these strategies.

The aim is to show that, for the considered experiments, the convergence
rates of Algorithm 8 are generally faster than the ones of Algorithm ADSM
and PEM and comparable with Algorithm 11. We now present the quantities
involved in the simulations and the kind of experiments performed. Then we
describe the results.

We consider two particular graphs, both of N = 25 agents: the random
geometric graph of Figure 3.2 and a complete one. We generate the costs as

fi(x) = cie
aix + die

−bix, i = 1, . . . , N (3.55)

where ai, bi ∼ U [0, 0.2] and ci, di ∼ U [0, 1]. Examples are shown in Figure 3.2.

−20 0 20

0

2

4

xi

f i
(x

i)

Figure 3.2: The random geometric graph used in the simulations and some
examples of local cost functions (3.55).

We use symmetric gossip for the consensus protocol as in (3.7) with α = 0.5.
To make a fair comparison between the different approaches, we pay attention
to respect the requirements of each algorithm. This means that the ordered
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agents in V are sequentially activated, as requested by Algorithm 11. Instead,
the edges activation sequence is obtained concatenating independent permuta-
tions of the elements of j ∈ Ni once a agent i is selected, so that Assumption 23
is ensured (with B = Ndmax where dmax is the largest agent degree of the net-
work). Moreover, the initial conditions are xi(0) = arg minx fi (x) =: x∗i for
all the algorithms, as requested by Algorithm 10. The tuning parameters of
the five algorithms have been manually selected in order to achieve the fastest
convergence rates possible while preventing divergence effects. In the case of
the incomplete random geometric graph, the empirically selected parameters
are ε = 0.9 for the ANRC, ε = 0.1 and ϕ = 1.55 for the AFNRC, % = 30 for
the ADSM and δ = 0.05 for the AADMM. In the case of the complete rgraph,
the parameters are ε = 0.9 for the ANRC, ε = 0.9 and ϕ = 1 for the AFNRC,
% = 55 for the ADSM and δ = 0.001 for the AADMM.

ADSM

ADSM as proposed in Nedić (2010); Nedić et al. (2001), considers the classical
asynchronous incremental subgradient, alternating consensus steps on the cur-
rent estimated global minimum xi(k) with subgradient updates of each xi(k)

towards the minimum of the local cost fi. To guarantee the convergence, the
amplitude of the local subgradient steps is dynamically decreased through di-
minishing stepsize. Algorithm 9 presents an ADSM implementation, where %
is a tuning parameter.

Algorithm 9 ADSM Nedić (2010)
(storage allocation and constraints on parameters)

1: x ∈ RN for k = 0, 1, . . .

2: ci = counter associated to agent i, i = 1, . . . , N (c := [c1, . . . , cN ]T )
3: % ∈ R+

(initialization)
4: x(0) = x0

5: c(0) = 0

(main algorithm)
6: for k = 0, 1, . . . do

7: x(k + 1) = P (k)

[
x(k)− %E(k)

f ′
(
x(k)

)

c(k)

]

8: c(k + 1) = c(k) + E(k)1
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PEM

As proposed in Lu et al. (2011), PEM is a gossip-style, distributed asyn-
chronous iterative algorithm that solves unconstrained, separable, convex con-
sensus optimization problems over undirected networks with time varying
topologies, where each local function is strictly convex, continuously differ-
entiable, and has a minimizer. PEM utilizes non-gradient-based update rules
similar to Pairwise Averaging (Tsitsiklis (1984)) that involve no stepsize.

PEM requires one-time sharing of the fi’s between gossiping agents (which
may be costly or impermissible in some applications). At each time step k an
agent i with one or more one-hop neighbors initiates the iteration and selects
a neighbor j, to gossip. Agent i transmits xi(k) to j and it also transmits fi,
if agents j does not know fi. Agent j sets xj(k + 1) = (f ′i + f ′j)

†(f ′i(xi(k)) +

f ′j(xj(k))), where (f ′i + f ′j)
† denotes the inverse of f ′i + f ′j. Then j transmits

xj(k + 1) to i that sets xi(k + 1) = xj(k + 1). PEM essentially needs that
every agent is capable of applying a root-finding method, maintaining a list
of its one-hop neighbors, and remembering the functions it learns along the
way. PEM may be expressed in a compact form as in Algorithm 10 where
Ψ : (F ′, k) → F ′ is the linear operator onto the vectorial space F ′ of f ′,
such that Ψ[f ′, k] := 2(I − P1/2(k))f ′ and Ψ[f ′, k]† denote the inverse of the
injective function Ψ[f ′, k], with its codomain restricted to its range.

Algorithm 10 PEM Lu et al. (2011)
(storage allocation and constraints on parameters)

1: x(k) ∈ RN

(initialization)
2: x(0) = arg minx f (x)

(main algorithm)
3: for k = 0, 1, . . . do

4:
x(k + 1) = x(k)− S(k)

(
x(k − 1)

+ Ψ[f ′, k]†
(
2(I − P1/2(k))f ′(x(k))

) )

AADMM

AADMM instead, is a distributed ADMM algorithm in which the updates of
the agents are done in a sequential order. A particular implementation of an
asynchronous ADMM belongs to the incremental distributed algorithms where
each agent takes turn to update the system wide decision variable and passes
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the updated variable to the network (see Ram et al. (2009)). Here we consider
the following Algorithm 11, that distinguishes itself among the other studies
in the literature because each agent maintains and updates its local estimate.
Specifically, AADMM uses an augmented Lagrangian approach, using scalar
δ > 0 as the penalty parameter. A dual variable λij is associated with the
constraint xi = xj on edge (i, j). Each agent i keeps a local decision estimate
xi and a vector of dual variables λki with k < i. λi denotes the vector of dual
variables owned by agent i, i.e.

λi :=

{
λji if j < i

0 if j ≥ i.

Li := {j | (i, j) ∈ E , j < i}, Ri := {j | (i, j) ∈ E , i < j} denote the sets of
the predecessors and successors of i, i.e. the sets of neighbors whose index is
smaller and larger than i respectively. At each iteration k agent i updates its
state xi and dual variables λi before agent j if i < j, i.e. the ordered agents
in V are sequentially activated.

Algorithm 11 AADMM Wei and Ozdaglar (2012)
(storage allocation and constraints on parameters)

1: x(k) ∈ RN ,λi(k) ∈ RN ,∀i ∈ V
2: δ ∈ (0, 1)

(initialization)
3: x(0) = x0

4: λi(0) = 0,∀i ∈ V
(main algorithm)

5: for k = 0, 1, . . . do
6: if wi(k), i ∈ V then

7:

xi(k + 1) = arg min
x

[
fi(x)

+
δ

2

∑

j∈Li

∥∥∥xj(k)− x− δ

2
λji(k)

∥∥∥
2

+
δ

2

∑

j∈Ri

∥∥∥x− xj(k)− δ

2
λij(k)

∥∥∥
2]

8: λji(k + 1) = λji(k)− δ(xj(k)− xi(k + 1))

9: else

10:
xi(k + 1) = xi(k)

λji(k + 1) = λji(k), ∀j ∈ Li
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AFNRC

AFNRC is an accelerated version of Algorithm 8 that recalls the accelerated
SNRC presented in Zanella et al. (2012c). It exploits an additional level of
memory (here the states ỹ(k + 1), z̃(k + 1)) to speed up the convergence
properties of the consensus strategy. The parameter ϕ, weights the gradient,
the memory and the consensus update. To be effective in an asynchronous
perspective, a further level of memory is introduced (the states ŷ(k+1), ẑ(k+

1)), whose update, as long as for the states y(k) and z(k), is determined by
the matrix

Q(k) :=

[
(1− ϕ)(I − E(k)) + ϕP (k) (1− ϕ)E(k)

E(k) I − E(k)

]
.

To guarantee the AFNRC to be faster than the ANRC, ϕ is taken in the
interval (1, 2), see Muthukrishnan et al. (1998).

Algorithm 12 AFNRC
(storage allocation and constraints on parameters)

1: x,y, z, ỹ, z̃, ŷ, ẑ ∈ RN

2: ε ∈ (0, 1), ϕ ∈ (1, 2)

(initialization)
3: x(0) = x0

4: y(0)=z(0)= ŷ(0)= ẑ(0)=g (x(−1))=h (x(−1))=0

5: ỹ(0) = 1
2−ϕg (x(0)), z̃(0) = 1

2−ϕh (x(0))

(main algorithm)
6: for k = 1, 2, . . . do

(consensus)

7:

[
y(k)

ŷ(k)

]
= Q(k)

[
ỹ(k − 1)

ŷ(k − 1)

]

8:

[
z(k)

ẑ(k)

]
= Q(k)

[
z̃(k − 1)

ẑ(k − 1)

]

(update of the local guesses)

9: x(k) = x(k − 1) + εS(k)

(
−x(k − 1) +

y(k)

z(k)

)

(update of the auxiliary variables)

10: ỹ(k)= y(k) +
1

2− ϕE(k)
[
g
(
x(k)

)
− g
(
x(k−1)

)]

11: z̃(k)= z(k) +
1

2− ϕE(k)
[
h
(
x(k)

)
− h

(
x(k−1)

)]
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Results

Figure 3.3 shows the evolutions of the square errors ‖x(k)− x∗1‖2 relative
to the outcomes of the five strategies considering respectively the graph of
Figure 3.2 and the complete graph (some of the local costs are shown in Fig-
ure 3.2). We notice that, for this specific simulation, all the algorithms con-
verge to the global optimum x∗. We can notice that the effect of the topology
of the network can play a crucial role on the convergence properties of these
algorithms (the intuition being that the faster the consensus is, the faster the
optimization converges). While the ADSM is the slowest to converge, PEM is
faster than ADSM but slower than ANRC. Instead, the AFNRC and AADMM
methods converge to the global optimum in a comparable amount of time.
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(a) graph of Figure 3.2
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(b) complete graph

Figure 3.3: Comparison of the square error ‖x(k)− x∗1‖2 in log10-scale for the
case N = 25 applied to the five algorithms: ANRC (Algorithm 8, (a) ε = 0.9,
(b) ε = 0.9), AFNRC (Algorithm 12, (a) ε = 0.1 and ϕ = 1.55, (b) ε = 0.9 and
ϕ = 1), PEM (Algorithm 10), ADSM (Algorithm 9, (a) % = 30, (b) % = 55),

AADMM (Algorithm 11, (a) δ = 0.05, (b) δ = 0.001).
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Conclusions

In thesis we proposed a novel distributed optimization strategy suitable for
convex, unconstrained, multidimensional, smooth and separable cost func-
tions. The algorithm does not rely on Lagrangian formalisms and acts as a
distributed Newton-Raphson optimization strategy by repeating the following
steps: agents first locally compute and update second order Taylor expan-
sions around the current local guesses and then they suitably combine them
by means of average consensus algorithms to obtain a sort of approximated
Taylor expansion of the global cost. This allows each agent to infer a local
Newton direction, used to locally update the guess of the global minimum.

First we offered a synchronous scalar version of the Newton-Raphson Con-
sensus strategy. We then proposed a multidimensional perspective, accompa-
nied by two approximated versions of the main algorithm to take into account
the possible computational, communication and memory constraints that may
arise in practical scenarios.

We produced proofs of convergence and analysis of robustness in terms of
initial conditions under some simplifying assumptions like the use of scalar
smooth convex functions and synchronous implementations. Importantly, the
average consensus protocols and the local updates steps have different time-
scales, and the whole algorithm is proven to be convergent only if the updates
are sufficiently slow with respect to the consensus.

We provided some numerical simulations confirming the properties of the
proposed algorithm and we compared it with popular distributed optimization
strategies: if suitably tuned, the algorithm is generally faster than Distributed
Subgradient Methods and, from practical perspectives, it can have the same
performance of Alternating Direction Method of Multipliers. We showed that
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the proposed algorithm uses average consensus as a building block, thus it
naturally supports the use of accelerated consensus techniques, that can further
improve its convergence properties.

We studied the rates of convergence of the Synchronous Newton-Raphson
Consensus and the Gradient Descent Consensus, the simple assumption of
using quadratic costs functions, with the aim of building the path for charac-
terizations valid in general frameworks.

The results have shown that convergence properties heavily rely on the
amount of coordination required to the agents. Especially for the distributed
gradient descent, the degree of diversity of the local cost functions, i.e. their
curvature, impacts on the rate of convergence: the intuition is that the opti-
mum can be reached more easily if agents have similar curvatures. In a certain
sense, similar costs reflect to similar behaviors, and similar behaviors require
less coordination to reach consensus.

Finally, we proposed an asynchronous version of the Synchronous Newton-
Raphson Consensus algorithm, here referred as Asynchronous Newton-Raphson
Consensus. By proposing this extension we showed that Synchronous Newton-
Raphson Consensus may play an important role among the distributed opti-
mization algorithms. It has in fact a natural niche, composed by the situa-
tions where the network topology is unknown and possibly time-varying (for
which Asynchronous Alternating Direction Method of Multipliers may suffer
of extremely complex implementations), and where the local cost functions
are sufficiently smooth (for which the Asynchronous Newton-Raphson Con-
sensus converges faster than Asynchronous Distributed Subgradient Methods,
due to the fact that the former uses also second-order derivatives). Nonethe-
less numerical investigations lead to conjecture that the algorithm preserves
convergence properties for certain opportune stochastic protocols.

Future works, that need firstly to address this issue, should also analyze the
effects of numerical errors and packet losses, the convergence speed under spe-
cific graphs and local cost functions scenarios, and also extend the technique
to constrained problems. Moreover, an important avenue is to study how the
agents can dynamically and locally tune the speed of the local updates with
respect to the consensus process, namely how to tune their parameter ε. In
fact large values of ε gives faster convergence but might lead to instability.
Lastly, the analytical characterization of the rate of convergence of the pro-
posed strategies and the extensions to non-smooth convex functions need to
be addressed. Natural questions are how the rate of convergence is affected by
time-varying consensus protocols and non-quadratic costs functions.
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