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Abstract

In the framework of parametric and nonparametric distributed estimation, we intro-

duce and mathematically analyze some consensus-based regression strategies char-

acterized by a guess of the number of agents in the network as a parameter. The

parametric estimators assume a-priori information about the �nite set of parame-

ters to be estimated, while the the nonparametric use a reproducing kernel Hilbert

space as the hypothesis space. The analysis of the proposed distributed regressors

o�ers some su�cient conditions assuring the estimators to perform better, under the

variance of the estimation error metric, than local optimal ones. Moreover it charac-

terizes, under euclidean distance metrics, the performance losses of the distributed

estimators with respect to centralized optimal ones. We also o�er a novel on-line

algorithm that distributedly computes certi�cates of quality attesting the goodness

of the estimation results, and show that the nonparametric distributed regressor is

an approximate distributed Regularization Network requiring small computational,

communication and data storage e�orts. We then analyze the problem of estimating

a function from di�erent noisy data sets collected by spatially distributed sensors

and subject to unknown temporal shifts, and perform time delay estimation through

the minimization of functions of inner products in reproducing kernel Hilbert spaces.

Due to the importance of the knowledge of the number of agents in the previously

analyzed algorithms, we also propose a design methodology for its distributed esti-

mation. This algorithm is based on the following paradigm: some locally randomly

generated values are exchanged among the various sensors, and are then modi�ed

by known consensus-based strategies. Statistical analysis of the a-consensus values

allows the estimation of the number of sensors participating in the process. The �rst

main feature of this approach is that algorithms are completely distributed, since

they do not require leader election steps. Moreover sensors are not requested to

transmit authenticating information like identi�cation numbers or similar data, and

thus the strategy can be implemented even if privacy problems arise. After a rigorous

formulation of the paradigm we analyze some practical examples, fully characterize

them from a statistical point of view, and �nally provide some general theoretical

results among with asymptotic analyses.
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Sommario

In questa tesi vengono introdotti e analizzati alcuni algoritmi di regressione dis-

tribuita parametrica e nonparametrica, basati su tecniche di consenso e parametriz-

zati da un parametro il cui signi�cato è una stima del numero di sensori presenti nella

rete. Gli algoritmi parametrici assumono la conoscenza di informazione a-priori sulle

quantità da stimare, mentre quelli nonparametrici utilizzano come spazio delle ipotesi

uno spazio di Hilbert a nucleo riproducente. Dall'analisi degli stimatori distribuiti

proposti si ricavano alcune condizioni su�cienti che, se assicurate, garantiscono che

le prestazioni degli stimatori distribuiti sono migliori di quelli locali (usando come

metrica la varianza dell'errore di stima). Inoltre dalla stessa analisi si caratterizzano

le perdite di prestazioni che si hanno usando gli stimatori distribuiti invece che quelli

centralizzati e ottimi (usando come metrica la distanza euclidea tra le due diverse

stime ottenute). Inoltre viene o�erto un nuovo algoritmo che calcola in maniera

distribuita dei certi�cati di qualità che garantiscono la bontà dei risultati ottenuti

con gli stimatori distribuiti. Si mostra inoltre come lo stimatore nonparametrico

distribuito proposto sia in realtà una versione approssimata delle cosiddette �Reti di

Regolarizzazione�, e come esso richieda poche risorse computazionali, di memoria e

di comunicazione tra sensori. Si analizza quindi il caso di sensori spazialmente dis-

tribuiti e soggetti a ritardi temporali sconosciuti. Si mostra dunque come si possano

stimare, minimizzando opportune funzioni di prodotti interni negli spazi di Hilbert

precedentemente considerati, sia la funzione vista dai sensori che i relativi ritardi

visti da questi.

A causa dell'importanza della conoscenza del numero di agenti negli algoritmi

proposti precedentemente, viene proposta una nuova metodologia per sviluppare al-

goritmi di stima distribuita di tale numero, basata sulla seguente idea: come primo

passo gli agenti generano localmente alcuni numeri, in maniera casuale e da una den-

sità di probabilità nota a tutti. Quindi i sensori si scambiano e modi�cano questi dati

usando algoritmi di consenso quali la media o il massimo; in�ne, tramite analisi statis-

tiche sulla distribuzione �nale dei dati modi�cati, si può ottenere dell'informazione

su quanti agenti hanno partecipato al processo di consenso e modi�ca. Una carat-

teristica di questo approccio è che gli algoritmi sono completamente distribuiti, in
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quanto non richiedono passi di elezione di leaders. Un'altra è che ai sensori non

è richiesto di trasmettere informazioni sensibili quali codici identi�cativi o altro,

quindi la strategia è implementabile anche se in presenza di problemi di riservatezza.

Dopo una formulazione rigorosa del paradigma, analizziamo alcuni esempi pratici, li

caratterizziamo completamente dal punto di vista statistico, e in�ne o�riamo alcuni

risultati teorici generali e analisi asintotiche.



Introduction

New low-cost technologies and wireless communication are promoting the deployment

of networks, commonly referred as Networked Control Systems (NCSs), composed

by a large number of devices with the capacity to sense, interact with the environ-

ment, communicate and collaborate to achieve a common objective. These networks,

which popularity and di�usion is increasing, are enabling a whole new wide range of

applications such as remote surveillance / environmental monitoring, indoor target

tracking, multi-robot exploration and others, as listed in the surveys of Akyildiz et al.

(2002) and Puccinelli and Haenggi (2005). The key assumption is that agents form a

connected network: this implies that even if they might not be able to communicate

directly, there exists a path that allows information to travel from any node to any

other node - even if in the presence of lossy communications, bandwidth limitations

and energy constraints. A more detailed example of such a system is given by the

next generation power grids (Glanzmann et al., 2007) where each energy producer or

user will be connected through a communication network to exchange information

and estimate some unknown parameters of the network, like its e�ciency, capacity,

current utilization, etc.

Even if there has been a wide interest on the subject and even if methodologi-

cal strategies are recently appearing (Papachristodoulou et al., 2004), the design of

large scale networks of cooperating systems is still a di�cult task. For example, since

these networks are likely to be dynamic (i.e. new nodes can appear, disappear, or

change their characteristics without warning the other agents) it is necessary to do

not rely on a-priori knowledge on network topology and parameters, and be robust

to node failure and dynamic changes. Moreover, these networks inherit a multitude

of possible strong peculiarities from the variety of the suitable applications. As a

natural consequence, these systems are posing challenging novel questions both from

theoretical and practical perspectives. Examples of those are in terms of information

compression (Xiao et al., 2006; Nakamura et al., 2007, and references therein), dis-

tributed learning (Predd et al., 2006c), event detection (Viswanathan and Varshney,

1997; Blum et al., 1997), and many others, just to name a few.

Among all the networked systems-related problematics expressed up to now, in
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this thesis we develop tools aiding the scenario where a swarm of agents, deployed

in an unknown environment, have to perform monitoring and research operations.

Some practical and important cases are:

• underwater unmanned vehicles looking for illegally deployed radioactive waste;

• unmanned aerial vehicles searching for survivals in a stricken area;

• mobile robots monitoring borderlines.

In such scenarios agents have to face some additional peculiarities given by the lack

of a-priori knowledge about the environment. For this reason, it is natural to assume

that:

(a) it is unknown when some decision has to be taken, and which kind of decision it

will be: examples are �should agents take some measurements� or �should agents

communicate�;

(b) it is unlikely that agents will be all in the same situation and condition: some

may be moving, some may be o�ine. Moreover they will not have a precise

knowledge on the situation of the other agents;

(c) the gathered information will not be uniform. For example, data will be neither

spatially nor temporally uniformly distributed, and agents may do not know if

they are obtaining information that has already been obtained -even partially-

by somebody else.

A key factor for the success of these networks in these scenarios is then their ability

to accommodate themselves to the unknown environment and to proactively face

the di�culties and the variabilities without requiring the human intervention. In

this thesis we then seek to augment the level of autonomy of these networks, aiming

for a completely distributed and self-governing system that is una�ected by the

uncertainties.

Our �rst e�ort is on the characterization of the performance of distributed esti-

mators. In more details, we start seeking answers to the questions:

are distributed estimation algorithms performing better than local ones? And are

they performing worse than centralized schemes?

Paraphrasing, we ask if we can compare the performance of distributed estimation

algorithms with respect to local strategies, where every agent considers only its

dataset and do not share information. And we ask also if we can do the same with

respect to centralized strategies, where all the information is collected in an unique

place and then processed. In the most general framework, the just-posed questions

are extremely complex and di�cult to answer. We thus restrict our focus posing a

list of assumptions:
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• over the multitude of di�erent sensor networks typologies and interpretations

(Poor, 2009), we consider collaborative Wireless Sensor Networks (WSNs), i.e.

networks in which sensors are randomly distributed over a region of interest

and collaborate to achieve a common goal. We assume that agents have lim-

ited computational and communication capabilities, that there are no central

coordinating units or fusion centers, and that each sensor aims at obtaining

a shared knowledge close to the one computable through a centralized strat-

egy. Since we assume that the topology can be dynamic, allowing agents to

randomly appear, disappear or move, we will let the nodes to have only a lim-

ited topological knowledge: in particular we assume that they only know some

statistical properties about the probability density of their physical location.

Examples of such networks are WSNs for forest-monitoring where identical sen-

sors are dropped from an helicopter, or a network of sensing robots exploring

an unknown but limited region;

• we consider distributed regression algorithms -and not classi�cation ones- which

data-�tting properties are regulated by cost functions that quadratically weight

the estimation errors, both in parametric and nonparametric frameworks;

• we assume that all agents want to obtain global and identical knowledge about

the quantity to be estimated. This means that the approximation capability of

a given sensor is not focused on its neighborhood, but rather on all the domain

where the estimation is performed.

After the analysis of the performances of basic estimator, we focus on an ad-hoc

scheme for the estimation of unknown random �elds noisily sampled with unknown

delays and in non-uniform locations. The aim is to provide the sensor network

with the capability of distributedly estimate quantities like elevations or intensity

of wind speeds despite possible unknown time delays or non-uniformities on the

spatial distribution of the measurements. More precisely, we consider the problem

of fusing di�erent streams of measurements of a single function observed by various

sensors, and subject to unknown temporal shifts. Examples of important applications

captured by this framework include estimation of the average force of the wind

blowing through a set of wind turbines from noisy samples, or of the time-course of

the average concentration of a medicine from plasma samples coming from a set of

di�erent patients. In both cases, one needs to adopt a cooperative approach where all

the measurements coming from the di�erent sources are exploited to determine the

di�erent translations to which signals are subject and to improve function estimation.

We then consider a problem which importance is highlighted by the results shown

in the points analyzed before. In fact we will discover, through the way, that the

knowledge of the actual number of sensors in the network is an important parameter

a�ecting the performance of the proposed estimators. For this reason, we thus o�er a

distributed algorithm increasing this knowledge requiring neither leader election steps

nor additional topological knowledge like, for example, to be in the neighborhood of

a given agent.
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It is important to notice that all the techniques we propose in this thesis rely

on distributed computation of averages, operation that can be performed through

the well-known consensus algorithms (Olfati-Saber and Murray, 2004; Boyd et al.,

2006; Olfati-Saber et al., 2007; Fagnani and Zampieri, 2008b; Garin and Schenato,

2011). These algorithms are attractive because of their simplicity, their completely

asynchronous and distributed communication schemes, their robustness to nodes and

links failures, and their scalability with the network size. In the following we will

assume the communication graph to be su�ciently connected in order to allow the

computation of consensus algorithms (Cortés, 2008) and that a su�cient number of

consensus steps are performed to guarantee convergence to the true average. We

notice that, despite their simple structure, they have been proven to be able to

compute a wide class of functions (Cortés, 2008), to estimate important physical

parameters (Bolognani et al., 2010), or even to synchronize clocks (Bolognani et al.,

2009).

Literature review: before stating the novelties introduced in this thesis, we brie�y

review a list of works related to our framework.

In general, all the research areas involved in this thesis are well estabilished:

distributed estimation and distributed computation (Varshney, 1996; Bertsekas and

Tsitsiklis, 1997), parametric estimation (Kay, 1993; Anderson and Moore, 1979),

nonparametric estimation (Hastie et al., 2001; Schölkopf and Smola, 2001; Wahba,

1990).

In the framework of Bayesian estimation, several authors focused on distributed

or decentralized computations. For example, in Kearns and Seung (1995) authors an-

alyze how to combine multiple independent results of learning algorithms performed

by identical agents, providing bounds on the number of agents necessary to obtain a

desired level of accuracy. In Yamanishi (1997) the author proposes estimation strate-

gies using a hierarchical structure: the sensor nodes perform measurements of the

process and preprocess this data, then a supervisor node fuses these local outputs

and compute a global estimate. It considers also the expected losses for predicted

data, giving upper bounds as functions of the number of samples of each agent.

There is also a wide literature on distributed estimation subject to communication

constraints: in Predd et al. (2005) authors propose a message-passing scheme for a

nonparametric distributed regression algorithm, while in Predd et al. (2006c) they

survey the problems related to the distribution of the learning process in wireless

sensor networks, analyzing both parametric and nonparametric scenarios. In Predd

et al. (2006a) the same authors analyze the existence of decision and fusion rules

assuring consistency for a binary classi�cation problem, where the measurements are

performed by a set of agents with limited communication capabilities and transmit-

ting information to a central unit. In this framework also some authors propose some

asymptotic results on the performance of decision transmission strategies, seeking for

optimality in terms of decision error probability for the central unit (Chamberland

and Veeravalli, 2004). In Schizas et al. (2008) the authors focus on consensus-based

decentralized estimation of deterministic parameter vectors, considering both Maxi-
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mum Likelihood (ML) and Best Linear Unbiased Estimator (BLUE) schemes, solved

through a set of convex minimization subproblems. Distributed convex optimization

has also been used in Schizas and Giannakis (2006), through the parallelization of co-

ordinate descent steps in order to distributedly compute the Linear Minimum Mean

Square Error (LMMSE) estimate of an unknown signal. Similar techniques have been

used in Mateos et al. (2010), where authors consider three di�erent consensus-based

distributed Lasso regression algorithms: the �rst based on quadratic programming

techniques, the second on cyclic coordinate descent steps, and the third on the decom-

position of the original cost function into smaller optimization subproblems. Other

authors proposed distributed inference schemes based on graphical models, like in Ih-

ler (2005) or in Delouille et al. (2004), where an LMMSE estimator is proposed that

exploite a particular implementation of the Gauss-Seidel matrix inversion algorithm.

Parametric modeling of random processes naturally arise in scenarios where it

is possible to classify the nature of the random process, and therefore the estima-

tor is searched within a speci�c class of models such as polynomials or radial basis

functions. However, there are problems for which this is di�cult and nonparamet-

ric estimation has been found to be more suitable and e�ective. In particular, the

nonparametric approaches can be designed to be consistent with a large number of

models classes, e.g. Nonlinear AutoRegressive eXogenus (NARX) models (De Nico-

lao and Ferrari-Trecate, 1999). Within the nonparametric framework, the theory

of Reproducing Kernel Hilbert Spaces (RKHSs) (Aronszajn, 1950) have been of-

ten used for regression purposes (Rasmussen and Williams, 2006; Schölkopf and

Smola, 2001). This theory has been successfully used also in distributed scenar-

ios: for example, Predd et al. (2009) proposes a distributed regularized kernel Least

Squares (LS) regression problem based on successive orthogonal projections. Simi-

larly, in Pérez-Cruz and Kulkarni (2010) the authors extend Predd et al. (2009) by

proposing modi�cations reducing the communication burden and synchronization

assumptions. In Honeine et al. (2008, 2009) authors propose a reduced order model

approach where sensors construct an estimate considering only a subset of the repre-

senting functions that would be used in the optimal solution, with a selection method

based on the assessment of the potential improvement given to the current solution

by adding a new representing function. Other approaches involve message-passing

based schemes in graphical models: in Predd et al. (2005) the authors consider a

nonparametric distributed regression algorithm that is subject to communication

constraints, while Guestrin et al. (2004) considers kernel linear regressors without

regularizing terms through the usage of opportune junction and routing trees. non-

parametric schemes have been associated also with belief propagation schemes, for

example in Çetin et al. (2006), or in Sudderth et al. (2003), where it is used in

conjunction with regularizing kernels associated to each particle.

Although the current trend is towards the design of purely distributed algorithms

where each agent runs the same algorithm, also hierarchical strategies have been

proposed. For example, Yamanishi (1997) o�ers a distributed Bayesian learning

scheme where a supervisor node fuses the results of local outputs. Zheng et al.

(2008) proposes an iterative conditional expectation algorithm that distributedly
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estimates a deterministic function, while Li et al. (2010) uses a pre-de�ned cyclic

learning schemes based on information routing tables.

An other interesting research �eld is given by mobile sensor networks, where

agents exploit their motion capabilities to perform particular tasks. A �rst exam-

ple is Cortés (2009), where the author introduces the so-called Distributed Kriged

Kalman Filter, an algorithm used to estimate the distribution of a dynamic Gaus-

sian random �eld and its gradient. We notice that here sensors estimate their own

neighborhood and not to the global scenario. In the same framework, in Choi et al.

(2009) the authors develop a distributed learning and cooperative control algorithm

where sensors estimate a static �eld. This �eld is modeled as a network of radial ba-

sis functions that are known in advance by sensors, and this resembles our approach.

Nonparametric schemes are applied also in Martínez (2010), where the mobile sen-

sor network distributedly estimates a noisily sampled scalar random �eld through

opportune Nearest-Neighbors interpolation schemes.

Distributed nonparametric techniques have been used also in other frameworks:

for example in detection with Nguyen et al. (2005), where the authors consider a

decentralized classi�cation framework based on minimization of empirical risks and

the concept of marginalized kernels, under communication constraints. In classi�ca-

tion, with D'Costa and Sayeed (2003) analytically and numerically comparing three

distributed classi�ers of objects moving though the sensor �eld (one based on ML

concepts, the others based on data-averagings and di�erent data correlations hy-

potheses). And also for calibration purposes, for example in Dogandºi¢ and Zhang

(2006) through the distributed regression of the realization of a random Markov �eld.

Notice that some schemes considering severe limitations in communications capabil-

ity have been considered, like for example in Wang et al. (2008) where sensors are

allowed to exchange only one bit per time of information.

We brie�y recall that sensor networks have been proposed also for fault detection

and change detection purposes, both in parametric (Snoussi and Richard, 2006) and

in nonparametric frameworks (He et al., 2006; Nasipuri and Tantaratana, 1997).

Statement of contribution: in the �rst part of this thesis we will characterize

some distributed parametric and nonparametric regression algorithms in terms of

the tradeo� between estimation performance and communication, computation and

memory complexity. In particular we will provide two types of quantitative bounds

concerning the estimation performance:

• the �rst type of bounds, for the parametric scenario, can be computed o�-line,

i.e. before the measurement processes, but tends to be pessimistic;

• the second type of bounds is derived in the nonparametric scenario but is eas-

ily transportable into the parametric one. It need to be computed on-line and

collaboratively with the other nodes after the measurement process, thus it

adds some extra computational complexity. However it is generally accurate

and can be used as a certi�cate of quality attesting if the distributed estima-

tion results are close to the ones that would be obtained using the optimal
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centralized strategy.

We show also the practical distributability of the most important regularized re-

gression techniques, the so-called Regularization Networks (RNs) (Poggio and Girosi,

1990; Evgeniou et al., 2000, and references therein). In doing so, we exploit the lin-

ear structure of these state-of-the-art algorithms, that is inherited by their quadratic

loss functions. Di�erently, the other most relevant regularization technique, namely

the Support Vector Regression based on Vapnik's loss functions (Vapnik, 1995,

Chap. 6.1) (Schölkopf and Smola, 2001, Chap. 9), cannot be easily distributed.

We then consider a slight generalization of the previously expressed framework,

and consider how to simultaneously perform Time Delay Estimation (TDE) and

function regression under Gaussian hypotheses. In the literature, classical TDE

techniques work only in a scenario which involves two sensors. Usually, the delay

is estimated by maximizing cross-correlation functions or -when proper �ltering is

applied- generalized cross-correlation functions (Azaria and Hertz, 1984). Other au-

thors use Fast Fourier Transforms (Marple, 1999). In TDE for signals over a discrete

domain, additional hypotheses allow e�cient interpolation schemes (Boucher and

Hassab, 1981; Viola and Walker, 2005). However, classical discrete TDE strategies

cannot be usually applied when the sampling period is not constant, and it does

not easily generalize to the case of more than two sensors collecting measurements.

The algorithm we propose instead can handle non-uniform sampling grids and an

arbitrary number of sensors. Moreover, as compared to classical function estima-

tion techniques, developed either in centralized contexts or in distributed ones our

approach is also suitable to simultaneously estimate time delays between sensors.

We then propose a generic fully distributed procedure for the estimation of the

number of sensors in a network1 that is based on the generation of random variables

and on consensus-based information exchange mechanisms. The advantages with

respect to classical schemes are that estimations will be independent on the network

structure and on the transmission medium, and that sensors will in general be not

required to authenticate, allowing to be insensible to privacy problematics. Our

contributions can be summarized in a series of asymptotic analyses and theorems

characterizing, from a statistical point of view, the performances of the proposed

estimators under general assumptions and communication schemes. We moreover

consider the cases where a-priori information on the number of agents in the net-

work is available, showing that Maximum A Posteriori (MAP) estimators may be

implemented if some particular conditions are satis�ed.

Structure of the work: this thesis is divided as follows. The �rst part is composed

by Chapters 1 and 2, and deals with general distributed regression techniques. More

precisely, in Chapter 1) we consider the distributed parametric estimation framework,

and o�er some answers on the previously posed questions, while in 2 we consider

the distributed nonparametric one. The second part of the thesis, composed by

Chapter 3, deals with the estimation of the number of agents in a network. We �nally

1Literature review of this particular problem is given in Chapter 3.1.
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draw some concluding remarks and analyze the future works in the conclusions,

o�ered from page 97.
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1
Distributed Parametric Estimation

1.1 Introduction

In this chapter we brie�y review some concepts about Bayesian estimation in para-

metric scenarios. Interested readers can �nd more details in Kay (1993); Anderson

and Moore (1979). We refer to standard textbooks like Feller (1971) for the con-

cepts of probability theory like random vectors, characteristic functions, etc., and to

standard textbooks like Nef (1967) for the concepts of linear algebra.

The chapter is divided in two parts: we initially introduce the basic concept

of Gaussian random vector (r.v.) among some of its mathematical properties in

Section 1.1.1, and then we introduce the Bayesian regression framework that we will

use in part of this thesis in Section 1.1.2.

1.1.1 Gaussian random vectors

Let b be an E dimensional real-valued r.v..

De�nition 1 (Gaussian random vector). If the characteristic function ϕ of the r.v.

b has the form

ϕ (Θ) = exp

(
iΘTm− 1

2
ΘTΛ0Θ

)
(1.1)

with

Θ ∈ RE m ∈ RE Λ0 ∈ RE×E (1.2)

then b is said to be a Gaussian random vector.

From the properties of the characteristic function it follows that

E [b] = m and E
[
(b− E [b]) (b− E [b])T

]
= Λ0 (1.3)

thus m is the vector of the mean values and Λ0 is the covariance matrix. If Λ0 is

invertible, then the probability density function of the r.v. b is well de�ned and equal

to

p (β) =
1√

(2π)E |Λ0|
exp

(
−1

2
(β −m)T Λ−1

0 (β −m)

)
(1.4)
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where |Λ0| indicates the determinant of Λ0. In the following, to indicate a Gaussian

r.v. we will use the standard notation b ∼ N (m,Λ0).

1.1.1.1 Conditional densities for Gaussian random vectors

Assume [
b1
b2

]
∼ N

([
m1

m2

]
,

[
Λ11 Λ12

Λ21 Λ22

])
(1.5)

where vectors and matrices are of consistent dimensions. Then it is possible to show

that

b1 ∼ N (m1,Λ11) b2 ∼ N (m2,Λ22) (1.6)

and, more importantly to our purposes, that

b1| b2 = β2 ∼ N
(
m1 + Λ12Λ−1

22 (β2 −m2) ,Λ11 − Λ12Λ−1
22 Λ21

)
(1.7)

where b1| b2 = β2 indicates the r.v. b1 conditioned on b2 = β2.

1.1.1.2 Linear models for Gaussian random vectors

In sight of the next derivations, it is important to recall the following basic result.

Assume that we want to estimate an unknown r.v. b from a set of noisy measurements

y ∈ RM that are linearly related to b through

y = Cb+ ν (1.8)

with ν ∈ RM the noise vector s.t. ν ∼ N (0,Σν) independent on b, and with C ∈
RM×E the known transformation matrix. In this case

b| y ∼ N
(
m′,Λ′0

)
(1.9)

with

m′ = m+ Λ0C
T
(
CΛ0C

T + Σν

)−1
(y − Cm) (1.10)

Λ′0 = Λ0 − Λ0C
T
(
CΛ0C

T + Σν

)−1
CΛ0 (1.11)

or, equivalently,

m′ = m+
(
Λ−1

0 + CTΣ−1
ν C

)−1
CTΣ−1

ν (y − Cm) (1.12)

Λ′0 =
(
Λ−1

0 + CTΣ−1
ν C

)−1
. (1.13)

1.1.2 Bayesian regression

Bayesian regression, and more in general Bayesian inference, is one of the most pow-

erful analysis techniques. In this section we will brie�y introduce only the concepts

that will be used in the subsequent chapters, and refer to standard textbooks on

decision theory like Berger (1985) for the unspeci�ed details.

The Bayesian approach assumes the knowledge of some prior information on the

quantity to be estimated b, here assumed to be on the form of a prior density p (b).
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Assuming that there exists a statistical relationship between the unknown b and a

known r.v. y under the form of the conditional probability density p (b |y ), through

the well known Bayes rule it is possible to compute the posterior probability density

p (b |y ) =
p (y |b) p (b)∫

RE p (y |b) p (b) db
. (1.14)

Even if this is, from a theoretical point of view, the best information we can have

on the quantity to be estimated b, in practice this could be even impossible to be

computed due to numerical integration di�culties.

It is often the case then to compute a strategy b̂ (y) (in the following abbreviated

with b̂ for brevity) that, given in input the known vector y, returns a point-estimate

of b. Assume then we are given a loss function

L : RE × RM → R (1.15)

associating to each couple
(
b, b̂
)
a loss L

(
b, b̂
)

= L
(
b− b̂

)
. This loss has to be

intended as a level of disappointment1 depending on the estimation error b − b̂.

With this de�nition, it is possible to introduce the concept of risk (or Bayes risk)

associated with a particular estimator b̂, de�ned as

R
b̂

:= E
[
L
(
b, b̂
)]

(1.16)

where the expectation is on the joint density p (b, y) and with the intuitive mean-

ing of being the average loss in which we will incur using the estimator b̂. Now,

given de�nition (1.16) and given the task of designing a suitable estimator, it is

straightforward that the choice is the estimator b̂ with the minimal risk R
b̂
.

The structure of the optimal estimator -where optimality has to be meant in

terms of minimization of R
b̂
- and its statistical properties strongly depend on the

loss function L. While from a theoretical point of view the design of L should be

application-oriented, from a practical point of view it is often common to choose

some well known and prede�ned L's due their already analyzed mathematical or

practical good qualities. Some of the most typical loss functions for the case E = 1

are shown in Figure 1.1 and described in its caption.

We recall now a well-known fact about Bayesian analysis: for squared-error loss

functions the Bayes risk is minimized by the conditional mean E [b | y ], i.e.

E [b | y ] = arg min
b̂
R
b̂

= arg min
b̂

∫

RE

∫

RM

(
b− b̂

)2
p (b, y) db dy . (1.17)

This expresses the fact that conditional means are Minimum Mean Square Er-

ror (MMSE) estimators. Conditional means have also some other desirable prop-

erties: �rst of all, as stated in Sections 1.1.1.1 and 1.1.1.2, if b and y are jointly gaus-

sian, then conditional mean can be computed through linear operations. Moreover

there is a strong connection between MMSE estimators and classical least squares

1The interpretation we use in this thesis is rather restrictive. We send the reader back to (Berger,

1985, Chap. 2) for exhaustive descriptions and interpretations of utility and loss functions.
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−3 −2 −1 0 1 2 3

0

1

2

3

4

b− b̂

L
(b

)
b̂

squared-error loss

absolute-error loss

Huber's robust loss

Vapnik's ε-insensitive loss

Figure 1.1: Typical loss functions for the case E = 1. Properties of estimators based

on squared-error losses (L
(
b− b̂

)
=
(
b− b̂

)2
) will be described later. Estimators for

absolute-error losses (L
(
b− b̂

)
=
∣∣∣b− b̂∣∣∣) correspond to the medians of the posterior den-

sities p (b |y ). Vapnik's loss functions (Vapnik, 1995, Chap. 6.1) have the desirable prop-

erty of returning estimators with compact representations. Huber loss functions (Huber,

1964) combine the sensitivity associated to quadratic loss functions and the robustness

to outliers associated to absolute loss functions, and has been proved to be e�ective in

practical cases (e.g. Müller et al. (1997)).

theory (Gelb, 1974, Chap. 4). Due to these desirable qualities, in this thesis we con-

sider only the squared-error loss case, and keep the analyses for other loss functions

as future works.
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1.2 Case I: Identical Sensors

We consider S distinct sensors each of them taking M scalar noisy measurements on

the same input locations. We model this scenario in a parametric framework as

yi = Cb+ νi, i = 1, . . . , S (1.18)

where yi ∈ RM is the measurements vector collected by the i-th sensor, and b ∈ RE

is the vector of unknown parameters modeled as a zero-mean Gaussian vector with

autocovariance Λ0, i.e. b ∼ N (0,Λ0). In addition, νi ∈ RM is the noise vector with

density N
(
0, σ2I

)
, independent of b and of νj , for i 6= j. Finally, C ∈ RM×E is a

known matrix identical for all sensors.

1.2.1 Local Bayesian Estimation

Under the assumptions above, the local MMSE estimator of b given yi, is unbiased

and given by

b̂i` := E [b | yi ] = cov (b, yi) (var (yi))
−1 yi

= Λ0C
T
(
CΛ0C

T + σ2I
)−1

yi

=

(
Λ−1

0 +
CTC

σ2

)−1
CT yi
σ2

(1.19)

while the autocovariance of the local estimation error is

Λi` := var
(
b− b̂i`

)
=

(
Λ−1

0 +
CTC

σ2

)−1

= Λ` (1.20)

which is independent of the measurements yi and sensor index i.

1.2.2 Centralized Bayesian Estimation

If S ≥ 2 and all measurements {yi}Si=1 are collected by a central unit, the MMSE

estimate of b given {yi}Si=1 can be computed as

b̂c := cov


b,



y1
...

yS





 var






y1
...

yS







−1 

y1
...

yS


 (1.21)

where:

var






y1
...

yS





 =



V
(
σ2
)

. . . V (0)
...

...

V (0) . . . V
(
σ2
)


 (1.22)

where

V (θ) := CΛ0C
T + θI . (1.23)

Using the matrix inversion lemma and simple algebraic manipulations, (1.21) can be

rewritten in two equivalent forms, i.e. as

b̂c = Λ0C
T

(
CΛ0C

T +
σ2

S
I

)−1
(

1

S

S∑

i=1

yi

)
(1.24)
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or as

b̂c =

(
1

S
Λ−1

0 +
CTC

σ2

)−1
(

1

S

S∑

i=1

CT yi
σ2

)
. (1.25)

Obviously the variance of the estimation error is the same for both the forms, and

is given by

Λc := var
(
b̂c − b

)
=

(
Λ−1

0 +
S

σ2
· CTC

)−1

. (1.26)

1.2.3 Distributed Bayesian Estimation

Before continuing it is important to highligh the following:

Remark 2. In order to be able to implement the optimal estimation strategies (1.24)

or (1.25), all sensors must have perfect knowledge on S, the actual number of agents

participating to the consensus process. In fact, in (1.24) S contributes to weight

properly the noisiness of the averaged measurements, while in (1.25) it properly

weights the contribution of the prior Λ0.

Remark 3. To compute b̂c through (1.24), sensors need to reach an average consen-

sus on their measurements yi which are M -dimensional vectors, while to compute b̂c
through (1.25) they need to reach an average consensus on the E-dimensional trans-

formed measurement vectors CT yi/σ
2. In the context of parametric estimation, these

vectors are also known as the information vectors associated to the measurements

yi (Anderson and Moore, 1979).

In the rest of the section we will make the natural assumptions

• E �M ;

• S is unknown.

These lead immediately to the following approximated distributed estimation strat-

egy:

b̂d (Sg) :=

(
1

Sg
Λ−1

0 +
CTC

σ2

)−1
(

1

S

S∑

i=1

CT yi
σ2

)
(1.27)

where Sg is an estimate of the number of sensors in the networks. To simplify the

notation, in the following we denote b̂d (Sg) as b̂d unless di�erently stated. Simple

algebraic manipulations lead to the computation of the corresponding estimation

error covariance

Λd (Sg) := var
(
b̂d − b

)

=

(
1

Sg
Λ−1

0 +
CTC

σ2

)−1(
1

S2
g

Λ−1
0 +

1

S

CTC

σ2

)(
1

Sg
Λ−1

0 +
CTC

σ2

)−1

.

(1.28)

Notice that if Sg = 1 then

b̂d (1) =
1

S

S∑

i=1

b̂i` (1.29)
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i.e. b̂d (1) is equal to the average the local estimators. If Sg = +∞ then

b̂d (+∞) =
(
S · CTC

)−1

(
S∑

i=1

CT yi

)
(1.30)

i.e. b̂d (+∞) is equal to the least squares solution, which discards the prior infor-

mation on b. Finally, if Sg = S then b̂d (S) is equal to the centralized solution, i.e.

b̂d (S) = b̂c. Notice that the same results and the same expression for Λd would have

been obtained also considering the case E > M . In this case, the expression of the

distributed estimator would be

b̂d (Sg) := Λ0C
T

(
CΛ0C

T +
σ2

Sg
I

)−1
(

1

S

S∑

i=1

yi

)
. (1.31)

1.2.4 Characterization of the Distributed Algorithm

In the following we concern in determining conditions on the parameter Sg that

guarantee Λd (Sg) ≤ Λ`, i.e. when a distributed strategy that shares information

among nodes is better then the one obtained by using only local information, and in

determining the accuracy of the distributed solution as compared to the centralized

solution as a function of Sg: it is important both to understand when the distributed

strategy is bene�cial with respect to the local one in order to justify the strain of

communication, and also when the approximation represented by considering Sg
instead of S does not introduce signi�cant performances losses. These two scenarios

are addressed separately.

1.2.4.1 Distributed versus Local Estimation

Based on the direct comparison of the distributed estimation error covariance Λd and

the local error covariance Λ` it is possible to derive su�cient conditions which hold for

every prior Λ0, number of measurements M , number of parameters E, measurement

noise variance σ2, and matrix C:

Theorem 4. If

Sg ∈ [1, 2S − 1] (1.32)

then the variance of the estimation error of the distributed estimator b̂d (Sg) is smaller

than the one of the local estimators b̂i`, for every prior Λ0, number of parameters E,

measurement noise variance σ2, matrix C and sensor i.

Proof. The objective is to �nd su�cient conditions in terms of the systems parame-

ters Λ0, Sg, S, C, σ such that

Λd = var
(
b− b̂d (Sg)

)
≤ var

(
b− b̂`

)
= Λ` (1.33)

Recalling the de�nition V (θ) := CΛ0C
T + θI, it is immediate to verify through the

matrix inversion lemma and the equivalence between expressions (1.25) and (1.24)
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that

b̂d = Λ0C
TV

(
σ2

Sg

)−1
(
Cb+

1

S

S∑

i=1

νi

)
(1.34)

therefore the variance of distributed estimator is given by

Λd = Λ0 − 2Λ0C
TV

(
σ2

Sg

)−1

CΛ0 + Λ0C
TV

(
σ2

Sg

)−1

V

(
σ2

S

)
V

(
σ2

Sg

)−1

CΛ0

(1.35)

Similarly, for the local estimator we get

Λ` = Λ0 − Λ0C
TV
(
σ2
)−1

CΛ0 (1.36)

By substituting the previous two equations into (1.33) and by pre and post-multipling

by Λ−1
0 , we get

−2V

(
σ2

Sg

)−1

+ V

(
σ2

Sg

)−1

V

(
σ2

S

)
V

(
σ2

Sg

)−1

≤ −2V
(
σ2
)−1

(1.37)

which guarantees Λd ≤ Λ`. Considering now the orthogonal matrix U that diago-

nalizes CΛ0C
T , i.e.

CΛ0C
T = UDUT (1.38)

s.t. UUT = I, where D := diag (d1, . . . , dS), we have that V (θ) = U (D + θI)UT .

Therefore (1.37) can be written as

−2U

(
D +

σ2

Sg
I

)−1

UT + U

(
D +

σ2

Sg
I

)−2(
D +

σ2

S
I

)
UT ≤ −U

(
D + σ2I

)−1
UT

(1.39)

where we also used the fact that diagonal matrices commute. Since for invertible

matrices U we have that A ≤ 0⇔ UAU−1 ≤ 0, so (1.39) is still a su�cient condition

for Λd ≤ Λ` if we remove all the U 's. Now all the remaining matrices are diagonal,

so the matricial inequality (1.39) is satis�ed if and only if the inequalities are valid

component-wise for the diagonal elements. Therefore, 1.33 is equivalent to:

−2

dm + σ2

Sg

+
dm + σ2

S(
dm + σ2

Sg

)2 ≤
−1

dm + σ2
m = 1, . . . ,M (1.40)

that can be rewritten as

pm (Sg) :=
(
σ2 + (1− S) dm

)
S2
g − 2σ2SSg − σ2S ≤ 0 (1.41)

for all m's. Using the following shorthands

ṗm :=
∂pm
∂Sg

p̈m =
∂2pm
∂S2

g

(1.42)

for allm's and dm's we have that pm (0) = σ2S > 0 and pm (1) = (1− S)
(
dm + σ2

)
<

(1− S)σ2 < 0 since we are assuming there are at least two sensors. Moreover we
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case σ2 + (1− S) dm < 0

case σ2 + (1− S) dm > 0

Sg

p
m

(S
g
)

1

(1− S)(dm + σ2)

σ2S

(1− S)σ2

S′′
m

Figure 1.2: Example of possible parabolas pm (Sg).

also have ṗm (0) = −2σ2S < 0 and ṗm (1) = pm (1) < 0. This implies that each

pm (·) has exactly one root in (0, 1), referred as S′m, while the other root, referred as

S′′m, can be before 0 or after 1 depending on the sign of σ2 + (1− S) dm, as depicted

in Figure 1.2.

Now consider a �xed m. Condition (1.41) is assured for Sg ∈ [1, Sm), where:

Sm :=

{
+∞ if S′′m < 0

S′′m otherwise.
(1.43)

Note that this condition still depends on m (i.e. depends on CΛ0C
T ). Consider then

the parabola with the smallest Sm, say the m̂-th. If pmin is its point of minimum,

then 2pmin − 1 < Sm for every m, so if Sg ∈ [1, 2pmin − 1] then condition (1.37) is

again satis�ed. Now, since (1− S)dm̂ < 0 we have:

pmin =
σ2S

σ2 + (1− S)dm
>
σ2S

σ2
= S (1.44)

and thus [1, 2S − 1] ⊂ [1, 2pmin − 1]. Now we can conclude that if Sg ∈ [1, 2S − 1]

then inequality (1.37) is satis�ed, and this proves the theorem.

The su�cient condition of theorem 4 assures that there exists a large set po-

tential guesses of number of sensors Sg for which the distributed estimator b̂d is

performing better than the local one b`. In particular, this theorem con�rms the

intuition that the average of the local estimators, i.e. Sg = 1, always produces a

better estimate. Moreover, if only rough estimate of S is available, it can be safely

used to improve performance. The second su�cient condition (b) implies that the

distributed estimator is better than the local for all Sg ∈ [1,+∞). In particular, it

con�rms the intuition that if the prior information about b is su�ciently small, i.e.

Λ0 is large, and if C is full rank, then the in�uence of Sg is small on the overall

estimator performance.

Assuming now the knowledge of CΛ0C
T (or equivalently on its eigenvalues dm),

it is possible to enlarge bound (1.32) and �nd that there could be networks (i.e. S
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and σ2) where, no matter how the guess Sg is chosen, distributed estimation leads

to a smaller error variance than the local one:

Theorem 5. If dmin is the smallest eigenvalue of CΛ0C
T and if

dmin >
σ2

S − 1
(1.45)

then the variance of the estimation error of the distributed estimator b̂d (Sg) is smaller

than the one of the local estimators b̂i`, for every sensor i and guess Sg ∈ [1,+∞).

Proof. Condition (1.45) assures parabolas pm (Sg) to be all concave, thus pmin = +∞,

and this is su�cient for the thesis.

In this case, the distributed estimator behave better than the local one also assum-

ing Sg = +∞, that is equivalent to assume that the averaged measurements have no

measurements error. Note that networks with high S or low σ2 have higher proba-

bility to satisfy condition (1.45). The statistical requirement of theorem 5 is that the

smallest eigenvalue of CΛ0C
T has to dominate the resulting noise of the averaged

measurements.

If S and σ2 are s.t. theorem 5 is not satis�ed, then we can state (as an intermediate

consequence of the proof of theorem 4) the following:

Corollary 6. De�ne:

d̂ (S) := min
m∈{1,...,M}

{
dm s.t. σ2 + (1− S) dm > 0

}
(1.46)

and:

S :=

σ2S +

√
σ2S (S − 1)

(
σ2 + d̂ (S)

)

σ2 + (1− S) d̂ (S)
. (1.47)

If

Sg ∈
[
1, 2S − 1

]
(1.48)

then the variance of the estimation error of the distributed estimator b̂d (Sg) is smaller

than the one of the local estimators b̂i`, for every prior Λ0, number of parameters E,

measurement noise variance σ2, matrix C and sensor i.

Remark 7. Although the conditions in the Theorem 4 are only su�cient, they are

nonetheless tight, in the sense that there are scenarios for which if they are not

satis�ed than Λd > Λ`. This is in fact the case for the particular scalar system

E = 1, M = 1, Λ0 = 1, C = 1 and S = 100. Exploiting (1.20) and (1.28) it is

immediate to check that if σ2 > 39600 then var (b− bd (2S)) > var
(
b− b̂`

)
, and

thus show that the bound of Theorem 4 can be tight.

In Figure 1.3 we analyze the dependance of the performances of the distributed

estimator on the measurement noise level σ2 and the guess Sg for the scalar system

introduced in remark 7. In Figure 1.3 we plot var
(
b− b̂d (Sg)

)
for di�erent values of

σ2. Noticing that for the considered cases var
(
b− b̂`

)
= σ2

σ2+1
≈ 1, we can observe

that the importance of a good choice for Sg increases with the noisiness level.
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σ2 = 10

σ2 = 70

σ2 = 200

Λ`
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Λ
d
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g
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Figure 1.3: Dependency on Sg of the estimation error variance Λd of the distributed

estimator b̂d (Sg), respectively de�ned in (1.28) and (1.27), for the particular case E = 1,

M = 1, Λ0 = 1, C = 1 and S = 100, and for di�erent values of σ2. The dashed gray line

approximatively indicates the estimation error variance for the local estimators b̂`.

1.2.4.2 Distributed versus Centralized Estimation

Although we always have Λc ≤ Λd, it is relevant to study the in�uence of the param-

eter Sg in terms of accuracy between the centralized estimator b̂c and the decentral-

ized estimator b̂d. If prior bounds about the unknown parameter S are available, i.e.

S ∈ [Smax, Smin], then the following theorem provides a direct bound on the relative

distance of the estimators 2:

Theorem 8. Under the assumption that S ∈ [Smin, Smax] then
∥∥∥b̂d − b̂c

∥∥∥
2∥∥∥b̂d

∥∥∥
2

≤ Smax

Smin
− 1 (1.49)

for all Sg ∈ [Smin, Smax].

Proof. Rewriting (1.25) as

(
1

S
Λ−1

0 +
CTC

σ2

)
b̂c =

1

S

S∑

i=1

CT yi
σ2

(1.50)

and (1.27) as

(
1

S
Λ−1

0 +
CTC

σ2

)
b̂d +

(
1

Sg
− 1

S

)
Λ−1

0 b̂d =

(
1

S

S∑

i=1

CT yi
σ2

)
(1.51)

and then subtracting member to member the previous two equations, we obtain
(

1

S
Λ−1

0 +
CTC

σ2

)
b̂c − b̂d =

(
1

Sg
− 1

S

)
Λ−1

0 b̂d (1.52)

2The following can be considered a connection between the estimation error variance and the

square-norm of the error: for a generic vector b̃ ∈ RE we have

tr
(

var
(
b̃
))

= tr
(
E
[
b̃b̃T
])

= E
[
tr
(
b̃b̃T
)]

= E
[∥∥∥b̃∥∥∥2

2

]
.
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that implies

∥∥∥b̂c − b̂d
∥∥∥

2∥∥∥b̂d
∥∥∥

2

≤
(

1

Sg
− 1

S

)∥∥∥∥∥

(
1

S
Λ−1

0 +
CTC

σ2

)−1

Λ−1
0

∥∥∥∥∥
2

. (1.53)

Now, since (
1

Sg
− 1

S

)
≤
(

1

Smin
− 1

Smax

)
(1.54)

1

S
Λ−1

0 +
CTC

σ2
≥ 1

Smax
Λ−1

0 (1.55)

we have ∥∥∥b̂c − b̂d
∥∥∥

2∥∥∥b̂d
∥∥∥

2

≤
(

1

Smin
− 1

Smax

)∥∥∥∥∥

(
1

Smax
Λ−1

0

)−1

Λ−1
0

∥∥∥∥∥
2

(1.56)

and thus (1.49).

Although the bound provided in the theorem could be improved if additional

knowledge about Λ0 and C is available, it nonetheless suggests that the performance

is not strongly dependent on the parameter Sg, therefore any sensible choice for this

parameter, such as Sg = (Smax + Smin) /2, is likely to provide a performance close

to the centralized solution. This intuition is con�rmed in Figure 1.4, where we show

the dependency of the relative error
‖b̂d−b̂c‖2
‖b̂d‖2

(in this scalar case equal to
|̂bd−b̂c|
|̂bd| )

for the system considered in remark 7 and for various strategies, as written in the

caption.

1 1.5 2 2.5 3

0

0.5

1

1.5

2

Smax

Smin

e d

(F)

(A)

(B)
(C)
(D)

(E)

Figure 1.4: Dependency of the relative error ed :=
‖bd−bc‖2
‖bd‖2

on Smax/Smin and σ2 for

various choices of Sg, for the scenario E = 1, M = 1, Λ0 = 1, C = 1. (A): Sg = S. (B):

S = Smin, Sg = Smax, σ
2 = 102. (C): S = Smax, Sg = Smin, σ

2 = 102. (D): S = Smin,

Sg = Smax, σ
2 = +∞. (E): S = Smax, Sg = Smin, σ

2 = 104. (F): bound (1.49).
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1.3 Case II: Partially Di�erent Sensors

As before, we consider S distinct sensors each of them taking M scalar noisy mea-

surements on the same input locations, and let the measurement model be

yi = Cb+ νi, i = 1, . . . , S (1.57)

where S is the number of sensors, yi ∈ RM is the measurements vector collected by

the i-th sensor, b ∈ RE is the vector of unknown parameters modeled as a zero-mean

Gaussian vector with autocovariance Λ0, i.e. b ∼ N (0,Λ0). In addition, νi ∈ RM

is the noise vector with density N
(
0, σ2

i I
)
, independent of b and of νj , for i 6= j.

Finally, C ∈ RM×E is a known matrix, equal for all sensors.

1.3.1 Local Bayesian Estimation

Under the assumptions above, the local MMSE estimator of b given yi, is unbiased

and given by

b̂i` := E [b | yi ] = cov (b, yi) var (yi)
−1 yi

= Λ0C
T
(
CΛ0C

T + σ2
i I
)−1

yi

=

(
Λ−1

0 +
CTC

σ2
i

)−1
CT yi
σ2
i

.

(1.58)

while the autocovariance of the local estimation error is

Λi` := var
(
b− b̂i`

)
=

(
Λ−1

0 +
CTC

σ2
i

)−1

(1.59)

which is again independent of the measurements yi but now depends on the noisiness

of sensor i.

1.3.2 Centralized Bayesian Estimation

If S ≥ 2 and all measurements {yi}Si=1 are collected by a central unit, the MMSE

estimate of the parameter vector b can be computed as we did in Section 1.2.2 and

can be written as

b̂c = Λ0C
T


CΛ0C

T +

(
S∑

i=1

1

σ2
i

)−1

I



−1




1

S

S∑

i=1

yi
σ2
i

1

S

S∑

i=1

1

σ2
i




(1.60)

or as

b̂c =

(
1

S
Λ−1

0 +

(
1

S

S∑

i=1

1

σ2
i

)
· CTC

)−1(
1

S

S∑

i=1

CT yi
σ2

)
. (1.61)

Using

α :=

S∑

i=1

1

σ2
i

(1.62)
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as a shorthand for the sum of the precisions 1/σ2
i , the previous expressions can be

written as

b̂c = Λ0C
T

(
CΛ0C

T +
1

α
I

)−1




1

S

S∑

i=1

yi
σ2
i

1

S

S∑

i=1

1

σ2
i




(1.63)

and

b̂c =

(
1

S
Λ−1

0 +
α

S
· CTC

)−1
(

1

S

S∑

i=1

CT yi
σ2

)
. (1.64)

Again the variance of the estimation error is the same for both the forms, and is

given by

Λc := var
(
b̂c − b

)
=

(
Λ−1

0 +

(
S∑

i=1

1

σ2
i

)
· CTC

)−1

. (1.65)

Connection between the sum of precisions α and the number of sensors S

Let h be the harmonic mean of the measurements noises variances, i.e.:

h := h
(
σ2

1, . . . , σ
2
S

)
:=

S
S∑

i=1

1

σ2
i

. (1.66)

It is evident that average consensus on the quantities
1

σ2
i

corresponds to a distributed

estimation of h−1. Thus, exploiting the relation

α :=
S∑

i=1

1

σ2
i

=
S

h
, (1.67)

after a pre-distributed estimation step for h−1, the knowledge of the number of

sensors S is equivalent to the knowledge of the sum of precisions α.

1.3.3 Distributed Bayesian Estimation

Remarks 2 and 3 of Section 1.2.3 should now be modi�ed in the following way:

Remark 9. In order to be able to implement the optimal estimation strategy (1.63),

all sensors must have perfect knowledge on α, while to implement strategy (1.64)

sensors must have perfect knowledge on S.

Remark 10. To compute b̂c through (1.63), sensors need to have a guess run in

parallel two average consensi: one on their normalized measurements yi/σ
2
i , which are

M -dimensional vectors, and one on their precisions 1/σ2
i , that are scalar quantities.

Once computed these two quantities, they have to compute their ratio.

To compute b̂c through strategy (1.25), sensors need to reach an average consensus

on the E-dimensional transformed measurement vectors CT yi/σ
2
i . Moreover they run
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in parallel an average consensus to compute the average precision 1
S

∑
i 1/σ2

i , that is

needed to correctly estimate the ratio α/S.

Notice that the two possible strategies have di�erent drawbacks: assuming again

E � M , with (1.24) sensors will exchange more data, while with (1.25) sensors

will have to compute the operator

(
1

S
Λ−1

0 +
α

S
· CTC

)−1

only after the consensus

processes.

In the rest of the section we will make again the natural assumptions

• E �M ;

• S and α are unknown.

We will consider both the strategies

b̂d (αg) := Λ0C
T

(
CΛ0C

T +
1

αg
I

)−1




1

S

S∑

i=1

yi
σ2
i

1

S

S∑

i=1

1

σ2
i




(1.68)

and

b̂d (Sg) :=

(
1

Sg
Λ−1

0 +

(
1

S

S∑

i=1

1

σ2
i

)
· CTC

)−1(
1

S

S∑

i=1

CT yi
σ2

)
. (1.69)

where αg and Sg are estimates respectively of α and S. With some algebraic manip-

ulations it is possible to explicitly derive their �obviously identical� estimation error

covariance, that is given by

Λd := var
(
b̂d − b

)

=

(
1

Sg
Λ−1

0 +
α

S
· CTC

)−1( 1

S2
g

Λ−1
0 +

α

S2
· CTC

)(
1

Sg
Λ−1

0 +
α

S
· CTC

)−1

.

(1.70)

1.3.4 Characterization of the Distributed Algorithm

As we did in Section 1.2.4, we now derive conditions that guarantee that the process

of sharing and combining the information improves the estimation of b with respect

to the local estimation strategy. In other words, we obtain conditions relative to

the level of uncertainty on the values of α and S that ensure that the distributed

strategy returns a smaller autocovariance (in a matrix sense) of the estimation error

than that obtainable by the local one.

1.3.4.1 Distributed versus Local Estimation

We start deriving conditions referred to the level of uncertainity with respect to α,

and then transport them into conditions on the uncertainity on S.
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Uncertainity with respect to α:

Theorem 11. If

αg ∈
[
α−

√
α2 − α

σ2
i

, α+

√
α2 − α

σ2
i

]
(1.71)

then the variance of the estimation error of the distributed estimator b̂d (αg) is smaller

than the one of the local estimator b̂i`, for every prior Λ0, number of parameters E,

sum of precisions α and matrix C.

Proof. Repeating the initial steps of the proof of Theorem 4, we can obtain that a

su�cient condition assuring

Λd = var
(
b− b̂d (αg)

)
≤ var

(
b− b̂`

)
= Λ` (1.72)

is given by

−2

dm + 1
αg

+
dm + 1

α(
dm + 1

αg

)2 ≤
−1

dm + σ2
i

m = 1, . . . ,M. (1.73)

where dm is, as previously indicated, an eigenvalue of CΛ0C
T , thus it is dm ≥ 0

for all m's since Λ0 is at least semi-positive de�nite. Now condition (1.73) can be

rewritten as

pi,m (αg) :=
(
σ2
i +

(
1− ασ2

i

)
dm

)
α2
g −

(
2ασ2

i

)
αg + α ≤ 0 (1.74)

for all m. Notice that

ασ2
i =

S∑

j=1

σ2
i

σ2
j

= 1 +
∑

j 6=i

σ2
i

σ2
j

≥ 1 (1.75)

thus
(
1− ασ2

i

)
dm ≤ 0, thus parabolas pi,m (αg) can be convex, concave or degener-

ated depending on σ2
i . Their roots are in general

r± (i,m) :=
ασ2

i ±
√(

ασ2
i − 1

) (
αdm + ασ2

i

)

σ2
i +

(
1− ασ2

i

)
dm

=
α

ασ2
i ∓

√(
ασ2

i − 1
) (
αdm + ασ2

i

) .
(1.76)

Recalling that we have to �nd the αg's that assure condition (1.74) independently of

i and m, we analyze separately the three cases.

Convex parabolas (i.e. σ2
i +
(
1− ασ2

i

)
dm > 0): in this case r− (i,m) < r+ (i,m)

for all i and m. Since

r− (i,m) <
α

ασ2
i +

√(
ασ2

i − 1
)
ασ2

i

=: b− (i) (1.77)
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r+ (i,m) >
ασ2

i +
√(

ασ2
i − 1

)
ασ2

i

σ2
i

=: b+ (i) (1.78)

and since it can be shown by rationalization of b− (i) that b− (i) < b+ (i) for all

σ2
i ≥ 0, we are sure that for any convex parabola pi,m (αg)

αg ∈ [b− (i) , b+ (i)] ⇒ pi,m (αg) ≤ 0 . (1.79)

Concave parabolas (i.e. σ2
i +
(
1− ασ2

i

)
dm < 0): we check that implication (1.79)

is still valid. For doing so it is su�cient to check if pi,m (b− (i)) ≤ 0, pi,m (b+ (i)) ≤ 0

and that

sign

(
∂pi,m (αg)

∂αg

∣∣∣∣
b−(i)

)
= sign

(
∂pi,m (αg)

∂αg

∣∣∣∣
b+(i)

)
(1.80)

and by simple algebraic majorizations this can be easily shown to always subsist.

Degenerated parabolas (i.e. σ2
i +

(
1− ασ2

i

)
dm = 0): in this case pi,m (αg) =

−
(
2ασ2

i

)
αg + α is a negatively skewed line. Since it easy to verify that also in this

case pi,m (b− (i)) ≤ 0, it is true that condition (1.79) is always satis�ed, for all m.

Now, by simple algebraic manipulations, it can be shown that αg ∈ [b− (i) , b+ (i)] is

equivalent to condition (1.71).

Notice that even if αg is assumed to be the same among all the sensors, the

bound (1.71) is di�erent for each sensor i.

Remark 12. Assuming σ2
i = σ2, i = 1, . . . , S, exploiting

α =
S∑

i=1

1

σ2
=

S

σ2
(1.81)

we can reformulate bound (1.71) as

Sg ∈
[(
S −

√
S2 − S

)
,
(
S +

√
S2 − S

)]
. (1.82)

It is immediate to derive the conditions

S −
√
S2 − S ≤ 1⇔ 1− 1

S
≤
√

1− 1

S
(1.83)

and

S +
√
S2 − S ≥ 2S − 1⇔

√
1− 1

S
≥ 1− 1

S
(1.84)

thus (since S ≥ 1) it follows that

[1, 2S − 1] ⊂
[(
S −

√
S2 − S

)
,
(
S +

√
S2 − S

)]
. (1.85)

Since from a numerical point of view these two bounds are practically equivalent3,

we prefer to o�er also bound (1.32) and its derivation because of its elegance.

3This is in a certain sense implied by the facts expressed in remark 7.
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Before deriving other results it is interesting to analyze the asymptotic behavior

of bound (1.71). For ease of notation we de�ne

b− (i) := α−
√
α2 − α

σ2
i

b+ (i) := α+

√
α2 − α

σ2
i

. (1.86)

• if the topology and σ2
i are �xed but we vary the noisiness of sensors j 6= i, we have

that

∃j s.t. σ2
j → 0 ⇒ b− (i)→ 1

2σ2
i

, b+ (i)→ +∞ (1.87)

i.e. if there exists a sensor that has �perfect� measurements, then sensor i will improve

its estimation with any guess αg that is at least half of its precision 1
σ2
i
. In the

contrary, if

∀j σ2
j → +∞ ⇒ b− (i)→ 1

σ2
i

, b+ (i)→ 1

σ2
i

, (1.88)

i.e. if all the sensors have unreliable measures then sensor i should use the local

estimator (1.58);

• if the noisiness of all the sensors are the same (i.e. we are in the case analyzed in

Section 1.2) but we vary the number of sensors S in the network, we have that

S → +∞ ⇒ b− (i)→ 0 b+ (i)→ +∞ (1.89)

• if the topology and the noisiness of all sensors j are �xed but the one of sensor i,

and we vary it, then we have that

σ2
i → 0 ⇒ b− (i)→ +∞, b+ (i)→ +∞ (1.90)

i.e. if the measurements of sensor i are �perfect� then sensor i should estimate with-

out caring about the other sensors. In the contrary, if the measurements of sensor i

are unreliable we should expect to have an improvement for every guess αg. Unfor-

tunately from bound (1.71) we obtain only the following

σ2
i → +∞ ⇒ b− (i)→ 0, b+ (i)→ 2α (1.91)

i.e. a subset of the interval we were expecting. This is due to the fact that Theorem 11

gives only a su�cient condition for the optimality we are looking for.

As a general consideration, if sensor i is highly accurate while all the others are

not, then bound (1.71) is thight for the sensor i (the accurate one), so it is more

probable that the guessed αg falls outside of its bound. Since (1.71) is a su�cient

condition, it could be that, if αg falls near outside the indicated interval, then still

the distributed estimation is better than the local one also for the accurate sensor i.

But if it falls far outside, this could become false.

We continue now stating some conditions that can be referred to the general

behavior of the network, and not to the single sensor. The following, for exam-

ple, assures that each sensor in the network has an advantage from the distributed

algorithm:
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Corollary 13. De�ne σ2
min := mini

{
σ2
i

}
. Then if

αg ∈
[
α−

√
α2 − α

σ2
min

, α+

√
α2 − α

σ2
min

]
(1.92)

then the variance of the estimation error of the distributed estimator b̂d (αg) is smaller

than the one of the local estimator b̂i` for each sensor i = 1, . . . , S.

Since in a distributed scenario it could be interesting to analyze average behav-

iors, it is important to answer to the following question: can we �nd values of αg s.t.

the variance of the error of the distributed strategy is smaller than the average error

of the various local strategies, independently of the used prior Λ0 and of the matrix

C? The answer is given in the following:

Theorem 14. Considering the harmonic mean h de�ned in (1.66), if

αg ∈
[
α−

√
α2 − α

h
, α+

√
α2 − α

h

]
(1.93)

then the variance of the estimation error of the distributed estimator b̂d (αg) is smaller

than the average variance of the estimation errors of the local estimators b̂i`.

Proof. We are seeking the guesses αg such that

1

S

S∑

i=1

var
(
b− b̂d (αg)

)
≤ 1

S

S∑

i=1

var
(
b− b̂i`

)
(1.94)

and, repeating the initial steps of the proof of Theorem 4, we obtain the following

su�cient condition:

−2

dm + 1
αg

+
dm + 1

α(
dm + 1

αg

)2 ≤
1

S

S∑

i=1

−1

dm + σ2
i

m = 1, . . . , S . (1.95)

We notice that if it is true that

−1

dm + h

?
≤ 1

S

S∑

i=1

−1

dm + σ2
i

∀m (1.96)

then we can repeat the other steps of proof of Theorem 11 to obtain the bound (1.93).

Now condition (1.96) can be rewritten as

dm + h
?
≤ h

(
dm + σ2

1, . . . , dm + σ2
S

)
(1.97)

but, since h = h
(
σ2

1, . . . , σ
2
S

)
, this is true for the following Lemma 15.

Lemma 15. If ai ≥ 0, i = 1, . . . , S and d ≥ 0, then:

h (d+ a1, . . . , d+ aS) ≥ d+ h (a1, . . . , aS) (1.98)
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Proof. De�ning:

f (d) := h (d+ a1, . . . , d+ aS)− h (a1, . . . , aS)− d (1.99)

we need to prove that f (d) ≥ 0 for d ≥ 0. Since f(0) = 0, it is su�cient to

demonstrate that ∂f(d)
∂d ≥ 0. Now this is true if:

S

S∑

i=1

(
1

d+ ai

)2

≥
(

S∑

i=1

1

d+ ai

)2

. (1.100)

Considering the two vectors x =
[

1
d+a1

, . . . , 1
d+aS

]T
and y = [1, . . . , 1]T , condi-

tion (1.100) corresponds to 〈x, x〉 〈y, y〉 ≥ |〈x, y〉|2 that is the well-known Cauchy-

Schwarz inequality.

As expected, since the minimum element of the set of scalars is always smaller

than the harmonic mean of this set, the interval described in bound (1.92) is always

included in the interval described in bound (1.93), implying that condition (1.92) is

su�cient for condition (1.93).

Uncertainity with respect to S: the previous results can be immediately refor-

mulated as follows:

Corollary 16. If

Sg ∈
[
S −

√
S2 − Sh

σ2
i

, S +

√
S2 − Sh

σ2
i

]
(1.101)

then the variance of the estimation error of the distributed estimator b̂d is smaller

than the one of the local estimator b̂i`, for every prior Λ0, number of parameters E,

sum of precisions α and matrix C.

Corollary 17. If

Sg ∈
[
S −

√
S2 − Sh

σ2
min

, S +

√
S2 − Sh

σ2
min

]
(1.102)

then the variance of the estimation error of the distributed estimator b̂d is smaller

than the one of the local estimator b̂i` for each sensor i.

Corollary 18. If

Sg ∈
[
S −

√
S2 − S, S +

√
S2 − S

]
(1.103)

then the variance of the estimation error of the distributed estimator b̂d is smaller

than the average variance of the estimation errors of the local estimators b̂i`.

Notice that corollary 18 is not independent of the various noises variances σ2
i

since it implicitly requires the knowledge on their harmonic mean h.
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1.3.4.2 Distributed versus Centralized Estimation

Following exactly the same reasonings made for Theorem 8, and using form (1.69)

for estimator b̂d, it is possible to prove once again that:

Theorem 19. Under the assumption that S ∈ [Smin, Smax] then
∥∥∥b̂d − b̂c

∥∥∥
2∥∥∥b̂d

∥∥∥
2

≤ Smax

Smin
− 1 (1.104)

for all Sg ∈ [Smin, Smax].

Once again it is possible to compute more re�ned bounds using the knowledge of

C or Λ0.

1.4 Case III: Totally Di�erent Sensors

In this section we consider S distinct sensors each of them taking M scalar noisy

measurements on di�erent input locations, and let the measurement model be

yi = Cib+ νi, i = 1, . . . , S (1.105)

where S is the number of sensors, yi ∈ RM is the measurements vector collected by

the i-th sensor, b ∈ RE is the vector of unknown parameters modeled as a zero-mean

Gaussian vector with autocovariance Λ0, i.e. b ∼ N (0,Λ0). In addition, νi ∈ RM

is the noise vector with density N
(
0, σ2

i I
)
, independent of b and of νj , for i 6= j.

Finally, Ci ∈ RM×E is a matrix that is in general di�erent among sensors.

1.4.1 Local Bayesian Estimation

Under the assumptions above, the local MMSE estimator of b given yi, is unbiased

and given by

b̂i` := E [b | yi ] = cov (b, yi) var (yi)
−1 yi

= Λ0C
T
i

(
CiΛ0C

T
i + σ2

i I
)−1

yi

=

(
Λ−1

0 +
CTi Ci
σ2
i

)−1
CTi yi
σ2
i

.

(1.106)

The autocovariance of the local estimation error b̃i := b− b̂i` is given by

Λi` := var
(
b− b̂i`

)
=

(
Λ−1

0 +
CTi Ci
σ2
i

)−1

. (1.107)

1.4.2 Centralized Bayesian Estimation

Through computations similar to those of Section 1.4.2, it is possible to show that

the MMSE estimate of the parameter vector b can be computed in a centralized way

via the following

b̂c =

(
1

S
Λ−1

0 +
1

S

S∑

i=1

CTi Ci
σ2
i

)−1(
1

S

S∑

i=1

CTi yi
σ2
i

)
(1.108)
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while the variance of the estimation error is given by

Λc := var
(
b̂c − b

)
=

(
Λ−1

0 +

S∑

i=1

CTi Ci
σ2
i

)−1

. (1.109)

Remark 20. We notice that the measurements-based form of estimator b̂c is given

by

b̂c = Λ0

[
CT1 , . . . , C

T
S

]





C1
...

CS


Λ0

[
CT1 , . . . , C

T
S

]
+ diag

(
σ2
i I
)



−1 

y1
...

yS


 (1.110)

where diag
(
σ2
i I
)
indicates a block-diagonal matrix which diagonal blocks are given

by σ2
i I matrices. Computation of b̂c through (1.110) involvesM ·S×M ·S matrices,

while in the previous cases of Sections 1.2 and 1.3 it was involving smaller matrices

(only M ×M -dimensional ones).

1.4.3 Distributed Bayesian Estimation

Given remark 20, it is clear that the distributed estimator b̂d of b can be derived

only from the innovations-based form of the centralized estimator b̂c. Given also

remark 2, we obtain that b̂d is given by

b̂d (Sg) :=

(
1

Sg
Λ−1

0 +
1

S

S∑

i=1

CTi Ci
σ2
i

)−1(
1

S

S∑

i=1

CTi yi
σ2
i

)
. (1.111)

We notice that, in order to compute b̂d through (1.111), sensors have to perform

two average-consensi: one on CTi Ci/σ
2
i (E × E-dimensional matrices), and one on

CTi yi/σ
2
i (E-dimensional vectors). We also notice that the inversion of the matrix(

1

Sg
Λ−1

0 +
1

S

S∑

i=1

CTi Ci
σ2
i

)
can be performed only after the consensus processes, thus

it has to be performed on-line by the sensors and not in an o�-line fashion.

Remark 21. It would have been easy to consider zero-mean measurement noises

that are correlated if belonging to the same sensor, or uncorrelated if not, i.e. s.t.

E
[
νiν

T
j

]
=

{
Σν,i if i = j

0 otherwise.
(1.112)

In this case, in fact, the changes that should be applied to estimator (1.111) would

be
CTi Ci
σ2
i

7→ CTi Σ−1
ν,iCi and

CTi yi
σ2
i

7→ CTi Σ−1
ν,i yi . (1.113)

In the most general case of zero-mean noises that are correlated even if taken by

di�erent sensors, it is easy to show that there exist no distributed estimators like

the ones proposed up to now that exactly compute the centralized solution, even

assuming the knowledge of the number of sensors in the network S, or the sum of

the precisions α.
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The autocovariance for the estimation error is given in this case by

Λd := var
(
b̂d − b

)

=

(
1

Sg
Λ−1

0 +
1

S

S∑

i=1

CTi Ci
σ2
i

)−1

·

·
(

1

S2
g

Λ−1
0 +

1

S2

S∑

i=1

CTi Ci
σ2
i

)
·

·
(

1

Sg
Λ−1

0 +
1

S

S∑

i=1

CTi Ci
σ2
i

)−1

.

(1.114)

1.4.4 Characterization of the Distributed Algorithm

We seek now to characterize the distributed estimator we just introduced as we did

in Section 1.2.4 and 1.3.4.

1.4.4.1 Distributed versus Local Estimation

Unfortunately in this case it is not possible to derive explicit su�cient conditions

assuring the distributed estimator to perform better than the local one. In fact

both Theorem and rely on �nding an orthonormal matrix U diagonalizing the

matrix
(
CΛ0C

T + σ2
i I
)
, that was obtained from the measurements-based forms of

the distributed estimators b̂d (see 1.31 and 1.68). But this form cannot be derived

in this novel case, see remark (20). We are currently investigating other research

directions in order to circumvent this fact.

1.4.4.2 Distributed versus Centralized Estimation

Once again it is possible to show that Theorem 8 is still valid, using the same

reasonings of the original proof.



42 1.4 Case III: Totally Di�erent Sensors



2
Distributed Nonparametric Estimation

2.1 Introduction

In regression and system identi�cation the adjective �nonparametric� is usually re-

ferred to techniques that do not �x a priori the structure of the result. If not ac-

quainted with these techniques, this lack of structure may initially seem a negative

characteristic. On the contrary, years of application on real �elds shown that their

usage is motivated by various practical and mathematical reasons like:

• if there is a lack of knowledge of the model to be identi�ed or if the model

belongs to a family of di�erent parametric models, then nonparametric identi-

�cation leads to better estimates (Pillonetto and De Nicolao, 2010). A speci�c

example is Pillonetto et al. (2011), where authors prove that in some practi-

cal cases the identi�cation of linear systems through combination of classical

model selection strategies, like Akaike Information Criterion (AIC) (Akaike,

1974) or Bayesian Information Criterion (BIC) (Schwarz, 1978), and Predic-

tion Error Methods (PEM) strategies (Ljung, 1999; Söderström and Stoica,

1989) performs worse than identi�cation through nonparametric Gaussian re-

gression approaches;

• nonparametric identi�cation approaches can be consistent where parametric

approaches fail to be (Smale and Zhou, 2007; De Nicolao and Ferrari-Trecate,

1999);

• in general, nonparametric approaches require the tuning of very few parame-

ters, allowing the implementation of fast line search strategies (Pillonetto and

Bell, 2007);

• for some parametric models, the distributed implementation of ML strategies

could be infeasible, due to the structure of the likelihood function. An ap-

proach is then to convexify -as it will be clear later- the likelihood through the

construction a suitable nonparametric approximated model. In general this al-

lows the application of generic distributed optimization techniques (Bertsekas
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and Tsitsiklis, 1997). But, under particular choices of the cost and regulariza-

tion functions, we will show that the ML problem can be distributedly solved

through a distributed approximated Regularization Network (RN) requiring

small computational, communication and memory requirements.

An other important point is the following: the amount of prior information given with

nonparametric techniques (e.g. the kernel functions introduced below, that can be

considered as covariances whenever using Bayesian approaches based on Gaussian

processes, see Section 2.1.4) is far less than the amount of prior information that

is given assuming the model to be a certain parametric function. Intuitively the

prior of the nonparametric techniques is weaker than the parametric one, and this

eventually makes the nonparametric strategies more widely applicable and more

robust. Nonetheless this is a tricky point: in fact, if an experiment returned a small

amount of data, small information is available. In this case, if the parametric model

is (from an intuitive point of view) accurate, the amount of information could be

su�cient to obtain an estimate far better than the one that could be obtained with

the less informative nonparametric prior.

After this warning, we focus now on a nonparametric Reproducing Kernel Hilbert

Space (RKHS) based approach, one of the most widely used approaches for regression

purposes.

2.1.1 Background

From an intuitive point of view, RKHSs are sets of su�ciently-smooth functions with

some nice mathematical properties. The theory was founded by (Aronszajn, 1950).

See also (Yosida, 1965; Cucker and Smale, 2002; Poggio and Girosi, 1990; Wahba,

1990). For an overview of their uses in statistical signal processing see Weinert

(1982).

De�nition 22 (Reproducing kernel Hilbert space). Let HK be a Hilbert space of

functions1

f (·) : X ⊆ Rd 7→ R (2.1)

endowed with the inner product 〈·, ·〉HK and norm ‖f‖HK :=
√
〈f, f〉HK . If there

exists a function

K (·, ·) : X × X 7→ R (2.2)

such that

(a) K (x, ·) ∈ HK for every x ∈ X

(b) 〈f (·) ,K (x, ·)〉HK = f (x) for every x ∈ X and f ∈ HK

then HK is said to be a reproducing kernel Hilbert space with kernel K.

1We restrict our analysis only real-valued functions even if the same concepts could be applied

to complex-valued functions.
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Property (b) is usually called the reproducing property. Notice that L2 is not a

RKHS since its representing functions, namely the delta functions, are not in L2.

For the following derivations it is necessary to introduce some de�nitions.

De�nition 23 (Positive-de�nite kernel). A kernel K is said to be positive-de�nite

if, for every N ∈ N+ and N -tuple x1, . . . , xN ∈ X


K (x1, x1) · · · K (x1, xN )

...
...

K (xN , x1) · · · K (xN , xN )


 =: K ≥ 0 (2.3)

where the inequality has to be intended in a matricial positive-semide�nite sense.

De�nition 24 (Symmetric kernel). A kernelK is said to be symmetric ifK (x, x′) =

K (x′, x) for all x, x′ ∈ X .

De�nition 25 (Mercer kernel). A symmetric positive-de�nite kernel K is said to be

a Mercer kernel if it is also continuous.

The term kernel derives from the theory of integral operators, where, given a

non-degenerate measure2 µ and a function K as in 2.2, it is possible to de�ne the

integral operator

LK,µ [g] (x) :=

∫

X
K
(
x, x′

)
g
(
x′
)
dµ
(
x′
)
. (2.4)

Operator LK,µ [·] is said to be positive de�nite if K is positive de�nite.

The following theorem proves the biunivocity between symmetric positive-de�nite

kernels and RKHSs.

Theorem 26 (Moore-Aronszajn (Aronszajn, 1950)). For every symmetric positive-

de�nite kernel K there exists an unique RKHS HK having K as its reproducing

kernel. Viceversa, the reproducing kernel of every RKHS HK is unique.

Having in mind our future applications on regression, we focus now on the impli-

cations of the spectral theory of compact operators on RKHS theory3. Assume then

X to be compact, K to be Mercer on X × X , L2 (µ) to be the set of the Lebesgue

square integrable functions under the non-degenerate measure µ. A function φ that

obeys the integral equation4

λφ (x) = LK,µ [φ] (x) (2.5)

is said to be an eigenfunction of LK,µ [·] with associated eigenvalue λ. The following

result holds.
2We recall that a Borel measure µ is said to be non-degenerate w.r.t. the Lebesgue measure L2

if L2 (A) > 0⇒ µ (A) > 0 for every A in the Borel σ-algebra.
3See (Zhu, 2007, Chap. 1.3) for more details on compact operators on general Hilbert spaces.
4In some cases eigenvalues and eigenfunctions can be computed in closed forms, specially in Gaus-

sian cases (Zhu et al., 1998). Often it is necessary to perform numerical computations (De Nicolao

and Ferrari-Trecate, 1999), (Rasmussen and Williams, 2006, Chap. 4.3.2).
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Theorem 27 (Cucker and Smale (2002), see also König (1986)). Let K be a Mercer

kernel on X × X and µ a non-degenerate measure. Let {φe} be the eigenfunctions
of LK,µ [·] normalized in L2 (µ), i.e. s.t.

∫

X
φe (x)φl (x) dµ (x) = δel (2.6)

with corresponding eigenvalues λe ordered s.t. λ1 ≥ λ2 ≥ . . .. Then

(a) λe ≥ 0 for all e;

(b)
+∞∑

e=1

λe =

∫

X
K (x, x) dµ (x) < +∞

(c) {φe}+∞e=1 is an orthonormal basis for L2 (µ)

(d) the RKHS HK associated to {φe}+∞e=1 is given by

HK :=

{
g ∈ L2 (µ) s.t. g =

∞∑

e=1

aeφe with {ae} s.t.
∞∑

e=1

a2
e

λe
< +∞

}
(2.7)

(e) K can be expanded via the relation:

K
(
x, x′

)
=
∞∑

e=1

λeφe (x)φe
(
x′
)

(2.8)

where the convergence of the series is absolute and uniform5 in X × X .

Remark 28. Condition
∑∞

e=1
a2e
λe
< +∞ expressed in (2.7) can be seen as a smooth-

ness condition. In fact, since the sequence λ1, λ2, . . . has to vanish because the

associated series is convergent, it follows that a2
e must vanish su�ciently fast.

From the same theorem it follows that if g1 =
∑+∞

e=1 aeφe and g2 =
∑+∞

e=1 a
′
eφe

then their inner product is

〈g1, g2〉HK =
+∞∑

e=1

ae · a′e
λe

. (2.9)

Notice that, if g =
∑+∞

e=1 aeφe ∈ HK and a = [a1, a2, . . .]
T , orthogonality of

eigenfunctions in L2 (µ) implies that

‖g‖2L2(µ) =

+∞∑

e=1

+∞∑

l=1

aeal

∫

X
φe (x)φl (x) dµ (x) = ‖a‖22 . (2.10)

Moreover orthonormality of eigenfunctions in L2 (µ) implies orthogonality in HK ,
i.e.

〈φe, φl〉L2(µ) = δel ⇔ 〈φe, φl〉HK =
1

λe
δel . (2.11)

In the following we will use the shorthands ‖·‖µ for ‖·‖L2(µ) and ‖·‖K for ‖·‖HK .

5This has the nice practical implication that it is possible to compute K with the desired level

of precision using a �nite number of eigenfunctions.
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Remark 29. We could have de�ned HK using the so-called reproducing kernel map

construction (Rasmussen and Williams, 2006, page 131), i.e. starting from the rep-

resenting functions K (x, ·). We preferred to use eigenfunctions-eigenvalues decom-

positions because these will be heavily used in the following sections.

2.1.2 Examples of RKHSs

In this section we o�er some examples of the most commonly used kernels, focusing

on the case X = [0, 1]. We send the reader back to (Schölkopf and Smola, 2001,

Chap. 13) and references therein for general kernels design techniques.

Gaussian Kernels A Gaussian kernel is described by

K
(
x, x′

)
= exp

(
−‖x− x

′‖22
2σ2

)
(2.12)

where x, x′ ∈ X ⊂ Rd (X is a compact). This kernel may have eigenfunctions and

eigenvalues in closed forms, depending on µ, see for example Zhu et al. (1998).

In Figures 2.1 and Figure 2.2 we plot the �rst 4 eigenfunctions for the cases µ =

U [0, 1] and µ = N (0.5, 0.01), both with σ2 = 0.01. We notice how the approximation

capability of the eigenfunctions is concentrated where it is more probable to have

measurements. In Figure 2.3 we show the behavior of the eigenvalues for the two

di�erent µ's. Finally in Figure 2.4 we show 4 di�erent realizations fµ relative to the

kernel just considered, under the assumptions of Section 2.1.4.
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Figure 2.1: First 4 eigenfunctions for the Gaussian kernel (2.12), associated to µ =

U [0, 1] and σ2 = 0.01.

Laplacian Kernels A Laplacian kernel is described by

K
(
x, x′

)
= exp

(
−|x− x

′‖
σ

)
(2.13)

where x, x′ ∈ X ⊂ Rd, σ ∈ R+.
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Figure 2.2: First 4 eigenfunctions for the Gaussian kernel (2.12), associated to µ =

N (0.5, 0.01) and σ2 = 0.01.
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Figure 2.3: Eigenvalues of the Gaussian kernel (2.12), associated to σ2 = 0.01 and

di�erent measures µ.
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Figure 2.4: Independently generated realizations for the Gaussian kernel (2.12), asso-

ciated to σ2 = 0.01.

In Figure 2.5 we plot the �rst 4 eigenfunctions for the case µ = U [0, 1] with

σ = 0.1. In Figure 2.6 we show the behavior of the eigenvalues for this kernel, and in

Figure 2.7 we show 4 di�erent realizations fµ relative to the kernel just considered,

again under the assumptions of Section 2.1.4.
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Figure 2.5: First 4 eigenfunctions for the Laplacian kernel (2.13), associated to µ =

U [0, 1] and σ = 0.1.
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Figure 2.6: Eigenvalues of the Laplacian kernel (2.13), associated to µ = U [0, 1] and

σ = 0.1.
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Figure 2.7: Independently generated realizations for the Laplacian kernel (2.13), asso-

ciated to σ = 0.1.

Stable-Splines Kernels When fµ is the impulse response of a BIBO-stable sys-

tem, it is better to choose a prior incorporating this information. The kernel of

equation (2.14) (parametrized with β ≥ 0) has been proved to lead to better approx-

imations of such responses than cubic spline kernel does (Pillonetto and De Nicolao,
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2010). Corresponding eigenfunctions for the case µ = U [0, 1], that are causal and

decrease exponentially as time goes to in�nity, are plotted in Figure 2.8.

K
(
x, x′;β

)
=





exp (−2βx)

2

(
exp

(
−βx′

)
− exp (−βx)

3

)
if x ≤ x′

exp (−2βx′)
2

(
exp (−βx)− exp (−βx′)

3

)
if x ≥ x′

(2.14)

In Figure 2.8 we plot the �rst 4 eigenfunctions for the case µ = U [0, 1] with

σ = 0.1. In Figure 2.9 we show the behavior of the eigenvalues for this kernel, and in

Figure 2.10 we show 4 di�erent realizations fµ relative to the kernel just considered,

again under the assumptions of Section 2.1.4.
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Figure 2.8: First 4 eigenfunctions for the kernel (2.14), associated to µ = U [0, 1] and

β = 5.
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Figure 2.9: Eigenvalues of the kernel (2.14), associated to β = 5 and the measure

µ = U [0, 1].

2.1.3 Regularized regression

Let fµ : X → R denote an unknown deterministic function de�ned on the compact

X ⊂ Rd. Assume we have the following S noisy measurements

yi = fµ (xi) + νi, i = 1, . . . , S (2.15)
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Figure 2.10: Independently generated realizations for the kernel (2.14), associated to

β = 5.

with νi white noise and i the measurement index. Without any additional assump-

tion, the problem of inferring fµ given the data set {xi, yi}Si=1 is ill-posed in the

sense of Hadamard. One of the most used approaches to overcome this problem re-

lies upon the Tikhonov regularization theory67 (Tikhonov and Arsenin, 1977), that

relies computing the estimate of the unknown function as

f̂c := arg min
f∈HK

Q (f) (2.16)

where the functional Q (·) is de�ned as

Q (f) := L
(
f, {xi, yi}Si=1

)
+ γ ‖f‖2K (2.17)

and where the hypothesis space HK is typically given by the reproducing kernel

Hilbert space induced by the Mercer kernel K : X × X → R. The �rst term is a

loss function accounting for data-�tting properties of f (see Figure 1.1 and related

comments), while the second term, usually called regularizer, weights the smoothness

of f , penalizing thus non-smooth solutions8. Finally, γ is the so called regularization

parameter that trades o� empirical evidence and smoothness information on fµ.

By using the famous representer theorem (introduced in Kimeldorf and Wahba

(1971), see (Schölkopf and Smola, 2001, Chap. 4.2) for a generalized version) it is

possible to show that each minimizer of Q (f) has the form of a linear combination

of S basis functions, i.e.

f̂c =
S∑

i=1

ciK (xi, ·) (2.18)

i.e. f̂c admits the structure of a Regularization Network (RN), term introduced

in Poggio and Girosi (1990) to indicate estimates of the form (2.18).

6Alternatively one could use explicit prior knowledge, and formulate the problem -for example-

through Gaussian Processes formalisms.
7Finite-dimensional formulation of this approach is also known as Ridge regression (Hoerl and

Kennard, 2000)
8See Girosi et al. (1995) for smoothness functionals involving Fourier transforms of the candidate

estimating function.
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A graphical intuition of (2.18) is that the optimal estimate is given by a combi-

nation of some �slices� of the kernel function, as shown in Figure 2.11.

x′

x

K (x, x′)

x

f̂c (x)

Figure 2.11: Graphical intuition of the structure of the optimal centralized estimate

f̂c. Assume measurements have been taken in correspondence of the input locations

highlighted with gray circles in the x′ axis: then f̂c is given by a linear combination

of the kernel function K (·, ·) �sliced� along the various input locations contained in the

dataset. In the �gure, each slice is indicated with a black solid line.

For consistency with Chapter 1 and in sight of the Bayesian interpretation that

will be introduced in Section 2.1.4, our choice for the cost function is

Q (f) :=
S∑

i=1

(yi − f (xi))
2 + γ ‖f‖2K (2.19)

that correspond to obtain the coe�cients ci by means of



c1
...

cS


 = (K+ γI)−1



y1
...

yS


 (2.20)

with

K :=



K (x1, x1) · · · K (x1, xS)

...
...

K (xS , x1) · · · K (xS , xS)


 . (2.21)

2.1.4 Bayesian interpretation

The estimate f̂c in (2.16) computed through (2.20) admits also a Bayesian interpre-

tation. In fact, if fµ is modeled as the realization of a zero-mean, not-necessarily

stationary Gaussian random �eld with covariance K, if the noises νi are Gaussian

and independent of the unknown function and with variance σ2, once we set γ = σ2

it follows that (Kimeldorf and Wahba, 1970; Zhu et al., 1998)

f̂c (x) = E [fµ (x) | x1, y1, . . . , xS , yS ] . (2.22)

Hence, under such Bayesian perspective, the problem of reconstructing fµ is a gener-

alization of that discussed in Section 1, which increased complexity derives from the
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fact that the problem is now in�nite-dimensional. We recall that, using the Bayesian

point of view and a Gaussian Processs (GPs) based formulation, it is straightforward

to derive not only the estimate (to be intended as the maximum a-posteriori of the

conditional density), but also to characterize the uncertainity of the prediction by

means of the a-posteriori covariance. Moreover GPs formulation is closely related to

Kriging techniques (Stein, 1999), usually used for interpolation of spatial data.

2.1.5 Computation of Approximated Solutions

The computation of f̂c de�ned in (2.16) through (2.20) requires O
(
S3
)
operations

and requires the processing unit to have stored all the xi's. This can be impractical

in a distributed estimation scenario, where agents may have both limited computa-

tional capabilities and constraints in the amount of communicable information. To

overcome these problems, we derive an alternative distributed estimation strategy

by restricting the hypothesis space to a closed subspace H̆K ⊂ HK . The following

proposition shows that the resulting estimator has favorable theoretical properties.

In particular, as the number of measurements S goes to +∞, it returns the best

possible approximation of fµ in H̆K . The result is obtained by a variation of the

arguments used in Smale and Zhou (2007, 2005) to characterize the estimator (2.16).

Proposition 30. Let 0 < δ < 1 and the following closed subspace in HK

H̆K := spane∈I {φe} (2.23)

where the overline denotes the closure in HK and I ⊂ N+. De�ne

f̂S := arg min
f∈H̆K

S∑

i=1

(yi − f (xi))
2

S
+ γ ‖f‖2K . (2.24)

Then, assuming |yi| ≤ Y a.s., f̂S converges in probability to the projection of fµ
onto H̆K , denoted by f H̆Kµ . In particular, let

γ =
8K

2
log
(

4
δ

)
√
S

(2.25)

where

K := sup
x,x′∈X

√
K (x, x′) (2.26)

Then, with con�dence 1− δ one has

∥∥∥f̂S − fµ
∥∥∥
µ
≤

√
2 log

(
4
δ

)

S
1
4

(
3Y + 2K

∥∥∥f H̆Kµ

∥∥∥
K

)
+

∥∥∥∥f
H̆⊥K
µ

∥∥∥∥
µ

(2.27)

where f
H̆⊥K
µ is the projection of fµ onto the orthogonal of H̆K in HK .
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Proof. We start noticing that it is possible to associate with H̆K the restricted kernel

K̆ and the relative integral operator LK̆,µ de�ned respectively by

K̆
(
x, x′

)
:=
∑

e∈I
λeφe (x)φe

(
x′
)

(2.28)

and

LK̆,µ [g] (x) :=

∫

X
K̆
(
x, x′

)
g
(
x′
)
dµ
(
x′
)
. (2.29)

Exploiting RKHS theory, see e.g. Cucker and Smale (2002), one obtains that H̆K is

exactly the image of L
1
2

K̆,µ
(the square root of LK̆,µ) fed with L2 (µ), i.e.

H̆K = L
1
2

K̆,µ

[
L2 (µ)

]
. (2.30)

Now, de�ne

f̂γ := arg min
f∈H̆K

‖f − fµ‖2µ + γ ‖f‖2K (2.31)

and notice that

f̂γ = arg min
f∈H̆K

∥∥∥f − f H̆Kµ

∥∥∥
2

µ
+ γ ‖f‖2K . (2.32)

In addition, it holds that

∥∥∥f̂S − fµ
∥∥∥
µ
≤

∥∥∥f̂S − f̂γ
∥∥∥
µ

+
∥∥∥f̂γ − fµ

∥∥∥
µ

≤
∥∥∥f̂S − f̂γ

∥∥∥
µ

+
∥∥∥f̂γ − f H̆Kµ

∥∥∥
µ

+

∥∥∥∥f
H̆⊥K
µ

∥∥∥∥
µ

.
(2.33)

Using theorem 5 in Smale and Zhou (2007), we know that if (2.25) holds, one has

∥∥∥f̂S − f̂γ
∥∥∥
µ
≤ 12KY log

(
4
δ

)
√
γS

. (2.34)

In addition, exploiting theorem 3 in Smale and Zhou (2005) and the de�nition of

LK̆,µ, it is easy to obtain that, with con�dence 1− δ, one has
∥∥∥f̂γ − f H̆Kµ

∥∥∥
µ
≤ √γ

∥∥∥∥L
− 1

2

K̆,µ

[
f H̆Kµ

]∥∥∥∥
µ

=
√
γ
∥∥∥f H̆Kµ

∥∥∥
K

(2.35)

where the last equality exploits (2.30) and the fact that L
1
2

K̆,µ
is an isometric map.

The proposition is then proved after simple computations once (2.34), (2.35) and (2.25)

are substituted into (2.33).

We consider now a particular �nite-dimensional subspace H̆K generated by the

�rst E eigenfunctions φe and denoted by HEK , i.e.

HEK :=

{
g ∈ L2 (µ) s.t. g =

E∑

e=1

aeφe where [a1, . . . , aE ]T ∈ RE
}
. (2.36)



Distributed Nonparametric Estimation 55

The particular choice for HEK is motivated by the presence of the penalty term ‖·‖2K
used to obtain the function estimate. It can be also justi�ed using the Bayesian

framework described in Section 2.1.4 under which, before seeing the data, HEK rep-

resents the subspace that captures the biggest part of the signal variance among all

the subspaces of HK of dimension E. This is in accordance with the Rayleigh's prin-

ciple Zhu et al. (1998); Nef (1967) which underlies Principal Component Analysis.

Using then HEK as hypothesis space, the estimate of fµ is given by9

f̂r := arg min
f∈HEK

Q (f) . (2.37)

Exploiting this restriction, we now derive how to explicitly compute f̂r.

As it will be clear in the sequel, it is now convenient to reformulate the estimates

f̂c and f̂r introduced in (2.37) through the map T : HK → R∞ that is induced by

de�nition (2.7) and associates to a function f =
∑+∞

e=1 aeφe the sequence [a1, a2 . . .],

i.e.

T [f ] = [a1, a2, . . .]
T . (2.38)

With abuse of notation, we also equip R∞ with the norm

‖a‖2K :=

+∞∑

e=1

a2
e

λe
(2.39)

so as to make T an isometric mapping. In what follows, if A ∈ R∞×∞ and w ∈ R∞,
Aw is the vector with i-th element equal to

∑∞
j=1 [A]ij wj . In addition, A−1 denotes

the inverse of the operator induced by A, i.e. we use notation of ordinary algebra to

handle in�nite-dimensional objects.

Exploiting T [·], the measurement model (2.15) can thus be rewritten as

yi = Cib + νi i = 1, . . . , S (2.40)

where b = T [fµ] and

Ci := [φ1 (xi) , φ2 (xi) , . . .] ∈ R∞ . (2.41)

Notice that Ci is a stochastic i.i.d. sequence whose distribution depends on µ. The

following result is obtained, see also Pillonetto and Bell (2007).

Proposition 31. Let

Q (a) :=
S∑

i=1

(yi − Cia)2 + γ ‖a‖2K . (2.42)

Then
b̂c := arg min

a
Q (a)

=

(
diag

(
γ

λe

)
+

S∑

i=1

CTi Ci

)−1( S∑

i=1

CTi yi

)
(2.43)

with diag (ae) to indicate the matrix with diagonal elements given by a1, a2, . . ..

Furthermore, T
[
f̂c

]
= b̂c, where f̂c is de�ned in (2.16).

9We use the subscript r to recall that f̂r lies in a reduced hypothesis space.
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Since (2.43) involves in�nite dimensional vectors, approximated solutions in HEK
are now searched. To this aim, de�ning

CEi := CE (xi) := [φ1 (xi) , · · · , φE (xi) , 0, 0, . . .] (2.44)

the following proposition is obtained.

Proposition 32. Let

QE (a) :=

S∑

i=1

(
yi − CEi a

)2
+ γ ‖a‖2K . (2.45)

Then

b̂r := arg min
a
QE (a)

=

(
diag

(
γ

λe

)
+

S∑

i=1

(
CEi
)T
CEi

)−1( S∑

i=1

(
CEi
)T
yi

)
(2.46)

and T
[
f̂r

]
= b̂r where f̂r is de�ned in (2.37).

Notice that even if
(
CEi
)T
CEi is an in�nite dimensional matrix, only its E × E

upper-left block can contain non-zero elements. In the same way, every in�nite di-

mensional vector
(
CEi
)T
yi can have non-zero elements only in its �rst E components.

This implies that also b̂r can have non-zero elements only in its �rst E components.

Alternative Interpretation of Estimator (2.46)

Under the Bayesian interpretation of Section 2.1.4, we can obtain an alternative

interpretation of estimator (2.46). Rewriting measurement model (2.40) exploiting

de�nition (2.44), we obtain the new model

yi = CEi [b1, . . . , bE ]T + wi + νi i = 1, . . . , S (2.47)

where10

wi :=
+∞∑

e=E+1

[Ci]e be (2.48)

can be considered the approximation noise generated by the choice of considering

only the �rst E eigenfunctions weights. In general these approximation noises are

correlated, i.e.

@ σ2
w ∈ R+ s.t. Σw := E


[w1, . . . , wS ]



w1
...

wS





 = σ2

wI (2.49)

10The notational abuses we are committing by considering �nite dimensional objects instead of

in�nite dimensional ones will not a�ect the following considerations.
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thus the Bayesian estimator of the �rst E eigenfunctions weights is given by

E [b1, . . . , bE | x1, y1, . . . , xS , yS ] =

= Λ0



CE1
...

CES




T





CE1
...

CES


Λ0



CE1
...

CES




T

+ Σw + σ2I




−1 

y1
...

yS




(2.50)

where

Λ0 := diag (b1, . . . , bE) . (2.51)

It is immediate to check that estimator (2.50) does not coincide with estimator (2.46):

the latter would be the Bayesian estimator of b1, . . . , bE only if Σw = 0. The in-

terpretation of (2.46) can thus be the optimal estimator for measurements models

where the approximation noises wi are dismissed.

2.2 Distributed Regression

We assume now and in the following that each measurement yi has been taken from

a single11 sensor: in particular, sensor i takes measurement yi. We assume moreover

that each input location xi has been independently drawn from the known measure

µ. Examples of probability measures µ are shown in Figure 2.12.

Figure 2.12: Examples of probability measures µ on a compact X ⊂ R2. Levels of gray

indicate di�erent values for the probability density, with white indicating zero. (a) xi's

can be located only around certain locations. (b) xi's can be located everywhere, even

if certain locations are preferred.

We then begin with two considerations about the non-distributability of strate-

gies (2.18) and (2.46):

non-distributability of strategy (2.18): f̂c is composed by a linear combination

of at most S di�erent representing functions, which weights have to be com-

puted through (2.20). This implies that, in the most general case, there has to

be at least one unit collecting the whole dataset and performing the computa-

tions, thing that we want to avoid.

11The restriction of one measurement per sensor has been made only for ease of notation. The

results presented in the following can be immediately extended to the case where sensors take

multiple measurements.
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non-distributability of strategy (2.46) the relation for the computation of b̂r

can now be rewritten in a form suited to distributed estimation, i.e.

b̂r =

(
1

S
diag

(
γ

λe

)
+

1

S

S∑

i=1

(
CEi
)T
CEi

)−1(
1

S

S∑

i=1

(
CEi
)T
yi

)
. (2.52)

This shows that, assuming each sensor knows S, b̂r can be distributedly com-

puted through two parallel average consensi (one on
(
CEi
)T
CEi and one on(

CEi
)T
yi), plus multiplications and inversions of E × E matrices and E-di-

mensional vectors, implyingO
(
E2
)
-communication andO

(
E3
)
-computational

costs.

We notice that practical implementation of (2.52) may still be problematic. In

fact, not only the agents must know the exact number of measurements/sensors S

(assumption that has been considered too strict also in Section 1.2), but also the

amount of information that needs to be transmitted could be too elevated, since it

scales with the square of E. In the following we will then propose an e�ective strate-

gies that overcomes these problems and simultaneously and distributedly compute

an approximation of both f̂c and f̂r (or, thanks to the equivalence relation induced

by operator T [·], b̂c and b̂r).

From a practical point of view, the situation will be like the one depicted in

Figure 2.13. Due to the physical constraints imposed to the distributed estimation

scenario, neither b̂c nor b̂r (that can be interpreted as the centralized estimate b̂c

that would be obtained truncating the prior, i.e. setting λe = 0 for e > E) can be

exactly computed. We then propose to estimate b = T [fµ] still by means of the

hypothesis space HEK : the objective will be then to bound the distance between this

estimate b̂d and the optimal centralized estimator b̂c.

Remark 33. Despite of the possible stochastic interpretation of the problem recalled

in Section 2.1.4, in all this section fµ always represents an unknown but deterministic

function.

The approximation of b̂c (and b̂r) we de�ne is then the following:

b̂d :=

(
1

Sg
diag

(
γ

λe

)
+ I

)−1
(

1

S

S∑

i=1

(
CEi
)T
yi

)
. (2.53)

Notice that b̂d is an approximation of b̂r since

1. parameter S weighting the regularization term diag (γ/λe) is replaced with a

guess (or estimate) Sg;

2. 1
S

∑S
i=1

(
CEi
)T
CEi is replaced with Eµ

[(
CEi
)T
CEi

]
. In fact,

Eµ
[(
CEi
)T
CEi

]
= I (2.54)
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HK
HEK

b̂cb

b̂r

b̂d

???

Figure 2.13: Summary of the problem discussed in this section. b̂c is the centralized

optimal estimator of b, while b̂r belongs to the reduced hypothesis space HEK and cor-

respond to the optimal estimate that would be obtained truncating the prior by setting

λe = 0 for e > E. Since both b̂c and b̂r cannot be distributedly compute, we seek

strategies computing an estimate b̂d that is su�ciently close to b̂c (and not to b, since

this is unknown). We remark that in the context of Bayesian regression discussed in

Section 2.1.4, in general P [b ∈ HK ] = 0, but P [E [b | x1, y1, . . . , xS , yS ] ∈ HK ] = 1.

because one has
[

1

S

S∑

i=1

(
CEi
)T
CEi

]

mn

=
1

S

S∑

i=1

φm (xi)φn (xi) (2.55)

and in addition

1

S

S∑

i=1

φm (xi)φn (xi)
S→+∞−−−−−→

∫

X
φi (x)φj (x) dµ (x) = δij (2.56)

due to the orthogonality of eigenfunctions in L2 (µ) and the fact that the xi's

are i.i.d and extracted from µ.

Computational and communication costs needed to compute b̂d are both O (E), thus

dramatically smaller than those associated with b̂c and b̂r. Table 2.1 summarizes

the computational, communication and memory costs associated with the introduced

estimators.

estimator comput. cost commun. cost memory cost

b̂c (Eqn. (2.43)) O
(
S3
)

O (S) O (S)

b̂r (Eqn. (2.46)) O
(
E3
)

O
(
E2
)

O
(
E2
)

b̂d (Eqn. (2.53)) O (E) O (E) O (E)

Table 2.1: Summary of the computational, communication and memory costs per node

associated to the introduced estimators.
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2.2.1 On-line bounds computation

Once b̂d is obtained, it is crucial to assess its reliability in terms of closeness to

the optimal centralized estimate b̂c. We describe now how to simultaneously and

distributedly bound the norm of the approximation error f̂d − f̂c and f̂d − f̂r with
additive O

(
E3
)
-computational and O (1)-communication costs. Under the working

hypotheses, these distributedly computed bounds do not depend on the statistical

modeling errors of f , and can be considered in some sense �universal�. Notice that

computation of approximation f̂d can be e�ective and useful also in centralized esti-

mation scenarios whenever the inversion of S×S-dimensional matrices is impractical,

and one wants to characterize the estimation performances losses. To this regard, the

following two results, namely Algorithm 1 and the related Proposition 34, represent

the main results of this section. They provide a way to compute, in a distributed

fashion, statistical bounds for the relative errors
∥∥∥b̂d − b̂c

∥∥∥
2
/
∥∥∥b̂d

∥∥∥
2
,

∥∥∥b̂d − b̂r

∥∥∥
2
/
∥∥∥b̂d

∥∥∥
2

which, in view of (2.10) and letting f̂d = T−1
[
b̂d

]
, coincide respectively with

∥∥∥f̂d − f̂c
∥∥∥
µ
/
∥∥∥f̂d
∥∥∥
µ
,

∥∥∥f̂d − f̂r
∥∥∥
µ
/
∥∥∥f̂d
∥∥∥
µ
.

In the sequel, let

C
\E
i := [0, . . . , 0, φE+1 (xi) , φE+2 (xi) , . . .] . (2.57)

Furthermore, to compact the notation, let

Vr :=

(
1

S
diag

(
γ

λe

)
+

1

S

S∑

i=1

(
CEi
)T
CEi

)−1

(2.58)

and

Vd :=

(
1

Sg
diag

(
γ

λe

)
+ I

)−1

. (2.59)

Proposition 34. Consider Algorithm 1 and the de�nitions therein. Then, condi-

tional on Z and rave, up to Monte Carlo approximations, it holds that

P




∥∥∥f̂r − f̂d
∥∥∥
µ∥∥∥f̂d

∥∥∥
µ

≥ d|dr|


 ≤ δ (2.76)

P




∥∥∥f̂c − f̂d
∥∥∥
µ∥∥∥f̂d

∥∥∥
µ

≥ d|dc|


 ≤ δ . (2.77)
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Algorithm 1 Distributed estimation and approximation quality evaluation

O�-line work: Sensors are given a level of con�dence 1 − δ, e.g. δ = 0.1, and

know Smin, Smax, Sg, µ, E as well as the quantities

γa := sup
x∈X

∥∥∥∥diag

(
λe
γ

)(
C\E (x)

)T∥∥∥∥
2

(2.60)

γb := sup
x∈X

∥∥∥∥diag

(
λe
γ

)(
C\E (x)

)T
CE (x)

∥∥∥∥
2

(2.61)

U∗S :=

(
1

Smin
− 1

Smax

)
diag

(
γ

λe

)
. (2.62)

In addition, each sensor i stores a particular scenario of the network, i.e. it locally

generates Smin independent virtual input locations xi,j by means of density µ

xi,j ∼ µ where j = 1, . . . , Smin (2.63)

and then compute the following quantities

CEi,j := [φ1 (xi,j) , . . . , φE (xi,j)] (2.64)

V ∗r,i :=


 1

Smax
diag

(
γ

λe

)
+

1

Smax

Smin∑

j=1

(
CEi,j

)T
CEi,j



−1

(2.65)

U∗C,i :=


I − 1

Smin

Smin∑

j=1

(
CEi,j

)T
CEi,j


 . (2.66)

. continues in the next page
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. continuation of Algorithm 1

On-line and distributed work:

1: (distributed step) sensors distributedly compute, by means of average consensus

protocols, the E-dimensional vector

Z :=
1

S

S∑

i=1

(
CEi
)T
yi (2.67)

2: (local step) each sensor i computes the estimate b̂d = VdZ
3: (local step) each sensor i computes the auxiliary scalars

ri :=

∣∣∣yi − CEi b̂d

∣∣∣
∥∥∥b̂d

∥∥∥
2

(2.68)

d∗|dr|,i :=

∥∥∥V ∗r,iU∗Sb̂d

∥∥∥
2∥∥∥b̂d

∥∥∥
2

+

∥∥∥V ∗r,iU∗C,ib̂d

∥∥∥
2∥∥∥b̂d

∥∥∥
2

(2.69)

4: (distributed step) sensors distributedly compute, by means of average consensus

protocols, the scalars

rave :=
1

S

S∑

i=1

ri (2.70)

d∗|dr|,ave :=
1

S

S∑

i=1

d∗|dr|,i (2.71)

d∗|dr|,sq :=
1

S

S∑

i=1

(
d∗|dr|,i

)2
(2.72)

5: (local step) each sensor i computes

d∗|dr|,var := d∗|dr|,sq −
(
d∗|dr|,ave

)2
(2.73)

d|dr| := d∗|dr|,ave +

√(
1

δ
− 1

)
d∗|dr|,var (2.74)

d|dc| := γaSmaxrave + (1 + γbSmax) d|dr| . (2.75)
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Proof. Notice that

∥∥∥f̂c − f̂d
∥∥∥
µ∥∥∥f̂d

∥∥∥
µ

=

∥∥∥b̂c − b̂d

∥∥∥
2∥∥∥b̂d

∥∥∥
2

≤

∥∥∥b̂c − b̂r

∥∥∥
2∥∥∥b̂d

∥∥∥
2

+

∥∥∥b̂r − b̂d

∥∥∥
2∥∥∥b̂d

∥∥∥
2

=

=

∥∥∥b̂c − b̂r

∥∥∥
2∥∥∥b̂d

∥∥∥
2

+

∥∥∥f̂r − f̂d
∥∥∥

2∥∥∥f̂d
∥∥∥

2

(2.78)

thus to prove (2.76) and (2.77) it is su�cient to characterize
∥∥∥b̂r − b̂d

∥∥∥
2
/
∥∥∥b̂d

∥∥∥
2
and

∥∥∥b̂c − b̂r

∥∥∥
2
/
∥∥∥b̂d

∥∥∥
2
, that will be analyzed separately in the following.

Case
∥∥∥b̂r − b̂d

∥∥∥
2
/
∥∥∥b̂d

∥∥∥
2
: we start rewriting (2.46) as

V −1
r b̂r = Z (2.79)

and (2.53) as (
V −1
r + V −1

d − V −1
r

)
b̂d = Z . (2.80)

Subtracting (2.80) to (2.79) we obtain

b̂r − b̂d = Vr
(
V −1
d − V −1

r

)
b̂d (2.81)

from which it immediately follows that

∥∥∥b̂d − b̂r

∥∥∥
2∥∥∥b̂d

∥∥∥
2

=

∥∥∥Vr
(
V −1
d − V −1

r

)
b̂d

∥∥∥
2∥∥∥b̂d

∥∥∥
2

. (2.82)

De�ning then UC and US by means of (2.101) and (2.102), it is immediate to check

that

V −1
d − V −1

r = US + UC (2.83)

and thus that ∥∥∥b̂d − b̂r

∥∥∥
2∥∥∥b̂d

∥∥∥
2

=

∥∥∥VrUSb̂d + VrUC b̂d

∥∥∥
2∥∥∥b̂d

∥∥∥
2

(2.84)

from which inequality (2.103) immediately follows.

De�ning then

d|dr| :=

∥∥∥VrUSb̂d

∥∥∥
2∥∥∥b̂d

∥∥∥
2

+

∥∥∥VrUC b̂d

∥∥∥
2∥∥∥b̂d

∥∥∥
2

(2.85)

we notice that d|dr| is a random variable since Vr and UC are random operators. It

is then clear that to characterize d|dr| corresponds to characterize the relative error

between b̂r and b̂d. Notice that it is possible to prove that the probability density



64 2.2 Distributed Regression

of the random variable d|dr| conditioned on b̂d has compact support. In fact it is

immediate to check that

0 ≤ V −1
r ≤ 1

Smax
diag

(
γ

λe

)
, UC ≤ I . (2.86)

Moreover, the rank of
(
CEi
)T
CEi is one, thus if ρ (A) indicates the spectral radius of

A it follows that

ρ
((
CEi
)T
CEi

)
= ρ

(
CEi

(
CEi
)T)

=
∥∥CEi

∥∥2

2
. (2.87)

Exploiting now the continuity of eigenfunctions on the compact X we have that

∥∥CEi
∥∥2

2
≤ E · sup

x∈X , e=1,...,E
|φe (x)|2 =: γc < +∞ (2.88)

thus

UC ≥ −
1

S

S∑

i=1

(
CEi
)T
CEi ≥ −γcI . (2.89)

From (2.85), (2.86) and (2.89) it then follows that

0 ≤ d|dr| ≤
∥∥∥∥Smaxdiag

(
λe
γ

)
USb̂d

∥∥∥∥
2

+

∥∥∥∥Smaxdiag

(
λe
γ

)
max (1,

√
γc) b̂d

∥∥∥∥
2

(2.90)

and thus we can claim that the support of the density of d|dr| is compact.

From (2.90) it follows that var
(
d|dr|

)
< +∞, and this allows us to use Cantelli's

inequality, i.e. to state that

P

[
d|dr| − E

[
d|dr|

]
≥
√(

1

δ
− 1

)
var
(
d|dr|

)
]
≤ δ . (2.91)

Notice now that the knowledge of Z does not provide a-posteriori information on µ,

while knowledge of residuals ri provide little information12: this imply that samples

d∗|dr|,i generated in step 3 of Algorithm 1 are approximatively generated from the

same density of d|dr|. For this reason we can claim that

d∗|dr|,ave ≈ E
[
d|dr|

]
and d∗|dr|,var ≈ var

(
d|dr|

)
(2.92)

that eventually proves (2.76).

• Case
∥∥∥b̂c − b̂r

∥∥∥
2
/
∥∥∥b̂d

∥∥∥
2
: rewriting (2.46) as

(
diag

(
γ

λe

)
+

S∑

i=1

CTi Ci

)
b̂r +

(
S∑

i=1

(
CEi
)T
CEi −

S∑

i=1

CTi Ci

)
b̂r =

=
S∑

i=1

CTi yi −
S∑

i=1

(
C
\E
i

)T
yi

(2.93)

12It can be proven that if λ1
σ2+λ1Smax

≤∑S
i=1

∥∥CEi ∥∥2 then the various ri do not provide information

on µ.
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and (2.43) as (
diag

(
γ

λe

)
+

S∑

i=1

CTi Ci

)
b̂c =

S∑

i=1

CTi yi (2.94)

after subtracting (2.94) to (2.93), we obtain

(
diag

(
γ

λe

)
+

S∑

i=1

CTi Ci

)(
b̂c − b̂r

)
=

=

(
S∑

i=1

(
CEi
)T
CEi −

S∑

i=1

CTi Ci

)
b̂r +

S∑

i=1

(
C
\E
i

)T
yi .

(2.95)

Substituting now each Ci in the right side of (2.95) with CEi + C
\E
i , exploiting the

fact that C
\E
i b̂r = 0 (where 0 is in R∞), and properly collecting the various terms,

we obtain

b̂c − b̂r =

(
diag

(
γ

λe

)
+

S∑

i=1

CTi Ci

)−1 S∑

i=1

(
C
\E
i

)T (
yi − Cib̂r

)
. (2.96)

Since diag
(
γ
λe

)
+
∑S

i=1C
T
i Ci ≥ diag

(
γ
λe

)
(in a matricial positive de�nite sense),

we obtain
∥∥∥b̂c − b̂r

∥∥∥
2
≤

S∑

i=1

∥∥∥∥diag

(
λe
γ

)(
C
\E
i

)T (
yi − Cib̂r

)∥∥∥∥
2

. (2.97)

Rewriting yi − Cib̂r as yi − CEi b̂d + CEi b̂d − CEi b̂r and using de�nitions (2.60),

(2.61), (2.68), (2.70) and (2.84) it follows immediately that
∥∥∥b̂c − b̂r

∥∥∥
2∥∥∥b̂d

∥∥∥
2

≤ γa

S∑

i=1

∥∥∥yi − Cib̂d

∥∥∥
2∥∥∥b̂d

∥∥∥
2

+ γb

S∑

i=1

∥∥∥b̂r − b̂d

∥∥∥
2∥∥∥b̂d

∥∥∥
2

≤ γaSmaxrave + γbSmax

∥∥∥b̂r − b̂d

∥∥∥
2∥∥∥b̂d

∥∥∥
2

.

(2.98)

Notice that γa is �nite since, for every x ∈ X it holds that

∥∥∥∥diag

(
λe
γ

)
C\E (x)

∥∥∥∥
2

2

≤ sup
x∈X ,e∈N+

φe (x) ·
+∞∑

e=E+1

λe
γ

(2.99)

with supx∈X ,e∈N+
φe (x) < +∞ because eigenfunctions are continuous on a compact,

and also with
∑+∞

e=E+1
λe
γ < +∞ since K is Mercer. In the same way it is possible

to show that also γb is �nite.

Recalling now (2.78), it immediately follows that
∥∥∥b̂c − b̂d

∥∥∥
2∥∥∥b̂d

∥∥∥
2

≤ γaSmaxrave + (1 + γbSmax)

∥∥∥b̂r − b̂d

∥∥∥
2∥∥∥b̂d

∥∥∥
2

(2.100)

and thus that if (2.76) holds, then also (2.77) does.
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The proof of Proposition 34 is reported in Appendix and clari�es the quantities

that in�uence the approximation error. In particular, here we just recall that de�ning

UC := I − 1

S

S∑

i=1

(
CEi
)T
CEi (2.101)

and

US :=

(
1

Sg
− 1

S

)
diag

(
γ

λe

)
(2.102)

it is shown that ∥∥∥f̂d − f̂r
∥∥∥
µ
≤
∥∥∥VrUSb̂d

∥∥∥
2

+
∥∥∥VrUC b̂d

∥∥∥
2

(2.103)

i.e. the error between f̂d and f̂r decomposes into two distinct parts, one involving US ,

proportional to the uncertainty on the number of sensors, and one involving UC
13,

related to the uncertainty on the actual input locations xi.

Moreover, for what regards the distance of f̂d from the optimal estimate f̂c, it

holds that

∥∥∥f̂d − f̂c
∥∥∥
µ
≤ (γbSmax + 1)

∥∥∥b̂d − b̂r

∥∥∥
2

+

S∑

i=1

γa

∥∥∥yi − CEi b̂d

∥∥∥
2

(2.104)

i.e. the error between f̂d and f̂c contains the two components described in (2.103)

(scaled by a multiplicative factor always greater than one) plus a term dependent

on the sum of the residuals, that accounts for the approximation error deriving from

replacing HK with H̆K .
For what regards possible extensions of the algorithm described above, �rst notice

that sensors aiming for more precision on the bounds may locally generate several

instances of d∗|dr|,i and then estimate the bounds with the desired level of accuracy.

In addition, we also remark that the assumptions on the independence of the various

xi's can be relaxed. In particular, Algorithm 1 and Proposition 34 can be easily

extended to handle the case of sensors moving according to an ergodic Markov chain

(e.g. generated by the Metropolis-Hastings algorithm Gilks et al. (1996)) having

as invariant measure the desired distribution µ. Finally, it is worth stressing that

the entire numerical procedure here described can be also easily modi�ed to permit

the regularization parameters present in (2.43), (2.46) and (2.53) to be di�erent.

For example, assume that the value of γ entering the de�nition of b̂c and b̂r is

�xed. Then, one could estimate the value of the regularization parameter de�ning

b̂d making it vary on a grid common to all the sensors and determining the "optimal"

one as that minimizing the distance bounds presented above.

Remark 35. The assumptions on the independence of the various xi's can be re-

laxed. In particular, with minor modi�cations, it is possible to handle the case

where the sensors move according to an ergodic Markov chain, e.g. generated by the

Metropolis-Hastings scheme, having as invariant measure the desired distribution µ.

13For an interesting bound on the norm of matrices of the type UC , as a function of the number

of sensors S and of the dimension E, the reader is also referred to Lemma 1 in Oliveira (2010).
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We also stress that it is also possible to �nd a priori bounds (i.e. independent of

Z and rave) for the relative error between f̂d and f̂c. Unfortunately, our experience

suggests that these bounds tend to be pessimistic and much less useful for practical

purposes than those derived above.

It is possible also to construct a distributed strategy for the estimation of the

relative error between b̂d and b̂r that does not rely on the knowledge of Z and

residuals ri. This is based on the fact that it can be shown that there exist a �nite

γd ∈ R+ s.t.:

d|dr| ≤
∥∥∥∥Smaxdiag

(
λe
γ

)
(US + γdI)

∥∥∥∥
2

. (2.105)

Algorithm 1 could then be modi�ed in order to generate and consider instances of

US in order to compute the bound. Unfortunately also in this case the results tend

to be pessimistic and unuseful for practical purposes.

It is worth stressing that in the deterministic scenario we used, the bounds that

we obtained, regarding the performance of the proposed estimator, are robust since

are not a�ected by errors in the statistical modeling of fµ. This is in accordance with

the modern statistical learning theory as described e.g. in Vapnik (1995). An example

of this has been already provided in Proposition 30 where the validity of (2.27) just

requires fµ to belong to an in�nite-dimensional space that may contain a very wide

class of functions. For instance, popular choices for HK are Sobolev spaces or spaces

induced by the Gaussian kernel which are all known to be dense in the space of

continuous functions, e.g. see Micchelli et al. (2006).

2.2.2 Simulations

We consider fµ : X = [0, 1]→ R to be given by

fµ (x) =
100∑

n=1

αn sin (ωnx) (2.106)

with αn ∼ N (0, 0.01) i.i.d., ωn ∼ U [0, 25] i.i.d., µ to be uniform on [0, 1] and

a measurement noise standard deviation σ = 0.33 such that, in average, SNR :=
var(fµ)
σ2 ≈ 5. Moreover we consider the Gaussian kernel

K
(
x, x′

)
= exp

(
−(x− x′)2

0.02

)
(2.107)

associated to the meaningful but non-optimized regularization parameter γ = 0.3.

To show the e�ectiveness of the proposed algorithm, we independently generate

500 di�erent fµ (say fµ,j with j = 1, . . . , 500) sampled by S = 1000 sensors and esti-

mated using E = 40 eigenfunctions. For each Monte Carlo run we apply Algorithm 1

and obtain d∗|dr|,ave,j and d
∗
|dr|,var,j , the indexed versions of the quantities computed

in (2.71) and (2.73). Then we compute the following two versions of bound (2.74):

d|dr|,j (0) := d∗|dr|,ave,j (2.108)
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d|dr|,j (3) := d∗|dr|,ave,j + 3
√
d∗|dr|,var,j (2.109)

from which we compute the two versions d|dc|,j (0) and d|dc|,j (3) of bound (2.75).

Notice that d|dc|,j (3) corresponds to a con�dence level of at least 0.9, while d|dc|,j (0)

corresponds to use only the means d∗|dr|,ave,j . Figures 2.14 and 2.15 then plot the

points

(‖fd,j−fc,j‖µ
‖fd,j‖µ

, d|dc|,j (k)

)
, j = 1, . . . , 500, k = 0, 3, where fc,j and fd,j are the

centralized and distributed estimates of fµ,j . In Figure 2.14 the uncertainty on S is

given by Smax = 1100 and Smin = 900, while in Figure 2.15 it is given by Smax = 1200

and Smin = 800.
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Figure 2.14: Scatter plot of the points

(‖fd,j−fc,j‖µ
‖fd,j‖µ

, d|dc|,j (k)

)
for k = 3 (black

crosses) and k = 0 (black plus-symbols), with Sg = Smax = 1100, Smin = 900, S = 1000

and E = 40.

Since points corresponding to k = 3 are near the bisector of the �rst quadrant

(black dashed line), bound (2.75) is signi�cative even if we choose an high level of

con�dence. Notice that its conservativeness, graphically given by the distance of the

points with the bisector, is inherited by the requested high level of con�dence. Notice

also that points corresponding to k = 0 are close to the bisector, thus it follows that

the quantities d∗|dr|,ave,j are informative with respect to the true error.

In Figure 2.16 we focus on the �rst Monte Carlo run (j = 1) and graphically show

the e�ectiveness of the estimation strategy (2.53) through plotting the true fµ,1 and

its relative estimates fc,1 and fd,1 (Sg = 1200). We then show in Figure 2.17, consid-

ering again the �rst Monte Carlo run fµ,1, the qualitative dependence of d|dc|,1 (3) on

S and E. We notice that, as expected, the tightness of the bound generally increases

with S and E. Finally we show in Figure 2.18 the dependency of the quality of the

estimates fd,j (j = 1, . . . , 500) with respect to the accuracy of the guess Sg. Notice

that by construction estimates fc,j do not depend on Sg. Since the actual regu-

larization parameter is inversely proportional to Sg, Figure 2.18 can be considered

the so-called regularization path and shows the robustness of the proposed estimator
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Figure 2.15: Scatter plot of the points

(‖fd,j−fc,j‖µ
‖fd,j‖µ

, d|dc|,j (k)

)
for k = 3 (black

crosses) and k = 0 (black plus-symbols), with Sg = Smax = 1200, Smin = 800, S = 1000

and E = 40.

with respect to accuracy on Sg. From a practical point of view, sensible performances

worsenings can be obtained only with big variations of Sg.
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f
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)

Figure 2.16: Results of the estimation procedure applied to the noisily sampled fµ,1
function in black solid line, with fc,1 in black dashed line, fd,1 in black dotted line,

Sg = 1200, S = 1000 and E = 40.

Remark 36. In some cases E could be su�ciently small to allow sensors to perform

an average consensus also on matrices
(
CEi
)T
CEi . In this case, approximation 2

described in page 58 will not be implemented, and equations presented in this section

have to be modi�ed accordingly to the new situation.
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Figure 2.17: Dependence of d|dc|,1 (3) on S and E. Sg = Smax = 1.1 ·S, Smin = 0.9 ·S.
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Figure 2.18: Boxplots relative to the relative errors
‖fµ,j−fc,j‖µ
‖fµ,j‖µ

(leftmost boxplot) and

‖fµ,j−fd,j‖µ
‖fµ,j‖µ

(the other boxplots) for di�erent ratios Sg/S, with S = 1000 and E = 40.
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2.3 Distributed Regression under Unknown Time

Delays

2.3.1 Problem formulation

Assume there are S di�erent synchronized sensors that noisily sample S di�erently

shifted versions of the same signal fµ : R→ R, i.e.

ymi = fi (xmi ) + νmi (2.110)

where

fi (x) := fµ (x− di) (2.111)

and where i = 1, . . . , S is the index of the sensor and m = 1, . . . ,Mi is the index of

the measurement. We de�ne Si := {(xmi , ymi )} to be the data set of sensor i, and to

be composed of Mi non-uniformly sampled measurements.

Shifts {di} are uncorrelated random variables, and only poorly informative prior

on them is speci�ed. Time Delay Estimation between signals fi (·) and fj (·) is

then the problem of estimating the di�erence di,j := di − dj using data sets Si
and Sj . Given S di�erently shifted signals, multiple-TDE is the attempt to solve

simultaneously TDE problem for each couple fi, fj . In this section we want to

simultaneously and distributely estimate f and delays di,j using the measurements

available to each agent.

Notice that we will continue assuming the additive noises νmi to be indepen-

dent, zero-mean Gaussian, with �xed and equal variance σ2 and independent also of

f . We also assume that sensors are subject to a communication graph, have high

computation capabilities and can reliably communicate data.

2.3.2 Regression under Fixed Time Delays

Consider the situation of Figure 2.19.

x

y′ y′′

Figure 2.19: A certain set of measurements (black crosses) can be referred to di�erent

reference systems. It could be expedient to shift the original reference system in order

to achieve better estimations.

Intuitively, in this case the regression using the eigenfunctions of Figure 2.8 with

origin in x′ will lead to poorer estimates than regression on the same data set using

the same eigenfunctions with origin in x′′. In fact poorly informative measurements



72 2.3 Distributed Regression under Unknown Time Delays

(i.e. measurements due only to noise) should be discarded, and it would be better

to concentrate the approximation capability of HEK where the signal to noise ratio is

signi�cant. In order to eliminate such measurements we can de�ne the shifted data

set :

Sαi := {(xmi − α, ymi )} (2.112)

where α ∈ R is the time shift, and then compute the estimate of the unknown signal

fi by applying Algorithm 2.

Algorithm 2 Regression using translated reference systems

1: let α be a translation to be applied to Si
2: compute the shifted data set Sαi using Equation (2.112)

3: estimate fµ through the methods described in Section 2.1.5 using the dataset

Sαi , and thus obtain an estimate f̂i
′ (x′) ∈ span 〈φe (x′)〉Ee=1 where eigenfunctions

φe are referred to the translated reference system x′ = x− α
4: shift back the reference system obtaining f̂i (x) ∈ span 〈φe (x− α)〉Ee=1 .

Assume now α to be �xed. The estimate of the unknown function f̂i for sensor

i can be written as

f̂i (x) =
E∑

e=1

aeφe (x− α) . (2.113)

Assume that sensors i and j share the knowledge of functions {φe}. If sensor j receive
noiseless information about [a1, . . . , aE , α], then it can exactly reconstruct f̂i (x).

This data shifting mechanism (that does not change the approximating properties

of the regression method) constitutes the core of the regression algorithm developed

in this section. Informally speaking, the time translation α corresponds to the origin

of the eigenfunctions φe used to estimate fµ, i.e. if α = 4 then eigenfunctions

will �start� at x = 4. It is important to remark that the eigenfunctions' weights

[a1, . . . , aE ] computed using Algorithm 2 are in general di�erent from the weights

computed without translating reference systems. For this reason we will indicate

them using the notation âi (α), where it is highlighted both the dependance on α

(the generic translation applied to the data set) and the sensor index i.

As mentioned above, the time shift α should be chosen in order to concentrate

the regression only around points with a high signal to noise ratio. A natural choice

is to de�ne the arrival time as follows:

α0
i := min

m
{xmi ∈ Si s.t. |ymi | ≥ ymin} (2.114)

where threshold ymin is a design parameter to be chosen based on the measurement

noise variance σ2.

2.3.3 Classic Time Delay Estimation

Consider two given signals fi and fj satisfying relation (2.111). A plausible esti-

mation strategy for the relative time delay di,j := di − dj is to maximize the cross
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correlation function14 ψ (τ), i.e. to solve

d̂i,j := arg max
τ

ψ (τ) (2.115)

where

ψ (τ) :=

∫

X
fi (x) fj (x− τ) dx . (2.116)

Notice that when dealing with versions of the signals that are sampled with a �xed

and equal sampling period T , then Equation (2.116) reduces to

ψ (τ) :=
∑

k

fi (x+ kT ) fj (x+ (k − τ)T ) . (2.117)

with τ ∈ I. In continuous time, the resolution of the function ψ (τ) can be set

arbitrarily small at the price of higher computational cost. In discrete time, the

resolution of the relative delay τ is limited to multiples of the sampling period T ,

i.e. τ = `T where ` is an integer. To obtain a �ner resolution, a it is possible to

interpolate ψ (τ) between samples.

We send the readers interested in practical algorithms for the solution of (2.115)

back to the specialized literature (for example Jacovitti and Scarano (1993), Boucher

and Hassab (1981), Viola and Walker (2005)).

2.3.4 Time Delay Estimation in RKHSs

Equations (2.115) and (2.116) correspond to minimize an inner product in L2. This

concept can be transferred into our RKHS framework by minimizing the inner prod-

uct in HEK instead of in L2. Assuming then that sensor i owns its estimate f̂i of fµ,

and sensor j owns its estimate f̂j , they can estimate their time delay by means of

d̂i,j := arg min
τ
〈f̂i (x) , f̂j (x− τ)〉HEK . (2.118)

Given a �xed τ , computation of 〈f̂i (x) , f̂j (x− τ)〉HEK through (2.9) can be performed

only if

f̂i (x) , f̂j (x− τ) ∈ span 〈φe (x− α)〉Ee=1 (2.119)

i.e. only if both the estimated signals have been computed using eigenfunctions with

the same origin α. If this is assured, then inner products can be computed using

a �nite number of operations: the problem is that to solve the minimization prob-

lem (2.118) it is required to solve the regression problem for each di�erent τ (since for

each di�erent τ there is a di�erently shifted dataset). The computational complexity

of this TDE strategy is then O
(
#τ ·

(
E3 + E2Mi + EM2

i

))
where #τ indicates how

many di�erent τ 's are computed. We remark that classical TDE has a computational

complexity that depends on the precision used to solve Equation (2.116).

14It is also possible to use opportunely �ltered versions of the signals in order to suppress the

frequencies with low signal-to-noise ratio, see Azaria and Hertz (1984).
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K f

d1 dS

Sα1
1 SαSS

. . .

Figure 2.20: Bayesian network describing the relationships between the various random

variables used in the current framework. The various di correspond to the true delays

applied to the measured functions, while the various αi correspond to estimated versions

of those quantities.

2.3.5 Function and Time Delay Estimation for Multiple Signals:

Centralized Joint Scenario

In this section we introduce a centralized strategy for the multiple-TDE problem.

Assume that a central processing unit can access to all data sets Si for all sensors i.
Let be given a set of translations Λ := [α1 . . . αS ]T ∈ RS and a function f . Once the

statistical properties of the measurement noise ν are known, it is possible to compute

the probability distribution P
[
Sα1

1 , . . . ,SαSS | Λ, f
]
. Once the kernel K is �xed this

probability measure induces a likelihood function L′ on the time delay vector Λ and

the unknown signal f corresponding to the negative logarithm of the joint density,

a part of constant terms. Instead of L′ we consider the following:
L := − ln

(
P
[
Sα1

1 , . . . ,SαSS
∣∣ Λ, f

])
+ S ‖f‖2HEK

=

S∑

i=1

(
Mi∑

m=1

(f (xmi − αi)− ymi )2

σ2
+ ‖f‖2HEK

)
(2.120)

where σ2 is the variance of the measurement noise of ymi . This function can be used

in order to obtain an estimate:
(
Λ̂ML, f̂

ML
)

:= arg min
Λ, f∈HEK

L (2.121)

corresponding the expectation of the signal f given all the data sets and the fact that

all the functions fi are shifted versions of the same function f . In its formulation

it overweights the regularization factor with respect to L′: notice then that the

minimum estimation error variance strategy corresponding to the Bayesian network

of Figure 2.20 can be derived from (2.120) once the actual number of sensors S is

known.

The problem de�ned in Equation (2.121) can now be decomposed into two se-

quential optimization problems. The �rst is:

f̂ (Λ) := arg min
f∈HEK

L
(
Sα1

1 , . . . ,SαSS
∣∣ Λ, f

)
, (2.122)

which is convex. In fact, for any �xed Λ, the di�erent data sets can be combined in

an unique big data set S = ∪Si=1S
αi
i , and the optimization problem reduces to the

regression of a to-be-estimated function. The second problem is:

Λ̂ML = arg min
Λ
L
(
Sα1

1 , . . . ,SαSS
∣∣ Λ, f̂ (Λ)

)
(2.123)
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which is not convex, and in general has multiple local minima and large domain

regions for which the likelihood is constant. Once Λ̂ML = [α̂ML,1, . . . , α̂ML,S ]T has

been computed, the estimate of the function f is given by:

f̂ML = f̂
(
Λ̂ML

)
(2.124)

and solution of the multiple-TDE problem is simply d̂i,j = α̂ML,i − α̂ML,j for each
couple i, j.

It is important to remark that numerical solution of Equation (2.123) through

gradient descent algorithms is strongly dependent on the quality of the initializa-

tion. We noted that initial guess Λ̂ (0) =
[
α0

1, . . . , α
0
S

]T
, where α0

1 are de�ned in

Equation (2.114), drastically reduces the convergence time and the probability of

reaching local minima. Moreover, algorithms described in Section 2.3.3 can be used

as line-searches for the updates of the translations instead of gradient-based steps.

2.3.6 Function and Time Delay Estimation for Multiple Signals:

Distributed Joint Scenario

In this section we assume that TDE and function estimation has to be performed by a

sensor network where each sensor can communicate directly only to a small number

of neighboring sensors, i.e. communication is constrained to comply with the so-

called communication graph. The centralized solution proposed in Section 2.3.5 can

be too expensive in terms of bandwidth requirement, since all nodes must communi-

cate the entire data sets Si to some leader node. Inspired by Schizas and Giannakis

(2006), we derive a distributed algorithm which provides the same solution of the

centralized estimation problem de�ned in the previous section. This algorithm has

three main features: it requires only limited data exchange among sensors, it dis-

tributes computation load among all sensors, and allows each sensor to compute the

best maximum likelihood estimation of the unknown function.

The sensor network is represented by a graph G := (N , E), where E indicates the
communication links, N indicates the set of nodes, Ni indicates the set of neighbors
of node i including the node itself, i.e. i ∈ Ni. We assume that our network is a

bridged sensor network Schizas and Giannakis (2006):

De�nition 37 (bridged sensor network). A sensor network is said to be bridged if

there exist a subset B ⊆ N of so-called bridge nodes satisfying:

1. each node has at least one bridge as neighbor (i.e. Ni ∩ B 6= ∅ ∀i ∈ N );

2. if two nodes can communicate directly then they must communicate directly

with at least a common bridge (i.e. E (i, j) 6= 0⇒ Ni∩Nj ∩B 6= ∅ ∀i, j ∈ N ).

In the following B will be the set of bridge nodes. We furthermore assume that

communication graph G is undirected and connected, communications are reliable

and single-hop, and no communication-delays are present. An example of such a

network is drawn in Figure 2.21.
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Figure 2.21: Example of bridged sensor network (def. 37). Greyed nodes correspond

to bridge nodes, while white one to normal nodes.

In order to distributely solve Equation (2.121) using results from Schizas and

Giannakis (2006), we must request observations of di�erent nodes to be independent

given the function f and translations Λ:

P
[
Sα1

1 , . . . ,SαSS
∣∣ Λ, f

]
=

S∏

i=1

Pi [Sαii | αi, f ] . (2.125)

Proposition 38 (Schizas and Giannakis (2006): equivalence between constrained

and centralized optimizations). Consider the following constrained optimization:

{α̂ML,i, âML,i}Si=1
:= arg min

{αi, ai}Si=1

S∑

i=1

Li (2.126)

Li := − ln (Pi [Si| αi, ai]) + ‖ai‖2HEK (2.127)

subject to ai = bb ∀b ∈ B and i ∈ Nb. (2.128)

If Equation (2.125) holds then solution of Equation (2.126) coincides with the solution

of Equation (2.121) (centralized optimization).

Informally speaking, bridge nodes b force consensus of ai, and hence of f̂ , among

all nodes through constraints (2.128). Once equivalence between problems given

by Equation (2.126) and Eqn (2.121) is assured, the optimization problem can be

solved by �nding saddle points of the augmented Lagrangian Γ relative to Equa-

tion (2.126) Bertsekas and Tsitsiklis (1997):

Γ := −∑S
i=1 ln (Pi [Sαii |αi, ai ])

+ ‖ai‖2HEK
+
∑

b∈B
∑

i∈Nb [vi,b]
T · [ai − bb]

+
∑

b∈B
∑

i∈Nb
ci
2 ‖ai − bb‖2HEK

(2.129)

where: (a) vi,b are the Lagrange multipliers relative to the constraints expressed

in proposition 38 and (b) ci's are penalty terms Bertsekas and Tsitsiklis (1997).

Note that there is no possibility to assure the existence of a single local minimum.

Again, it will be useful to choose initial guesses as in Section 2.3.5. In Schizas and

Giannakis (2006) a distributed solution of this problem has been proposed, via the
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iterative procedure on time index h described in algorithm 3. Note that step 4 of

this algorithm in general can be re�ned with a line-search step, see Bertsekas and

Tsitsiklis (1997); Fiacco and Cormick (1968).

Algorithm 3 distributed optimization

1: (initialization)

(a) choose random lagrange multipliers vi,b(0)

(b) choose random normal nodes estimates ai(0)

(c) choose random bridge nodes estimates bb(0)

(d) choose initial data set shifts αi(0) as the various arrival times de�ned in

Equation (2.114)

2: for h = 1, . . . do

3: for each link normal node i → bridge node b do

4: vi,b(h) = vi,b(h− 1) + ci [ai(h)− bb(h)] ;

5: for each normal node i do

6:

ai(h+ 1) = arg min
ai

(Γi)

where
Γi := − ln

(
Pi
[
Sαi(h)
i

∣∣∣ αi(h),ai

])

+ ‖ai‖2HEK
+
∑

b∈Ni∪B [vi,b(h)]T [ai − bb(h)]

+
∑

b∈Ni∪B
ci
2 ‖ai − bb(h)‖2HEK

7: for each normal node i do

8:

αi(h+ 1)=arg min
αi
− ln (Pi [Sαii | αi,ai(h+ 1)])

9: for each bridge node b do

10:

bb(h+ 1) =
∑

i∈N b

1∑
j∈N b cj

[vi,b(h) + ciai(h+ 1)]

where

N b := Nb ∩ (N − B)

.

Di�erences between algorithm 3 and the original one are: (a) we apply it for

estimation of functions instead of parameters vectors, (b) we have a separate step

for likelihood maximization of the set of translations (step 8), (c) there are some ad-

ditional Tikhonov factors (in step 6), (d) original algorithm is assured to converge to

the global minimum since some convexity hypotheses are assumed, while algorithm 3
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is assured only to converge to a local minimum.

2.3.7 Simulations

We simulated the algorithms of Sections 2.3.5 and 2.3.6 for the network of Figure 2.21,

with S = 11 and E = 3. As expected, distributed algorithm's results converge to

the centralized one's (compare Figures 2.22 and 2.23; comparable results have been

obtained for the eigenfunctions weights âi), but we noticed that convergence velocity

and stability of distributed strategy strongly depends on penalty terms ci Bertsekas

and Tsitsiklis (1997).

The usefulness of joint identi�cation is shown in Figures 2.24 and 2.25. Sensor i

may �miss� some important pieces of the signal, but sensor j helps i to reconstruct

the missing part using its data set. Note that in this case classical TDE algorithms

using local data sets would lead to a bigger estimation error in d̂i,j .
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Figure 2.22: Translations αi(h) applied to the various data sets Si during the Newton-
Raphson minimization of centralized optimization problem (2.121).
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Figure 2.23: Translations αi(h) applied to the various data sets Si during the mini-

mization of distributed optimization problem using algorithm 3.
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Figure 2.24: Example of data set Si (gray crosses) and relative estimated functions

for di�erent steps h of minimization algorithm 3 (dotted and solid black lines). The

reconstruction of the negative part of the function for h = 500 has been possible since

other sensors measured it (see Figure 2.25).
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Figure 2.25: Example of data set Sj (gray crosses) and relative estimated functions for

di�erent steps h of minimization algorithm 3 (dotted and solid black lines). This sensor

can help other sensors to reconstruct the parts of the signal where measurements are

missing (see Figure 2.24).
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3
Distributed Estimation of the Number of Sensors

3.1 Introduction

In this chapter we focus on the development of distributed techniques that increase

the knowledge of the number of agents participating to the estimation processes.

A common way of performing this task is to use a mobile access point moving

through the network. In this context, authors of Budianu et al. (2006) analyze an al-

gorithm based on the Good-Turing estimator of the missing mass (Good, 1953) given

vectors of observed sensors IDs, while in Leshem and Tong (2005) other authors pro-

pose a probabilistic sequential polling protocol associated to a sensor identi�cation

mechanism, and show that the number of transmissions per sensor required to ob-

tain an arbitrarily desired level of estimation accuracy is logarithmically bounded.

In Howlader et al. (2008) authors consider underwater communications networks,

and provide a probabilistic estimation procedure for counting the number of neigh-

bors (and not of the agents in the network) nodes with a certain accuracy. An

other interesting �eld that has been studied is the resource inventory application.

Usually in this scenario hierarchized structures are used: a certain hand-portable

sensor is moved through the environment, polling for certain kinds of objects and

then returning the information to a centralized server (Huang et al., 2009). There

have been proposed also estimators based on the physical properties of the medium

within information is transmitted (as in Huang and Barket (1991)).

The estimation of the number of active agents is important also for peer-to-peer

networks. In this case there are mainly three estimation techniques (Le Merrer et al.,

2006, and references therein): randomized reports (Kostoulas et al., 2005); epidemic

algorithms(Jelasity and Montresor, 2004); random walks (Massoulié et al., 2006).

These methods are generally based on concepts like distances between nodes and

rely on the structure of peer-to-peer networks.

Previous works already considered similar schemes, specially using minima of col-

lections of exponential or uniform random variables. For example, in Cohen (1997),

the author obtains results on estimation con�dences and accuracies levels, while

in Mosk-Aoyama and Shah (2008) the authors describe how to distributedly esti-

mate the outcomes of generic separable functions and thus to estimate the number
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of agents, relating topological properties of the network and the speed of decay of

the estimation error.

3.2 Problem formulation

We model a network with a graph G = {N , E}, where N = {1, . . . , S} is the set of
the sensors composing the network and E ⊆ N ×N is the set of the communication

links between the sensors. We assume that the graph G is undirected, i.e. (i, j) ∈
E ⇔ (j, i) ∈ E , and not time-varying.

The proposed distributed strategy is such that each sensor will estimate the

number of sensors in the network S only through local communications and with

limited coordination among sensors, and is based on 3 steps: 1) sensors locally

generate a set of random data, 2) they distributedly compute a function that takes

as inputs the locally generated data, 3) from the results of this computation sensors

locally estimate S. More formally:

1. each sensor i = 1, . . . , S locally generates a vector of M ∈ N+ i.i.d. random

values1 ymi ∈ R, m = 1, . . . ,M , using a probability density p (·) that is the

same among all sensors; does not depend on the actual number of sensors S,

does not depend on the number of generated values M ;

2. sensors distributedly compute the vector f ∈ RM through the function F :

RS → R as follows

f := [f1, . . . , fM ] , fm := F (ym1 , . . . , y
m
S ) . (3.1)

F must involve only computationally simple operations and local communica-

tions among the sensors. Some examples of such computable functions are: the

arithmetic mean, the maximum, the minimum and the variance (of the set of

data ym1 , . . . , y
m
S );

3. each sensor locally computes an estimate Ŝ−1 of S−1 based on the vector

f ∈ RM , through a function Ψ : RM → R+, i.e.

Ŝ−1 := Ψ (f1, . . . , fM ) . (3.2)

The reason for estimating S−1 rather than S is motivated by the fact that under

general conditions the performance results will be more natural, as will be shown

below. Nonetheless, we will give performance results also for estimators of S rather

than S−1. The strategy is illustrated in Figure 3.1.

Hypothesizing a lack of knowledge of a prior on S, a natural measure of perfor-

mance is given by the conditioned Mean Square Error (MSE), namely

Q (p, F,Ψ) := E
[(
S−1 − Ŝ−1

)2
]

(3.3)

1A more realistic scenario would be to consider discrete random variables, but simulations shown

us that using �oating point precision, from a practical point of view to use more than 12 bits does

not improve the estimation performances. The mathematical analysis of the e�ects of discretization

is then beyond the scope of this paper and kept as a future work.
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Figure 3.1: Graphical representation of the estimation strategy for the inverse of the

number of sensors S−1.

where we explicitly indicated the dependence on the generating p.d.f. p (·), the con-
sensus function F and the estimator Ψ. Ideally we would like to minimize such error

over all the possible choices of the triple (p, F,Ψ), but this is a formidable in�nite

dimensional problem, given the hypotheses previously posed in points 1), 2) and 3).

In this work we focus on special classes of the triple (p, F,Ψ) and study the behavior

of index (3.3) in these classes, to get some insights on the optimization problem for

the general case. We start by looking at two simple classes examples.

3.3 Motivating Examples

3.3.1 Motivating Example 1: Gaussian + Average + Maximum

Likelihood

Consider a zero-mean normal distribution for the generation of the data ymi , i.e.

p (ymi ) = N (0, 1); the average for the consensus function, i.e.

F (ym1 , . . . , y
m
S ) :=

1

S

S∑

i=1

ymi =: fm ; (3.4)

the Maximum Likelihood (ML) estimate for S−1 as the estimation function Ŝ−1 =

Ψ (f1, . . . , fM ), i.e.

Ψ (f1, . . . , fM ) := arg max
S−1

p
(
f1, . . . , fM

∣∣S−1
)
. (3.5)
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Clearly fm ∼ N
(
0, S−1

)
∀m since all the ymi are i.i.d. This imply that also all the

fm are i.i.d., therefore

p
(
f1, . . . , fM

∣∣S−1
)

=
1√

2π (S−1)M
exp

(
−
∑M

m=1 f
2
M

2S−1

)
(3.6)

and thus, after some simple computations

Ψ := arg max
S−1

p
(
f1, . . . , fM

∣∣S−1
)

=
1

M

M∑

m=1

f2
M . (3.7)

Considering Ŝ−1 = Ψ (f1, . . . , fM ), since
√
SfM ∼ N (0, 1), we have that

M∑

m=1

(√
Sfm

)2
∼ χ2 (M) , (3.8)

that can be �nally traduced in

M

S−1
Ŝ−1 ∼ χ2 (M) . (3.9)

This provides the analytic expression for the density p
(
Ŝ−1 |S

)
, from which we

obtain mean and variance

E
[
Ŝ−1

]
= S−1, var

(
Ŝ−1

)
= S−2 2

M
. (3.10)

Hence, the estimator (3.7) is unbiased and its performance index (3.3) coincides with

its variance, namely

Q (p, F,Ψ) = E
[(
S−1 − Ŝ−1

)2
]

= S−2 2

M
. (3.11)

As a remark, the previous expression implies that the relative estimation error
S−1−Ŝ−1

S−1 is independent of S.

For this example it is easy to compute the performance of the ML estimator of

S rather that S−1, since

Ŝ := arg max
S

p (f1, . . . , fM |S ) =
M

∑M
m=1 f

2
m

=
1

Ŝ−1
(3.12)

therefore
1

SM
Ŝ ∼ Inv-χ2 (M) (3.13)

and thus

p
(
Ŝ |S

)
= Γ

(
M

2

)−1 1

Ŝ

(
M

2

S

Ŝ

)M
2

exp

(
−M

2

S

Ŝ

)
(3.14)

where Γ (·) is the Gamma function. From this it follows that

E
[
S − Ŝ

]
=

S

M − 2
, (3.15)
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var
(
Ŝ
)

=
2S2

M

M3

(M − 2)2(M − 4)
(3.16)

and therefore the mean square error for Ŝ is

E
[(
S − Ŝ

)2
]

= S2 2M3 +M (M − 4)

M (M − 2)2 (M − 4)
. (3.17)

Notice now that asymptotically estimators Ŝ and Ŝ−1 have the same relative esti-

mation error, since

lim
M→+∞

E
[(
S − Ŝ

)2
]

= S2 2

M
. (3.18)

Order statistics

Before proceeding, we recall some basic results relating order statistics, see David and

Nagaraja (2003). Assume S to be the number of elements of the sample ym1 , . . . , y
m
S ,

and f
(k)
m to be its k-th order statistic. Let every ymi be i.i.d. and let p (a) be its

probability density evaluated in a, and P (a) be its probability distribution evaluated

in a. Then

p
f
(k)
m

(a)=
S! P (a)(k−1)(1− P (a))(S−k)p (a)

(k − 1)! (S − k)!
(3.19)

while the joint density p
f
(k)
m f

(j)
m

(a1a2) is given by

p
f
(k)
m f

(j)
m

(a1a2)=
S!

(k − 1)! (j − k − 1)! (S − j)!
· (P (a2)− P (a1))(j−k−1)

· (1− P (a2))(S−j) P (a1)(k−1)

·p (a1) p (a2) .

(3.20)

Order statistics can be de�ned also for K-uples: let

K := {k1, . . . , kK} , kj ∈ N+ (3.21)

be a set of indexes of order statistics, where 1 denotes the minimal element. Given

the set of order statistics indexes (3.21), and de�ning a0 := −∞, aK+1 := +∞,

k0 := 0, kK+1 := K + 1, the joint density of f
(k1)
m , . . . , f

(kK)
m is given by

p
f
(k1)
m ,...,f

(kK)
m

(a1, . . . , aK) = S!



K∏

j=1

p
(
akj
)




K∏

j=0

(
P
(
akj+1

)
− P

(
akj
))kj+1−kj−1

(kj+1 − kj − 1)!


 .

(3.22)

3.3.2 Motivating example 2: Uniform + maximum + ML

Consider now data ymi to be uniformly distributed, i.e. p (ymi ) = U [0, 1] and de�ne

the consensus function F to be the maximum, i.e.

F (ym1 , . . . , y
m
S ) := max

i
{ymi } =: fm . (3.23)
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Again the ML estimator for S−1 is used to de�ne Ψ (see Equation (3.5)). The

probability density of the S-th order statistic fm is known and in general given by

Equation (3.19). In this case

p (fm |S ) = SfS−1
m ∀m . (3.24)

Therefore

p (f1, . . . fM |S ) =
M∏

m=1

p (fm |S ) = SM
M∏

m=1

fS−1
m ∀m . (3.25)

Again, after some simple computations

Ψ := arg max
S−1

p
(
f1, . . . , fM

∣∣S−1
)

= − 1

M

M∑

m=1

log (fM ) . (3.26)

Now, de�ning z := − log (fm), it is immediate to check that z is an exponential

random variable with rate S, i.e.

p (z |S ) =

{
Sexp (−Sz) if z ≥ 0

0 otherwise.
(3.27)

The sum of M i.i.d. exponential random variables with rate S is a Gamma random

variable with shape M and scale 1
S . Considering then that Ŝ−1 = Ψ (f1, . . . , fM ) is

thus a scaled version of this sum of exponentials, it follows that

M

S−1
Ŝ−1 ∼ Gamma (M, 1) (3.28)

from which it is immediate to compute mean and variance

E
[
Ŝ−1

]
= S−1, var

(
Ŝ−1

)
= S−2 1

M
. (3.29)

This implies that the estimator Ŝ−1 is unbiased and that its performance index (3.3)

coincides with its variance, namely

Q (p, F,Ψ) = E
[(
S−1 − Ŝ−1

)2
]

= S−2 1

M
. (3.30)

By considerations similar to those of Section 3.3.1, one obtains that Ŝ is asymptoti-

cally unbiased, with asymptotic variance equal to that of Ŝ−1.

Notice that, given a �xed M and comparing Equations (3.11) and (3.30), the

performance index of the estimation scheme of this section is exactly half as large as

the one of Section 3.3.1.

3.3.3 Discussion on the motivating examples

We remark some points regarding the previous two examples. First, the estimator

Ŝ−1 = Ψ (f1, . . . , fM ) can be decomposed into simpler blocks, as shown in Fig-

ure 3.2. Following that scheme, all the quantities fm are passed through the same
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nonlinear function ψ : R → R transforming each fm into an unbiased estimate

Ŝ−1
m := ψ (fm) , m = 1, . . . ,M of S−1. Now, since the fm are uncorrelated, also

the Ŝ−1
m are uncorrelated. This implies that, to obtain the global estimate using all

the available information, the various Ŝ−1
m have simply to be combined through an

arithmetic mean

Ŝ−1 =
1

M

M∑

m=1

Ŝ−1
m . (3.31)

In fact, in Section 3.3.1 we had ψ (·) = (·)2, while in Section 3.3.2 we had ψ (·) =

−log (·).

F ψ

F ψ

F ψ

y1
1

y1
2

y1
S

y2
1

y2
2

y2
S

yM1
yM2

yMS

p (·) arithm.

mean Ŝ−1

f1

f2

fM

Ŝ−1
1

Ŝ−1
2

Ŝ−1
M

Figure 3.2: Alternative graphical representation of the estimation strategies for S−1

proposed in Section 3.3.1 and Section 3.3.2.

The second point is that being each Ŝ−1
m an unbiased estimate, the variance of

the combined estimate Ŝ−1 will decrease as 1
M , and the quality of this variance will

depend on the variance of the single estimates Ŝ−1
m . Moreover, comparing Equa-

tions (3.11) and (3.30), we can say that for a �xed M the variance of the error

associated to strategy of Section 3.3.2 is half the one associated Section 3.3.1. This

is particularly positive since the distributed computation of the maximum of a set of

values is much faster than the computation of its average (even if both depend on the

size of the network). Sensors can compute maxima simply broadcasting their values

and updating them (when receiving messages) via elementwise maximum operations.

Under mild conditions it can be proven that each node will correctly compute max-

ima after a �nite number of messages exchange. Also averages can be computed in a
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distributed fashion (through average consensus algorithms), but the rate of conver-

gence to the actual average is exponential. For example, in a circular network where

each node has only two neighbors (left and right), the number of steps necessary to

correctly compute the maximum is Tmax = S/2, while the number of steps required

to achieve a 1%-error in the estimation of the average is

Tave =
log (0.01)

log (1− 2π2/S2)
� Tmax . (3.32)

In the next sections we will continue to consider the average and the maximum for

F , aiming to understand for which p.d.f. p (·)'s generating the various ymi the scheme

of Figure 3.2 continues to be applicable. Moreover we seek to understand when the

ML estimation scheme is optimal (i.e. minimize the performance index (3.3)) and

which p.d.f. p (·) (or class of p.d.f.'s) leads to the smallest estimation error.

Considerations on the discrete nature of S

Being S ∈ N+, its estimates must also be in N+. Despite this fact, in the following

we will consider estimators that assume S ∈ R+. The natural step that have to be

performed beyond the estimators that we will analyze, is then to check which one

between bŜc and dŜe is the most likely estimate, in order to have an overall solution

in N+.

3.4 Special case: average consensus

Let

Fave := F (ym1 , . . . , y
m
S ) =

1

S

S∑

i=1

ymi =: fm . (3.33)

Assume data ymi to be generic Gaussian r.v.'s, i.e. ymi ∼ p (ymi ) = N
(
µ, σ2

)
. It is

easy to show, following the same steps of Section 3.3.1, that the ML estimator for

S−1 in this case is given by

Ŝ−1 := ΨML (f1, . . . , fM ) =
1

M

M∑

m=1

(fm − µ)2

σ2
(3.34)

Ŝ−1 ∼ S−1

M
χ2 (M) . (3.35)

It is possible to derive the following

Proposition 39. Let N be the class of all Gaussian random variables with positive

variance, i.e. p ∈ N if p = N
(
µ, σ2

)
for some µ and σ2 > 0. Then ΨML is the

Minimum-Variance Unbiased Estimator (MVUE) for S−1 within this class. Moreover

we have

min
p (·) ∈ N

Ψ s.t. E [Ψ]=S−1

Q (p, Fave,Ψ)=Q (N (0, 1), Fave,ΨML)=
2

M
. (3.36)



Distributed Estimation of the Number of Sensors 89

Proof. This proposition can be proven with reasonings similar to those followed in

that of Proposition 40 (e.g., completeness can be proved just repeating the same

argument relative to (3.49) except that the chi-square in place of the Gamma distri-

bution has to be considered). We thus refer to that proof and omit this one.

Given the de�nition of Equation (3.3) and a generic density p (·), it is not obvi-
ous whether the ML strategy is minimizing Q. Moreover, given a certain p (·) and

restricting Ψ to be an ML estimator, it is not easy to �nd an analytic expression

for Ŝ−1 nor its distribution. One little step forward we can make is to notice that

translations and scaling of a certain random variable do not a�ect the performance

of the optimal estimator: in fact, assume px (a) to be a generic probability density

with mean µ and variance σ2 > 0, and y to be the zero-mean unit-variance random

variable

y =
x− µ
σ

, x ∼ px (3.37)

with corresponding density py (a) = σpx (σa+ µ). Using the invariance of the aver-

age function Fave with respect to translation and scaling (it is a linear function), it

is immediate to show that

min
Ψ
Q (px, Fave,Ψ) = min

Ψ
Q (py, Fave,Ψ) , (3.38)

and this allows us to restrict to distributions p (·) with zero mean and unit variance.

When we choose the average Fave as the network function, it is not evident how

to optimally choose the density p (·) and the estimator function Ψ to minimize the

index Q. In case of large networks, with large S, we can still exploit the central

limit theorem: if ymi s.t. ymi ∼ p (·) and E [ymi ] = 0, var (ymi ) = 1, then fm =

Fave (ym1 , . . . , y
m
S ) has in general the following probability distribution

pfm (a) = (p ∗ · · · ∗ p)︸ ︷︷ ︸
S times

(a) (3.39)

where the symbol ∗ indicates the convolution operator. But from the central limit

theorem it follows that, in distribution,

lim
S→+∞

pfm (·) = N
(
0, S−1

)
. (3.40)

As a consequence, it is likely that for large S there is no advantage of using prob-

ability distributions p (·) and estimator functions Ψ di�erent from the unit normal

distribution and the ML, respectively, i.e.

lim
S→+∞

min
p,Ψ

Q (p, Fave,Ψ) = Q (N (0, 1) , Fave,ΨML) (3.41)

although this claim should be rigorously proven. For small S we currently do not

have optimality results and we are exploring if there are non-Gaussian distributions

p (·) leading to better estimation performance.
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3.5 Special case: max consensus

Let

Fmax := F (ym1 , . . . , y
m
S ) = max

i
{ymi } =: fm . (3.42)

We can notice immediately that, if ymi has probability density p (a) and distribution

P (a), then Equation (3.19) leads to a joint density on f1, . . . , fM of the form

pf1,...,fM (a1, . . . , aM )=SM
M∏

m=1

P (am)S−1 p (am) . (3.43)

The generic ML estimator for S−1 is thus

Ŝ−1 = ΨML (f1, . . . , fM ) :=− 1

M

M∑

m=1

log (P (fm)) . (3.44)

It is immediate to show that the relative ML estimator Ŝ of S is given by Ŝ =

1/ΨML = 1/Ŝ−1. De�ne P as the class of densities p (·) whose relative distribution
P (·) is strictly monotonic and continuous. Then the estimators Ŝ−1 and Ŝ are

characterized by the following propositions

Proposition 40. ∀ P (a) ∈ P, ΨML is the MVUE of S−1.

Proof. We start considering Proposition 40. De�ne

T (f1, . . . , fM ) := −
M∑

m=1

log (P (fm)) (3.45)

and (with little abuse of notation)

Ŝ−1 (T ) := Ŝ−1 (T (f1, . . . , fM )) := Ŝ−1 (f1, . . . , fM ) . (3.46)

Since pf1,...,fM (a1, . . . , aM |S ) can be rewritten as

(
M∏

m=1

p (am)

)
(
SMexp (− (S − 1)T (a1, . . . , aM ))

)
(3.47)

for the Fisher-Neyman factorization theorem T (f1, . . . , fM ) is a su�cient statistic

for S. From the Lehmann-Sche�é theorem, we know that if T is also complete and

E
[
Ŝ−1

]
= S−1, then Ŝ−1 it is MVUE for S−1. Considering now that the p.d.f. of

the r.v. P (fm) is SfS−1
m , for the same reasonings made in Equation (3.27) we have

that − log (P (fm)) is an exponential r.v. This implies that

MŜ−1 = −
M∑

m=1

log (P (fm)) ∼ Gamma

(
M,

1

S

)
(3.48)

and thus condition E
[
Ŝ−1

]
= S−1 is satis�ed. The completeness of T (f1, . . . , fM )

can be proved showing that if g (T ) is a generic measurable function s.t. E [g (T ) | S ] =
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0 independently of S, then it must be g (·) ≡ 0 almost everywhere (a.e.). Considering

that T is Gamma
(
M, 1

S

)
, the previous condition on the expectation can be rewritten

as

Γ (M)−1 SM
∫ +∞

0
g (T )TM−1exp (−TS) dT ≡ 0 . (3.49)

This is equivalent to say that the Laplace transform of g (T )TM−1 has to be zero

a.e., and this happens if and only if g (T ) is zero a.e. This proves the completeness

of T and thus the proposition.

This means that if we restrict Ψ to be unbiased, then Ŝ−1 = ΨML is optimal with

respect to index (3.3). In addition, it is possible to prove that the performance of

the estimator is independent of the adopted density

Proposition 41. It holds that

min
p (·) ∈ P

Ψs.t. E [Ψ] = S−1

Q (p, Fmax,Ψ) = Q (U [0, 1] , Fmax,ΨML) . (3.50)

Proof. This is a consequence of (3.49) that shows that the distribution of the esti-

mator is independent of the density p which is adopted.

Uniform generation with min consensus

For symmetry reasons, the usage of max or min consensus strategies lead to the

same performance results. In case of min consensus, the general expression for ML

estimators of S−1 is

Ψ (f1, . . . , fM ) = − 1

M

M∑

m=1

log (1− P (fm)) . (3.51)

3.6 Special case: range consensus

Running max and min consensus in parallel it is possible to �nd simultaneously the

statistics of order 1 and S of {fm}:

fm := max
i
{ymi } fm := min

i
{ymi } . (3.52)

If ymi has probability density p (a) and distribution P (a), then Equation (3.20) leads

to a joint density on fm, fm of the form

pfmfm (a1 a2) =
(
S2 − S

)
(P (a1)− P (a2))S−2 · p (a1) p (a2) (3.53)

whenever a1 ≥ a2, while pfmfm (a1 a2) = 0 otherwise. The joint density on f1, . . . , fM
can be immediately computed and minimized in S, in order to obtain a general ML

estimator of the form

Ŝ =
1

2
− L−1 +

√
1

4
+ L−2 (3.54)
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where

L :=
1

M

M∑

m=1

log
(
P
(
fm
)
− P

(
fm
))

. (3.55)

Considering again ymi ∼ U [0, 1], the joint density is thus

p
(
f1, . . . , fM |S

)
= SM (S − 1)M

M∏

m=1

(
fm − fm

)S−2
(3.56)

and Equation (3.55) becomes

L :=
1

M

M∑

m=1

log
(
fm − fm

)
. (3.57)

Notice that the p.d.f. of rm := fm − fm is

p (rm |S ) =
∂

∂rm

(
1−

∫ 1

rm

∫ fm−rm

0
p
(
fm, fm |S

)
dfmdfm

)

= S (S − 1)
(
rS−2
m − rS−1

m

) (3.58)

which transformation log (rm) is anymore a r.v. which p.d.f. is analytically known.

For this reason we are not able to �nd the density of L (and thus of Ŝ|S) in a closed

form. In this case p
(
Ŝ |S

)
shall be estimated with Monte Carlo simulations, as

we made in Figure 3.3. Rather surprisingly, simulations show that, with the same

amount of information exchanged among the sensors and with ymi ∼ U [0, 1], the

approach performs slightly better than the max consensus one (notice that for a

given M the range-consensus scheme actually computes 2M sensible data).

10 15 20 25 30 35 40
0

0.05

0.1

Ŝ

p
( Ŝ

|S
)

 

 

M = 10  (range cons.)
M = 20  (max. cons.)

Figure 3.3: Empirical p
(
Ŝ |S

)
's relative to max and range consensus strategies (2 ·106

number of samples, S = 20).

3.6.1 Range consensus with a generic number of samples

It is possibile to generalize the strategy proposed in Section 3.6 to consider a general

combination of max and min consensus techniques. If f
(k)
m is then the statistic of
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order k of the set of samples {ym1 , . . . , ymS }, and if K := {k1, . . . , kK} is a set of

di�erent order statistics indexes, sensors can distributely compute the matrix

F :=




f
(k1)
1 · · · f

(kK)
1

...
...

f
(k1)
M · · · f

(kK)
M


 (3.59)

using opportune combinations of max and min consensus algorithms.

We notice that to estimate the statistic f
(S−k)
m using max consensus algorithms,

it is necessary to estimate also the statistics f
(S)
m , . . . , f

(S−k+1)
m , and a simmetric

consideration applies for the min consensus. Thus, assuming to have a constraint on

the number of estimable statistics K, it follows immediately that the structure of K
must be

K = {1, 2, . . . , kmin, kmax, . . . , S − 1, S} (3.60)

where kmax = S − β (with β an opportune integer) and with kmin + β + 1 = K.

Remark 42. If the number of used statistics is K, then (ignoring quantization

e�ects) all the S s.t. S < K will be almost surely (a.s.) correctly identi�ed, since the

matrix F will be not entirely �lled. Even if for ease of notation we will ignore this in

our mathematical derivations, practical implementation of the proposed estimators

should consider this important property.

Assume now the set K to be as in Equation (3.60), where the statistics up to

kmin are computed using min consensus strategies, while the other ones are com-

puted using max consensus ones. Constraining Ψ to be an ML estimator, from

Equation (3.22) we have that the ML condition is given by

kmin+β∑

j=0

1

S − j = − 1

M

M∑

m=1

log
(
P
(
f (kmax)
m

)
− P

(
f (kmin)
m

))
(3.61)

where we impose that:

• if kmin = 0 (i.e. no min consensus are applied) then P
(
f

(kmin)
m

)
= 0;

• if kmax = S + 1 (i.e. no max consensus are applied) then P
(
f

(kmax)
m

)
= 1.

Rewriting now condition (3.61) as

S−1 =
1

M

M∑

m=1

ψ
(
f (kmax)
m , f (kmin)

m

)
(3.62)

with

S−1 :=

kmin+β∑

j=0

1

S − j (3.63)

and

ψ
(
f (kmax)
m , f (kmin)

m

)
:= −log

(
P
(
f (kmax)
m

)
− P

(
f (kmin)
m

))
, (3.64)

we notice the following:
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1. of the generic m-th row of matrix F , only f (kmax)
m and f

(kmin)
m are considered:

this implies that the values of all the other statistics are inin�uent for the ML

estimator;

2. each of these couples is transformed through the same nonlinear function ψ (·) :

R → R into an estimate S−1
m of S−1. due to the independence (in m) of the

various f
(kmax)
m and f

(kmin)
m , the S−1

m are uncorrelated. This implies that the

global estimate is obtained simply combining the various S−1
m 's through an

arithmetic mean, like in Equation (3.62). Now, being each ψ (·) an unbiased

estimator of S−1, once again the variance of the combined estimate will decrease

as 1
M , and the quality of this variance will depend on the variance of the single

estimates S−1
m .

We have thus shown that also in this general case the estimation process involves

arithmetic averages of the �local� estimates, as depicted in Figure 3.4.
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Figure 3.4: Graphical representation of the estimation strategy for generic range-

consensus based estimators.

3.7 Bayesian modeling

In some cases it is possible to combine the ML strategies developed before with

possible prior information on S. An interesting case is the following: assume the a

priori mass probability of S−1 can be approximated with the Inverse-Gamma prior

p

(
1

S
|α, β

)
∝
(

1

S

)−α−1

exp (−βS) , (3.65)
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dependent on the (known) hyperparameters α (shape) and β (scale), with mean β
α−1

and mode2 β
α+1 . Consider then the following

De�nition 43. Assume a certain prior on θ, say p (θ), is given. A likelihood p (f |θ )

is said to be conjugated with the prior p (θ) if the posterior p (θ |f ) ∝ p (f |θ ) p (θ)

is in the same family of p (θ) (i.e. it has the same parametric representation, even if

with di�erent values of the parameters).

In case of Gaussian plus average consensus it is possible to use the conjugated

prior property of De�nition 43 to obtain closed forms for MMSE and MAP estima-

tors. In fact in this case the a-posteriori becomes

p

(
1

S
|f1, . . . , fM , α, β

)
∝
(

1

S

)−α− 1
2

exp

(
−
(
β +

∑M
m=1 f

2
m

2

)
S

)
. (3.66)

The expressions of MAP and MMSE estimators are now easily computable and

summarized in Table 3.1.

ŜML ŜMAP ŜMMSE

M
∑M

m=1 f
2
m

M + 2α+ 2
∑M

m=1 f
2
m + 2β

M + 2α− 2
∑M

m=1 f
2
m + 2β

Table 3.1: Summary of the various estimators for Gamma priors on S, Gaussian dis-

tribution for the generation of the data ymi and F set to average-consensus.

2This is equivalent to suppose an approximated Gamma prior on S with shape k = α and scale

θ = β−1.
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Conclusions

In this thesis we focused on network of agents that collaborate in order to achieve a

common task, but that do not have strong knowledge about the state of the other

cooperating units. Contextualizing this work, we aimed to increase the independence

of sensor networks on human intervention.

In the �rst part we evaluated the performance of fundamental distributed para-

metric and nonparametric estimation algorithms, with the main questions under-

neath all the derivations summarizable in:

• is the collaboration among sensors bringing some bene�ts with respect to be-

haviors where agents do not share information?

• can the agents distributedly compute the same results that would be obtained

collecting all the information in an unique place?

• if not, are the approximations that necessarily have to be introduced leading

to excessively unreasonable results?

• can the agents understand by themselves and in a distributed fashion this

degree of unreasonability?

In a general framework, the complexity of these questions is formidable, and

might lead to no answers. We thus focused on the following signi�cative scenario,

where restrictions do not a�ect the applicability of the results on real-world scenarios,

by assuming that:

• the task is to estimate some continuous-valued quantity;

• the information computed at the end of the process has to be the same among

agents;

• the cost-functions penalizing the estimation errors are quadratic.

In this scenario, we obtained important answers that can be summarized in few

sentences. First of all,
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the structure of the distributed estimators is the same of both local and centralized

optimal estimators.

Moreover,

in order to distributedly compute the centralized solution, agents need to have

some level of knowledge of the topology of the network.

In particular, both in parametric and in non-parametric frameworks,

in some cases, the distributability of the centralized solution is possible once the

agents know how many they are.

From the beginning, the knowledge of the number of collaborating sensors assumed

an important role. Its importance increased after answering to the �rst question by

paraphrasing Theorem 4 and its subsequent versions:

if the knowledge of the actual number of agents is su�ciently accurate, then

distributed estimates are assured to perform better than local ones.

And this knowledge became even more important replying the last question with:

agents can distributedly bound the performance losses incurred using distributed

algorithms instead of centralized solutions. Moreover, the accuracy of these bounds

depends on the accuracy of the knowledge of the number of agents in the network.

After answering these questions, we proposed distributedly compute approxi-

mated Regularization Networks with small computational, memory an communi-

cation requirements. Then we proposed a random �elds regressor, derived from a

modi�cation of the previously analyzed nonparametric estimation schemes. In this

way we developed an e�ective distributed algorithm that do not require the sensors

to know where or when measurements have been sampled, thus allowing non-uniform

spatial or temporal sampling grids.

We �nally focused on understanding how it is possible to distributedly increase

the knowledge of the number of agents in a network. Rather than relying on strategies

that count the number of nodes by means of information like IDs, serial numbers,

etc., we o�ered a statistical algorithm that is based on computations of averages

or order statistics, and noticed its mathematical properties and e�ectiveness. But

the main nice property is that it can be run in parallel to the regression algorithm

without worsening the complexity of the communication scheme.

In conclusion, we o�er some questions considered as our future works. As a �rst

main topic, we are seeking answers to the initial questions in case of distributed

classi�cation algorithms, in case of di�erent cost functions and in case of di�erent

distributed estimation algorithms. Moreover, we are considering strategies that allow

the sensors to independently and autonomously tune the parameters of the previous

regression algorithms: this because it is important, for example, to let the agents

understand by themselves which is the optimal regularization parameter. As a con-

cluding topic, we should analyze the e�ects of practical issues like quantization or

�nite numbers of consensus steps in the algorithms for the estimation of the number

of sensors.
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