
A Consensus Approach to Distributed Convex
Optimization in Multi-Agent Systems

Filippo Zanella
Ph.D. Defense

Department of Information Engineering - University of Padova

February 28th, 2013

Research team

Angelo Cenedese
Assistant Professor

Luca Schenato
Associate Professor

Damiano Varagnolo
Post-Doc

Ruggero Carli
Assistant Professor

Publications

F. Zanella, D. Varagnolo, A. Cenedese, G. Pillonetto, L. Schenato (2012)
Asynchronous Newton-Raphson Consensus for Distributed Convex Optimization
3rd IFAC Workshop on Distributed Estimation and Control in Networked Systems (NecSys’12)

F. Zanella, A. Cenedese (2012)
Multi-agent tracking in wireless sensor networks: model and algorithm
1st WSEAS International Conference on Information Technology and Computer Networks (ITCN’12)

F. Zanella, A. Cenedese (2012)
Multi-agent tracking in wireless sensor networks: implementation
1st WSEAS International Conference on Information Technology and Computer Networks (ITCN’12)

F. Zanella, D. Varagnolo, A. Cenedese, G. Pillonetto, L. Schenato (2012)
Multidimensional Newton-Raphson consensus for distributed convex optimization
American Control Conference (ACC’12)

F. Zanella, F. Pasqualetti, R. Carli, F. Bullo (2012)
Simultaneous Boundary Partitioning and Cameras Synchronization for Optimal
Video Surveillance
3rd IFAC Workshop on Distributed Estimation and Control in Networked Systems (NecSys’12)

Publications

F. Zanella, D. Varagnolo, A. Cenedese, G. Pillonetto, L. Schenato (2012)
The convergence rate of Newton-Raphson consensus optimization for quadratic
cost functions
IEEE Conference on Decision and Control (CDC’12)

F. Zanella, D. Varagnolo, A. Cenedese, G. Pillonetto, L. Schenato (2011)
Newton-Raphson consensus for distributed convex optimization
IEEE Conference on Decision and Control (CDC’11)

F. Zanella, D. Varagnolo, A. Cenedese, G. Pillonetto, L. Schenato
Newton-Raphson Consensus for Distributed Convex Optimization
IEEE Transactions on Automatic Control (submitted)

F. Zanella, D. Varagnolo, A. Cenedese, G. Pillonetto, L. Schenato
Asynchronous Newton-Raphson Consensus for Distributed Convex Optimization
Automatica (to submit)

F. Zanella, A. Cenedese
Channel Model Identification in Wireless Sensor Networks Using a Fully
Distributed Consensus Algorithm
Ad-Hoc Networks (submitted)

Publications

F. Zanella, A. Cenedese
Multi-agent tracking in wireless sensor networks
WSEAS International Journal of Systems Engineering, Applications and Development

F. Zanella, J. R. Peters, M. Spindler, F. Pasqualetti, R. Carli, and F. Bullo
Distributed cameras synchronization for smart-intruder detection
IEEE Transaction on Robotics (submitted)

F. Zanella, A. Cenedese, F. Maran
Teseo: a multi-agent tracking application in wireless sensor networks
Ad-Hoc Networks (to submit)

Outline

1 Introduction

2 Design

3 Synchronous scalar

4 Synchronous multidimensional

5 Asynchronous scalar

6 Conclusions

Table of Contents

1 Introduction

2 Design

3 Synchronous scalar

4 Synchronous multidimensional

5 Asynchronous scalar

6 Conclusions

Distributed optimization

Multi-agents scenario

collaboration to pursue
a common goal:

find the optimal common
working point x∗

f1

f2

f3 f4
f5

f6

f7

Problem formulation

x∗ = argmin
x

[
f (x) :=

N∑
i=1

fi (x)
]
under convexity assumptions

in an undirected and connected communication graph

Distribution optimization - Example 1

Regression in sensor networks

min
x

∑N
i=1 φ(yi − uT

i x)

yi = uT
i x + vi linear measurements (output)

u i is the i-th feature vector (independent variable)
vi independent Gaussian noises

φ(r) = |r |2 (least squares)
φ(r) = |r | (least abs. deviations)

φ(r) =

{
0 if |r | < 1
|r | − 1 otherwise

(Vapnik)

φ(r) =

{
|r |2 if |r | < 1
2(|r | − 1) otherwise

(Huber)

0.3 0.4 0.5 0.6 0.7 0.8 0.9

5

6

7

8

−3 −2 −1 0 1 2 3

0

1

2

3

4

Distribution optimization - Example 2

Classification in sensor networks

min
x

N∑
i=1

li
(
yiuT

i x
)

+ λ ‖x‖2

yi ∈ {−1, 1} is the binary outcome
u i is the i-th feature vector (independent variable)
li : R → R is the convex loss (Hinge, exponential)
λ ‖x‖2 is a Tikhonov regularization

0 1 2 3

1

2

3

−2 0 2

0

1

2

3

State of the art

3 main categories:

primal decompositions methods
(e.g., distributed subgradients [Ozdaglar, Nedić, Lobel, . . .])

dual decompositions methods
(e.g., alternating direction method of multipliers [Bertsekas,
Boyd, Johansson, . . .])

tailored methods
(e.g., Fast-Lipschitz [Fischione], control based approach
[Wang-Elia], pairwise equalizing [Lu])

Primal decomposition methods (distributed)

Distributed subgradient methods (DSM) [?]

alternates consensus steps on xi (k) with subgradient updates

Algorithm

xi (k + 1) = PX

 N∑
j=1

pij(k)xj(k) + ρi (k)gi
(
xi (k)

)
∑N

j=1 pij(k)xj(k) := aver. consensus step on local estimates xj(k)

gi
(
xi (k)

)
:= local (bounded) subgradient of cost fi (·) at xi (k)

ρi (k) := local stepsize
PX projection onto the domain X

If ρ(k) = ρ then lim infk→+∞ f
(
xi (k)

)
= f ∗ + small constant

If ρ(k) = ρ/k it converges to the optimum x∗

Dual decomposition methods (distributed)

Alternating Direction Method of Multipliers (ADMM) [?]

minimize f1(x1) + f2(x2)

subject to A1x1 + A2x2 − b = 0

Augmented
Lagrangian:

Lδ(x1, x2, λ) := f1(x1) + f2(x2)

+λT (A1x1 + A2x2 − b)

+ δ
2 ‖A1x1 + A2x2 − b‖22

Algorithm
1 x1(k + 1) = argminx1 Lδ

(
x1, x2(k), λ(k)

)
2 x2(k + 1) = argminx2 Lδ

(
x1(k + 1), x2, λ(k)

)
3 λ(k + 1) = λ(k) + δ (A1x1 + A2x2 − b)

Tailored methods (distributed)

Distributed Control Method (DCM) [?]
forces the states to the global optimum by controlling the
subgradient of the global cost

subgradient as an input/output map
small gain theorems to guarantee the convergence

0 < µ <
2

2maxi={1,...,N} |Ni |+ 1 , ν > 0 ensure system stability

Algorithm
1 zi (k + 1) = zi (k) + µ

∑
j∈Ni

(
xi (k)− xj(k)

)
, Ni neighbors of i

2

xi (k + 1) = xi (k) + µ
∑
j∈Ni

(
xj(k)− xi (k)

)
+µ

∑
j∈Ni

(
zj(k)− zi (k)

)
− µ ν gi

(
xi (k)

)

Tailored methods (distributed)

Pairwise Equalizing Method (PEM) [?]
a gossip-style, distributed asynchronous iterative algorithm that
uses non-gradient-based update rules with no stepsize

one-time sharing of the fi ’s between gossiping agents
symmetric-gossip communication between agents i and j
computation of (f ′i + f ′j)†, the inverse of f ′i + f ′j

Algorithm
1 x(0) = argminx f (x)

2
x(k + 1) = x(k)− S(k)

(
x(k − 1)

+ Ψ[f ′, k]†
(
2(I − P1/2(k))f ′(x(k))

))

Drawbacks of the considered algorithms

Primal based strategies
may be slow
may not converge to the optimum

Dual based strategies
may be computationally expensive
require topological knowledge
hard to handle time-varying graphs and time delays

Tailored strategies
may be slow
may require complex computations

Motivations

There is no “perfect” algorithm for all situations or scenarios

The algorithm that we want:

1 assured to converge to global optimum

2 easy to be implemented

3 with small computational requirements

4 does not require synchronization or topology knowledge

5 inheriting good properties of standard consensus
convergence proofs, robustness, . . .

Our position in literature

How the proposed algorithm relates to other techniques?

primal decomposition method

unconstrained convex optimization

uses second-order approximations

Our contribute
asynchronous algorithm
better convergence speed for primal methods

Table of Contents

1 Introduction

2 Design

3 Synchronous scalar

4 Synchronous multidimensional

5 Asynchronous scalar

6 Conclusions

Illustrative example: quadratic local cost functions
Derivation of the algorithm - step 1 on 3

Simplified scalar scenario

fi (x) =
1
2ai (x − bi)

2 + ci ai > 0

Corresponding solution

x∗ =

N∑
i=1

aibi

N∑
i=1

ai

=

1
N

N∑
i=1

aibi

1
N

N∑
i=1

ai

i.e. parallel of 2 average consensus!

Illustrative example: quadratic local cost functions
Derivation of the algorithm - step 1 on 3

Average consensus algorithm (P matrix)
Letting yi (0) := aibi and zi (0) := ai

y(k + 1) = P y(k)

z(k + 1) = P z(k)

x(k + 1) =
y(k + 1)

z(k + 1)

Then

lim
k→∞

x(k) = x∗1 =

N∑
i=1

yi (0)

N∑
i=1

zi (0)

1

And for generic convex local cost functions?
Derivation of the algorithm - step 2 on 3

Notice that in the quadratic case

aibi = f ′′i (x)x − f ′i (x) =: gi (x)

ai = f ′′i (x) =: hi (x)
x∗ =

1/N
N∑

i=1
aibi

1/N
N∑

i=1
ai

that leads to

x̂∗ =

1/N
N∑

i=1
f ′′i (x)x − 1/N

N∑
i=1

f ′i (x)

1/N
N∑

i=1
f ′′i (x)

= x − f ′(x)

f ′′(x)

intuition: that is a standard Newton-Raphson update step!
x̂∗ generally provides the right descent direction

Can we apply the same consensus strategy again?

And for generic convex local cost functions?
Derivation of the algorithm - step 2 on 3

Set yi (0) = f ′′i
(
xi (0)

)
xi (0)− f ′i

(
xi (0)

)
and zi (0) = f ′′i

(
xi (0)

)
Let each agent choose an xi (0) and apply again the consensus
strategy to compute (up to convergence)

x̂∗ =

1
N

N∑
i=1

(
f ′′i
(
xi (0)

)
xi (0)− f ′i

(
xi (0)

))
1
N

N∑
i=1

f ′′i
(
xi (0)

) =

1
N

N∑
i=1

gi
(
xi (0)

)
1
N

N∑
i=1

hi
(
xi (0)

) .

lim
k→∞

x(k) = x̂∗1 =

N∑
i=1

yi (0)

N∑
i=1

zi (0)

1

The initial idea
Derivation of the algorithm - step 2 on 3 - graphical interpretation

f1
f2
ftot

x̂∗ =
1
N
∑N

i=1 ai bi
1
N
∑N

i=1 ai
≈

1
N
∑N

i=1(f ′′i (x)xi−f ′i (x))
1
N
∑N

i=1 f ′′i (x)

intuition: x̂∗ is an accurate guess of x∗!

The initial idea
Derivation of the algorithm - step 2 on 3 - graphical interpretation

f1
f2
ftot

x̂∗ =
1
N
∑N

i=1 ai bi
1
N
∑N

i=1 ai
≈

1
N
∑N

i=1(f ′′i (x)xi−f ′i (x))
1
N
∑N

i=1 f ′′i (x)

intuition: x̂∗ is an accurate guess of x∗!

The initial idea
Derivation of the algorithm - step 2 on 3 - graphical interpretation

f1
f2
ftot
x1

x̂∗ =
1
N
∑N

i=1 ai bi
1
N
∑N

i=1 ai
≈

1
N
∑N

i=1(f ′′i (x)xi−f ′i (x))
1
N
∑N

i=1 f ′′i (x)

intuition: x̂∗ is an accurate guess of x∗!

The initial idea
Derivation of the algorithm - step 2 on 3 - graphical interpretation

f1
f2
ftot
x1
x2

x̂∗ =
1
N
∑N

i=1 ai bi
1
N
∑N

i=1 ai
≈

1
N
∑N

i=1(f ′′i (x)xi−f ′i (x))
1
N
∑N

i=1 f ′′i (x)

intuition: x̂∗ is an accurate guess of x∗!

The initial idea
Derivation of the algorithm - step 2 on 3 - graphical interpretation

f1
f2
ftot
x1
x2
q1

x̂∗ =
1
N
∑N

i=1 ai bi
1
N
∑N

i=1 ai
≈

1
N
∑N

i=1(f ′′i (x)xi−f ′i (x))
1
N
∑N

i=1 f ′′i (x)

intuition: x̂∗ is an accurate guess of x∗!

The initial idea
Derivation of the algorithm - step 2 on 3 - graphical interpretation

f1
f2
ftot
x1
x2
q1
q2

x̂∗ =
1
N
∑N

i=1 ai bi
1
N
∑N

i=1 ai
≈

1
N
∑N

i=1(f ′′i (x)xi−f ′i (x))
1
N
∑N

i=1 f ′′i (x)

intuition: x̂∗ is an accurate guess of x∗!

The initial idea
Derivation of the algorithm - step 2 on 3 - graphical interpretation

f1
f2
ftot
x1
x2
q1
q2
qtot

x̂∗ =
1
N
∑N

i=1 ai bi
1
N
∑N

i=1 ai
≈

1
N
∑N

i=1(f ′′i (x)xi−f ′i (x))
1
N
∑N

i=1 f ′′i (x)

intuition: x̂∗ is an accurate guess of x∗!

The initial idea
Derivation of the algorithm - step 2 on 3 - graphical interpretation

f1
f2
ftot
x1
x2
q1
q2
qtot
x̂∗
x∗

x̂∗ =
1
N
∑N

i=1 ai bi
1
N
∑N

i=1 ai
≈

1
N
∑N

i=1(f ′′i (x)xi−f ′i (x))
1
N
∑N

i=1 f ′′i (x)

intuition: x̂∗ is an accurate guess of x∗!

The initial idea
Derivation of the algorithm - step 2 on 3

We have seen that:

1) if all the xi (0) are equal, i.e.,
xi (0) = x , ∀i , x̂∗ behaves like a
Newton-Raphson

x̂∗ = x − f ′(x)
f ′′(x)

2) depending on the initial
conditions xi (0), x̂∗ is a sensible
estimation of x∗

x̂∗ =

1
N

N∑
i=1

gi
(
xi(0)

)
1
N

N∑
i=1

hi
(
xi(0)

) .

To get the global optimum we can alternate
steps that compute the averages of the gi ’s and hi ’s

and steps that update the local xi ’s

The initial idea
Derivation of the algorithm - step 3 on 3 - analysis of the problems

How do we modify the consensus strategy?

1 initialization:
yi (0) := f ′′i (xi (0))xi (0)− f ′i (xi (0)) = gi

(
xi (0)

)
zi (0) := f ′′i (xi (0)) = hi

(
xi (0)

)
2 average consensus (in ‖, P doubly stochastic):

y(k + 1) = Py(k)

z(k + 1) = Pz(k)

3 local updates: xi (k + 1) =
yi (k + 1)

zi (k + 1)

We must provide 2 little modifications:

xi changes! ⇒ must track the changing f ′i (xi) and f ′′i (xi)

xi (k) =
yi (k)

zi (k)
too aggressive! ⇒ should make it milder

The initial idea
Derivation of the algorithm - step 3 on 3 - analysis of the problems

How do we modify the consensus strategy?

1 initialization:
yi (0) := f ′′i (xi (0))xi (0)− f ′i (xi (0)) = gi

(
xi (0)

)
zi (0) := f ′′i (xi (0)) = hi

(
xi (0)

)
2 average consensus (in ‖, P doubly stochastic):

y(k + 1) = Py(k)

z(k + 1) = Pz(k)

3 local updates: xi (k + 1) =
yi (k + 1)

zi (k + 1)

We must provide 2 little modifications:

xi changes! ⇒ must track the changing f ′i (xi) and f ′′i (xi)

xi (k) =
yi (k)

zi (k)
too aggressive! ⇒ should make it milder

The initial idea
Derivation of the algorithm - step 3 on 3 - analysis of the problems

How do we modify the consensus strategy?

1 initialization:
yi (0) := f ′′i (xi (0))xi (0)− f ′i (xi (0)) = gi

(
xi (0)

)
zi (0) := f ′′i (xi (0)) = hi

(
xi (0)

)
2 average consensus (in ‖, P doubly stochastic):

y(k + 1) = Py(k)

z(k + 1) = Pz(k)

3 local updates: xi (k + 1) =
yi (k + 1)

zi (k + 1)

We must provide 2 little modifications:

xi changes! ⇒ must track the changing f ′i (xi) and f ′′i (xi)

xi (k) =
yi (k)

zi (k)
too aggressive! ⇒ should make it milder

The initial idea
Derivation of the algorithm - step 3 on 3 - analysis of the problems

How do we modify the consensus strategy?

1 initialization:
yi (0) := f ′′i (xi (0))xi (0)− f ′i (xi (0)) = gi

(
xi (0)

)
zi (0) := f ′′i (xi (0)) = hi

(
xi (0)

)
2 average consensus (in ‖, P doubly stochastic):

y(k + 1) = Py(k)

z(k + 1) = Pz(k)

3 local updates: xi (k + 1) =
yi (k + 1)

zi (k + 1)

We must provide 2 little modifications:

xi changes! ⇒ must track the changing f ′i (xi) and f ′′i (xi)

xi (k) =
yi (k)

zi (k)
too aggressive! ⇒ should make it milder

Table of Contents

1 Introduction

2 Design

3 Synchronous scalar

4 Synchronous multidimensional

5 Asynchronous scalar

6 Conclusions

The Newton-Raphson Consensus (NRC) algorithm

1 quadratic approximations update:
gi (xi (k)) = f ′′i (xi (k))xi (k)− f ′i (xi (k))

hi (xi (k)) = f ′′i (xi (k))

2 initialization:
x(k) = y(k) = z(k) = g(x(−1)) = h(x(−1)) = 0

3 quadratic approximations mixing:
y(k + 1) = P [y(k) + g(k)− g(k − 1)]

z(k + 1) = P [z(k) + h(k)− h(k − 1)]

4 guesses updates:

x(k + 1) = (1− ε)x(k) + ε
y(k + 1)

z(k + 1)

Important remark: Step 3 can be substituted
with any asymptotical average consensus algorithm

The Newton-Raphson Consensus (NRC) algorithm

1 quadratic approximations update:
gi (xi (k)) = f ′′i (xi (k))xi (k)− f ′i (xi (k))

hi (xi (k)) = f ′′i (xi (k))

2 initialization:
x(k) = y(k) = z(k) = g(x(−1)) = h(x(−1)) = 0

3 quadratic approximations mixing:
y(k + 1) = P [y(k) + g(k)− g(k − 1)]

z(k + 1) = P [z(k) + h(k)− h(k − 1)]

4 guesses updates:

x(k + 1) = (1− ε)x(k) + ε
y(k + 1)

z(k + 1)

Important remark: Step 3 can be substituted
with any asymptotical average consensus algorithm

Block schematic representation

gi , hi

g1, h1

gN , hN

distributed
averaging

xi

x1

xN

gi(k) = f ′′i (xi(k))xi(k)− f ′i (xi(k))
hi(k) = f ′′i (xi(k))

xi(k +1) = (1−ε)xi(k)+ε
yi(k + 1)
zi(k + 1)

need just uniformly exponentially converging av. consensus

NRC - Block scheme

gi , hi

g1, h1

gN , hN

syncronous
scalar

consensus
“P”

xi

x1

xN

local
computations

distributed
averaging

local
updates

gi(k) = f ′′i (xi(k))xi(k)− f ′i (xi(k))
hi(k) = f ′′i (xi(k))

xi(k +1) = (1−ε)xi(k)+ε
yi(k + 1)
zi(k + 1)

Convergence theorem

Hypotheses
fi ∈ C2 (R)

f ′i and f ′′i bounded
fi strictly convex
x∗ 6= ±∞
null initial conditions

Thesis
there is a positive ε̄ s.t. if ε < ε̄ then, exponentially,

lim
k→+∞

x(k) = x∗1

Sketch of the proof

importance of the proof:
gives insights on key properties

1 transform the algorithm in a continuous-time system

2 recognize the existence of a two-time scales dynamical system

3 analyze separately fast and slow dynamics
(standard singular perturbation model analysis approach [?])

Sketch of the proof
Transformation in a continuous-time system


y(k + 1) = P

(
y(k) + g(x(k))− g(x(k − 1))

)
z(k + 1) = P

(
z(k) + h(x(k))− h(x(k − 1))

)
x(k + 1) = (1− ε)x(k) + ε

y(k + 1)

z(k + 1)

↓ P = I − K

εv̇(t) = −v(t) + g (x(t))

εẇ(t) = −w(t) + h (x(t))

εẏ(t) = −Ky(t) + (I − K) [g (x(t))− v(t)]

εż(t) = −Kz(t) + (I − K) [h (x(t))−w(t)]

ẋ(t) = −x(t) +
y(t)

z(t)

Sketch of the proof
Two-time scales dynamical system



εv̇(t) = −v(t) + g (x(t))

εẇ(t) = −w(t) + h (x(t))

εẏ(t) = −Ky(t) + (I − K) [g (x(t))− v(t)]

εż(t) = −Kz(t) + (I − K) [h (x(t))−w(t)]

ẋ(t) = −x(t) +
y(t)

z(t)

If ε is sufficiently small . . .
first subsystem is much faster than second one

Sketch of the proof
Boundary layer system (fast dynamics)

t and x are “frozen” parameters (stretched timeline)


v(t)→ g (x(t))

w(t)→ h (x(t))

y(t)→
(
1
N1

Tg (x(t))
)
1

z(t)→
(
1
N1

Th (x(t))
)
1

If ε is sufficiently small . . .
the system is globally exponentially stable

Sketch of the proof
Reduced system (slow dynamics)

ε = 0 “instantaneous” fast transient

ẋ(t) = −x(t) +
1
N1

Tg (x(t))
1
N1

Th (x(t))
1,=⇒ x(t)→ x(t)1

If ε is sufficiently small . . .

ẋ(t) ≈ − f ′ (x(t))

f ′′ (x(t))
= −

∑N
i=1 f ′i (x(t))∑N
i=1 f ′′i (x(t))

i.e. a continuous-time Newton-Raphson strategy

Fast Newton-Raphson Consensus (FNRC)

accelerated version of the NRC, based on the
second order diffusive schedules [?]

ϕ =
2

1 +
√
1− λ22

(gradient and the memory weight)

ỹ(0) = z̃(0) = 0 (initialization)



ỹ(k) = y(k − 1) + g (x(k − 1))− g (x(k − 2))

z̃(k) = z(k − 1) + h (x(k − 1))− h (x(k − 2))

y(k) = ϕP ỹ(k) + (1− ϕ) ỹ(k − 1)

z(k) = ϕP z̃(k) + (1− ϕ) z̃(k − 1)

x(k) = (1− ε)x(k − 1) + ε
y(k)

z(k)

FNRC - Block scheme

gi , hi

g1, h1

gN , hN

fast
syncronous
scalar

consensus
“ϕP”

xi

x1

xN

local
computations

distributed
averaging

local
updates

gi(k) = f ′′i (xi(k))xi(k)− f ′i (xi(k))
hi(k) = f ′′i (xi(k))

xi(k +1) = (1−ε)xi(k)+ε
yi(k + 1)
zi(k + 1)

Experiments description

circulant graph, N = 30

P =


0.5 0.25 0.25
0.25 0.5 0.25

.
0.25 0.5 0.25

0.25 0.25 0.5


fi = sum of exponentials

Comparisons with a Distributed Subgradient

Nedić Ozdaglar Dist. subgr. meth. for multi-agent opt. (2009)

1 x(c)(k) = Px(k) (consensus step)

2 xi (k + 1) = x (c)
i (k)− ρ

k f ′i
(

x (c)
i (k)

)
(local gradient descent)

Numerical comparison
DSM NRC

0 100 200 300 400
−10

−5
0

5

10

k [time]

x i
(k
)

0 100 200 300 400
−10

−5
0

5

10

k [time]

x i
(k
)

Comparisons with (an) ADMM

Bertsekas Tsitsiklis, Parall. and Dist. Computation (1997)
L(x , k) :=

∑
i

[
fi (xi) + y (`)

i (k) (xi − zi−1(k)) + y (c)
i (k) (xi − zi (k))

+y (r)
i (k) (xi − zi+1(k)) + δ

3 |xi − zi−1(k)|2 +
δ
3 |xi − zi (k)|2 + δ

3 |xi − zi+1(k)|2
]

x(k + 1) = argminx L(x , k)

Numerical comparison
ADMM NRC

0 20 40 60 80 100
−1

−0.5
0

0.5

1

k [time]

x i
(k
)

0 20 40 60 80 100
−10

−5
0

5

10

k [time]

x i
(k
)

Overall comparison of the square error

all the algorithms converge to the global optimum
DSM (ρ = 100) is the slowest to converge
DCM (µ = 0.25) is significantly faster than DSM
DCM is slower than NRC (ε = 0.9)
FNRC (ε = 0.9) and ADMM (δ = 0.01) converge in a
comparable amount of time

0 25 50

10−2

10−1

100

101

k

lo
g
1
0
‖x

(k
)
−
x
∗ 1
‖2 DSM [29]

DCM [41]
NRC
ADMM [7]
FNRC

Table of Contents

1 Introduction

2 Design

3 Synchronous scalar

4 Synchronous multidimensional

5 Asynchronous scalar

6 Conclusions

Multidimensional scenario - Block scheme

g i ,Hi

g1,H1

gN ,HN

syncronous
M-dims
consensus
“P ⊗ I”

xi

x1

xN

local
computations

distributed
averaging

local
updates

g i (k) := Hi(k)x i(k)−∇fi (x i(k))
Hi(k) to be defined

x i(k + 1) = (1 − ε)x i(k) +
ε (Zi(k + 1))−1 y i(k + 1)

Different approaches

Newton-Raphson Consensus

Hi (k) := ∇2fi (x i (k)) =⇒ ẋ ≈ −
(
∇2f (x)

)−1∇f (x)

Jacobi Consensus

Hi (k) :=


∂2fi
∂x2

1

∣∣∣
x i (k)

0
. . .

0 ∂2fi
∂x2

N

∣∣∣
x i (k)

 =⇒ ẋa ≈ −
(
diag∇2f (x)

)−1∇f (x)

Gradient Descent Consensus

Hi (k) := I =⇒ ẋ ≈ −∇f (x)

Tradeoffs

Cost associated to the previous strategies
Algorithm NRC JC GDC

Computational Cost O
(
M3) O (M) O (M)

Communication Cost O
(
M2) O (M) O (M)

Memory Cost O
(
M2) O (M) O (M)

approximations of the Hessians that do not maintain
symmetry and positive definiteness or are bad conditioned
require additional modification steps (e.g. Cholesky)

Numerical examples

circulant graph, N = 30, M = 2

P as in the scalar case

fi (x) = Exp
(

(x− bi)
T Ai (x− bi)

)
bi ∼ [U [−5, 5] , U [−5, 5]]T ,
Ai = DiDT

i > 0,

Di =

[
d11 d12
d21 d22

]
∈ R2×2 .

First scenario

The axes are randomly (uniformly) oriented in the 2-D plane

Global fun. NRC

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

x1

x
2

0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1

1.5

2
Distributed Newton-Raphson

x
1
,i
(k
)

JC GDC

0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1

1.5

2
Distributed Jacobi

0 2000 4000 6000
−1.5

−1

−0.5

0

0.5

1

1.5

2
Distributed gradient descent

Second scenario

The axes are aligned with the the reference system

Global fun. NRC

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

x1

x
2

0 20 40 60 80 100
−3

−2

−1

0

1

2

x
1
,i
(k
)

JC GDC

0 20 40 60 80 100
−3

−2

−1

0

1

2

0 2000 4000 6000
−3

−2

−1

0

1

2

Third scenario

The axes are preferentially aligned with bisector of 1st-3th quadrant

Global fun. NRC

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

x1

x
2

0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1

1.5

2

k (time steps)

x
1
,i
(k
)

JC GDC

0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1

1.5

2

k (time steps)
2.000 4.000 6.000

−1.5

−1

−0.5

0

0.5

1

1.5

2

k (time steps)

Square error comparison (1st-3th quadrant alignment)

evident differences between NRC and JC (ε = 0.25 for both)
GDC (ε = 1) presents a slower convergence rate

−10 0 10

−10

0

10

x1

x
2

cost function

0 100 200 300

10−1

101

k

lo
g
1
0
‖x

(k
)
−

x
∗ 1
‖2 2

GDC
JC

NRC

Table of Contents

1 Introduction

2 Design

3 Synchronous scalar

4 Synchronous multidimensional

5 Asynchronous scalar

6 Conclusions

Asynchronous NRC (ANRC) - Block scheme

gi , hi

g1, h1

gN , hN

asyncronous
scalar

consensus
“P(k)”

xi

x1

xN

local
computations

distributed
averaging

local
updates

gi(k) = f ′′i (xi(k))xi(k)− f ′i (xi(k))
hi(k) = f ′′i (xi(k))

xi(k +1) = (1−ε)xi(k)+ε
yi(k + 1)
zi(k + 1)

Convergence

Theorem
uniform activation(1) ⇒ global convergence

(1): on the long run all the nodes are activated
the same number of times

Theorem
persistent activation(2) ⇒ local convergence

(2): every agent is activated at least once
in every sufficient large time windows

Experiments description
N = 25

(complete) random geometric graph

activation sequence as independent permutations of
agents/edges (ensuring uniform activation)

fi = sum of exponentials

−20 0 20

0

2

4

xi

f i
(x

i)

Comparison of the mean error (Montecarlo trial)

e(k) :=
1

MN

M∑
m=1
||xm(k)− x∗1||, withM independent trials

algorithms always converge to x∗

topology of the network play a crucial role on the convergence
ANRC (ε = 0.15) statistically better than the DSM (ρ = 100)

2500 5000 7500 10000

10−1

10−2

10−3

10−4

k
NRC DSM

e(
k
)

Incomplete graph
2500 5000 7500 10000

10−1

10−2

10−3

10−4

k

e(
k
)

NRC DSM

Complete graph

Comparison of the square error - random graph

all the algorithms converge to the global optimum
ADSM (ρ = 30) is the slowest to converge
PE is comparable to DSM
ANRC is significantly slower than ADMM (ε = 0.9)
AFNRC (ε = 0.1, ϕ = 1.55) is closed to ADMM
ADMM (δ = 0.05) is the fastest one

0 625 1,250 1,875 2,500

10−4

100
101

k

lo
g
1
0
‖x

(k
)
−

x
∗ 1
‖2 ADSM

PE
ANRC
AADMM
AFNRC

Comparison of the square error - complete graph

all the algorithms converge to the global optimum
ADSM (ρ = 55) is the slowest to converge
PE is better than ADSM but slower than AADMM
ANRC and AFNRC (ε = 0.9, ϕ = 1) are identical
ADMM (δ = 0.001) is comparable to ANRC

0 125 250
10−4

100
101

k

lo
g
1
0
‖x

(k
)
−

x
∗ 1
‖2 ADSM

PE
ANRC
AADMM
AFNRC

Table of Contents

1 Introduction

2 Design

3 Synchronous scalar

4 Synchronous multidimensional

5 Asynchronous scalar

6 Conclusions

Conclusions

The algorithm we proposed . . .
is a distributed Newton-Raphson strategy (+)
requires minimal network topology knowledge (+)
requires minimal agents synchronization (+)
is simple to be implemented (+)
converges to global optimum under convexity and smoothness
assumptions (+ / -)
is numerically faster than subgradients (+) but slower than
ADMM (-) (if not speeded up)

Future works

Principal open problems
analytical characterization of the convergence speed
(with comparisons to other methods)
relax the assumptions
(strict convexity, C2, . . .)
tune ε on-line

Generalizations
constrained optimization
(e.g. barrier functions)
distributed consensus with non-linearities
(e.g. delays, link failures, packet losses, ...)

A Consensus Approach to Distributed Convex
Optimization in Multi-Agent Systems

Filippo Zanella
Ph.D. Defense

Department of Information Engineering - University of Padova

February 28th, 2013

filippo.zanella@dei.unipd.it
www.dei.unipd.it/∼fzanella/

K. C. Kiwiel (2004)
Convergence of approximate and incremental subgradient methods for
convex optimization
SIAM Journal on Optimization

D. P. Bertsekas and J. N. Tsitsiklis (1997)
Parallel and Distributed Computation: Numerical Methods
Athena Scientific

J. Wang and N. Elia (2010)
Control approach to distributed optimization
48th Annual Allerton Conference

Lu, J., C. Y. Tang, P. R. Regier, and T. D. Bow (2011)
Gossip Algorithms for Convex Consensus Optimization Over Networks
IEEE Transactions on Automatic Control

A. Nedić and A. Ozdaglar (2009)
Distributed subgradient methods for multi-agent optimization
IEEE Transactions on Automatic Control

B. Johansson (2008)
On Distributed Optimization in Networked Systems
Ph.D. Thesis, KTH

A. Nedić and A. Ozdaglar (2007)
On the Rate of Convergence of Distributed Subgradient Methods for
Multi-agent Optimization
CDC

S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein (2010)
Distributed Optimization and Statistical Learning via the Alternating
Direction Method of Multipliers
Foundations and Trends in Machine Learning

S. Muthukrishnan, B. Ghosh, and M. H. Schultz (1998)
First and Second Order Diffusive Methods for Rapid, Coarse, Distributed
Load Balancing
Theory of Computing Systems

H. K. Khalil (2002)
Nonlinear Systems
Prentice Hall

