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“Impossible is just a big word thrown around by small men who find it easier to live in
the world they’ve been given than to explore the power they have to change it. Impossible
is not a fact. It’s an opinion. Impossible is not a declaration. It’s a dare. Impossible is

potential. Impossible is temporary. Impossible is nothing.”
Muhammad Ali





Abstract

Starting from the second half of the XXth century, desire of energy independence,
great climate changes and increasing pollution rate have driven a lot of governments to
invest on technologies devoted to energetic development. As a consequence, the electric
infrastructure is undergoing a deep renovation both from a production, a transmission as
well as a distribution point of view.

To face at the same time environmental and economical issues, many politics have
decided to invest on the development and diffusion of technologies aimed at the energy
production from renewable resources, e.g., photovoltaic and wind farms, hydroelectric
and biomass. Particularly successful has been the development of small size generators,
µ-generators, in comparison with those of the classical production plants. These small
devices can be easily deployed next to the consumers and interfaced with the network
through electronic inverters, giving rise to a grid of Distributed Energy Resources (DERs).
Thanks to the widespread of these devices, the consumer may now be able to produce,
manage and sell his own energy becoming himself a producer, alternatively a so called
prosumer. It can be easily understood how the new economic figure of the prosumer
could affect the deregulation of the energy market which would no more be dominated by
huge producers and sellers. Conversely, it would be based on the synergy and equilibrium
of a multitude of small producers/consumers.

Such an energetic scenario clashes with the actual physic of the electric grid. Indeed,
this had been thought and built according to a top-down energy flow, in which the energy,
starting from the producers, reaches the consumers in an unidirectional way. Conversely,
an electric grid scattered of prosumers would foreseen a bottom-up energy flow where the
energy, starting from the lowest layer, consisting of the prosumers, would climb up the
grid to be redirected as needed. To let the development of such a deregulated market, a
cautious design and control of the power inverters is necessary.

This thesis focuses on some essential aspects that must be taken care of during the
engineering design and the optimal manage of this new type of power grid. In particular,
the work consists of four main parts organized as follows.
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1. Introduction and modeling: initial chapters are devoted to the introduction of
the standard models describing an electric grid.

2. Devices synchronization: subsequently, since synchronization among devices is
required in order to perform data analysis, several distributed algorithms aimed to
face this task are presented.

3. State estimation: historically the state of the system is represented by magnitude
and phase of the isofrequential sinusoidal voltage signals at each node of the grid.
Having knowledge of the state is a first and fundamental task that has to be
performed in order to effectively control the grid. The aim of this section is to
present distributed, robust and effective algorithms to perform state estimation.

4. Reactive power injection optimization for voltage support: once the de-
vices are synchronized and the state is known, the grid can be controlled in order
to be stabilized and efficiently optimized. In particular, one crucial task is the
support of the voltage profile via reactive power injection in order to avoid possible
collapses and consequently power blackouts. This section analyzes the problem of
voltage support, addressing the issues related to the stress induced on the grid by
the load profile. The problem is presented in an optimization framework and a
centralized as well a distributed algorithm to solve it are presented.

Particular attention has been posed on the development of distributed strategies that
need only a local exchange of information among the agents constituting the network.
This class of techniques is particularly interesting for its scalability property and the
possibility to be effectively applied to large scale systems such as power grids.



Sommario

A partire dalla seconda metà del XX secolo, i continui cambiamenti climatici, il crescente
tasso di inquinamento ed il connesso desiderio di una maggior indipendenza energetica,
hanno spinto molti governi ad intensificare gli investimenti in tecnologie dedicate allo
sviluppo energetico. Conseguentemente, si è potuto assistere e si sta tuttora assistendo ad
un profondo rinnovamento della struttura fisica della rete elettrica a livello di produzione,
trasmissione e distribuzione dell’energia.

L’investimento nello sviluppo di tecnologie dedicate alla generazione di energia da
fonti rinnovabili, come il fotovoltaico, l’eolico, l’idroelettrico e le biomasse, si è rivelata una
strategia comune e vincente al fine di affrontare contemporaneamente le problematiche
di natura ambientale e economica. Di particolare successo si è dimostrato lo sviluppo
dei cosiddetti microgeneratori, ovvero generatori di dimensioni ridotte se confrontati
con i classici impianti di produzione. Questi possono essere facilmente dislocati nei
pressi dei diretti utilizzatori dell’energia elettrica (consumers) ed interfacciati alla rete
elettrica di distribuzione attraverso particolari dispositivi elettronici, chiamati inverters,
dando così vita a quella che è comunemente chiamata rete di fonti distribuite di energia
(Distributed Energy Resources DERs). La diffusione di generatori di questo tipo oltre
a permettere una distribuzione capillare dell’energia, comporta la nascita di una nuova
figura economica nota come prosumer (prosumer = producer + consumer): l’utilizzatore
può decidere di diventare parzialmente responsabile della produzione di energia tramite i
micro-generatori, diventando a sua volta produttore (producer). E’ facilmente intuibile
l’impatto che una figura di questo genere avrebbe in un processo di liberalizzazione
del mercato economico dell’energia, il quale non sarebbe più regolato da pochi grandi
produttori ma, piuttosto, basato sulla sinergia e l’equilibrio di una moltitutdine di piccoli
produttori/consumatori (prosumers).

Un tale scenario energetico risulta in contrasto con l’attuale struttura fisica della rete
elettrica. Quest’ultima è stata infatti pensata e progettata per permettere un flusso di
energia di tipo top-down in cui, a partire dal produttore, l’energia giunge al consumatore
in maniera unidirezionale. Una rete elettrica dominata da prosumers prevederebbe
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invece un flusso energetico di tipo bottom-up, il quale partendo dal basso, risale per
essere eventualemente redistribuito. Al fine di permettere lo sviluppo di un mercato
liberalizzato e popolato di prosumers, è necessaria un’oculata progettazione e controllo
degli inverters attraverso i quali i micro-generatori si interfacciano alla rete.

Questo lavoro di tesi si occupa di alcuni degli aspetti fondamentali da considerare
durante la gestione ottimale di una rete elettrica. In particolare, il lavoro si articola in
quattro parti principali così organizzate:

1. Introduzione e modellazione: i primi capitoli sono dedicati all’introduzione dei
modelli standard di una rete elettrica.

2. Sincronizzazione dei dispositivi: successivamente, dal momento che, al fine di
effettuare analisi dei dati è richiesta sincronizzazione tra i dispositivi all’interno
della rete, vengono presentate diverse tecniche distribuite per affrontare e risolvere
questo problema.

3. Stima dello stato della rete: storicamente lo stato è rappresentato dai valori
assoluti e dalle fasi dei segnali sinusoidali isofrequenziali di tensione ai nodi della
rete. La sua conoscenza è necessaria al fine del controllo ed ottimizzazione del
funzionamento della rete. In questa parte della tesi, vendono dunque presentati
una serie di algoritmi distribuiti e asincroni per la stima dello stato.

4. Ottimizzazione dell’iniziezione di potenza reattiva per il supporto delle
tensioni: una volta sincronizzati i dispositivi e noto lo stato, la rete può essere
controllata al fine di ottimizzarne determinate prestazioni. In questa parte della
tesi, ci si occupa della minimizzazione dello stress della rete indotto dal carico di
potenza col fine ultimo di supportare i livelli di tensione ed evitare possibili collassi
e disastrosi black-out. In particolare vengono presentate due possibili soluzioni,
una centralizzata ed una distribuita, per risolvere il problema del supporto delle
tensioni.

Durante il lavoro, si è posta particolare attenzione allo sviluppo di tecniche di controllo
ed algoritmi di natura distribuita ovvero che necessitano solo uno scambio di informazione
locale tra gli agenti costituenti le rete. Tale classe di algoritmi di ottimizzazione e controllo
risultano intrinsecamente adatti ad essere implementati e sfruttati in sistemi complessi e
di larghe dimensioni come le reti elettriche.
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1
Introduction

“Men die but their works endure.”
A.L.Cauchy

1.1 The electric grid

From the XIX century, with the beginning of the public illumination and the systematic
use of electricity in everyday life, the electrical power is playing a fundamental and
unique role in modern society. One thing our lives often rely on is the capability to
have continuous and uninterrupted electric power to supply all the devices we need and
the infrastructure that surround us. Nowadays, with the massive spread of electronic
devices, this need is even more rooted in our contemporary society. However, even if
assumed, this possibility is given to us by the careful design and engineering of the electric
infrastructure, which probably represents the biggest engineered system by humankind.

The classical electric infrastructure may be hierarchically divided into three main
layers in a top-down scheme: the generation, i.e., the power plants; the High Voltage
(HV) transmission grid and the Medium/Low Voltage (MV/LV) distribution grid which,
together, represent the backbone of the electric infrastructure (Harris Williams, Summer
2014) since they are responsible for delivering the energy to the final customers. According
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Figure 1.1: Classical electric grid infrastructure.

to this framework, the energy is produced at the power plants. Its voltage level is then
increased up to HV by transformers in order to reduce energy losses during transportation.
By passing through the transmission grid, energy is carried to substations, where the
voltage level is lowered from HV to MV in order to be dispatch to end users, e.g.,
residential, commercial and industrial customers. Finally, distribution transformers
decrease the voltage, from MV to LV, in order to safely distribute electricity to end users.

As can be seen from the Figure 1.1, which depicts a schematic view of the electric
structure, we have:

A. Power station, where the power is produced.

B. Transmission grid consisting of:

(a) power transformers, i.e., high-voltage transformers, that rise up the voltage level;

(b) transmission lines used to transport the power which are typically mostly induc-
tive;

(c) transmission substations connecting different transmission lines.

C. Commercial & Industrial consumers which might make use of the power energy
directly at the MV level.
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Figure 1.2: Smart grid infrastructure.

D. Distribution grid consisting of:

(a) distribution substations aimed at stepping down the voltage and reroute the
power to different branches of the distribution grid;

(b) distribution lines, e.g., overground and underground lines, which are typically
mostly resistive;

E. Automation devices used to monitor and step further down the voltage.

F. Residential customer which are the LV end user of the grid.

1.2 A new scenario: the Smart Grid

In the last decades, pushed by governments’ increasing desire of energy independence, we
are witnessing a deep renovation of the electric infrastructure. Major research efforts have
focused on the development of Distributed Energy Resources (DERs). In particular, as a
consequence of the more and more relevant and delicate topic of sustainable environmental
development (Twidell, Weir, et al., 2015), renewable and green energy sources, e.g., solar,
wind, water, biomass, are becoming the main actors (Jiayi, Chuanwen, and Rong, 2008) of
this change. Clearly, the possibility to widespread small size renewable energy resources
with power ratings less than a few tens of kilowatts would have a major impact from
both an energetic, an economic as well as an environmental point of view. First of all,
this could increase the reliability of the energy dispatch to final customers. Secondly, the
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Figure 1.3: Electric infrastructure transition.

outsourcing of the energy production could potentially break down the monopoly of the
energy market which is now owned by few big producers. Finally, the massive use of
green energy could eventually lead to a complete disuse of traditional and unsustainable
energy production sources. The widespread of DERs would completely decentralize
the energy production which would now be physically localized next to the consumers
rather than far away from them. Thanks to this, the consumers could now be able to
produce and dispatch their own energy becoming themselves producers. The ultimate
combination of producers and consumers would give rise to a completely new economic
figure, the prosumers, which would unavoidably contribute to the deregulation of the
energy market, which would now be driven by the synergy and the equilibrium of a
multitude of producers/consumers rather then dominated by huge producers/sellers.

This new energetic/economic scenario foreseen the birth of the so called Smart Grid
(Liserre, Sauter, and Hung, 2010) where the production and consumption are no more
placed respectively at the top and at the bottom of the infrastructure rather, they
occupy different positions at the same level of the network, see Figure 1.2. However, this
paradigm clashes with the actual physics of the classical electric grid which has been
built according to a top-down criterion (Section 1.1) where the energy physically flows
from the power plants, down to the consumers passing through the transmission and
the distribution grid. Conversely, this new perspective requires a bottom-up energy flow
where the energy produced by the prosumers is dispatched and sent all over the grid,
where needed. To this end the grid must change its structure as illustratively depicted in
Figure 1.3. However, to undertake such an abrupt change of the structure and of the
way the grid is operated comes not without side effects (Ipakchi and Albuyeh, 2009).
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Since the design of a suitable electric infrastructure from scratch is not possible, the
development of new technologies and new paradigms must be carefully designed in order
to be effectively and seamlessly integrated with what already exists.

1.3 Manuscript outline

This work focuses on some aspects that may be taken into account during the design,
monitoring, control and optimization of a modern smart grid. These regard i) the
synchronization of the devices spread over the grid; ii) the state estimation of the grid
from the collection of noisy electric measurements; iii) the optimization and control of the
reactive injection for the support of the voltage profile. Novel algorithms to solve these
problems are presented. They relies on different assumptions regarding, e.g., the sensing
and communication capabilities over the network. However, all the solutions proposed
share, as least common denominator, a distributed implementation which makes them
naturally scalable, intrinsically more robust and then amenable for implementation in
large scale systems.

In particular, the first part of the manuscript (the remaining of this chapter and
Chapter 2) recall the used notation and presents the required models. The second part
of the thesis, contained in Chapter 3 is devoted to the analysis of the synchronization
problem among devices. The problem is tackled as a particular type of estimation
problem in the framework of localization where only relative measurements among smart
devices are available. Chapter 4 contains the third part of the thesis which is devoted to
the state estimation problem in a distribution grid. Two different strategies, suitable to
the case of synchronous and asynchronous communications, respectively, are presented.
The final part, regarding optimization and control, is discussed in Chapter 5. This part
is devoted to present a particular safety aspect which is related to voltage support and
stress minimization in power systems. In particular, it will be shown a particular measure
for the stress induced by the reactive loads on the grid and a possible countermeasure,
through reactive power injection, to support the voltage while minimizing the stress in
order to improve the network safety. Chapter 6 offers some concluding remarks.

1.4 Mathematical preliminaries & notation

In this section we present the notation used hereafter along the manuscript.
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Symbols

The symbols Rn (Rm×n), Cn (Cm×n), Zn (Zm×n) and Nn (Nm×n) denote the vector
spaces of n dimensional column vectors (m × n matrices), where all the entries are
real, complex, integer and natural, respectively. Lowercase italic letters, e.g. x, v, z,
denote scalar values. Lowercase roman bold letters, e.g., x,v, z, denote vectors which we
assume by default to be column vectors. Uppercase italic letters denote, e.g. A,B,X,
denote matrices. In general, uppercase calligraphic symbols, e.g. A, C,X , denote sets.
The symbols 1 and I denote the vector of all ones and the identity matrix of suitable
dimension, respectively. With the symbol 1h we denote the canonical vector with all
entries equal to zero except the h-th one which is equal to 1. The symbol O represents
both the vector and matrix with all zero entries of suitable dimension. Finally, the symbol
∅ denotes the empty set.

Scalar, vector and matrix operators

Given a scalar, |a| denotes its absolute value while ∠a denotes its argument. Moreover,
with the symbols <(·) and =(·) we denote its real and imaginary parts, respectively. In
the context of complex valued quantities, the symbol j denotes the imaginary unit. Then,
a complex scalar a can be represented both in polar coordinates as a = |a| exp(j∠a), or
in rectangular coordinate as a = <(a) + j=(a). Given a, with a we denote its conjugate.
Similar notation is used for vectors. That is, given a vector a, with |a|, ∠a, <(a), =(a),
a, we denote the vector of component wise absolute value, argument, real part, imaginary
part and conjugate, respectively. In addition, given a, with aT we denote its transpose;
while with a∗ its conjugate transpose. With ai we denote the i-th entry of a, i.e., ai = [a]i.
Given two vectors, the symbol � denotes their Hadamard, i.e., component-wise, product,
while ⊗ denotes their Kronecker product. Given a, with ‖a‖p we denote its p-norm.
When it will not create confusion we will drop the subscript p. We will write a ≤ b
(a ≥ b) if a is a vector whose entries are component-wise smaller (greater) than the
entries of b. Given a vector a, with [a] or equivalently diag(a) we denote the diagonal
matrix whose main diagonal consists of the element of a.
Similar notation is used for matrices. Then, given A, with |A|, ∠A, <(A), =(A), A, AT

and A∗ we denote the same operators as before. Differently, given A, either with aij or
Aij we denote its ij-th scalar entry of, i.e., aij = Aij = [A]ij . With Ai∗ we denote its
entire i-th row; similarly, with A∗j its entire j-th column. The symbols � and ⊗ apply
to matrices as well. With ‖A‖p we denote the induced p-norm and again, if it will not
create confusion, we will drop the subscript p. We will write A ≥ 0 (A > 0) if the matrix
A is positive semidefinite (definite). Similarly, we will use the symbol ≤ (<) for negative
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semidefinite (definte) matrices. Given a square matrix A, A−1 denotes its inverse; while
given a generic matrix A, A† denotes its pseudo-inverse. Given a matrix A, with tr(A),
im(A) and ker(A) we denote its trace, image space and null space, respectively. Given a
square matrix A, with Λ(A) we denote the set containing its eigenvalues; while with sr(A)
and esr(A) we denote its spectral radius and essential spectral radius, respectively, i.e., its
largest and second largest eigenvalue in absolute value. A matrixM is said to be a positive
non singular M-matrix if is a matrix with negative off-diagonal elements and positive
diagonal ones which can be expressed in the form M = sI−B, with Bij ≥ 0, s > sr(B).
A matrix P is said to be stochastic if its elements are nonnegative and satisfy P1 = 1.
Moreover, it is said doubly stochastic if it is stochastic and 1TP = 1T . A stochastic
matrix P is primitive if it has only one eigenvalue equal to 1 and all the other eigenvalues
are strictly inside the unitary circle.

Set operators

Given a set A, the symbol |A| denotes its cardinality, i.e., the number elements contained
in A. Given two sets A and B, with B ⊂ A (B ⊆ A) we denote the fact that B is a
proper (non necessarily proper) subset of A. The symbols ∩ and ∪ represents intersection
and union of sets, respectively. The symbol × denotes the Cartesian product. Given a
set A, the symbols int(A), bd(A) and cl(A) denote its interior, boundary and closure,
respectively.

Statistical operators

Given a random variable a, this is said to be normally distributed and denoted by
a ∼ N (µ, σ2), if its realizations are drawn from a Gaussian probability density function of
mean µ and variance σ2. Similarly, we will write a ∼ N (µ,Σ) for normal random vectors.
The symbol E[·] denotes the expectation operator. Given either a random variable or a
random vector, the symbol Var(·) denotes its variance.

Graph theory

A directed graph G is denoted as a pair (V, E) where V = {1, . . . , n} is the set of vertices
and E ⊆ V × V is the set of directed edges. An edge e = (i, j) ∈ E is an arch which
is incident on nodes i, j ∈ V and is assumed to be directed away from i and directed
toward j. The graph G is said to be bidirected or undirected if (i, j) ∈ E implies (j, i) ∈ E .
Given a directed graph G = (V, E), a directed path in G consists of a sequence of vertices
(i1, i2, . . . , ir) such that (ij , ij+1) ∈ E for every j ∈ {1, . . . , r − 1}. Similarly, an undirected
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path in G consists of a sequence of vertices (i1, i2, . . . , ir) such that either (ij , ij+1) ∈ E
or (ij+1, ij) ∈ E for every j ∈ {1, . . . , r − 1}. Roughly speaking, an undirected path is
a path from a node to another node that does not respect the orientation of the edges.
The directed graph G is said to be strongly connected (resp. weakly connected) if for any
pair of vertices i, j ∈ V there exists a directed path (resp. undirected path) connecting
i to j. Given the directed graph G, the set of neighbors of node i, denoted by Ni, is
defined as the set Ni = {j ∈ V | (i, j) ∈ E}. By convention i /∈ Ni, so to denote the set
of neighbors plus node i itself we use the symbol N+

i = Ni ∪ {i}. A directed graph is
said to be regular if all the nodes have the same number of neighbors. Given a directed
graph G = (V, E) with |V| = n and |E| = m, let the incidence matrix A ∈ Rm×n of G
be defined as Aei = [aei], where aei = 1,−1, 0, if edge e ∈ E is incident on node i and
directed away from it, is incident on node i and directed toward it, or is not incident
on node i, respectively. Let L be the Laplacian matrix associated with G defined as
L = ATA. Finally, if to each edge e ∈ E is associated a weighting factor we then, by
collecting all the weights in the vector w and by defining the matrix W = diag(w), the
weighted Laplacian matrix associated to G is defined as L = ATWA.



2
Model of a Smart Grid

“All models are wrong, but some are useful”
George E.P. Box

In this chapter we introduce and present the model of a smart grid as used later on
along the manuscript. First of all we recall some basic notions and definitions regarding
AC circuits. Most of the concepts here introduced can be found in Andersson (2008)
and Von Meier (2006). Secondly, we outline our idea of smart grid, envisioned as a
cyber-physical system consisting of a physical (electric) layer and a cyber layer equipped
with sensing, computation and communication capabilities.

2.1 Basics of AC circuits

Phasorial representation

Consider the generic sinusoidal waveform,

a(t) = am sin(2πft+ ϕ) , (2.1)

where am represents its amplitude, having the same physical dimension of the waveform
a(t), ω := 2πf is the pulsation expressed in [rad/s] (f is the frequency expressed in [Hz])
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and ϕ is the initial phase, expressed in [rad]. By assuming a(t) belonging to the set of
isofrequential sinusoids with given frequency f then, the waveform (2.1) can be uniquely
determined by its amplitude am and it phase ϕ. Indeed, these two parameters define one
and only one complex number given by

a = am√
2

exp(jϕ) . (2.2)

On the other hand, the complex number a identifies one and only one waveform with
pulsation ω, given by (2.1), i.e., there is a one-to-one relation between any complex
number and the elements of the set of isofrequential sinusoids.
The complex number (2.2) is called the phasor, or phasorial representation, of the sine
wave a(t). Notice that the phasor magnitude is equal to the root mean square of a(t)
over one of its period T := 2π

w = 1
f , i.e.

am√
2

=
√

1
T

∫ t0+T

t0
a2(t)dt . (2.3)

The phasorial representation turns out to be useful when the grid is working in
steady state, i.e., at an ideal sinusoidal regime. In this case, both the currents (measured
in amperes [A]) and the voltages (measured in volts [V]) are sinusoidal signals (with
frequency f = 50 Hz in Europe and f = 60 Hz in the U.S.A) of the form

i(t) = im sin(ωt+ ϕi) , (2.4)

u(t) = um sin(ωt+ ϕu) , (2.5)

and they can be associated with the phasors i = im√
2 exp(jϕi) and u = um√

2 exp(jϕu),
respectively.

Here we point out that we will make wide use of the equivalent phasorial represen-
tation since, in the problems considered, we usually assume the grid to be in steady state
regime.

Impedance and admittance

We define impedance of a electrical element the ratio between the current passing through
it, expressed by the phasor i, and the voltage drop between its ends, expressed by the
phasor u, i.e.,

z = i

u
, ohm [Ω] . (2.6)
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By definition, the impedance is in general a complex numbers whose real part r := <(z)
is called resistance and whose imaginary part x := =(z) is called reactance, both of them
measured in [Ω], i.e.,

z = r + jx .

The inverse of the impedance is called admittance

y = i

u
, siemens [S] .

As the impendance, in general the admittance is a complex numbers whose real part
g := <(y) is called conductance and whose imaginary part b := =(y) is called susceptance,
both of them measured in [S], i.e.

y = g + jb .

We use impedances/admittances to model electric lines, both overhead and underground,
between buses1, and shunt elements which connect buses to ground. For this reason we
consider only constant impedance devices which exhibit a linear and constant relation
between their voltage and current. However, for the sake of knowledge, we recall that
certain materials and electronic devices exhibit a nonlinear relationship between current
and voltage, that is, z is not constant but varies for different values of u and i.

AC Power

As above mentioned, in sinusoidal steady state alternating current (AC) circuits, voltage
and current are described by sinusoidal signals. As for direct current (DC) circuit, it is
convenient to give a definition of power which represents a measure of energy per unit of
time, and thus it describes the rate of energy consumption or production. In particular
the instantaneous power at every time instant is defined as the product between the
voltage and the current, that is

p(t) = v(t)i(t) (2.7)

= vm sin(ωt+ ϕu)im sin(ωt+ ϕi) (2.8)

= vmim
2 cos(φ)− vmim

2 cos(2ωt+ ϕu + ϕi) (2.9)

1As later described, a bus can be just thought as the point of connection of a device to the grid. In
our graph representation, the buses will coincide with the nodes of the graph
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where φ := ϕu − ϕi. From Eq.(2.7) it is possible to observe how the instantaneous
power results as the difference of two terms: the first is constant and depends on the
phase difference φ while the second is a sine wave oscillating at double the frequency
of the original signals. Although the instantaneous power represents the instantaneous
consumption/production of energy a more meaningful quantity is represented by the
average power over a certain period of time, usually a sinusoidal period, define as

p = 1
T

∫ t0+T

t0
p(t)dt

= vmim
2 cos(φ) (2.10)

This quantity is called real or active power, is measured in watt [W] and corresponds
to the power actually consumed by loads or generated by generators. By exploiting the
phasorial representation for voltage and current, Eq.(2.10) can be rewritten as

p = vm√
2
im√

2
< (exp(jϕu − ϕi))

= <(ui) (2.11)

One could ask what the oscillating part of the instantaneous power, i.e., its second term,
represents. Its average value over a period of time is zero and thus it does not perform
any physical work over time. However, it still represents an energy “flow” over time, due
to the exchange of energy between the electric and the magnetic fields and which flows
back and forth along the circuit. This kind of power exchange is commonly related to
what is called reactive power, measured in Volt-Ampere-Reactive [VAR] and defined as

q = vmim
2 sin(φ) (2.12)

= =(ui) (2.13)

which represents the “imaginary” counterpart of the active power as defined in (2.11).
Overall, the complex sum of active and reactive power is defined as apparent power,
measured in Volt-Ampere [VA], i.e.,

s := ui = p+ jq (2.14)

Even though this definition of reactive and apparent power could seem artificial, it turns
out that apparent power is important in the context of equipment capacity. Indeed, even
if reactive power does not produce usable work, it still represents a flow of energy which
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q

Figure 2.1: Representation in the complex plane of the apparent, active and reactive power.

is responsible for devices heating. Since usually the operating voltage of a given piece of
equipment is quite constant, apparent power turns out to be a fair way to indicate the
current flowing in the device which, usually, represents the reference quantity for devices’
thermal capacity limits. For this reason, utility equipment ratings are typically given in
VA.

2.2 Cyber-Physical system

The smart grid we envision will not only represent a physical system coinciding with the
actual electric infrastructure. Rather, it will be a more complex system with computing
and communication capabilities embedded in all types of objects and structures in the
physical environment. Thanks to these additional capabilities it will be possible to
bridge the cyber world of computing and communication with the actual physical world.
Such systems, composed of these two “layers” are referred to as cyber-physical systems
(Rajkumar, Lee, Sha, and Stankovic, 2010). Basically, they are physical and engineered
systems whose operations are controlled, monitored, coordinated and integrated by a
computing and communicating core. In this work, we envision a smart network as one of
this cyber-physical systems, where:

• the cyber layer consists of intelligent agents, deployed in the grid, provided with
actuation, sensing, communication, and computational capabilities;

• the physical layer consists of the power distribution infrastructure, including
power lines, loads, microgenerators, and the distribution substations.

In general, in this kind of systems the cyber and the physical layer might not exactly
coincides, as shown in Figure 2.2 where only a subset of nodes is equipped by smart
devices. However, in the following, we assume that these two layers have the same
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Figure 2.2: Schematic representation of the power distribution grid model. The lower panel
shows the circuit representation of the physical layer. Different symbols represent different
electrical devices in the grid. The middle panel illustrates the adopted graph representation
for the same grid. The upper panel represents the cyber layer, where agents are connected via

some communication infrastructure.

topology, i.e., graph structure. This does not necessarily mean that every agent has the
same computing capabilities although all of them can at least communicate.

2.3 Cyber layer

The cyber layer is devoted to sensing, computing, communication and actuation tasks.
In particular, we assume that some of the nodes (or possibly all of them) in the physical
layer are equipped with what we refer to as an agent, that is a smart device characterized
by some specifications. The agents are provided with:

• sensing devices: one example of sensing devices are phasor measurement units
(PMUs) which measure, process and return current and voltage phasors (Phadke
and Thorp, 2008; Barchi, Macii, and Petri, 2013; von Meier, Culler, McEachern,
and Arghandeh, 2014);



2.4 Electrical grid modeling 15

• computational devices: exploited to implement the proposed algorithms;

• actuation devices: in order to control the grid, the agents must be able to physically
actuate the grid. In particular in the last part of this thesis we consider devices able
to inject a certain amount of reactive power in the grid within prescribed capability
limits. Examples of such devices are the so called synchronous condensers (Bergen,
2009). However, renewable devices connected to the grid through power inverters
are usually able to access to a certain amount of stored energy.

Last but not least, we include the communication capabilities and the knowledge the
agents have access to. In particular the agents are characterized by:

• communication capabilities, necessary for the information exchange required for the
algorithm execution. Possibly, agents can communicate via the same power lines
(via power line communication).

• local and partial knowledge of the electrical grid, e.g. the impedance of the electric
path between neighbor agents.

All these capabilities and equipment and, in particular, the communication topology of
the cyber layer are modeled as an undirected communication graph Gc = (Vc, Ec) where
the agents are identified by the node set Vc and in general labeled from 1 to n, while the
communication edges are identified by the edge set Ec.

Remark 2.3.1 (Communication modeling). As above mentioned, the communication
among different entities/agents/nodes in the considered network is, in general, modeled
as a graph Gc. For what regards the more specific assumptions on the particular
communication protocol used and on the communication non idealities considered, we
will explicitly mention and outline them along the dissertation.

2.4 Electrical grid modeling

We model the physical layer (see Figure 2.2, lower panel) coinciding with the electrical
infrastructure of a smart power distribution network, as a directed graph G = (V, E), in
which edges represent the power electric lines, i.e., the branches, and nodes represent the
buses, i.e., loads and generators (see Figure 2.2, middle panel). Thus we associate with
the electric grid the sets

• V, that is the set of nodes (the buses), with cardinality n;

• E , that is the set of edges (the electrical lines connecting them), with cardinality m.
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The system is assumed to be in synchronous steady state, namely all the signals have
the same frequency. Then, it can be described by the following quantities which coincide
with the phasorial representation of all the signals:

• u ∈ Cn, where uh = |uh| exp(j∠uh) is the grid voltage at node h;

• i ∈ Cn, where ih = |ih| exp(j∠ih) is the current injected at node h;

• ξ ∈ Cm, where ξe is the current flowing on edge e;

• s = p + jq ∈ Cn, where sh, ph and qh are the complex, the active and the reactive
power injected at node h. If ph > 0 (qh > 0) we say that node h is injecting active
(reactive) power, if ph < 0 (qh < 0) we say that node h is absorbing active (reactive)
power.

For the sake of ease of notation, throughout this manuscript we will use the symbol2 ν
to denote the voltage magnitudes and the symbol θ to denote the voltage angle.

Let A be the incidence matrix associated to G. For every edge e ∈ E of G, we de-
fine by ze the impedance of the corresponding power line. In this sense, we model the
grid power lines as series impedances. Similarly, we model the shunt elements connecting
each bus to ground and denoted by their admittance zshh . Note that differently from the
line impedances which are referred to edges, the shunt elements are referred to nodes.
However, it is convenient to associate to each shunt element a virtual edge e which in
the incidence matrix starts at the corresponding node h, i.e., aeh = 1, and does not end
anywhere. With this slightly modified definition of incidence matrix and collecting all
the impendance values ze into the diagonal matrix Z := diag(ze, e ∈ E), standard Ohm
law and Kirchoff currents law can be written, respectively, as

Au + Zξ = 0 , (2.15)

AT ξ + i = 0 . (2.16)

From (2.16) and (2.15) we can also obtain the relation

i = Y u (2.17)

where Y is the complex-valued weighted admittance matrix of the grid, i.e., Y = ATZ−1A ∈
Cn×n. Notice that the admittance matric Y is symmetric and sparse. In particular it

2As usual, to distinguish between scalar and vector quantities we use bold symbols to denote the
latter.
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reflects the sparsity pattern of the electric grid. This means that each row h of the matrix
corresponds to a node of the graph and the indices of the non-zero elements of the row
correspond to the nodes which are directly connected to node h, i.e., Nh. In particular,
let h be a bus of the network, we define Eh as the subset of E containing all the edges e
connected to node h, both outgoing, i.e. (h, i), and ingoing edges, i.e. (i, h). The bus
admittance matrix can be also written as

Yhk =


∑
e∈Eh

ye + yshh , if h = k

−ye, if e = (h, k) or e = (k, h)
(2.18)

where ye = 1
ze

and yshh = 1
zsh

h

.

Finally, in order to underline the difference among loads and generators, we sometimes
exploit the following block decomposition of the vector of voltages u

u =
[
ug
u`

]
, (2.19)

where ug ∈ Cng are the voltages at the microgenerators and u` ∈ Cn` are the voltages at
the loads. Similarly, it is possible to block decompose currents, powers and admittance
matrix as

i =
[
ig
i`

]
, s =

[
sg
s`

]
=
[
pg
p`

]
+
[
qg
q`

]
, Y =

[
Ygg Yg`

Y`g Y``

]
.

2.5 Power flow problem and the Power Flow Equations -
PFEs

Given the electric grid model, specified through the admittance matrix Y , and the
voltage-current relation (2.17), the power flow problem is concerned with describing
the operating state of an entire power system. Since an AC circuit in steady state is
characterized by complex quantities, in order to completely determine the state of every
node in the grid, either one complex or two real quantities per node need to be computed.
In particular, if a grid contains n nodes, 2n are the quantities to be identified. Historically,
the state of a power grid is chosen to be equal to the n buses complex voltages3 and
hereafter we will adopt this convention.
For the purpose of uniquely identify 2n quantities, an equivalent number of algebraic

3Observe that this is not the only choice since the currents could be chosen as state of the grid.
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equations must be specified. By exploiting the definition of apparent power

s = diag(u)i ,

together with the voltage-current relation (2.17), we obtain n complex algebraic equations
which read as

s = diag(u)Y u . (2.20)

These are the so called Power Flow Equations (PFEs) which describe the relation between
the buses through the branches of a power network and, ultimately, the power balance
in an electric grid. It is sometimes convenient to split Eqs.(2.20) into their real and
imaginary part obtaining 2n real algebraic equations which describe the relation between
active and reactive powers and voltages. For completeness, for each h ∈ V, these are

ph =νh cos θh
∑
k∈N+

h

(
<(Yhk)νk cos θk −=(Yhk)νk sin θk

)
+

νh sin θh
∑
k∈N+

h

(
=(Yhk)νk cos θk + <(Yhk)νk sin θk

)
; (2.21)

qh =− νh cos θh
∑
k∈N+

h

(
=(Yhk)νk cos θk + <(Yhk)νk sin θk

)
+

νh sin θh
∑
k∈N+

h

(
<(Yhk)νk cos θk −=(Yhk)νk sin θk

)
. (2.22)

If the PFEs describe the network relations, the behavior of each bus is specified by the
particular model assumed. Classically, a bus can be modeled in three different ways:

1. slack bus: also known as reference bus, it is a node with a fixed voltage uh = cost,
i.e.,

νh = cost ,

θh = cost .

Usually, the slack bus is labeled with the subscript 0, i.e., u0, to highlight its role
as reference bus. In the distribution grid the slack bus often coincides with the
Point of Common Coupling (PCC), that is the point of connection between the
distribution and the transmission grids and identified as uPCC. It must be said that
the slack bus is not necessary from a physical perspective but it is necessary from
an algebraic one in order to solve the PFEs w.r.t. a reference voltage. For this
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reason, in what follows we will never mention or explicitly point out the presence
of a slack. However, the reader must be aware of the fact that one node is chosen
as reference for solvability purposes.

2. PV bus: it is a node whose active power ph (absorbed or injected) and whose
voltage magnitude νh are fixed, i.e.,

ph = <(uhih) = cost ,

νh = cost .

3. PQ bus: it is a bus whose power (absorbed or injected) sh = ph + jqh is fixed and
independent on its voltage, i.e.,

ph = <(uhih) = cost ,

qh = =(uhih) = cost .

The three models above described are used to model loads and generators in a power
grid. In particular, as common in power systems, we model generators as PV buses
(Bergen, 2009) and loads as PQ buses (Pal, 1992; Machowski, Bialek, and Bumby, 2011)4.
Moreover, one generator is chosen as slack bus5.

By dividing the grid into ng generators and n` loads (n = ng + n`), the 2n PFEs
are characterized by:

• 4n variables, namely, n active powers, n reactive powers, n voltage magnitudes and
n voltage angles;

• 2ng + 2n` fixed quantities, namely, ng voltage amplitudes, ng active powers, n`
active and n` reactive powers;

• 2n remaining unknowns.

It must be noticed that, even though the PFEs are well posed, due to their high non
linearity and complexity, no closed form solution exists. Indeed, the problem of power flow
equations solvability represents an open and consistent problem in power system analysis
(Cañizares, 2002; Eremia and Shahidehpour, 2013) which, due to the lack of theoretical

4It is worth noticing that our following results can be extended to standard ZIP load model (Bergen,
2009). However, we consider only the case of constant power loads.

5The choice of making one generator the slack bus is natural since generators are usually voltage
regulated.
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insights, is often tackled via numerical methods (Dobson and Lu, 1992; Hiskens, Davy,
et al., 2001).

2.6 Reactive Power Flow Equations - RPFEs

When dealing with the control and optimization of the grid (Chapter 5) we consider
mainly high voltage transmission grids. For this type of grid it is usually assumed that
transmission lines are mainly inductive and then their resistive part is actually neglected.
This is formally stated in the following

Assumption 2.6.1 (Highly inductive lines). The transmission lines are mainly inductive
and approximated as pure susceptances. Then, the admittance matrix Y collapses into a
purely imaginary matrix, i.e.,

Y = jB

where the entries of symmetric susceptance matrix B ∈ Rn×n represents only the imagi-
nary part of the corresponding element in Y .

Thanks to Assumption 2.6.1, Eqs.(2.21)–(2.22) can be simplified as follows

ph =
∑
k∈N+

h

Bhkνhνk sin(θh − θk) ; (2.23a)

qh = −
∑
k∈N+

h

Bhkνhνk cos(θh − θk) . (2.23b)

where we made use of subtraction trigonometric formula to simplify the expressions.
A practical observation in power systems is that, for high voltage operated networks,
it is usually true that the steady state voltage profile is characterized by small angles
differences (Machowski et al., 2011) and sufficiently flat voltage amplitudes. In particular,
it is possible to observe high correlation between active power and voltage phase differences
(pθ) from one side and between reactive power and voltage magnitudes (qν) from the
other. Regarding the small voltage angle differences, these are treated as parameters
(Thorp, Schulz, and Ilić-Spong, 1986) or even neglected Kaye and Wu (1984). This is
formally described by the following

Assumption 2.6.2 (Decoupling assumption). In steady state operating condition, for
δ ∈ [0, π/2[, the voltage angle differences are constant and such that

|θh − θk| ≤ δ , ∀(h, k) ∈ E .
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Note that under Assumption 2.6.2, from the form of Eq.(2.23b), it is possible to define
an effective susceptance matrix by embedding the cosine terms into the original line
susceptances. Assumption 2.6.2 leads to a decoupled analysis of the power flow equations.
In particular, we are interested in the so called Reactive Power Flow Equations6 (RPFEs)
which, for each h ∈ V read as

qh = −
∑
k∈N+

h

Bhkνhνk ,

or, in vector form
q = −diag(ν)Bν . (2.24)

Equations (2.24) highlight the quadratic relation between the voltage magnitudes and
the reactive powers and are the starting point for voltage stability and voltage collapse
analysis in power systems (Thorp et al., 1986; Simpson-Porco, Dörfler, and Bullo, 2015).

2.7 Approximated solution of the RPFEs

In this section we introduce a linear (in the load profile) approximation for the solution
of the RPFEs which will be extensively used in the last part of this thesis. The approxi-
mation is inspired by and almost coincides with the result in Gentile, Simpson-Porco,
Dörfler, Zampieri, and Bullo (2014) where a similar approximation is derived for the
case of distribution networks. A more complete and generic linear approximation for the
solution of the complete coupled power flow equations has been presented in Bolognani
and Zampieri (2015), again for the specific case of distribution grid. However, in the more
recent Bolognani and Dörfler (2015) the authors generalize the result in Bolognani and
Zampieri (2015) by introducing the best linear approximant of the power flow solution
in any generic operating point, via implicit linearization of the power flow manifold. In
this case the approximation does not rely on any restrictive assumption on the type of
grid considered and holds in total generality. Moreover, the authors show how previous
linearization can be considered as a special case of their result.
The linear approximation here recalled, has firstly been presented and is strictly related to
the result in Todescato, Simpson-Porco, Dörfler, Carli, and Bullo (2015b) and moreover
it characterizes only the solution of the RPFEs stated in the previous Section 2.6. We
refer the interested reader to the above references for all the technical details on the

6These equations represent the reactive/imaginary counterpart of the maybe more familiar active/real
power flow equations obtained assuming small angle differences and ν = 1. These lead to an expression
of the active powers which is linear in the angle differences and independent from the voltage magnitude.
This is also known as the DC power flow model (Andersson, 2008).
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other approximations.

Let us recall the RPFEs of Eq.(2.24) which read as

q = −diag(ν)Bν

Moreover, by considering the block partition introduced in Section 2.4, the susceptance
matrix can be accordingly partitioned as

B =
[
Bgg Bg`

B`g B``

]

and we refer to B`` as the grounded susceptance matrix. We make the following

Assumption 2.7.1 (Properties of B``).

1. −B`` is a non singular symmetric M-matrix7.

2. the graph associated to B`` is connected.

Assumption 2.7.1-1. is commonly verified in practice (Thorp et al., 1986) and always
verified in the absence of line-charging and positive shunt susceptance, i.e., capacitors, to
ground. Assumption 2.7.1-2. can be made without loss of generality, since connected
components of the induced graph will be electrically isolated from one another by
generator buses.
Now, by splitting the RPFEs into generators and loads we can write

qg = −diag(νg)(Bggνg +Bg`ν`) , (2.25a)

q` = −diag(ν`)(B`gνg +B``ν`) . (2.25b)

Notice that only (2.25b) represents non trivial equations since, once solved for ν`,
Eqs.(2.25a) represent linear equations which can be easily solved for qg.
It is useful to introduce the concept of open-circuit profile which represents a particular
non-trivial solution of the RPFEs corresponding to q` = 0.

Definition 2.7.2 (Open-circuit profile). We define the open-circuit voltage profile as

ν∗` := −B−1
`` B`gνg (2.26)

7An M-matrix A is a matrix with negative off-diagonal elements and positive diagonal ones which can
be expressed in the form A = sI−B, with bij ≤ 0, s > sr(B).
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Notice that, thanks to Assumption 2.7.1, ν∗` > 0 is always well defined. We sometimes
refer to ν∗` as the zero-load profile.

Thanks to Assumption 2.7.1 and Definition 2.7.2 we can now write the load RPFEs
as

q` = −diag(ν`)B``(ν` − ν∗` ) .

highlighting the role of the zero-load profile as particular non trivial solution of the
equations corresponding to q` = 0. Moreover, it is possible and convenient to further
manipulate the equation as follows

q` = −4 diag(ν`)−1 diag(ν∗` )
(1

4 diag(ν∗` )B`` diag(ν∗` )
)

(diag(ν∗` )−1ν` − 1) ,

where we have simply extracted ν∗` and used the fact that diagonal matrices commute.

We now recall a definition from Todescato et al. (2015b); Simpson-Porco et al. (2015)
which will be useful later on.

Definition 2.7.3 (Critical Load/Stiffness Matrix). Given the grounded susceptance
matrix B`` and the open circuit voltage profile ν∗` defined as in (2.26), we define the
critical load matrix or stiffness matrix as

Qcrit := 1
4 diag(ν∗` )B`` diag(ν∗` ) . (2.27)

Moreover, it is convenient in this context to define the normalized voltage profile as

v` = diag(ν∗` )−1ν` (2.28)

Thanks to Definition 2.7.3 and the normalized voltage profile, the RPFEs are equivalent
to

q` = −4v`Qcrit(v` − 1) .

Now, by assuming q` ' 0 it is reasonable to think be the voltage profile v` ' 1, i.e.,
ν` ' ν∗` . Then, we can write

q` ' −diag(ν∗` )B``(|u`| − ν∗` ) ,

and, to first order, the solution of the RPFEs is given by

v` ' 1−
1
4Q
−1
critq` , (2.29)
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or, equivalently,
ν` ' diag(ν∗` )

(
1− 1

4Q
−1
critq`

)
. (2.30)

Some brief comments are now in order:

1. the matrix Qcrit takes its name from the fact that, as can be seen from Eqs.(2.29),
since it maps the load profile into the voltage space, it quantifies the stiffness of the
network and its capacity of absorbing load demand (Simpson-Porco et al., 2015).

2. the profile v` represents the normalized profile w.r.t. the zero-load solution ν∗` . In
general this does not coincides with the per unit (p.u.) profile commonly defined in
power systems which represents a scalar normalization w.r.t. a reference voltage,
usually the slack bus. In Chapter 5 we will point out this difference and show that
the normalized profile v` is usually more informative than the p.u. profile. It is
then true that, in absence of shunts element and assuming the only generator bus
coincides with the PCC then, the profile v` and the p.u. profile coincide.

We will come back deeper on these points in Chapter 5.

2.8 Electrical grid control layers

We have seen that one of the major features that is going to characterize future smart
grids is the appearance of a large number of generators connected all over the network.
This scenario poses a number of nontrivial challenges, together with exciting opportunities.
The management of future smart grids requires that many control and optimization
algorithms are executed at the same time: generation-demand matching protocols, energy
market mechanisms, algorithms for optimal energy use and quality of service, and many
others. The complexity of such scenario and the different time scales of these control
tasks, suggest that a layered architecture should be adopted where different algorithms
coexist at different levels and at different time scales. Lower level algorithms, in charge
of controlling the specific physical devices, obtain references and commands from higher
levels of the architecture. Higher level algorithms command many instances of the lower
level ones, based on a simplified model of their behavior and on the aggregated data
provided by the underlying layers. One possible application of this structure to the
control of a smart microgrid has been depicted in Figure 2.3 (see also De Brabandere,
Vanthournout, Driesen, Deconinck, and Belmans (2007) and references therein).

• Tertiary control algorithms (residing in the top layer) dispatch active power
generation on the basis of economic reasons, measured and predicted aggregate
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Tertiary control
Market operation, generation-demand

matching, load scheduling

Secondary control
Ancillary services, voltage support, losses

minimization, reactive power compensation

Primary control
Frequency stability, safety

procedures, inverter control

Power distribution network

active power dispatching
(generation and demand)

complex power references
s(t) = p(t) + jq(t)

instantaneous currents
i(t)

instantaneous voltages
v(t)

voltage and current phasors
i(t), v(t)

aggregated demands
and power flows

Figure 2.3: A possible layered architecture for the simultaneous execution of different
algorithms in a smart microgrid.

demand, and availability of the microgenerators. The reference signals they send
come from some optimization process.

• Secondary control algorithms, on the other hand, take care of sharing the
commanded power references among controllable devices, while satisfying a number
of operational constraints (voltage limits, stability, congestion avoidance) and
optimizing the network operation (power losses minimization, voltage support,
improved power quality). These algorithms require some knowledge of the grid
parameters and of the system state.

• Primary control algorithms are executed on a local level (at the single inverter),
with a few or no communication between the devices, and on a faster time scale;
based on the reference signals they receive, they actuate the power converters,
ensuring frequency stability, avoiding detrimental interactions, and ensuring safety
of operation. The aim of primary control is to quickly stabilize the state of the grid,
mostly in terms of voltage frequency and amplitude. The most popular approach is
the droop control of the inverters (Chandorkar, Divan, and Adapa, 1993; Li and
Kao, 2009; Simpson-Porco, Dörfler, and Bullo, 2012), which does not require direct
communications between the agents, but rather exploits voltage frequency and
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magnitude as information carrier.

The algorithms proposed in the following naturally reside in the secondary control layer
and are characterized by slow time scale, thus justifying the neglect of fast transient
behaviors.



3
Distributed Synchronization of Controllable

Devices

“Anyone who has never made a mistake has never tried anything new.”
A. Einstein

In this second part of the thesis the problem of device synchronization is considered.
First we present the problem and some related literature. Then, two possible solutions
are proposed. The first is based on a consensus strategy while the second is based on a
gradient descent approach. Both the solutions are scalable, robust to delays and have
proven exponential convergence rate under mild assumptions.

3.1 Introduction and related work

The proliferation of relatively inexpensive devices capable of communicating, computing,
sensing, interacting with the environment and storing information is promising an
unprecedented number of novel applications throughout the cooperation of these devices
toward a common goal. These applications include swarm robotics, wireless sensor
networks, smart energy grids, smart traffic networks, and smart camera networks. These
applications also pose new challenges, of which scalability is one of the major ones.



28 Distributed Synchronization of Controllable Devices

Scalability is intended as the ability for an application to continue functioning without
any dramatic performance degradation even if the number of devices involved keeps
increasing. In particular, an application is scalable if it is not necessary to increase HW
resources nor to adopt more complex SW algorithms in each device even if the total
number of devices increases.

In this work we address the problem of designing algorithms that are capable to recon-
struct the optimal estimate of the state of a device based on noisy relative measurements
with respect to its neighbors in a connected network. In particular, we want to design
distributed algorithms that allow each device to reconstruct its own state only from
exchanging information with its neighbors, regardless of the size of the network. Moreover,
these algorithms must be scalable, i.e. their computational complexity, bandwidth and
memory requirements should be independent of the network size. Finally, the estimate
provided should asymptotically converge to the solution of a centralized optimization
problem.

In particular, the problem at hand in this part of the manuscript can be cast as the
following unconstrained optimization problem:

min
x1,...,xn

|E|∑
(i,j)∈E

fij(xi − xj) , (3.1)

where xi ∈ R`, E represents all the pair of nodes for which are available relative measure-
ments and fij are convex functions. Many problems can be written in this framework
such as sensor calibration Bolognani, Del Favero, Schenato, and Varagnolo (2010), camera
localization Borra, Lovisari, Carli, Fagnani, and Zampieri (2012); Tron and Vidal (2009)
and, in particular, clock synchronization Solis, Borkar, and Kumar (2006); Karp, Elson,
Estrin, and Shenker (2003) and sensor localization Barooah and Hespanha (2005); Ba-
rooah (2007). For example, in the context of localization from vectorial relative distances
in a plane, the cost functions fij are given by:

fij(xi − xj) = ‖xi − xj − zij‖2

where zij ∈ R` is the noisy measurement of the relative (vector) distance of node i from
node j, i.e.,

zij = xi − xj + wij . (3.2)

As a consequence, the optimization problem in Eq. (3.1) becomes a distributed least-
square problem. For the case of clock synchronization (Barooah and Hespanha, 2005)
suppose that the internal clocks of n sensor nodes exhibit time shifts x1, x2, . . . , xn with
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respect to a reference clock. A pair of neighboring sensors can measure their clock offsets
with some error, by transmitting their local clock times to each other, resulting in a
measurement model of the form of Eq.(3.2) (Karp et al., 2003). The goal would then be
to estimate the time-shifts between all nodes and a reference clock to synchronize the
clocks of all n nodes.

Several scalable distributed solutions to this problem are already available in the
literature. In Barooah and Hespanha (2005); Barooah (2007) the authors propose a
distributed Jacobi solution based on a synchronous implementation, which was later
extended to account for asynchronous communication and packet losses Barooah and
Hespanha (2005). The same approach has been independently proposed in Giridhar
and Kumar (2006) in the context of distributed time synchronization in wireless sensor
networks. Differently, in Bolognani et al. (2010) a broadcast consensus-based algorithm,
which is suitable for asynchronous implementation, is proposed but the local estimates
do not converge and exhibit an oscillatory behavior around the optimal value. A similar
approach has been proposed in Rossi, Frasca, and Fagnani (2012); Ravazzi, Frasca, Ishii,
and Tempo (2013) where the local ergodic average of the gossip asynchronous algorithm
is proved to converge to the optimal value as 1/k, where k is the number of iterations.
An alternative approach based on the Kaczmarz method for the solution of general linear
systems has been suggested in Zouzias and Freris (2013), however a practical asynchronous
implementation for distributed localization from relative measurements which satisfies
the specific edge and node activation probabilities dictated by the algorithm, is not given,
moreover, no robustness analysis in terms of delays is provided.

In the next section we present the problem at hand. For simplicity we cast it in the
framework of sensor network localization. However, as above underlined, the problem
can be naturally exploited for time synchronization e.g., in power networks.

3.2 Problem formulation

The problem we deal with is that of estimating n variables x1, . . . , xn from noisy mea-
surements of the form

zij := xi − xj + wij , i, j ∈ {1, . . . , n} , (3.3)

where wij is zero-mean measurement noise. Although all results in this work apply
to general vector-valued variables, for sake of simplicity, here we assume that xi ∈ R,
i ∈ {1, . . . , n}. This estimation problem can be naturally associated with a directed
measurement graph Gm = (V; Em). The vertex set V of the measurement graph consists
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of the set of nodes while its edge set Em consists of all of the ordered pairs of nodes (i, j)
such that a noisy measurement of the form (3.3) between i and j is available to node i.
The measurement errors on distinct edges are assumed uncorrelated.

Next we formally state the problem we aim at solving. Let x ∈ Rn be the vector
obtained by stacking together all the variables x1, . . . , xn, i.e., x = [x1, . . . , xn]T , and
let z ∈ Rm and w ∈ Rm, where m = |Em|, be the vectors obtained stacking together all
the measurements zij and the noises wij , respectively. Additionally, let Rij > 0 denote
the covariance of the zero mean error wij , i..e, Rij = E[w2

ij ], and let R ∈ Rm×m be the
diagonal matrix collecting in its diagonal the covariances of the noises wij , (i, j) ∈ Em,
i.e., R = E[wwT ]. Observe that Eq.(3.3) can be rewritten in a vector form as

z = Ax + w ,

where A is the incidence matrix associated to Gm. Now, define the set

X := arg min
x∈Rn

(z−Ax)TR−1(z−Ax) . (3.4)

The goal is to construct an optimal estimate xopt. of x in a least square sense, namely, to
compute

xopt. ∈ X (3.5)

Assume the measurement graph Gm to be weakly connected, then it is well known (Barooah,
2007) that

X =
{(
ATR−1A

)†
ATR−1z + α1

}
.

Moreover let
xopt., min :=

(
ATR−1A

)†
ATR−1z ,

then xopt., min is the minimum norm solution of (3.5), i.e.,

xopt., min = min
xopt.∈X

‖ xopt. ‖

The matrix ATR−1A is called in literature the Weighted Generalized Grounded Laplacian
Barooah (2007).

Remark 3.2.1. Observe that, just with relative measurements, determining the x′is is only
possible up to an additive constant. This ambiguity might be avoided by assuming that
a node (say node 1) is used as reference node, i.e., x1 = 0.

The final goal is to compute the value of xopt. in a distributed fashion exploiting only
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a local exchange of information among neighboring nodes.

3.3 Communication protocol and failures model

Before presenting our solutions, we describe here the communications requirements
and, in particular, the communication protocol considered and the model used for the
communication non idealities. First of all, we assume the agents can communicate
according to an undirected communication graph Gc = (V, Ec) where (i, j) ∈ Ec either if
(i, j) ∈ Em or (j, i) ∈ Em. In this context, Ni denotes the set of neighboring node of node
i in the communication graph Gc rather than in Gm. According to Gc, the agents can
communicate exploiting an asynchronous broadcast communication protocol where at
each iteration only one node communicates its information to its neighbors while they
are listening. Since the information coming from neighboring nodes is, by definition, not
synchronous, and at each iteration only partial new information, i.e., coming from one
neighboring node, is available, we equip each node with a certain amount of additional
memory. In particular, for j ∈ Ni, we denote by x̂(i)

j (k) the estimate of xj kept in i’s
local memory at the end of the k-th iteration. If node j performed its last transmission
to node i during h-th iteration, h ≤ k, then x̂(i)

j (k) = x̂j(h). Observe that x̂(i)
i ≡ x̂i since

the copy that node i would have of himself is always up-to-date and equal to its current
estimate of xi.
In next sections, we analyze the convergence properties and the robustness to delays
and packet losses of the proposed solutions for two different scenarios which are formally
described by the following definitions.

Definition 3.3.1 (Randomly persistent communicating network). A network of n nodes
is said to be a randomly persistent communicating network if there exists a n-upla
(γ1, . . . , γn) such that γi > 0, for all i ∈ {1, . . . , n}, and

∑n
i=1 γi = 1, and such that, for

all k ∈ N,
P [the transmitting node at iteration k is node i] = γi.

Definition 3.3.2 (Uniformly persistent communicating network). A network of n nodes
is said to be a uniformly persistent communicating network if there exists a positive
integer number τ such that, for all k ∈ N, each node transmits the value of its estimate
to its neighbors at least once within the time interval [k, k + τ).

Finally, to show resiliency of our proposed solutions to delays and packet losses
in the communication channel we need to suitably model them. In particular, we
show convergence of the algorithms provided that the network is uniformly persistent
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communicating and the transmission delays and the frequencies of communication failures
satisfy mild conditions which we formally describe next.

Assumption 3.3.3 (Bounded packet losses). There exists a positive integer L such that
the number of consecutive communication failures between every pair of neighboring
nodes in the communication graph Gc is less than L.

Assumption 3.3.4 (Bounded delay). Assume node i broadcasts its estimate to its
neighbors at the beginning of iteration k, and, assume that, the communication link (i, j)
does not fail. Then, there exists a positive integer D such that the information x̂i(k) is
used by node j to perform its local update not later than iteration k +D.

Loosely speaking Assumption 3.3.3 implies that there can be no more than L consec-
utive packet losses between any pair of nodes i, j belonging to the communication graph.
Differently, Assumption 3.3.4 consider the scenario where the received packets are not
used instantaneously, but are subject to some delay no greater than D iterations.

In the next section we present our first solution which is an algorithm based on time
varying consensus algorithm with memory.

3.4 An asynchronous consensus-based algorithm

Here we present the first algorithm proposed to solve the localization/synchronization
problem of Section 3.2. The algorithm, which relies on linear consensus with memory, is
based on the asynchronous broadcast communication protocol described in Section 3.3.
Hereafter we refer to this algorithm as the asynchronous Consensus-Like (a-CL) algorithm.
As already pointed out, since the actual value of neighboring estimates are not available
at each iteration, we assume that each node stores in its local memory a copy of the
neighbors’ variables recorded from the last communication received. In particular, for
j ∈ Ni, x̂(i)

j (k) denotes the estimate of xj kept in i’s local memory at the end of the k-th
iteration. We assume that before running the a-CL algorithm, the nodes exchange with
their neighbors their relative measurements as well as the associated covariances. So every
node has access to the measurements on the edges that are incident to it, whether the
edge is directed to or away from it. Each node uses the measurements obtained initially
for all future computations. The a-CL algorithm is formally described in Algorithm 1
where we have that

bi := ε
∑

(i,j)∈Em

R−1
ij zij − ε

∑
(j,i)∈Em

R−1
ji zji ,
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and

pij :=


ε(R−1

ij +R−1
ji ) if (i, j) ∈ Em and (j, i) ∈ Em

εR−1
ij if (i, j) ∈ Em and (j, i) /∈ Em

εR−1
ji if (j, i) ∈ Em and (i, j) /∈ Em

and finally,
pii := 1−

∑
j∈Ni

pij ,

being ε a positive constant a-priori assigned to the nodes.

Algorithm 1 The a-CL algorithm.
Require: For i ∈ {1, . . . , n}, node i stores in memory the measurements zij , zji and

the covariances Rij , Rji for all j ∈ Ni. Moreover node i stores in memory also the
estimate x̂i of xi and, for j ∈ Ni an estimate x̂(i)

j of x̂j .
1:
2: % Initialization
3: ∀i ∈ V: initializes the estimate x̂i and the variables x̂(i)

j , j ∈ Ni, to arbitrary values.
4:
5: for k ∈ N do
6: % Transmission
7: node i (randomly picked) wakes up and sends x̂i(k) to node j, j ∈ Ni.
8:
9: % Update

10: for j ∈ Ni, node j do

1. sets x̂(j)
i (k + 1) = x̂i(k);

2. updates x̂j as

x̂j(k + 1) := pjj x̂j(k) +
∑
h∈Nj

pjhx̂
(j)
h (k + 1) + bj , (3.6)

11: end for
12: end for

It should be noticed that Algorithm 1 has been described assuming that the communi-
cation channels are reliable, i.e, no packet losses occur, and that the communication delays
are negligible, i.e., when node i perform a transmission, the estimate x̂i is instantaneously
used by its neighbors. We will come back on these non-idealities in Section 3.6.
Next, we rewrite the updating step of the a-CL in a more compact way. Observe pre-
liminarily that, under the assumption of reliable communications over the network, the
broadcast protocol lets only two information about the estimate of xi, i ∈ V , to flow
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through the network: specifically, x̂i(k), that is the actual value of the estimate x̂i at
iteration k, and x̂i(t′i(k)), being t′i(k) the iteration during which node i has performed its
last transmission up to iteration k of a-CL (that is, x̂i(t′i(k)) is the value of x̂i at its last
communication round). Notice that, for j ∈ Ni, x̂(j)

i (t′′) = x̂i(t′i(k)) for all t′′ such that
t′i(k) < t′′ ≤ k.
Now let us define x′i(k) = x̂i(k) and x′′i (k) = x̂i(t′i(k)) and, accordingly, let x′(k) =
[x′1(k), . . . , x′n(k)]T and x′′(k) = [x′′1(k), . . . , x′′n(k)]T . Moreover let Qi ∈ R2n×2n be de-
fined as

Qi :=

Q(i)
11 Q

(i)
12

Q
(i)
21 Q

(i)
22

 , (3.7)

where

Q
(i)
11 :=

∑
h/∈Ni

1h1
T
h +

∑
j∈Ni

(
pjj1j1

T
j + pji1j1

T
i

)
,

Q
(i)
12 :=

∑
j∈Ni

1j

 ∑
h∈Nj/i

pjh1
T
h

 ,

Q
(i)
21 := 1i1

T
i ,

Q
(i)
22 := I− 1i1Ti ,

Observe that, for i ∈ {1, . . . , n}, Qi is a 2n-dimensional stochastic matrix. Finally let

βi =
[∑

j∈Ni
1Tj b

O

]
,

where b = [b1, . . . , bm]T . Assume, w.l.o.g., that node i is the node performing the
transmission during the (k+ 1)-th iteration of the a-CL. Hence the updating step of a-CL
can be written in vector form as[

x′(k + 1)
x′′(k + 1)

]
= Qi

[
x′(k)
x′′(k)

]
+ βi . (3.8)

Now let us introduce the auxiliary variable

ξ(k) =
[
x′(k)
x′′(k)

]
−
[
xopt., min

xopt., min

]
.
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By exploiting the fact that, for i ∈ {1, . . . , n},

[
xopt., min

xopt., min

]
= Qi

[
xopt., min

xopt., min

]
+ βi , (3.9)

we have that the variable ξ satisfies the following 2n-dimensional recursive equation

ξ(k + 1) = Qiξ(k) . (3.10)

Observe that x̂(k)→ xopt., min + α1 if and only if ξ(k)→ α1. Moreover, since Qi is a
stochastic matrix for any i ∈ {1, . . . , n}, we have that (3.10) represents a 2n-dimensional
time-varying consensus algorithm. Indeed in general, Eq.(3.10) can be rewritten as

ξ(k + 1) = Qσ(k)ξ(k) ,

where σ(k) ∈ {1, . . . , n} denotes the agent performing the transmission action during
iteration k.
In next sections, we analyze the convergence properties and the robustness to delays
and packet losses of the a-CL algorithm by studying system (3.10) resorting to the
mathematical tools developed in the literature of the consensus algorithms.

3.5 Performance analysis of a-CL algorithm under
randomly persistent communications

The following result, whose proof can be found in Appendix A.1, characterizes the con-
vergence properties of the a-CL when the network is randomly persistent communicating
(see Definition 3.3.1 of Section 3.3 for details).

Proposition 3.5.1. Consider a randomly persistent communicating network of n nodes
running the a-CL algorithm over a weakly connected measurement graph Gm. Let X be
defined as in (3.4). Let ε be such that 0 < ε < 1/(2dmaxR

−1
min) where dmax := max{|Ni|, i ∈

V} and Rmin := min{Rij , (i, j) ∈ Em}. Moreover let x̂i, i ∈ {1, . . . , n}, x̂(i)
j , j ∈ Ni, be

initialized to any real number. Then the following facts hold true

1. the evolution k → x̂(k) converges almost surely to an optimal solution xopt. ∈ X ,
i.e., there exists α ∈ R such that

P
[

lim
k→∞

x̂(k) = xopt., min + α1

]
= 1 .
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2. the evolution k → x̂(k) is exponentially convergent in mean-square sense, i.e., there
exist c > 0 and 0 ≤ ρ < 1 such that

lim
k→∞

E
[
‖x̂(k)− (xopt., min + α1)‖2

]
≤ cρkE

[
‖x̂(0)− (xopt., min + α1)‖2

]
.

3.6 Robustness properties of the a-CL algorithm with
respect to packet losses and delays

In Section 3.4 we have introduced the a-CL algorithm assuming that the communication
channels are reliable, i.e., no packet losses occur, and that the transmission delays are
negligible. In this section we relax these assumptions and we show that the a-CL algorithm
still converges provided that the network is uniformly persistent communicating and
the transmission delays and the frequencies of communication failures satisfy the mild
boundedness conditions introduced in Section 3.3.
Clearly, in this more realistic scenario, it turns out that the implementation of the a-CL
is slightly different from the description provided in Section 3.4. Specifically, consider the
k-th iteration of the a-CL algorithm and, without loss of generality, assume node i is the
transmitting node during this iteration. Due to the presence of packet losses and delays,
it might happen that the set of updating nodes is, in general, different from the set Ni.
In fact, for j ∈ Ni, node j does not perform any update since the packet x̂i(k) from node
i is lost or simply because the update is delayed. Moreover there might be a node h /∈ Ni
which, during iteration k, decides to perform an update since it received a packet x̂s,
s ∈ Nh, within the last D iterations. This scenario can be formally represented by the
set of nodes V ′(k) ⊆ V which decide to perform an update at iteration k. Then, Eq.(3.6)
can be rewritten as

x̂j(k + 1) := pjj x̂j(k) +
∑
h∈Nj

pjhx̂h(k′h) + bj , (3.11)

for all j ∈ V ′(k), where k − (τL + D) ≤ k′h ≤ k, i.e. loosely speaking when an update
is performed, the local estimate of the neighboring nodes cannot be older than τL+D

iterations1. Indeed, if L = D = 0, then we recover the standard a-CL algorithm where
V ′(k) = Ni.
The following result, whose proof can be found in Appendix A.2, characterizes the

1Recall we are assuming the network is uniformly persistent communicating, namely, for all k ∈ N,
each node performs at least one transmission within the time interval [k, k + τ).
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convergence properties of the a-CL in presence of delays, packet losses and when the
network is uniformly persistent communicating.

Proposition 3.6.1. Consider a uniformly persistent communicating network of n nodes
running the a-CL algorithm over a weakly connected measurement graph Gm. Let As-
sumptions 3.3.3 and 3.3.4 be satisfied. Let ε be such that 0 < ε < 1/(2dmaxR

−1
min) where

dmax := {|Ni|, i ∈ V} and Rmin := min{Rij , (i.j) ∈ Em}. Moreover let x̂i, i ∈ {1, . . . , n},
x̂

(i)
j , j ∈ Ni, be initialized to any real number. Then the following facts hold true

1. the evolution k → x̂(k) asymptotically converges to an optimal estimate xopt. ∈ X ,
i.e., there exists α ∈ R such that

lim
k→∞

x̂(k) = xopt., min + α1 ;

2. the convergence is exponential, namely, there exists c > 0 and 0 ≤ ρ < 1 such that

‖x̂(k)− (xopt., min + α1) ‖ ≤ cρk‖x̂(0)− (xopt., min + α1) ‖ .

In the following we present our second solution based on a gradient descent approach.

3.7 An asynchronous gradient-based algorithm

Differently from Section 3.4 where a consensus based solution has been presented, in this
section we propose a gradient-based solution to solve for the localization/synchronization
problem given by Eq.(3.5). One fundamental difference from the a-CL algorithm regards
the measurements at our disposal. In this case, rather than assuming that every node i
can independently measure its own relative quantities zij , we assume that, if two nodes i
and j are neighbors then, zij = −zji. That is the measurement graph Gm is undirected
rather than directed and coincides with the communication graph Gc as defined in Sec-
tion 3.2.
Again, we are interested in implementing a solution which is distributed as opposed to
centralized and asynchronous, as opposed to synchronous in the communication protocol.
In what follows we introduce a distributed algorithm which is based on a standard
gradient descent strategy and which employs an asynchronous broadcast communication
protocol as described in Section 3.3. We refer to this algorithm as the asynchronous
gradient-based localization algorithm (denoted hereafter as a-GL algorithm). We assume
that every node has access to the measurements on the edges that are incident to it,
as well as the associated covariances. Additionally, in order to deal with possible delay
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Algorithm 2 The a-GL algorithm.
Require: For i ∈ {1, . . . , n}, node i stores in memory the measurements zij and the

covariances Rij for all j ∈ Ni. Moreover node i stores in memory also the estimate
x̂i of xi and, for j ∈ Ni an estimate x̂(i)

j of x̂j .
1:
2: % Initialization
3: ∀i ∈ V: initializes the estimate x̂i and the variables x̂(i)

j , j ∈ Ni, to arbitrary values.
4:
5: for k ∈ N do
6: % Update
7: node i (randomly picked) wakes up and updates its estimate x̂i as

x̂i(k + 1) = x̂i(k)− εi
∑
j∈Ni

x̂i(k)− x̂(i)
j (k)− zij
Rij

,

8: where εi is a suitable positive real number;
9:

10: % Transmission
11: node i sends x̂i(k + 1) to node j, j ∈ Ni.
12:
13: for j ∈ Ni, node j do
14: updates its memory as x̂(j)

i (k + 1) = x̂i(k + 1);
15: end for
16: end for

and/or packet losses, situation that we will analyze later in Sections 3.8–3.9, we assume
that node i, i ∈ V, stores in memory an estimate x̂i of xi and, for j ∈ Ni, an estimate
x̂

(i)
j of xj . The a-GL algorithm is formally described in Algorithm 2.

Some explanations are now in order. Observe that the quantity

∑
j∈Ni

(
x̂i − x̂(i)

j − zij
)
/Rij

represents the gradient computed with the respect to x̂i of the function

Ji = 1
2
∑
j∈Ni

(
x̂i − x̂(i)

j − zij
)2

Rij
.

Basically, node i updates the value of x̂i moving along a descent direction of the function
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Ji. Notice that Ji does not increase if

0 < εi ≤

∑
j∈Ni

1
Rij

−1

,

and, in particular, if εi =
(∑

j∈Ni
1/Rij

)−1
then the minimum of Ji is attained. Indeed

in this case we have that

x̂i =

∑
j∈Ni

1
Rij

−1∑
j∈Ni

x̂
(i)
j + zij

Rij

 , (3.12)

which corresponds to the unique solution of the problem

arg min
x̂i

1
2
∑
j∈Ni

(
x̂i − x̂(i)

j − zij
)2

Rij
.

Next we provide a convenient vector form description of the a-GL algorithm. Observe
that, since for now, we are assuming that neither communication delays nor packet losses
occur, x̂(i)

j (k) = x̂j(k), j ∈ Ni. Then we can rewrite (3.12) as

x̂i(k + 1) =

1− εi
∑
j∈Ni

1
Rij

 x̂i(k) + εi
∑
j∈Ni

x̂j(k) + zij
Rij

,

while x̂h(k + 1) = x̂h(k), h 6= i. Let us rewrite the above equation as

x̂i(k + 1) = piix̂i(k) +
∑
j∈Ni

pij x̂j(k) + bi , (3.13)

where

pij =


1− εi

∑
j∈Ni

1/Rij if j = i,

εi/Rij if j 6= i, j ∈ Ni,
0 otherwise,

and where
bi = εi

∑
j∈Ni

zij
Rij

.

Let P ∈ Rn×n be the matrix defined by the weights pij above introduced. Then the
updating step at time k can be written in vector form as

x̂(k + 1) = (I+ 1i1Ti (P − I)) x̂(k) + βi , (3.14)
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where x̂(k) = [x̂1(k), . . . , x̂n(k)]T and where the vector βi ∈ Rn is defined as βi = bi1i.
Next we show that, by a proper change of variable, equation (3.14) can be rewritten as
the iteration of a time-varying linear consensus algorithm. To do so, let

Qi = I+ 1i1Ti (P − I) ,

and observe that, if

0 < εi ≤

∑
j∈Ni

1
Rij

−1

, ∀ i ∈ V ,

then the matrix Qi is a stochastic matrix for all i ∈ V. Indeed all the elements of Qi are
nonnegative and, moreover, one can see that Qi1 = 1. Now let us introduce the auxiliary
variable

ξ(k) = x̂(k)− xopt., min .

By exploiting the fact that, for i ∈ {1, . . . , n},

xopt., min = Qixopt., min + βi , (3.15)

we have that the variable ξ satisfies the following recursive equation

ξ(k + 1) = Qiξ(k). (3.16)

Observe that x̂(k)→ xopt., min + α1 if and only if ξ(h)→ α1. Moreover, since Qi is a
stochastic matrix for any i ∈ {1, . . . , n}, we have that (3.16) represents a n-dimensional
time-varying consensus algorithm.

Remark 3.7.1. It is worth to stress that the a-GL algorithm is a modified version of the
algorithm proposed in Giridhar and Kumar (2006). The main differences are related to
the communication protocol. Specifically, in Giridhar and Kumar (2006) when a node is
activated, say i, firstly it interrogates its neighbors to obtain their estimates {x̂j}j∈Ni

;
secondly, based on the information received, it updates its own estimate x̂i. This implies
that during this iteration of the algorithm there are |Ni|+ 1 transmitted packets (one
packet is related to the broadcast request by node i while the other |Ni| packets are
related to {x̂j}j∈Ni

responses). Instead in the a-GL algorithm, there is just one packet
broadcast during each iteration of the algorithm. This leads to a lighter, faster and
energy-saving solution. Additionally in Giridhar and Kumar (2006) there is no robustness
analysis against packet losses.

In next sections, we analyze the convergence properties and the robustness to delays
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and packet losses of the a-GL algorithm.

3.8 Performance analysis in the randomly persistent
communicating scenario

The following result characterizes the convergence properties of the a-GL algorithm when
the network is a randomly persistent communicating network. The proof is reported in
Appendix A.3.

Proposition 3.8.1. Consider a randomly persistent communicating network of n nodes
running the a-GL algorithm over a connected measurement graph Gm. Assume the
weights εi are such that

0 < εi ≤

∑
j∈Ni

1
Rij

−1

, ∀ i ∈ V,

and assume that x̂i, i ∈ V, x̂(i)
j , j ∈ Ni, be initialized to any real number. Then the

following facts hold true

1. the evolution k → x̂(k) converges almost surely to an optimal solution xopt. ∈ X ,
i.e., there exists α ∈ R such that

P
[

lim
k→∞

x̂(k) = xopt., min + α1

]
= 1 ,

2. the evolution k → x̂(k) is exponentially convergent in mean-square sense, i.e., there
exist c > 0 and 0 ≤ ρ < 1 such that

lim
k→∞

E
[
‖x̂(k)− (xopt., min + α1)‖2

]
≤ cρhE

[
‖x̂(0)− (xopt., min + α1)‖2

]
.

3.9 Robustness to packet losses and delays in the
uniformly persistent communicating scenario

In Section 3.7 we have introduced the a-GL algorithm under the assumptions that

• the communication channels are reliable, i.e., no packet losses occur; and

• the transmission delays are negligible.
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In this section we consider a more realistic scenario where the above two assumptions
are relaxed. We are still able to prove that the a-GL algorithm converges to an optimal
solution provided that the network is uniformly persistent communicating and the
transmission delays and the frequencies of communication failures satisfy the mild
boundedness conditions introduces in Section 3.3.
Under Assumptions 3.3.3–3.3.4, it is in general true that x̂(j)

i (k) = x̂j(k′ij) for some k′ij
such that k − (τL + D) ≤ k′ij ≤ k. It turns out that the equation update (3.13) is, in
general, modified as

x̂i(k + 1) = piix̂i(k) +
∑
j∈Ni

pij x̂j(k′ij) + bi .

The following proposition, whose proof is reported in Appendix A.4, characterizes the
convergence proprieties in presence of bounded packet losses and bounded delays.

Proposition 3.9.1. Consider a uniformly persistent communicating network of n nodes
running the a-GL algorithm over a connected measurement graph Gm. Let Assumptions
3.3.3 and 3.3.4 be satisfied. Assume the weights εi are such that

0 < εi <

∑
j∈Ni

1
Rij

−1

, ∀ i ∈ V,

and assume that x̂i, i ∈ V, x̂(i)
j , j ∈ Ni, be initialized to any real number. Then the

following facts hold true

1. the evolution k → x̂(k) asymptotically converges to an optimal estimate xopt. ∈ X ,
i.e., there exists α ∈ R such that

lim
k→∞

x̂(k) = xopt., min + α1 ;

2. the convergence is exponential, namely, there exists c > 0 and 0 ≤ ρ < 1 such that

‖x̂(k)− (xopt., min + α1) ‖ ≤ cρh‖x̂(0)− (xopt., min + α1) ‖.

Observe that in Proposition 3.9.1 it is assumed that εi is strictly smaller than(∑
j∈Ni

1
Rij

)−1
, while the result in Proposition 3.8.1 holds true also if the equality is

satisfied. Next we provide a example showing that, if εi =
(∑

j∈Ni

1
Rij

)−1
, then the

optimal solution is not reached in presence of constant positive delays.
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Example 3.9.2. Consider a network with n = 2 agents and the following cost function
J = 1

2R (x̂1 − x̂2 − z)2, where z is the noisy measurement. Setting ε = R we have the
following two update rules: x̂1(h) = x̂

(1)
2 (h) + z

x̂2(h) = x̂
(2)
1 (h)− z

(3.17)

where x̂
(2)
1 (h) = x̂1(h− 2)

x̂
(1)
2 (h) = x̂2(h− 2)

which means that the state of the other agent is known with one step delay. During the
odd iterations node 1 makes the update, while during even iterations node 2 updates.
Starting from initial conditions equal to zero and assuming that at the first iteration the
agent 1 consider the state of the agent 2 equal to zero, following the update rule (3.17)
we get

h 1 2 3 4 5 6 7 8 9 . . .

x̂1 z z z z 0 0 z z z . . .

x̂2 0 −z −z 0 0 0 0 −z −z . . .

It can be seen from the above table that there is a three steps oscillatory behavior. The
value of the cost function J keeps jumping from 0 to z2

2R so there is not convergence to
the optimal set of solutions.

In what follows we provide some numerical comparison of the two solutions proposed.

3.10 Simulations

In this section we provide some numerical simulations to test the proposed distributed
algorithms and to compare them with respect to existing solution in the literature. As
simulation setup we consider a sensor network, rather than a smart grid, consisting of
random geometric graph generated by choosing n = 100 nodes randomly placed in the
interval [0, 1]. Two nodes are connected and take measurements if they are sufficiently
close, i.e more specifically, both measurements zij and zji are available provided that
|xi − xj | ≤ 0.15. This choice resulted in networks with an average number of neighbours
per node of about 7. Finally, every measurement was corrupted by Gaussian noise with
covariance σ2 = 10−4.
We provide a numerical comparison with some well known algorithms proposed in litera-
ture which, for the sake of the completeness, we briefly recall.
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The first algorithm that we considered is the Randomized Extended Kaczmarz,
hereafter called REK algorithm, presented in Zouzias and Freris (2013), consisting
of two different update steps. The first step is an orthogonal projection of the noisy
measurements onto the column space of the incidence matrix A in order to bound the
measurements error. The second step is similar to the standard Kaczmarz update. Since
a distributed implementation is not formally presented in Zouzias and Freris (2013), we
propose the following. More specifically, let s ∈ Rm be the current projection of the
noisy measurements onto the column space of A. Similarly as above, we denote with
a little abuse of notation the e-th entry of s with the corresponding edge, i.e. se = sij .
Then, the REK algorithm proposed in Zouzias and Freris (2013) for general least-squares
problems, reduces in our setting to randomly and independently selecting a node h and
an edge (i, j) at each iteration k according to the following probabilities:

ph = |Nh|+ 1
2m ; pij = 1

m
.

and then to performing the following local updates:

s`h(k+1) = s`h(k)+
∑
m∈Nh

(shm(k)−smh(k))
|Nh|+1 , ∀` ∈ Nh ,

sh`(k+1) = sh`(k)−
∑
m∈Nh

(shm(k)−smh(k))
|Nh|+1 , ∀` ∈ Nh ,

x̂i(k + 1) = x̂i(k) + zij − sij(k)− (x̂i(k)− x̂j(k))
2 ,

x̂j(k + 1) = x̂j(k)− zij − sij(k)− (x̂i(k)− x̂j(k))
2 .

We point out that, since in the updating step only local information is required, the
algorithm is implemented in a distributed fashion and it exactly requires |Nj | + 5
communication rounds to perform an iteration. Specifically the first |Nj |+ 2 are due to
the update of the variable s and the last 3 are needed to update x̂j .

The second algorithm, denoted hereafter as BC algorithm, is proposed in Giridhar
and Kumar (2006). It requires a coordinated broadcast communication protocol meaning
that, during k-th iteration one node, say h, asks the variable x̂` to all its neighbors
` ∈ Nh. When it receives the current state values, it performs the following greedy local
optimization based on the current status of the network:

x̂h(k + 1) = arg minx̂h

∑|E|
(i,j)∈E ‖x̂i(k)− x̂j(k)− zij‖2

= 1
2|Nh|

∑
`∈Nh

(2x̂`(k)− zlh + zhl)
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Algorithm Sent packets per iteration
a-CL 1
a-GL 1
BC |Ni|+ 1
REK |Ni|+ 5

Table 3.1: Number of sent packets per iteration for each algorithm.

Note that the number of communications performed during one iteration are |Nh|+ 1,
since there is a broadcast packet sent by node h, and |Nh| packets sent by all its neighbors.

As first comparison between the algorithms proposed and those already presented
in the literature, we report Table 3.1 which shows the number of sent packets per
communication round at every iteration of each algorithm. This represents a measure
of the energetic requirement for the algorithm. It can be seen that both the algorithm
proposed are much “lighter” than the REK and the BC algorithm. In particular, we
recall the fact that, our a-GL algorithm is inspired by the BC algorithm proposed in
Giridhar and Kumar (2006). As reported in Remark 3.7.1, the main implementation
difference between the two algorithm resides in the communication protocol. Indeed, in
the BC algorithm, when a node is activated, first interrogates its neighbors and then
updates its estimate. In the implementation of the a-GL algorithm, these actions are
switched. This causes the BC algorithm to require a much larger number of sent packets
per iteration. Figure 3.1 shows an illustrative representation of this fact. In particular it
is reported the evolution of the error

J(k) = log (‖A(x̂(k)− xopt.)‖) , (3.18)

as function of the number of sent packet.
Figure 3.2 shows a comparison between the a-CL, the a-GL and the REK algorithm.

We plot the error (3.18) as function of the algorithm iteration. It can be seen that all
the strategies are converging to the optimal solution. In particular, the a-GL algorithm
is the one showing best transient performance.

Next, we test the a-CL algorithm assuming that the network is randomly persistent
communicating with uniform communication probabilities (γ1, . . . , γn), namely, γ1 =
. . . = γN = 1/N . Moreover the possibility of communication failure is taken into account.
Specifically, supposing node i is transmitting, each node j ∈ Ni with a certain probability
i.e., pf , can not receive the sent packet. In Figure 3.3 we plotted the behavior of the
error (3.18) for different values of the failure probability pf . The plot reported is the
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Figure 3.1: Comparison between the a-GL and the BC algorithm w.r.t. the number of sent
packet
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Figure 3.2: Comparison between the a-CL the a-GL and the REK algorithm w.r.t. the
number of iteration.

result of the average over 1000 Monte Carlo runs, randomized with respect to both
the measurement graph2 and the initial conditions. Observe that the trajectory of J
decreases exponentially.

Finally, we test the a-GL algorithm for different values of communication delays. From
Figure 3.4 it is possible to observe the resiliency of the algorithm to communication non
idealities. As expected, the convergence rate decreases as the delay increases. However,
convergence is preserved.

2In performing our average we kept only the random geometric graphs which resulted to be connected.



3.11 Conclusions 47

0 0.5 1 1.5 2

x 10
5

−15

−10

−5

0

5

Iterations

J

 

 

No Loss
10%
30%
50%
70%

Figure 3.3: Behavior of J using the a-CL algorithm for a randomly persistent communicating
network on a random geometric graph, for different values of the probability failure pf .
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Figure 3.4: Behavior of J using the a-GL algorithm for a randomly persistent communicating
network on a random geometric graph, for different values of the communication delay.

3.11 Conclusions

In this part of the manuscript we dealt with the synchronization problem among smart
devices in a smart grid. In order to provide reliable and accurate control strategies,
synchronization among smart devices might represent a critical step that must be carefully
taken into account. In order to simplify the analysis, the problem can be usefully cast into
the framework of sensor localization in a sensor network. In particular, we provide two
different strategies to solve this problem. The first is a based on a linear consensus with
memory. The second exploits a descent along a gradient direction. Both the proposed
algorithms can be implemented in a completely distributed fashion. Moreover they are
based on an asynchronous communication protocol, namely, asynchronous broadcast, in
which, at every iteration, only one node wakes up and communicate with its neighboring
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nodes. Both the a-CL and the a-GL show themselves to be resilient to communication non
idealities. In particular, under mild boundedness assumptions on the packet losses and
delay in the communication channel, we proved convergence of both the strategies to an
optimal solution. All these features make the algorithms appealing and suitable for real
world implementations. Finally, compared to solutions already present in the literature,
the algorithms demonstrate themselves to be lighter in the energetic requirements and
competitive in the convergence behavior.



4
Distributed State Estimation

“If you can’t explain it simply, you don’t understand it well enough.”
A. Einstein

In this third part of the thesis the problem of state estimation is considered. First
we present the problem and some related literature. Then, two algorithms to solve the
problem are presented. The first is a partitioned based formulation of the well known
ADMM algorithm. The second is a robust implementation of a generalized gradient
method. Before concluding, a numerical comparison of the two approaches is presented.

4.1 Introduction and related work

One of the major aspects concerning the electric grid modernization process is the
widespread deployment of dispersed measurement, monitoring, and actuation devices.
This proliferation is creating large-scale cyber-physical systems which promise a new
revolution in many fields. However, these systems require the development of new en-
gineering design and computation paradigms due to the sheer amount of devices and
data to be managed. For example, many problems have been shown to be cast as
optimization problems. Distributed optimization has then become so important for
mainly two different reasons: the first reason is that with the advent of Big Data, it is
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unconceivable to run optimization algorithms on a single (super)-computer, but it is
necessary to parallelise computation among many processors. The second reason is that
many optimization problems are sparse by nature since correlation between data is local.
One of the major difficulty to deal with distributed optimization using multiple processing
units is to guarantee reliable synchronisation and communication since communication
can be wireless and CPU execution times might not be known in advance as in the
context of cloud-computing.
Several solutions alternative to the centralized computation of the state of a electric grid
have been proposed in the literature. The most common approach is based in a two level
architecture requiring a global coordinator Schweppe, Wildes, and Rom (1970); Cutsem
and Ribbens-Pavella (1983); Iwamoto, Kusano, and Quintana (1989); Zhao and Abur
(2005); Gómez Expósito, Abur, de la Villa Jean, and Goméz Quiles (2011); Korres (2011).
In this multi-area approach the grid is split into macro-areas, each of them equipped with
a data processor with communication and computational capabilities. Each processor
estimates the state of the sub-area which has been assigned to it, excluding boundary bus
measurements, and sends this estimate to the global coordinator. The global coordinator
combines all these estimates making them compatible to the boundary bus measurements
obtained at a interconnection level. Of note is that this approach becomes uninteresting
in the case in which each macro area reduces to one single PMU, because the global
coordinator would have to face the very same problem of a centralized state estimator.
Leader-less solutions include approximate algorithms developed from the optimality
conditions involved Falcao, Wu, and Murphy (1995), Conejo, de la Torre, and Cañas
(2007). Beyond requiring local observability, these algorithms are not always guaranteed
to converge. The auxiliary principle is invoked in Ebrahimian and Baldick (2000), with
the drawback that several paramenters have to be tuned. Also the distributed algorithms
proposed in Pasqualetti, Carli, and Bullo (2012), Jiang, Vittal, and Heydt (2007), adopt
the multi-area approach. Remarkably, the algorithm in Pasqualetti et al. (2012) is shown
to be provably convergent in finite time to the optimal solution of a classical weighted
least squares problem. However each area is envisioned to maintain a copy of the entire
high-dimensional state vector, drastically increasing the communication and computation
effort required at each iteration. In Jiang et al. (2007) the overall system is decomposed
into subsystems, each of them provided with a slack bus monitored by a PMU. Each
subsystem obtains its own local estimate, and these estimates are then coordinated based
on the PMU measurements, re-estimating the boundary state variables at the aggregation
level. However, the global solution obtained through this two-steps procedure is not
guaranteed to coincide with the optimal centralized solution, and no analysis of potential
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synchronization errors is included.
To address the conventional least-squares power system state estimation problem, the
authors in Kekatos and Giannakis (2013) propose a novel algorithm which is a local
version of the classical ADMM. When dealing with the exact non-linear model of the
electric grid, the functional costs to be minimized are non-convex and, in general, the
behavior of the ADMM is characterized by slow transient performance. For this reason,
typically, the exact models are iteratively linearized via the Gauss-Newton method, or by
resorting to the so-called DC approximation Abur and Gómez Expósito (2004). Either
way, one arrives at classical linear models which are just first-order approximations
of the true model. Even though the ADMM-based algorithm introduced in Kekatos
and Giannakis (2013) exhibits good performance in simulations, a complete proof of its
convergence is not provided.
As pointed out, although distributed optimization algorithms have a long history in the
parallel and distributed computation literature, see, e.g. Bertsekas and Tsitsiklis (1989),
it has mainly focused on synchronous algorithms. The first class of algorithms appearing
in order to deal with asynchronous computations relies on primal sub-gradient or descent
iterations as in Nedic and Ozdaglar (2009); Nedic, Ozdaglar, and Parrilo (2010); Marelli
and Fu (2015). Finally, distributed algorithms based on Newton methods have been
proposed to speed-up the computation (Zargham, Ribeiro, Ozdaglar, and Jadbabaie,
2014; Zanella, Varagnolo, Cenedese, Pillonetto, and Schenato, 2011).

Here, we consider one specific thrust, which is the deployment of low cost phasorial
measurement units (e.g., PMUs) in the medium and low voltage power distribution
grid. The presence of PMUs is quite uncommon in today’s power distribution networks.
However, this scenario has become the subject of recent research efforts in the power
systems community, including a 3-years research project involving University of California
together with the Power Standards Lab and Lawrence Berkeley National Lab von Meier
et al. (2014). Previous investigations on the subject include the experimental deploy-
ment and the extensive measurement campaign in Albu, Neurohr, Apetrei, Silvas, and
Federenciuc (2010), and the analysis proposed in Ochoa and Wilson (2011); Wache and
Murray (2011); Ree, Centeno, Thorp, and Phadke (2010) for the possible applications of
such measurement devices, also called µPMUs, in the power distribution grid.
There is a substantial consensus on the many opportunities offered by the deployment
of a live network of µPMUs, including diagnostic routines (e.g. for unplanned islanding
and fault detection), power flow estimation on the power lines (by knowing the phasorial
nodal voltage differences across the entire grid), and feedback control strategies for
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coordination of renewable resources, islanding, and volt/VAR compensation. However,
there are a number of unresolved issues that need to be addressed, in order to make these
applications possible. As the cost of PMUs depends on their sensing accuracy, noisy
and low-end device will necessarily be preferred in order to keep the cost of large scale
deployment acceptable. In particular, time synchronization between different PMUs is a
major technological issue, which is generally tackled via GPS modules that can provide
timestamping of the data. Following the approach that is typically adopted in wireless
sensor networks Special issue on sensor networks and applications (2003); Bolognani
et al. (2010), we propose a solution to these issues that exploits the large number of
sensors and their communication capabilities to compensate for their modest performance.
We propose a leader-less and distributed state estimation architecture, in which PMUs
communicate with their corresponding area data aggregator which is responsible for the
computation and communication with neighbor peers in order to improve the quality of
their measurements. Such improved measurements can then be made available locally to
the monitoring and control algorithms that may need them, in a transparent way (see
Figure 4.1).
We design two different state estimation algorithms that can be adopted in order to
implement the proposed architecture. In particular, we focus on some specific features
that are of crucial importance in the scenario of medium voltage power distribution grids:

• we need to deal effectively with poorly synchronized measurements;

• we cannot assume large x/r impedance ratio of the power lines;

• we only allow measurements that can be performed by devices connected to the
grid buses, and no power flow and current measurements on the power lines;

• we do not assume redundancy of measurement locations (instead, we exploit the
fact of being able to sense both voltage and current injection at each bus);

• the computational effort must remain limited as the grid grows in size;

• we aim at leader-less algorithms (in which no grid supervisor or central data
aggregator is present);

• we consider local data aggregator in the estimation architecture, as it might be
a convenient architecture when combined with some hierarchical communication
infrastructures De Craemer and Deconinck (2010). However, we point out that
the case of peer-to-peer architecture, in which each PMU is provided with its
own computational capabilities, and can communicate with its neighbor PMUs,
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Figure 4.1: The panel shows a functional representation of the proposed architecture.
Each bus is provided with a PMU, which measures bus voltage and current. These device
communicate with their neighbors, in order to process the raw data and obtain a better
estimate of the system state. They constitute the middle measurement layer that, together
with the control layer form the cyber layer. The state estimates computed in this layer are
then transmitted to the control layer, where different monitoring and optimization algorithm

can coexist.

represents a special case of the proposed architecture where each area collapses to
a single PMU.

We stress the fact that we focus on a class of quadratic optimization problems which
can be encountered on a large variety of applications different from electric grid state
estimation, e.g., multi-robot localization (Carron, Todescato, Carli, and Schenato (2014))
and Network Utility Maximization (Palomar and Chiang (2006)). These quadratic
functions are obtained by casting the state estimation problem as a classical least-squares
problem.
Finally, we point out that the first one of the two approaches that we propose (Bolognani,
Carli, and Todescato, 2014) is an extension of the local ADMM algorithm of Kekatos
and Giannakis (2013) to the minimization of quadratic functions. The algorithm we
propose reduces to linear iterations and it is shown to be provably convergent. The
second algorithm proposed (Todescato, Cavraro, Carli, and Schenato, 2015a), which is
based on a generalized gradient descent strategy, is a provably convergent and distributed
algorithm, under suitable assumptions on the step size, which is robust to the presence of
packet losses in the communication channel. To the best of the authors knowledge, this
is one of the first provably convergent algorithms in the presence of packet losses, since
both ADMM algorithms and distributed sub gradient methods (DSM) require reliable
communication. Interestingly, the proposed algorithm is also suitable for fully parallel
computation, i.e. multiple agents can communicate and update their local variable
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simultaneously, and for broadcast communication, i.e. nodes do not need to enforce a
bidirectional communication such as in gossip algorithms, therefore very attractive from
a practical point of view.

4.2 Problem formulation

In the following we present the problem at hand in its general form since it can be stated
for a class of applications much broader than power systems state estimation. We will
explicitly show later how the latter can be cast in the presented framework.

Consider a set of r agents Vc = {1, . . . , r}, where each agent i is described by its
state vector xi ∈ Rni . Assume the agents can communicate among themselves through a
bidirected strongly connected communication graph Gc = (Vc, Ec). As usual we denote
the set of neighboring agents of systems i with Ni (N+

i if we consider system i as well).
Assume each agent collects a set of measurements bi ∈ Rmi which are noisy linear
combinations of its own state and those of its neighboring agents, i.e.,

bi =
∑
j∈N+

i

Aijxj + wi = Aiixi +
∑
j∈Ni

Aijxj + wi

where Aij ∈ Rmi×nj and where wi is white noise of zero mean and variance Ri independent
of the other wj .

We consider the problem of estimating the entire state of the network from the
knowledge of the noisy measurements. By collecting all the agents state and measurements
in the vectors

x :=


x1
...

xr

 ∈ Rn , b :=


b1
...

br

 ∈ Rm , (4.1)

where n =
∑
i ni and m =

∑
imi, respectively, it is possible to formulate the problem as

a classical weighted least square problem. That is

min
x

J(x), (4.2)

where
J(x) = 1

2(Ax− b)TR−1(Ax− b) . (4.3)

The matrix A ∈ Rm×n represents the measurements matrix, whose ij-th block is simply
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defined as [A]ij = Aij , while R ∈ Rm×m is the block diagonal matrix defined as

R = blkdiag {R1, . . . , RN} , (4.4)

which represents the noise variance.
From now on, we assume that n ≤ m and that A is full rank. Under these assumptions,
it is well known that the solution of (4.2) is unique and given by

xopt. = (ATR−1A)−1ATR−1b . (4.5)

To compute the value of x∗ directly as in (4.5), one needs all the measurements, the
matrix A and the noise variance R, i.e., full knowledge of the network is required. On
the contrary, we aim at solving Problem (4.2) in a distributed fashion. To this end, note
that it is possible to rewrite Problem (4.2) as

min
x1,...,xN

r∑
i=1

Ji(xi, {xj}j∈Ni) , (4.6)

where

Ji(xi, {xj}j∈Ni) = 1
2(Aiixi +

∑
j∈Ni

Aijxj − bi)TR−1
i (Aiixi +

∑
j∈Ni

Aijxj − bi). (4.7)

The above equation highlights the local dependence of each cost function Ji on information
regarding only agent i and its neighbors j ∈ Ni.

In the following, we present two distributed algorithms to solve optimization problems
in the separable quadratic form (4.6). Firstly, we present a modified version of the
ADMM algorithm (Kekatos and Giannakis, 2013) for quadratic cost which has been first
presented in Bolognani et al. (2014). Secondly, a Block-Jacobi algorithm first presented
in Todescato et al. (2015a). For both the algorithms a possible extension to deal with
possible communication failures and delays will be given. However, only the second
algorithm presented is resilient to communication failures and we will compare the
performance of the two. Before moving on, we briefly step back in order to specify how a
power grid state estimation problem can be cast in the framework presented.

4.3 Measurements model and area partitioning

Consider a power grid described by a graph G = (V, E) where |V| = n. We are interested
in estimating the state of the power grid which, in this particular application, consists of
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the real and imaginary part of the voltage at each bus of the grid, i.e., in vector notation,

x :=
[
<(u)
=(u)

]
.

In the following we assume that each electric bus h ∈ V is equipped with a low-cost
measurement unit, e.g., low-cost PMU. In particular each PMU is able to collect mea-
surements of the real and the imaginary part of voltage and current at bus h ∈ V, that
is:

<(ũh) = <(uh) + w<(uh) ,

=(ũh) = =(uh) + w=(uh) ,

<(̃ih) = <(ih) + w<(ih) ,

=(̃ih) = =(ih) + w=(ih) ,

(4.8)

where the different measurement error terms are caused by independent physical causes
and can therefore be assumed uncorrelated. We assume the PMUs are homogeneous and
thus their errors exhibit the same probability distribution. In particular, we assume a
normal distribution for the noise

w<(uh) ∼ N (0, σ2
<(u)) ,

w=(uh) ∼ N (0, σ2
=(u)) ,

w<(ih) ∼ N (0, σ2
<(i)) ,

w=(ih) ∼ N (0, σ2
=(i)) .

Observe that in the case the PMU would return measurements in polar coordinates, i.e.
amplitude and phase of voltage and current, it is possible to obtain a representation which
is equivalent to that of Eq.(4.8) by rotating the measurement from polar to rectangular
coordinates. If this is the case however, the statistical description of the noise terms must
be accordingly computed, since errors in magnitude and phase would project into both
real and imaginary parts, leading to correlated noise.
By stacking the measurements and the errors into the vectors b and w

b :=


<(ũ)
=(ũ)
<(̃i)
=(̃i)

 , w =


w<(u)

w=(u)

w<(i)

w=(i)

 ,



4.3 Measurements model and area partitioning 57

and recalling Eq.(2.17) which describes the linear relation between voltages and currents

i = Y u ,

where Y is the grid admittance matrix, it is clear that the measurement model can be
rewritten as a linear function of the state that is

b = Ax + w ,

where the measurement matrix A is equal to

A :=


I O

O I

<(Y ) −=(Y )
=(Y ) <(Y )

 .

In order to cast the power system state estimation problem in the same framework
described in Section 4.2 we need one more step. According to the partition and distributed
estimation architecture described by Figure 4.1, we assume to divide the network into r
non-overlapping macro-areas, namely A1, . . . ,Ar, each of which consisting of a subset of
buses. In particular we assume that

Ai ⊂ V , Ai ∩ Aj = ∅ ,
r⋃
i=1
Ai = V .

Each area is supervised by a dedicated monitor and data aggregator which

• can collect raw measurements coming from the buses which own to its supervised
area;

• has only a local knowledge of the monitored area’s topology, namely, it knows the
grid topology pertaining its sub-area and it also knows which power lines connect
the sub-area with other adjacent sub-areas (called neighboring areas);

• can communicate with neighboring areas monitors.

An example of partitioning is illustrated in Figure 4.2.
It is convenient, according to this partitioning, to build a communication graph

Gc = (Vc, Ec) where Vc = {1, . . . , r} identifies the set of areas/systems where each of them
is uniquely determined by the corresponding index while Ec contains the communication
links between neighboring monitors (see Figure 4.2). It is worth noticing that the case of
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Figure 4.2: IEEE 37 bus test feeder divided into 4 non overlapping areas. The blue thick
lines identify the communication link among neighboring area monitors.

a peer-to-peer architecture is one special case of the architecture that we just described.
Such special case can be easily obtained just by considering “atomic” areas, each one
encompassing one single electric bus.
Now, let us denote with xi, bi, wi and Ai∗ the subset of the state vector, of the measure-
ments vector, of the noise vector and measurement matrix respectively, corresponding to
the i-th area and identified by the bus indexes contained in the set Ai. Finally, with a
little abuse and reloading the notation it is possible to define x and b as in Eq.(4.1) and
the noise covariance matrix R as in Eq.(4.4) to eventually obtain the same formulation
as that of Section 4.2.

4.4 Communication failures and packet losses

Later on along the chapter we will deal with the state estimation problem in the presence
of communication non-idealities, e.g., failures, delays and packet losses. To model them
and in particular the packet losses, it is convenient to introduce the indicator function

γ
(i)
j (t) =

{
1 if i received the information sent by j
0 otherwise.

,

with the assumption that γ(i)
i (t) = 1, since node i has always access to its local variables.

We assume the following
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Assumption 4.4.1. There exists a constant T such that, for all t ≥ 0, for all i ∈ Vc and
for all j ∈ Ni,

P
[
{γ(i)

j (t), . . . , γ(i)
j (t+ T )} = {0, . . . , 0}

]
= 0 .

Roughly speaking, Assumption 4.4.1 states that agent i receives, at least once, infor-
mation coming from agent j within any window of T iterations of the algorithm. To avoid
disambiguation, we will make clear whenever we are in the ideal and in the non-ideal
communication case.

Next we present our first proposed solution which is based on a modified version of
the classical ADMM algorithm.

4.5 A partition-based ADMM algorithm

The method we propose here is a partition-based version of the classical ADMM method
which exploits the equivalence between problem in (4.6) and the following problem

min
x

r∑
i=1

Ji(x(i)
i , {x

(i)
j }j∈Ni)

subject to x(i)
i = z(i,j)

i ; x(i)
j = z(i,j)

j

x(i)
i = z(j,i)

i ; x(i)
j = z(j,i)

j , ∀ j ∈ Ni,

(4.9)

where with the notation x(i)
j we denote a copy of state xj stored in memory by system i,

and where the z’s are auxiliary variables that are introduced by the ADMM algorithm.
Observe that the connectedness of the graph G and the presence of the bridge variables
z’s ensures that the optimal solution of (4.9) is given by x(i)

i = xopt.,i and x(i)
j = xopt.,j .

The redundant constraints added in Problem (4.9) with the respect to Problem (4.6),
allow to find the optimal solution through a distributed, iterative, partition-based
implementation which optimizes the standard augmented Lagrangian defined, for ρ > 0,
as

L =
r∑
i=1

{
Ji(x(i)

i , {x
(i)
j }j∈Ni) +

∑
j∈Ni

[
λ

(i,j)T
i

(
x(i)
i − z(i,j)

i

)
+ λ(i,j)T

j

(
x(i)
j − z(i,j)

j

)]
+
∑
j∈Ni

[
µ

(i,j)T
i

(
x(i)
i − z(j,i)

i

)
+ µ(i,j)T

j

(
x(i)
j − z(j,i)

j

)]
+ ρ

2
∑
j∈Ni

[
‖x(i)

i − z(i,j)
i ‖2

+‖x(i)
j − z(i,j)

j ‖2 + ‖x(i)
i − z(j,i)

i ‖2 + ‖x(i)
j − z(j,i)

j ‖2
]}
.
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At each iteration of the algorithm, node i, i ∈ {1, . . . , r}, alternates dual ascent step on
the Lagrange multipliers λ(i,j)

i , {λ(i,j)
j }j∈Ni and µ(i,j)

i , {µ(i,j)
j }j∈Ni , with minimization

steps on the variables x(i)
i , {x(i)

j }j∈Ni and z(i,j)
i , {z(i,j)

j }j∈Ni . However, for the case
where the functions J ′is have the particular quadratic structure illustrated in (4.7),
these optimization steps can be greatly simplified. Indeed in this case the partition-
based ADMM algorithm reduces to a linear algorithm requiring, during each iteration
of its implementation, only one communication round involving the x(i)

i , {x(i)
j }j∈Ni ,

i ∈ {1, . . . , r}, variables. To show that, it is convenient to introduce the following compact
notation. Consider node i and, without loss of generality, assume Ni =

{
j1, . . . , j|Ni|

}
.

Then let

X(i) =

 x(i)
i{

x(i)
j

}
j∈Ni

 , Ai =
[
Aii Aij1 . . . Aij|Ni|

]
,

Mi = diag
{
|Ni|Ini , Inj1

, . . . , Inj|Ni|

}
.

Additionally we introduce the following auxiliary variables,

G(i) =


G

(i)
i

G
(i)
j1
...

G
(i)
j|Ni|

 , F (i) =


F

(i)
i

F
(i)
j1
...

F
(i)
j|Ni|

 , B(i) =


B

(i)
i

B
(i)
j1
...

B
(i)
j|Ni|

 ,

where G(i)
i , F

(i)
i , B

(i)
i ∈ Rni and G(i)

jh
, F

(i)
jh
, B

(i)
jh
∈ Rnjh . It turns out that Ai ∈ Rmi×γi ,

Mi ∈ Rγi×γi and G(i), F (i), B(i) ∈ Rγi , where γi = ni +
∑|Ni|
h=1 njh .

The partition-based ADMM algorithm for quadratic functions is formally described in
Algorithm 3. The standing assumption is that all the matricesATi QiAi+Mi, i ∈ {1, . . . , r}
are invertible.

The following proposition characterizes the performance of the above algorithm.

Proposition 4.5.1. Consider the partition-based ADMM algorithm described above. Let
ρ be any real number. Assume that the matrices ATi QiAi + Mi, i ∈ {1, . . . , r}, are
invertible. Then the trajectory t →

{
X(i)(t)

}
converge exponentially to the optimal

solution, namely, for i ∈ {1, . . . , r}, x(i)
j (t)→ xopt.,j for all j ∈ Ni and, in particular,

x(i)
i (t)→ xopt.,i.

The proof can be found in Appendix A.6

Remark 4.5.2. We point out that it is possible to provide a simplified a version of the
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Algorithm 3 Partition Based ADMM algorithm.
Require: ∀i ∈ Vc, store and initialize to 0 X(i), G(i), F (i), B(i).
1: for t ∈ N each i ∈ Vc do
2: sends x(i)

i (t),x(i)
j (t) to j ∈ Ni;

3: receives x(j)
i (t),x(j)

j (t) from j ∈ Ni;
4: updates the memory and the estimate as

G
(i)
i (t) = ρ

2
∑
j∈Ni

(
x(i)
i (t)− x(j)

i (t)
)
, G

(i)
jh

(t) = ρ

2
(
x(i)
jh

(t)− x(jh)
jh

(t)
)
, 1 ≤ h ≤ |Ni|

F (i)(t+ 1) = F (i)(t) +G(i)(t) ,
B(i)(t+ 1) = 2ρMiX

(i)(t)−G(i)(t)− 2F (i)(t+ 1) ,

X(i)(t+ 1) =
[
ATi R

−1
i Ai +Mi

]−1
[
ATi R

−1
i bi + 1

2B
(i)(t+ 1)

]
.

5: end for

partition-based ADMM algorithm, where two monitors communicate with each other
only the information related to those nodes which are on the boundary of their sub-areas
of interest. To be more precise, monitor i receives from monitor j only those components
of x(j)

j (resp. of x(j)
i ) such that the corresponding terms in Aij (resp. in Aji) are different

from zero. This leads to a vector X(i) which is smaller in size, since monitor i keeps in
memory only a copy of the states of the nodes of the other sub-regions which are on the
boundary with sub-region Ai. In turn, also the vectors G(i), F (i), B(i) and the matrices
Mi, Ai result to be smaller in size.

It is worth mentioning that this approach has been taken in Kekatos and Giannakis
(2013). Here, for the sake of the notational simplicity, and because we are mostly
interested in cases in which the size of each area is small (possibly just one agent), we
have preferred not to provide the details of this implementation aspect.

As will be shown in the simulation section usually the ADMM algorithm exhibits a
good transient behavior and fastly converges to the optimal solution of the corresponding
centralized problem. Notice however that the algorithm does require reliable synchronous
communications which makes it not resilient to packet losses and communication failures.
In the following we present a possible naive variation of Algorithm 3 which can be
exploited in order to deal with communication non idealities. The algorithm is known to
be not convergent but is presented for comparison purposes. Indeed, the second algorithm
hereafter presented is usually characterized by worse transient behavior but robustness
to packet losses and failures and is amenable for an asynchronous implementation.



62 Distributed State Estimation
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(i)
j , x
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(i)
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(i)
j
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(j)
i , x

(j)
j

naive ADMM algorithm

Figure 4.3: Communication scheme for the naive ADMM algorithm in the presence of packet
losses and communication failures.

4.6 A partition-based ADMM algorithm with packet
losses

Here we present a modified version of the partition-based ADMM algorithm to deal with
communication non idealities. To model the packet losses, we make use of the indicator
function introduced in Section 4.4 and we assume Assumption 4.4.1 holds. We adopt
a very simple idea. More precisely, we use the last received information from a node if
a packet loss occurs. To do so, we equip each agent with additional slots of memory.
Specifically, agent i, for j ∈ Ni, stores in memory the additional variables x(i←j)

i ,x(i←j)
j ,

which are updated as follows:

x(i←j)
i (t) =

 x(j)
i (t) if γ(i)

j (t) = 1
x(i←j)
i (t− 1) if γ(i)

j (t) = 0
(4.10)

x(i←j)
j (t) =

 x(j)
j (t) if γ(i)

j (t) = 1
x(i←j)
j (t− 1) if γ(i)

j (t) = 0
. (4.11)

By exploiting these additional variables, it is possible to modify Algorithm 3 by updating
G

(i)
i (t) and G(i)

j (t) as

G
(i)
i (t) = ρ

2
∑
j∈Ni

(
x(i)
i (t)− x(i←j)

i (t)
)
,

G
(i)
j (t) = ρ

2
(
x(i)
j − x(i←j)

j

)
.

while the remaining part of the algorithm is the same as before. We refer to this
modified version of the partition-based ADMM algorithm as naive ADMM algorithm. An
illustration of communication scheme and memory requirements are shown in Figure 4.3.

The following section contains the second solution proposed which relies on a general-
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ized gradient descent strategy, namely a Block-Jacobi update.

4.7 Block-Jacobi algorithm

Consider the generalized gradient descent strategy

x(t+ 1) = x(t)− εD−1∇J(x(t)) (4.12)

where ∇J(x(t)) is the gradient of J , i.e., ∇J(x(t)) = [∂J(x(t))/∂x]T , D is a generic
positive definite matrix and ε a suitable positive constant, usually referred as step size.
The algorithm we propose is a particular case of (4.12), where D is a block diagonal
matrix whose i-th diagonal block is defined as

Di =
∑
j∈N+

i

ATjiR
−1
j Aji . (4.13)

With a little abuse of notation, let us denote the Hessian of the cost function as ∇2J(x).
From standard algebraic computations and given the quadratic structure of (4.7) for the
cost J , it follows that ∇2J(x) = ATR−1A. The matrix ∇2J(x) can be partitioned as
an r × r block matrix, where the i, j-th block

[
∇2J(x)

]
ij is given by ∂J(x)

∂xi∂xj
. One can

see that the block [∇2J(x)]ij is different from zero either if j ∈ N+
i or if i and j are

two step neighbors (i.e. there exists a agent k such that k is neighbor of both i and j).
Furthermore, it can be shown that Di = [∇2J(x)]ii is the i-th diagonal block of the cost
function Hessian.
From (4.3), we can compute the gradient of the cost function

∇J(x(t)) = ATR−1(Ax(t)− b) , (4.14)

whose component associated with the i-th agent is

[∇J(x(t))]i =
∑
j∈N+

i

ATjiR
−1
j gj(t+ 1) , (4.15)

where the variable gj(t+ 1) is defined as

gj(t+ 1) =
∑
k∈N+

j

Ajkxk(t)− bj . (4.16)
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By plugging (4.13), (4.15) into (4.12), we can write the updating step performed by agent
i as

xi(t+ 1) = xi(t)− εD−1
i

∑
j∈N+

i

ATjiR
−1
j gj(t+ 1), (4.17)

which, in vector form, leads to

x(t+ 1) = (I− εD−1ATR−1A)x(t) + εD−1ATR−1b . (4.18)

Observe that agent i, in order to perform (4.17), needs information coming from the
neighbors of its neighbors, i.e. the two-step neighbors. As so, since we allow only
communication between one step neighbors, to each iteration of the proposed algorithm
it is necessary to perform two communications, the first to compute the gi(t + 1)’s
and the second to compute the xi(t + 1)’s. The distributed Block Jacobi algorithm
(denoted hereafter as the BJ algorithm) for quadratic functions is formally described as
in Algorithm 4. Next, the convergence properties of the BJ algorithm are established.

Proposition 4.7.1. Consider Problem (4.2) and the BJ algorithm. Assume

ε ≤ 2
‖D−

1
2ATR−1AD−

1
2 ‖
. (4.19)

Then, for any x(0) ∈ Rn, the trajectory x(t), generated by the BJ algorithm, converges
exponentially fast to the minimizer of Problem (4.2), i.e.,

‖x(t)− xopt.‖ ≤ cρt ,

for some constants c > 0 and 0 < ρ < 1.

Proof. Consider the change of variables x̃ = x− xopt.. The cost function becomes

f(x̃) = x̃T A
TR−1A

2 x̃ + c,

while the evolution of x̃ is given by

x̃(t+ 1) = (I− εD−1ATR−1A)x̃(t)

By imposing f(x̃(t+ 1))− f(x̃(t)) < 0, after some simple computations, it turns out that
if equation (4.19) holds, then the algorithm reaches the minimizer of (4.2).

Remark 4.7.2. It is worth noticing that to compute the step size upper bound of Eq.(4.19)
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one needs complete knowledge of the network. It will be part of future research to find a
possible distributed implementation of Eq.(4.19).

Algorithm 4 Distributed Block Jacobi algorithm.
Require: ∀i ∈ Vc, store Aij , Aji, Rj , j ∈ N+

i .
1: for t ∈ N each i ∈ Vc do
2: sends xi(t) to j ∈ Ni;
3: receives xj(t) from j ∈ Ni;
4: updates gi(t) by using (4.16)
5: sends gi(t) to j ∈ Ni;
6: receives gj(t) from j ∈ Ni;
7: updates xi(t) by using (4.17)
8: end for

4.8 Robust Block-Jacobi algorithm

Algorithm 4 has been designed for the ideal case with no lossy communication. In the
following, we generalize Algorithm 4 for the case with lossy communication, e.g. agent
i could not receive information sent by some of its neighbors, due to communication
failures. The modification of the algorithm is apparently naive, since we simply perform
the same algorithm by using the last received data from its neighbors if a packet is not
received.
Observe that, if agent i does not receive some of the packets transmitted by its neighbors,
then it does not have the necessary information to perform the updates (4.16) and (4.17).
To overcome this fact, similarly to what done in the case of the ADMM algorithm of
Section 4.5, we assume agent i stores in memory the auxiliary variables x(i)

j ,g
(i)
j , j ∈ Ni,

which are equal, respectively, to the last packets xj and gj received by agent i from agent
j; specifically, the dynamics of x(i)

j ,g
(i)
j are

g(i)
j (t+ 1) =

 gj(t) if γ(i)
j (t) = 1

g(i)
j (t) if γ(i)

j (t) = 0
(4.20)

x(i)
j (t+ 1) =

 xi(t) if γ(i)
j (t) = 1

x(i)
j (t) if γ(i)

j (t) = 0
. (4.21)

As mentioned in the previous section, Algorithm 4 requires two communication rounds
every iteration. In a lossy environment, in order to reduce the communication burden
and the number of communication failures, we modify Algorithm 4 by letting the agents
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Agent i

Agent j

xi, x
(i)
j

gi, g
(i)
j

xi, gi

xj, gj

r-BJ algorithm

Figure 4.4: Communication scheme for the robust Block-Jacobi algorithm in the presence of
packet losses and communication failures.

to communicate just once every iteration, transmitting together the xi’s and the gi’s.
Agents i exploit x(i)

j (t) and g(i)
j (t) to update gi and xi as

gi(t+ 1) =
∑
j∈N+

i

Aijx(i)
j (t)− bi , (4.22)

xi(t+ 1) = xi(t)− εD−1
i

∑
j∈N+

i

ATjiR
−1
j g(i)

j (t) . (4.23)

As so, even in the scenario with no packet losses, this new algorithm does not exactly
coincide with Algorithm 4, since a one-step delay is introduced in the computation of the
variables gi(t). The robust block Jacobi algorithm (hereafter referred to as r-BJ algorithm)
for quadratic functions is formally described as in Algorithm 5.

Algorithm 5 Robust Block Jacobi algorithm.
Require: ∀i ∈ Vc, store Aij , Aji, Rj , j ∈ N+

i .
1: for t ∈ N each i ∈ Vc do
2: sends xi(t),gi(t) to j ∈ Ni;
3: if γ(i)

j (t) = 1 then
4: receives xj(t) and gj(t) from j ∈ Ni
5: end if
6: updates gi(t) by using (4.22)
7: updates g(i)

j (t) by using (4.20)
8: updates x(i)

j (t) by using (4.21)
9: updates xi(t) by using (4.23)

10: end for

Figure 4.4 provides a pictorial representation of the stored and communicated variables
by each node for both the r-BJ algorithm in presence of packet losses (compare with 4.3).
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The convergence properties of the r-BJ algorithm are next established.

Proposition 4.8.1. Let Assumption 4.4.1 hold. Consider Problem (4.2) and the r-BJ
algorithm. There exists εmax such that, if 0 < ε < εmax, then, for any x(0) ∈ Rn,
the trajectory x(t), generated by the BJ algorithm, converges exponentially fast to the
minimizer of Problem (4.2), i.e.,

‖x(t)− xopt.‖ ≤ cρt

for some constants c > 0 and 0 < ρ < 1.

The proof of Proposition 4.8.1 can be found in Appendix A.7 and basically relies
on separation of time scales principle between the dynamics of the states xi’s and
the auxiliary variables x(i)

j ’s, gi’s and g(i)
j ’s. Loosely speaking, if the update step-size

parameter ε is small enough, the variation of the true states xi’s is so slow that, despite
the lossy communication, the values of the copies x(i)

j ’s and g(i)
j ’s are essentially equal to

the xi’s and the gi’s, respectively.

Remark 4.8.2 (Asynchronous communications). We would like to emphasize that this
general model of packet losses includes as special cases asynchronous updates. In fact,
asynchronous updates where only one node i updates its local variables based on the
information received form its neighbors can be recovered by our algorithm assuming that
all packets are lost except those from the neighbors of node i to node i itself. Also, our
algorithm allows for multiple agents to communicate and perform updates at the same
time, thus requiring no coordination. Finally, broadcast communication can be used
since nodes do not need to establish reliable bidirectional communication as in gossip
protocols.

4.9 Simulations

Here, we compare the Block Jacobi and the ADMM algorithms in both the ideal
synchronous implementation with no packet losses and in the more realistic scenario with
random packet losses.
The algorithms have been tested on the IEEE 123 nodes distribution grid benchmark
assuming noise parameter in accordance with with the maximum measurement errors
allowed by the IEEE standard C37.118-2005 (Martin, Hamai, Adamiak, Anderson,
Begovic, Benmouyal, Brunello, Burger, Cai, Dickerson, Gharpure, Kennedy, Karlsson,
Phadke, Salj, Skendzic, Sperr, Song, Huntley, Kasztenny, and Price, 2008), which specifies
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Figure 4.5: IEEE 123 node split into 28 non overlapping areas.

an aggregate constraint on the measurements error equal to

|ũh − uh|
|uh|

≤ 1% ,
|̃ih − ih|
|ih|

≤ 1% .

For our purpose, the feeder has been divided into non overlapping areas as shown in
Figure 4.5. The areas identify the agents of the communication graph Gc. In particular,
we assume there exists, for each area, a smart monitor able to sense the physical part of
the grid which it has been assigned to, and to communicate with the monitors of the
areas which are physically connected to it.
Here, the algorithms presented in Sections 4.5 and 4.7 are exploited to estimate the

state of the electric grid which consists in the voltage real and imaginary parts at every
node of the grid. We recall that we assume each node h of the grid is described by its
bus voltage uh ∈ C and its injected current ih ∈ C. Moreover, we assume to have at
our disposal noisy measurements of the real and imaginary parts of voltage and current
at every node of the grid as described in Section 4.3. These are retrieved with phasor
measurement units (PMUs) placed at each node.
We partition A, b, x, w according to the splitting showed in Figure 4.5 and we formulate
the state estimation problem as in (4.6).
Next, we compare the performance of the ADMM algorithm with the performance of
the Block-Jacobi algorithm. In particular, we compare the algorithms in terms of the
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Figure 4.6: Comparison between the ADMM and the BJ algorithm with no packet losses,
i.e. γ = 0.

evolution of the normalized distance of the cost function from its minimal value, i.e.,∣∣∣∣J(x(t))− J(xopt.)
J(x(0))

∣∣∣∣ , (4.24)

where
J(x(t)) = 1

2(Ax(t)− b)TR−1(Ax(t)− b) ,

being x(t) the estimated state at iteration t obtained by either the ADMM or the BJ
algorithm.
In Figure 4.6, it is depicted the behavior of the two algorithms in the ideal scenario of
reliable communications, i.e., no packet losses occur. The results reported have been
obtained optimizing the performance of both algorithms over the parameters ρ and ε.
We can see that the performance of the ADMM and BJ algorithms are comparable.
We underline the fact that usually the ADMM better performs the BJ algorithm in
the transient behavior. However, as can be seen from Figure 4.6, the outcome is case
dependent.
A more realistic simulation is shown in Figure 4.7. Here, we compare the two algorithms

in the lossy scenario. The parameters ε and ρ have been again manually optimized for
best performance in both algorithms. To simulate the lossy communication channel, we
assume that for all i, j ∈ Vc and for all t ≥ 0

P[γ(i)
j (t) = 1] = 1− γ̄,

where γ̄ denotes the failure probability of the channel. Note that, according to the above
probabilistic model, Assumption 4.4.1 is not necessarily satisfied, since we cannot ensure
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Figure 4.7: Comparison between the r-BJ and the naive ADMM algorithm for different
packet loss probabilities γ̄.

that within every T iterations every agent receives at least one packet from each of its
neighbors. Nonetheless, the r-BJ algorithm still exhibit exponential convergence to the
optimal solution even for high packet loss rates (60%). On the contrary, as expected,
the ADMM fails to converge to the optimal point already in the presence of a moderate
packet loss (10%).

4.10 Conclusions

In this part of the manuscript we dealt with the problem of state estimation in a smart
power distribution grid which represents one first fundamental task to be solved in order
to allow the possibility to tackle more challenging control and monitoring tasks. We
presented two different possible solutions to solve the problem. The two solution are
suitable to different scenarios. Both the strategies are based on a completely distributed
and scalable communication architecture which, as particular case, allows the scenario of
peer-to-peer communication where each electric bus is considered as a smart unit. In
particular, the first is a modified version of the well known ADMM algorithm (Kekatos
and Giannakis, 2013), suitable for the special case of quadratic cost function (Bolognani
et al., 2014). It is fast but, as a limit, it requires synchronous and reliable communications.
The second solution proposed is based on a generalized gradient descent strategy and
in particular on a block-Jacobi type iteration (Todescato et al., 2015a). This second
approach is resilient to communication failures and to asynchronous communication
protocols.



5
Distributed Optimization: Stress Minimization

via Optimal Reactive Power Control

“Live as if you were to die tomorrow. Learn as if you were to live forever.”
M.K. Gandhi

In the last part of this thesis the problem of voltage support is considered. Usually in
power systems, the voltage magnitudes are required to lie within predefined bounds to
ensure good and safe operation of the grid. Here, we show that this security requirement,
suggested by conventional wisdom, might be insufficient. Moreover, we propose a
novel measure for the stress induced by the load profile on the network and formulate
an optimization problem which maximizes the distance from voltage collapse through
injection of reactive power.

5.1 Introduction and related work

Traditionally, the main purpose of voltage support is to maintain voltage magnitudes
tightly within predetermined bounds (e.g., within 5% of some nominal level). Conventional
wisdom suggests that such a tightly regulated voltage profile should also guarantee a
secure system, operating far from static bifurcation instabilities such as voltage collapse.
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Techniques for voltage support include shunt and static VAR compensation Baran and
Wu (1989); Sode-Yome and Mithulananthan (2004), series compensation Moghavvemi
and Faruque (2000), off-nominal transformer tap ratios Viawan, Sannino, and Daalder
(2007), synchronous condensers Andersson (2008), and more inverters operating away
from unity power factor Farivar, Neal, Clarke, and Low (2012); Na, Guannan, and Dahleh
(2014). See Dixon, Moran, Rodriguez, and Domke (2005) for a survey on the topic.
A different approach, which represents a key direction in power system stability analysis,
has been the development of indices quantifying a power network’s proximity to voltage
collapse. A broad overview of this large subfield can be found in Schlueter, Costi,
Sekerke, and Forgey (1988); Van Cutsem (2000); Cañizares (2002); Van Cutsem and
Vournas (1998); Eremia and Shahidehpour (2013). The existing approaches are largely
based on numerical methods and lack of theoretical support. They often require either
continuation power flow Hiskens et al. (2001) to identify the insolvability boundary, or
repeated computation of loading margins in varying directions of parameter-space Dobson
and Lu (1992).

In the following, first, we combine voltage support and distance to collapse, often
analyzed separately, using the well known principle of reactive power injection. Indeed,
as already stressed, usually, the ultimate goal in voltage support problems is the security
task to confine the voltage magnitudes within predetermined bounds, as suggested
by conventional engineering wisdom. Here, we follow an alternative approach: we
define a particular measure for the network stress, i.e., the stress experienced by the
network induced by the load profile. In particular, we begin our analysis from the
recent article Simpson-Porco et al. (2015) where a sufficient and tight condition was
presented for solvability of decoupled reactive power flow. This condition quantifies the
proximity to voltage collapse by determining a nodal measure of network stress. Based
on this condition we pursue a novel system-level formulation of optimal voltage support
encoded as an optimization problem with stress-minimization, i.e., maximization of the
distance to voltage collapse, as objective and subject to voltage security constraints.
This approach allows us to match a local security requirement as well as a system-
level stress-minimization objective encoding the distance to collapse. By exploiting an
opportune linearized reformulation, our optimization formulation becomes convex and
can be efficiently solved for the optimal injections. As second contribution, we also
address the resource allocation and controller placement problem by regularizing our
optimization problem with a convex proxy of the cardinality function. This sparsity-
promoting formulation allows us to choose a desired trade-off between performance and
a cost-effective solution. Finally, we present a possible distributed computation for the
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solution of the stress minimization problem which is appealing to implement a distributed
real-time feedback controller.

Compared to other approaches to voltage support problems our results do not rely
on the assumption of a radial (i.e., acyclic) power grid topology Farivar et al. (2012);
Na et al. (2014). This makes our approach appealing for both power transmission
and distribution networks. Different from the reactive power compensation literature
Bolognani and Zampieri (2013); Farivar et al. (2012); Bolognani, Carli, Cavraro, and
Zampieri (2015) and from the voltage support literature Na et al. (2014), we seek stress
minimization rather than optimal power flow (minimizing, e.g., losses) or voltage security
tasks. Moreover, our formulation can nicely incorporate resource allocation and controller
placement tasks.

5.2 Preliminaries

Before presenting the problem we deal with, for the sake of comprehension, we recall
here some symbols and the notation used from the modeling Sections 2.5, 2.6 and 2.7.
We refer the reader to the mentioned sections for a better clarification.

We model a smart grid as an undirected connected graph G = (V, E) where |V| = n

and |E| = m. We are interested in analyzing the relation between reactive power and
voltage magnitude (qν). In particular we assume the following:

• highly inductive lines: according to Assumption 2.6.1, the electric lines are modeled
as pure susceptances as commonly done in high voltage network;

• decoupled power flow: according to Assumption 2.6.2, the voltage angle differences
between neighboring nodes in the electric graph G are negligible;

• node partitioning: according to the block partitioning introduced at the end of
Section 2.4, we divide the set V into two subsets, namely V` (|V`| = n`) and Vg
(|Vg| = ng), representing the load nodes, modeled as standard PQ nodes (see
Section 2.5), and generator nodes, modeled as standard PV nodes (see Section 2.5),
respectively.

Thanks to these and to Assumption 2.7.1 on the grounded suspectance matrix B``, the
reactive power flow equations at the load nodes, described in Eq.(2.25b), read as

q` = −diag(ν`)(B`gνg +B``ν`) .
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Moreover, recalling the Definitions 2.7.2–2.7.3 of the open circuit profile ν∗` and of the
critical load matrix Qcrit which are respectively equal to

ν∗` := −B−1
`` B`gνg , Qcrit := 1

4 diag(ν∗` )B`` diag(ν∗` ) .

the load RPFEs can be rewritten as

q` = −diag(ν`)B``(ν` − ν∗` ) . (5.1)

Finally, exploiting the normalized voltage profile v` = diag(ν∗` )−1ν` defined in Eq.(2.28),
Eq.(5.1) assumes the more compact form

q` = −4v`Qcrit(v` − 1) . (5.2)

We are now ready to present the problem at hand.

5.3 The voltage support problem

A common operational requirement is that the load bus voltage magnitudes must lie
within a predefined percentage deviation, typically 5%, from a reference voltage. This
tight clustering of voltages is due to the following reasons:

1. The loads and some system components are designed to operate with a voltage in
a narrow region around the network base voltage;

2. A flat voltage profile minimizes the reactive flows and, consequently, minimizes the
total power losses;

3. A flat profile usually reduces the sensitivity of the voltage profile respect to load
changes (see Example 5.3.2);

4. Finally and most importantly, by conventional wisdom, a flat voltage profile indicates
that the network is safe from voltage collapse.

We formalize this requirement by defining the secure set.

Definition 5.3.1 (Secure set). Given a reference voltage νN ∈ R>0, a percentage
deviation α > 0 and ν∗` as in (2.28), the secure set V is defined as

V :=
{
v` ∈ Rn`

∣∣∣∣ ‖diag(ν∗` )v` − νN1‖∞
νN

≤ α
}
. (5.3)
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νN

νl

b

ql bshunt

Figure 5.1: Example system. νN = 1 [p.u.], b = 4 [S].

That is, if v` ∈ V is a solution to (5.2), then all voltages lie within α percent of the
nominal voltage νN . While this represents a baseline operational requirement, under
some circumstances it may not be sufficient to ensure safe grid operation. We present a
simple example in which voltages remain within operational bounds, but the operating
point is extremely sensitive to changes in load demands.

Example 5.3.2 (Security requirement inadequacy). Consider the simple two-buses case
study consisting of a load connected to a source at voltage νN = 1, as illustrated in
Figure 5.1. For the case where bshunt = 0, Figure 5.2 plots the locus of solutions to (5.1)
(blue solid blue) as q` is varied from 0 to Qcrit; this trace is often called a nose curve.
Note that for a chosen q`, there may be two, one, or zero feasible solutions of (5.1). The
boundary of the secure set is shown in dashed black. Also shown are the loading limits
which ensure the high-voltage solution lies in the secure set (dashed orange), and the
tangent line to the nose curve at the mid-point between the dashed orange lines (dashed
magenta). This tangent line captures the sensitivity of the load voltage to changes in
reactive power demand. From Figure 5.2, note that if q` is too large, the operating point
does not lie within V. A standard policy is then to support the voltage level by adjusting
the shunt compensation, i.e., by increasing bshunt. However, Figure 5.2 shows that the
security requirement v` ∈ V guarantees a “safe” distance to collapse, represented by the
nose of the blue curve. Moreover, the sensitivity of the voltage to changes in load is
small, meaning that relatively big changes in the load condition do not translate into
big voltage changes. Conversely, in Figure 5.3 the security requirement is “dangerously”
close to the nose of the curve. Moreover, the requirement alone does not discriminate the
operating points within V: indeed, it does not consider their proximity to the collapse
point while, there are points (the left-most) which are preferable. Finally, the sensitivity
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Figure 5.2: Absence of shunt, bshunt = 0 [S]
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Figure 5.3: Presence of shunt, bshunt = 2.4 [S].

line is steeper meaning that small changes in the load cause relatively big changes in the
voltage. This affects the robustness of the network to small load changes. �

The previous analysis highlights that the security requirement v` ∈ V alone could
be insufficient. Note that the most preferable operating point within V is the left-most
voltage solution, identified by the intersection of the left orange line and the top black
one. This is the feasible point farthest from voltage collapse. Moreover, by definition the
left-most point on the blue curve represents the open-circuit ν∗` solution. Then, a simple
intuition is that by minimizing the distance of the operating point from the open-circuit
solution — constrained to the fact that the operating point must belong to V — we will
maximize the voltage collapse stability margin of the network.
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Based on the insights given by Example 5.3.2, we define the following measure
quantifying the distance to collapse.

Definition 5.3.3 (Network Stress Measure). Consider a power network G = (V, E),
described by the RPFEs (5.2), let the open-circuit profile ν∗` be as in (2.26) and v` ∈ Rn`

as in (2.28). Then, we define the network stress measure induced by the load as

Jstress(v`) := ‖v` − 1‖∞ . (5.4)

Definition 5.3.3 is based on the intuition that the open-circuit profile ν∗` represents the
network natural operating point in absence of loading, i.e., under “no stress”. Conversely,
when the network works close to the nose tip, i.e., the farthest point from ν∗` then, this
is a “high-stress” scenario. In this sense, the stress function (5.4) quantifies the loading
on the network conveniently expressed in the normalized profile v`.

In the following, we assume that a certain number of load buses can be equipped
with additional controlled devices, e.g., synchronous condensers Andersson (2008) or
photovoltaic panels connected to the grid through power inverters. We assume these
devices can provide a controllable amount of reactive power support, and in the following
we model them as controllable sources of reactive power qctrl, subject to upper and lower
operational bounds. Specifically, the RPFEs (5.2) are modified as

q` + qctrl = −4 diag(v`)Qcrit(v` − 1) , (5.5)

where qctrl ∈ Rn` is such that qctrl,min ≤ qctrl ≤ qctrl,max. If load bus h ∈ V` is not
equipped with a compensator, we set qctrl,min = qctrl,max = 0.

We now formulate our optimization problem of interest, which we refer to as the
Stress Minimization problem.

Problem 5.3.4 (Stress Minimization). Let Jstress(v`) be defined as in (5.4). Then the
goal is to

minimize
qctrl∈Rn`

Jstress(v`), (5.6)

subject to


v` ∈ V ,

qctrl,min ≤ qctrl ≤ qctrl,max ,

RPFEs (5.5) .

The main idea behind Problem 5.3.4 is that minimizing Jstress keeps the operating
point of the network as far as possible from the tip of the nose curve, and thus far from
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the point of voltage collapse. Observe that the previous security requirement v` ∈ V is
incorporated into the problem as a hard constraint.

By being v` related to qctrl through the quadratic equality constraints (5.5) Prob-
lem 5.3.4 is nonlinear and non-convex. In the following, we convexify this problem
through the use of a power flow linearization.

5.4 Linear approximation

We recall here a suitable linearization, introduced at the end of Section 2.7, which had
been first presented in Gentile et al. (2014). From (5.5), assuming ‖q` + qctrl‖ ∼ 0, we
expect the normalized profile (2.28) to be v` ' 1 which would be the exact high voltage
solution of (5.5) corresponding, by definition, to q` + qctrl = O. It follows that, by
linearization around v` = 1, the solution of the RPFEs (5.5) is given by Eq.(2.29), i.e.,

v̂` = 1− 1
4Q
−1
crit(q` + qctrl) , (5.7)

where, the contribution of the additional injection qctrl has been taken into account. That
is, to first order the solution of (5.5) is given by a uniform component plus a deviation
which is linear in the reactive injections.

5.5 Convexification of the Stress Minimization problem

Using (5.7), the cost (5.4) is approximated by

Jstress(v`) = ‖v` − 1‖∞ ∝
∥∥∥Q−1

crit(q` + qctrl)
∥∥∥
∞
. (5.8)

Note that the approximated cost function is convex in the reactive power injections qctrl.
By exploiting (5.7) and thanks to some algebraic manipulations, it is possible to see that
the security requirement v̂` ∈ V holds if and only if

νN (1− α) diag(ν∗` )−11 ≤ v̂` ≤ νN (1 + α) diag(ν∗` )−11 . (5.9)

Substituting for v̂` from (5.7), (5.9) are equivalent to

ξmin ≤ −Q−1
critqctrl ≤ ξmax , (5.10)

where
ξmin := 4

(
νN (1− α) diag(ν∗` )−11− 1

)
+Q−1

critq` , (5.11a)
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ξmax := 4
(
νN (1 + α) diag(ν∗` )−11− 1

)
+Q−1

critq` . (5.11b)

We have therefore expressed the security constraint v̂` ∈ V linearly in terms of the
decision variables qctrl. The equivalent inequalities (5.10) are now linear in the qctrl’s.

We now present the convexified version of Problem 5.3.4.

Problem 5.5.1 (Convex Stress Minimization). Consider a power network G = (V, E),
governed by the RPFEs (5.5). Let νN , α, Qcrit, ν∗` , qctrl,min and qctrl,max be as in the
previous problem. Finally, define ξmin and ξmax as in (5.11a)–(5.11b), respectively. Then,
the goal is

minimize
qctrl∈Rn`

∥∥∥Q−1
crit (q` + qctrl)

∥∥∥
∞
, (5.12)

subject to

ξmin ≤ −Q−1
critqctrl ≤ ξmax,

qctrl,min ≤ qctrl ≤ qctrl,max.

Remark 5.5.2 (On the stress measure). Aside from the linearization-based derivation in
this subsection, the stress measure (5.12) is inspired by recent results Simpson-Porco
et al. (2015) on the solvability of the decoupled reactive power flow equations (5.1). In
Simpson-Porco et al. (2015) it has been shown that if ‖Q−1

critq`‖∞ < 1 , then (5.1) has
a unique high-voltage solution safe from voltage collapse. For ‖Q−1

critq`‖∞ ≥ 1 voltage
collapse may occur. From (5.8), we therefore see that Jstress(v`) quantifies the stress
experienced by the network. �

Observe that in Problem 5.5.1 the cost (5.8) and the constraints (5.10) are convex
in the decision variables. Indeed, the security constraints are linear in q and identify a
polytope. Problem 5.5.1 can be efficiently approached via convex optimization techniques.

As final remark, it is worth noticing that both Problems 5.3.4 and 5.5.1 are offline
centralized procedures which, as suggested by the formulation in Section 5.3, assume that
either the full set of load buses or only an a priori assigned subset of them are equipped
with controllable devices. The first scenario is impractical and economically unfeasible in
large networks due to the large number of devices needed. The second scenario could
likely lead to sub-optimal allocation of the resources if no specific allocation policies are
used. In the following section, we ultimately refine the optimization problem in order
to consider the allocation of the resources and simultaneously solve for the planning
problem and the system-level stress minimization problem.
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5.6 The Planning problem

Here, we propose a sparsity-promoting approach where, by tuning an additional parameter,
the user is able to control the sparsity of the solution. In this way, we simultaneously
solve the planning problem associated with the system-level stress minimization problem.

In order to account for the number of devices the cardinality function, card(·), is a
natural choice which, however, is discontinuous and non-convex. A convex approximation
of card(q) is the re-weighted `1-norm (Boyd and Vandenberghe, 2004; Dörfler, Jovanović,
Chertkov, and Bullo, 2014)

‖diag(w(q))q‖1 =
n∑̀
h=1

wh(qh)qh , wh(qh) := 1
|qh|+ ε

, (5.13)

where 0 < ε � 1. Adding equation (5.13) to the cost function (5.12), it is possible to
formulate the following problem which we refer to as the Sparse Stress Minimization
problem.

Problem 5.6.1 (Sparse Stress Minimization). Consider a power network G = (V, E),
governed by the RPFEs (5.5). Let νN , α, Qcrit, ν∗` , qctrl,min, qctrl,max, ξmin and ξmax be
defined as in the previous problem. Then, the goal is

minimize
qctrl∈Rn`

∥∥∥Q−1
crit (q` + qctrl)

∥∥∥
∞

+ γ ‖diag(w(qctrl))qctrl‖1 , (5.14)

subject to

ξmin ≤ −Q−1
critqctrl ≤ ξmax,

qctrl,min ≤ qctrl ≤ qctrl,max.

The parameter γ in the cost function (5.14) can be used to promote sparsity of the
solution. Obviously for γ = 0, Problem 5.6.1 reduces to Problem 5.5.1. By increasing
the value of γ the user can force the solver to lean towards a more sparse solution. This
automatically compels the solver to optimally allocate the resources in order to find the
best trade-off between sparsity and system-level stress minimization.

5.7 Simulations: The planning problem and offline
optimization

We now present a case study to show the effectiveness of planning and the offline
optimization procedure proposed. The simulations, which refer to Problem (5.6.1), have
been done in MATLAB using CVX (Grant and Boyd, 2014) to solve for the convex
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Figure 5.4: Placement for γ = 0

Figure 5.5: Placement for γ = 4 · 10−4

optimization. The plotted voltage profiles refer to the linearized solution (5.7) of the
decoupled RPFEs (5.5). The test-bed consists of:

• IEEE 30 bus transmission grid;

• a reference voltage νN = 1 [p.u.];

• a secure threshold α = 5%;

• capacity constraints qctrl,min = −0.5× ‖q`‖∞ and qctrl,max = 0.5× ‖q`‖∞.

Observe that consistent to power systems convention, we plot the profile ν` normalized
with respect to the network base voltage νN instead of the normalized profile v`.

Figures 5.4–5.5–5.6 shows a graphical representation of the placement solution for
increasing values of γ (γ = 0, γ = 4× 10−4 and γ = 8× 10−4, respectively). The color
scheme for loads q` and compensators qctrl is as follows:
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Figure 5.6: Placement for γ = 8 · 10−4

• reactive injections, i.e., positive values, has been plotted in blue-scale (from dark
blue to light green, − ): the lighter the blue, the bigger the injection absolute
value;

• reactive consumptions/absorptions, i.e., negative values, has been plotted in red-
scale (from yellow to red, − ): the darker the red, the bigger the absolute value
of the consumption;

• white node means zero injections/consumptions.

The symbols legend is as follows:

• black diamonds ♦ represent generators;

• circles © represent loads;

• triangles 5 represent reactive compensators.

First of all, for γ = 0 the solver places compensation everywhere. Moreover it can be
seen that one compensator is red colored, meaning that it effectively absorbs reactive
power. This occurs due to large reactive power injections at neighboring buses, which
drive up voltage values across the network – additional reactive power must be absorbed
to lower specific voltages and meet the security constraints. For an increasing value of
γ sparsity promotion takes place. In particular, for a moderate value of the sparsity
promoting parameter (γ = 4× 10−4), the solver places all the compensators in the upper
part of the grid where no generators are present and the voltage drop, due to the load, is
stronger. By increasing the value of γ the sparsification process continues with the solver
placing the compensation only in the top right part of the network where the heaviest
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Figure 5.7: Behavior of the number of devices (left-blue axis) and of the ratio of the cost
value after and before the optimization (right-red axis) as function of the sparsity parameter γ.

loading occurs.

Figure 5.7 shows, as a function of γ, the number of devices placed and the ratio
between the value of the cost (5.14) after and before the optimization, namely∥∥∥Q−1

crit (q` + qctrl)
∥∥∥
∞

+ γ ‖diag(w(qctrl))qctrl‖1∥∥∥Q−1
critq`

∥∥∥
∞

.

It can be seen how, for increasing γ the final value of the cost increases since a smaller
number of controllable units are less able to compensate the voltage profile. Figures 5.8
shows the linearized profiles ν` before and after the optimization for different γ. It can
be seen that for increasing γ the profile ν` is less compensated, i.e., it is farther from
the ν∗` profile. Finally, it is worth noting that stress minimization and classical voltage
compensation do not coincide. Indeed, ν∗` , in general, does not belong to V.
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Figure 5.8: Voltage profiles for different values of γ.

5.8 Distributed online Stress Minimization through
feedback control

The previous methods of Sections 5.5 and 5.6 are suitable only for offline optimization and
planning. In this section we present a reformulation of Problem 5.5.1 which is suitable
for an online distributed implementation. This is motivated by different reasons among
which it is worth mentioning that:

• utilities could prefer not to share or widespread information to central operators
because of privacy reasons;

• an online implementation can be naturally exploited as a distributed feedback
controller in presence of time-varying loads, to reject disturbances, to increase the
system robustness, and to track the optimal solution.

In the following, we assume that “smart agents” are embedded at all the grid’s load
buses. These are characterized by mild communication and computational capabilities.
Moreover, they can communicate according to a communication graph which is designed
to coincide with the electrical network. It is worth mentioning that, as will be clear later,
even the load buses not equipped with a controllable compensator are required to share
“smartness” capabilities. In the current formulation, the presence of the dense matrix
Q−1

crit in both the cost Jstress and the constraints (5.10) compromises the possibility to
solve the stress minimization problem in a distributed fashion. Conversely, the matrix
Qcrit is sparse and the graph induced by its sparsity pattern coincide with the electric
graph connecting the loads. We take advantage of this structure to develop a distributed
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algorithm to solve Problem 5.5.1. In this section we assume the planning of the resources
has been solved.

Whereas the formulation (5.12) expressed the stress minimization compactly in
injection coordinates qctrl, now we derive the equivalent formulation in voltage coordinates
to leverage on the sparsity of Qcrit. Let us start the analysis from (5.7) which reads as

v̂` = 1− 1
4Q
−1
crit(q` + qctrl) .

Then, we define the deviation variable x as

x := −Q−1
crit(q` + qctrl) , (5.15)

which represents the linear deviations of the voltages due to the load demand and the
additional reactive input. Similar to what done in Section 5.4, from the definition of set
V̂ it is possible to obtain the security constraints expressed respect to x. These are equal
to

xmin ≤ x ≤ xmax ,

where
xmin := 4

(
νN (1− α) diag(ν∗` )−11− 1

)
,

xmax := 4
(
νN (1 + α) diag(ν∗` )−11− 1

)
.

From the definition of x it is clear that

qctrl = −(Qcritx− q`) . (5.17)

That is, since the matrix Qcrit is characterized by a sparsity pattern equivalent to that
induced by the electric graph connecting the loads, the desired control inputs can be
computed by means of a local exchange of information, namely the x’s variables among
electric neighbors. Additionally, from (5.17) it is easy to impose the capacity constraints,
i.e., qctrl,min ≤ qctrl ≤ qctrl,max. Then, Problem 5.6.1 is equivalently to

Problem 5.8.1 (Online Stress Minimization).

minimize
x∈Rn`

‖x‖∞ , (5.18)

s.t.

xmin ≤ x ≤ xmax,

qctrl,min ≤ −(Qcritx− q`) ≤ qctrl,max.
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Now we point out three more issues related to Problem 5.8.1: (i) the ∞-norm is not
everywhere differentiable and thus not suitable for a gradient-based iterative procedure;
(ii) computing the cost in (5.18) requires knowledge of all xi variables and (iii) in order
to compute the derivative of the maximum function the index where the maximum is
attained must be known. To overcome these issues, we propose a smooth approximation
for the ∞-norm.

5.9 A smooth decomposable approximation of ∞-norm

Here, we present a continuously differentiable approximation for the ∞-norm which
combines a smooth approximation for the maximum function, the softmax Bishop (2006),
and a smooth approximation for the absolute value. This reads as

f̃α,ε(x) := softmaxα(|x|1+ε) , 1� α , 0 < ε� 1 ,

= 1
α

log
( 1
n`

∑n`

i=1
exp

(
α|xi|1+ε

))
. (5.19)

The idea behind it is to exploit the super-linearity property of the exponential to let the
maximum component of the vector x dominate the other components. The exponentiation
is exploited to recover differentiability of the absolute value. The approximation f̃α,ε(x)
approximates ‖x‖∞ in the following sense. The proof can be found in Appendix A.8.

Lemma 5.9.1 (Limit behavior of f̃α,ε). Consider f̃α,ε as in (5.19). Then, it holds that

lim
α→+∞
ε→0+

f̃α,ε(x) = ‖x‖∞ .

Now, let us define

fα,ε(x) := n` exp(αf̃α,ε) =
n∑̀
i=1

exp(α|xi|1+ε) . (5.20)

Notice that, due to the monotonicity of the log function in the softmax, it holds that

argmin
x

f̃α,ε(x) ≡ argmin
x

fα,ε(x) . (5.21)

Thanks to this simplification and in view of the distributed implementation, notice that
the i-th component of the gradient vector of (5.20) is equal to

∂fα,ε(x)
∂xi

= α(1 + ε) exp(α|xi|1+ε)|xi|εsgn(xi) , (5.22)
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which depends only on the local state xi of agent i. We will exploit this fact in our
reformulation of Problem 5.8.1. Finally, the following lemma, whose proof may be found
in Appendix A.9, characterizes the convexity of fα,ε(x)

Lemma 5.9.2 (Strong convexity of fα,ε). Consider the function fα,ε : Rn` 7→ R defined
as in (5.20). Then, for all 0 < ε ≤ 1 and for all α > 0, fα,ε is strongly convex in x.

While Lemma 5.9.2 provides an asymptotic result, one finds that numerical issues are
encountered for sufficient large (resp. small) values of α (resp. ε). In practice however,
reasonably small values of α provide excellent results, with no noticeable numerical issues.

5.10 A distributed primal-dual feedback controller

We now reformulate Problem 5.8.1 by exploiting (5.20) and the equivalence in (5.21). By
introducing the additional quantities

Ξ :=
[
I

−I

]
, χ :=

[
xmax

−xmin

]
, ϕ :=

[
qctrl,max

−qctrl,min

]
, (5.23)

the smooth approximation of Problem 5.8.1 reads as

Problem 5.10.1 (Smooth Stress Minimization).

minimize
x∈Rn`

fα,ε(x), (5.24)

s.t.

Ξx ≤ χ ,

Ξ(Qcritx− q`) ≤ ϕ .

where, thanks to (5.23), the constraints are now in standard form.
One possible way to solve Problem 5.10.1 is the use of standard dual-ascent discrete-time
algorithm. The Lagrangian function associated to Problem 5.10.1 is equal to

L(x,λ,µ) = f(x) + λT (Ξx− χ) + µT (Ξ(Qcritx− q`)−ϕ) .

Then, the dual-ascent consists of the iterative updates

x(t+ 1) = argmin
x

L(x,λ(t),µ(t)) , (5.25a)

λ(t+ 1) = [λ(t) + ρ(Ξx(t+ 1)− χ)]+ , (5.25b)

µ(t+ 1) =
[
µ(t) + ρ(Ξ(Qcritx(t+ 1)− q`)−ϕ)

]+
(5.25c)
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where ρ is the step size and [·]+ denotes the projection on the positive orthant, that is,
[a]+ = a, if a > 0, and 0 otherwise. We now state a convergence result whose proof can
be found in Appendix A.10.

Proposition 5.10.2 (Convergence of the dual ascent algorithm). Consider Problem
5.10.1 and assume that Slater’s condition holds, namely, a strictly feasible solution for
(5.24) exists. Then, there exists ρ such that for any ρ ≤ ρ, the dual ascent algorithm
(5.25) converges to the optimal solution of (5.24).

Observe that the desired control injections can be computed by the corresponding
agents from (5.17) as

qctrl(t+ 1) = −(Qcritx(t+ 1)− q`) . (5.26)

From (5.25), one can see that the proposed dual ascent algorithm is amenable of dis-
tributed implementation meaning that node i, to compute xi(t+ 1), µi(t+ 1), needs only
information coming from neighboring nodes (with the sparsity pattern induced by the
Qcrit matrix); while no exchange of information is needed to compute λi(t+ 1). To be
more precise, observe that (5.25a) is separable in the xi variable; indeed, from the first
order optimality condition must hold, for any i ∈ V`, that

∂

∂xi
L(x,λ(t),µ(t)) = 0 .

which is equivalent to

α(1 + ε)|xi|εsgn(xi) exp(α|xi|1+ε) =

−
∑
j∈Ni

(
[ΞT ]ijλj(t) + [QcritΞT ]ijµj(t)

)
︸ ︷︷ ︸

ζi(t)

, (5.27)

where Ni := {j ∈ V` : [Qcrit]ij 6= 0} represents the set of neighbors of node i. Observe
that the right hand side of (5.27) is constant given the multipliers of the neighbors and
that, thanks to strong convexity of f and then monotonicity of its first order derivative,
(5.27) has always a unique real valued solution. Interestingly, for ε = 1 a closed-form
solution for (5.27) exists and is equal to

xi(t+ 1) = sgn(ζi(t))
1√
2α

√√√√W (
ζ2
i (t)
2α

)
, (5.28)

where W (·) is the Lambert W or ProductLog function Corless, Gonnet, Hare, Jeffrey, and
Knuth (1996) defined as the inverse of the function g(z) = z exp(z). Finally, note that,
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Figure 5.9: Illustrative scheme of the control scheme. Measurements y(t) are gathered
from the grid and used, together with q(t), to update x. Neighbor controllers exchange local

information. The block z−1 simply refers to the one-step delay operator.

each agent need to know some model information, namely its corresponding Qcrit entries
which are related to the electric quantities connecting them to their neighbors. It is worth
noticing the presence of the load demand q` in both (5.25c) and (5.26). Usually, it is
reasonable to have voltage and current monitoring at each bus. From this measurements
it is possible to extract information about the total reactive load absorbed or injected at
the bus. In particular, by defining y := q` + qctrl as the aggregate contribution of the
load together with the control input, from the bus monitoring it is possible to measure y
rather than q` independently. In order to compute (5.25c) and (5.26) it is sufficient to
set

q` = y(t)− qctrl(t) ,

where y(t) and qctrl(t) are the aggregate load measurements and the control input at
the current t iteration. An illustration of the control loop is showed in Figure 5.9: the
aggregate measurements are taken from the grid and are used together with the control
input to compute the update x(t + 1). Then, by using x(t + 1), y(t) and qctrl(t), the
new control input qctrl(t+ 1), used to actuate the grid, are computed.
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Figure 5.10: Dynamics of the loads q`. The different colored curves represent the time
evolution of the loads at different buses.

5.11 Simulation: Distributed online feedback controller

We now present simulations illustrating the effectiveness of our distributed controller in
the presence of time-varying loads. The setup is the same used in Section 5.7. However,
differently from the previous set of simulations, we simulate the full coupled system which
is solved at each iteration of the algorithm thanks to MATPOWER Zimmerman, Murillo-
Sánchez, and Thomas (2011). We show the performance of the algorithm assuming
we have access to aggregate measurements y for a fixed allocation of the resources.
Specifically, there are 6 controllable units out of 24 total loads at the load buses number
1, 10, 15, 22, 23 and 24. Moreover, the controlled injections qctrl are saturated before
actuating the electric grid, simulating the fact that they cannot exceed their capacity
limits. The reactive loads randomly encounter, at half of the simulation time, a jump
equal to 40% of their starting value (see Figure 5.10). All other parameters are held
constant.

Figure 5.11 shows the evolution of the reactive injection returned by the algorithm.
Figure 5.12 shows the corresponding evolution of bus voltages under the distributed
controller (5.25)–(5.26). Interestingly the voltage solution of the full coupled PFEs, in
steady-state, remains within the operational bounds. In particular the steady state
difference between the solution of the full coupled PFEs and the linearized solution of the
RPFEs given by (5.5) is of only 1.5%. This fact highlights the effectiveness of both the
linearization and the control algorithm. Finally, Figure 5.13 shows the evolution of the
error between the values of the injection qctrl(t) and the optimal value computed offline
qctrl,opt as solution of Problem 5.5.1, as a function of the iterations, in logarithmic scale.
Notice that the value of qctrl computed online converges to the optimal offline value even
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Figure 5.11: Dynamic of the control inputs qctrl. The different colored curves represent
control inputs at different controlled buses.
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Figure 5.12: Evolution of the voltages corresponding to the coupled nonlinear power flow
equations.

after the change in the loads.
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their optimal value qctrl,opt computed offline.

5.12 Conclusions

We considered the problem of voltage support via reactive power injections. Conversely
to what suggested by conventional wisdom, we showed that the standard local security
requirement of imposing the voltage magnitudes to lie within predefined bounds, might
be inadequate. Building our analysis of this insights and the recent results on the
solvability of the RPFEs, we proposed a novel optimization formulation whose cost
function encodes the stress experienced by the grid, while the security requirements are
imposed as constraints. Thanks to recent advances linearization of the reactive power
flows, the problem becomes linear and convex and can be efficiently solved. In addition,
we addressed the planning problem. Assuming that every load bus can be equipped by
possibly expensive control unit might not a reasonable in large scale systems. We propose
a reformulation of the stress minimization problem which, thanks to a regularization
term, solves simultaneously for the optimal allocation of the resources and for the optimal
injections. The final contribution regards a distributed online implementation to solve
for the stress minimization problem. Thanks to a suitable reformulation, we presented a
distributed algorithm, based on a dual decomposition, to solve for the stress minimization,
which is appealing to implement a real-time feedback controller.
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Conclusions

“I hated every minute of training, but I said, ‘Don’t quit. Suffer now and live the rest of
your life as a champion.’”

Muhammad Ali

The last decades have foreseen a deep renovation of the energetic scenario. Energy
is becoming more and more necessary for our lives but, as it is, the power production
system is not environmentally and economically sustainable. The research community
has the honor and the duty to seek for solutions which will lead to an improved global
welfare from both perspectives. Technological advancements in renewable energy sources
have demonstrated themselves to be promising and to represent the right path to follow
to the final goal of a sustainable production system. However, if these methods will be
exploited just as a mere replacement of old production plants, they are likely to be not
sufficient in a future energetic scenario scattered of electric vehicles, large industries and
smart buildings, all of them characterized by high quality and unpredictable high quantity
of power demand. In such a complicated and tumultuous scenario, distributed energy
resources (DERs) appear into place. However, they come at a price: network safety
and stability. Here is where control theory and in particular, distributed optimization
applied to large scale systems becomes of great importance. Indeed, if DERs have all the
potential to overcome the issues due to high-quality and unpredictability of the demand,



94 Conclusions

they need to be suitably integrated into the grid to ensure and even increase network
safety and avoid disastrous blackouts.

Innovation, technological advancements and research play a fundamental role in this
renovating process. From the particular case of the power system research, Smart Grids
represent an important concept offering a framework to diverse and equally important
research fields, that must learn to coexist and complete themselves.

In this work, we analyzed different aspects regarding the control and optimization in
a smart grid. Distributed implementability is the common denominator characterizing
all the presented techniques. This aspect make them well suited for application in large
scale systems. In particular, the manuscript is divided in four major parts.
The first part collects all the necessary preliminaries and modeling.
The second part discusses about the problem of devices synchronization. This is, in
general, a quite broad topic in many fields of research, first of all in sensor networks.
Interestingly enough, the problem can be cast in the localization framework of robotic
networks as well. In this manuscript we follow this last approach. We presented two
possible distributed solutions to the problem. The first is based on a consensus strategy;
the second on a gradient descent one. Both the solutions are provably robust and resilient
to communication failures and are amenable to be implemented using an asynchronous
communication protocol.
The third part of this thesis regards the state estimation problem in smart grid. This is
a fundamental task in control theory whose solution paves the path to face and tackle
other control problems. We presented two possible distributed solutions. The first is
based on a modified version of the classical ADMM algorithm. The second is based on
a generalized gradient descent approach, namely a block-Jacobi procedure. Both the
algorithms are built on a particular control and communication architecture which is
flexible, decomposable and distributed.
The fourth and final part deals with a specific aspect in power systems: voltage support.
To tackle this problem many different approach can be followed. We based our analysis
on the well known principle of reactive power injection to support the voltage magnitudes
which are usually required to lie within predefined bounds to ensure good operation
and, as conventional wisdom suggests, safety of the grid. We showed that this security
requirement is, in general, false. In particular, building our result on recent advances on
reactive power flow solvability, we presented a novel measure for the stress induced over
the network by the load profile to ultimately formulate an optimization problem which
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minimizes the stress while is subject to the standard security constraints. Moreover, we
considered the offline planning problem in order to simultaneously solve for the optimal
allocation of the possibly scarce, due to the large scale of the system, resources and the
optimal reactive injections. To complete the picture, we proposed a possible distributed
implementation to solve for the optimization problem. This implementation is suitable
to perform online control and can be implemented as a feedback controller for demand
tracking in, e.g., a privacy preserving network.

Future developments regard the analysis of the problem assuming different decision
variables, e.g., shunt/line capacitors. In this case, both the structure as well as the
mathematical tractability of the problem deeply change. Even more interesting research
directions would explicitly consider a lossy model for the power lines, comprehending
conductances. This would ultimately leads to the study of the complete coupled power
flow equations which represents the holy grail in power systems.
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A
Appendix

“Be the change that you wish to see in the world.”
M.K. Gandhi

A.1 Proof of Proposition 3.5.1

We present here the proof of Proposition 3.5.1. We recall the fact that we are consid-
ering a network of n nodes, running the a-CL algorithm under the randomly persistent
communication scenario whose definition can be found in Section 3.3.
The proof of Proposition 3.5.1 is based on proving the convergence to consensus of (3.16)
using the mathematical tools developed in Fagnani and Zampieri (2008).

Proposition. Consider a randomly persistent communicating network of n nodes run-
ning the a-CL algorithm over a weakly connected measurement graph Gm. Let X be defined
as in (3.4). Let ε be such that 0 < ε < 1/(2dmaxR

−1
min) where dmax := max{|Ni|, i ∈ V}

and Rmin := min{Rij , (i, j) ∈ Em}. Moreover let x̂i, i ∈ {1, . . . , n}, x̂(i)
j , j ∈ Ni, be

initialized to any real number. Then the following facts hold true

1. the evolution k → x̂(k) converges almost surely to an optimal solution xopt. ∈ X ,
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i.e., there exists α ∈ R such that

P
[

lim
k→∞

x̂(k) = xopt., min + α1

]
= 1 .

2. the evolution k → x̂(k) is exponentially convergent in mean-square sense, i.e., there
exist c > 0 and 0 ≤ ρ < 1 such that

lim
k→∞

E
[
‖x̂(k)− (xopt., min + α1)‖2

]
≤ cρkE

[
‖x̂(0)− (xopt., min + α1)‖2

]
.

Proof. Let σ be the random process such that σ(k) denotes the node performing the
transmission action at the beginning of the k+ 1-th iteration. Clearly, in the randomized
scenario we are considering, we have that, for i ∈ {1, . . . , n}, P[σ(k) = i] = γi for all k.
Let

S(k) =
k∏

h=0
Qσ(h).

Observe that S(k) inherits the same block structure of the matrices {Qi}ni=1, namely we
can write

S(k) =
[
S11(k) S12(k)
S21(k) S22(k)

]

As consequence of Theorem 3.1 in Fagnani and Zampieri (2008) the a-CL reaches almost
surely consensus if and only if, for every i and j in V

P [Eij ] = 1, (A.1)

where
Eij = {∃`,∃k |Si`(k)Sj`(k) > 0} .

Now observe that, since the measurement graph is weakly connected, then the commu-
nication graph is a connected undirected graph. This fact together with the fact the
diagonal elements of Q(i)

11 are all positive for any i ∈ {1, . . . , n} implies that there exists
almost surely k̄ such that, for all k′ ≥ k̄, all the elements of the matrix S11(k′) are strictly
greater than 0. Assume now, without loss of generality, that σ(k′) = i, for k′ ≥ k. Then,
since the i-th row of S21(k′+1) is equal to 1i1Ti S11(k′), it turns out that, all the elements
of the i-th row of S21(k′ + 1) are strictly greater than 0. Moreover, it is easy to see
that they will remain strictly greater than 0 also for any k′′ ≥ k′. Hence we can argue
that, there exists almost surely, also a k̄′ such that for all k′ ≥ k̄′, all the elements of the
matrix S21(k′) are strictly greater than 0. It follows that the property stated in (A.1) is
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satisfied for any k ≥ k̄′ and for any ` ∈ {1, . . . , n}. This concludes the proof of item 1.
Concerning item 2., we again resort to the results in Fagnani and Zampieri (2008).

Let Ω = I − 1
2n11

T where in this expression we assume that I is the 2n-dimensional
identity matrix and the vector 1 is 2n-dimensional. From the results in Fagnani and
Zampieri (2008), it follows that to study the rate of convergence of E

[
‖ξ(k)− α1‖2

]
is

equivalent to study the convergence rate of E‖Ωξ(k)‖2 and in particular of the linear
recursive system

∆(t+ 1) = E
[
QTσ(0)∆(t)Qσ(0)

]
where ∆(0) = Ω. Observe that ∆(t) is the evolution of a linear dynamical system which
can be written in the form

∆(t+ 1) = Λ(∆(t))

where Λ : R2n×2n → R2n×2n is given by

Λ(M) = E
[
QTσ(0)MQσ(0)

]
.

As highlighted in Fagnani and Zampieri (2008), the linear operator Λ can be represented
by the matrix L = E[Qσ(0) ⊗Qσ(0)]T . Following the proof of Proposition 4.3 of Fagnani
and Zampieri (2008), one can see that LT is a primitive stochastic matrix which, therefore,
has the eigenvalue 1 with algebraic multiplicity 1. Moreover, LT (1⊗ 1) = (1⊗ 1) and
(1⊗ 1)(Ω⊗ Ω) = 0, from which it follows that E‖Ωξ(k)‖2 ≤ c esr(LT )E‖Ωξ(0)‖2.

A.2 Proof of Proposition 3.6.1

We present here the proof of Proposition 3.6.1. We recall the fact that we are consid-
ering a network of n nodes, running the a-CL algorithm under the uniform persistent
communication scenario whose definition can be found in Section 3.3. Moreover, we
assume Assumptions 3.3.3–3.3.4, which describe the type of packet losses and delays in
the communication channel considered, hold.

Proposition. Consider a uniformly persistent communicating network of n nodes run-
ning the a-CL algorithm over a weakly connected measurement graph Gm. Let As-
sumptions 3.3.3 and 3.3.4 be satisfied. Let ε be such that 0 < ε < 1/(2dmaxR

−1
min) where

dmax := {|Ni|, i ∈ V} and Rmin := min{Rij , (i.j) ∈ Em}. Moreover let x̂i, i ∈ {1, . . . , n},
x̂

(i)
j , j ∈ Ni, be initialized to any real number. Then the following facts hold true

1. the evolution k → x̂(k) asymptotically converges to an optimal estimate xopt. ∈ X ,
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i.e., there exists α ∈ R such that

lim
k→∞

x̂(k) = xopt., min + α1 ;

2. the convergence is exponential, namely, there exists c > 0 and 0 ≤ ρ < 1 such that

‖x̂(k)− (xopt., min + α1) ‖ ≤ cρk‖x̂(0)− (xopt., min + α1) ‖ .

Proof. The proof follows from the statement of Proposition 1 in Nedic and Ozdaglar
(2008) which for convenience has been reported in Appendix A.5 as Proposition A.5.5.
To apply Proposition A.5.5 we show that a-CL algorithm in presence of delays and packet
losses can be rewritten as a consensus with delays that satisfies Assumptions A.5.1, A.5.2,
A.5.3, and A.5.4 reported in Appendix A.5.
To this aim, let δj(k) = x̂j(k) − [xopt., min]j . Recalling that xopt.,min = Pxopt., min + b
where P is the stochastic matrix obtained form the terms pij and, according to (3.11) we
have that, if j ∈ V ′(k)

δj(k + 1) := pjjδj(k) +
∑
h∈Nj

pjhδh(k′h), (A.2)

otherwise
δj(k + 1) = δj(k).

The above equations describe a consensus algorithm on the variables δ1, . . . , δn which
satisfies Assumptions A.5.1, A.5.2, A.5.3 and A.5.4 reported in the Appendix. Indeed
Assumption A.5.1 on the weights is trivially satisfied. Assumption A.5.2 follows from the
facts that the communication graph Gc is connected, the network is uniformly persistent
communicating and from Assumptions 3.3.3 and 3.3.4. Assumption A.5.3 is a consequence
of the fact that the network is uniformly persistent communicating and Assumption 3.3.3;
in our setup we have B = Lτ . Finally Assumption A.5.4 follows from Assumption 3.3.4
and equation (A.3). Hence the variables δ1, . . . , δn converge exponentially to a consensus
value α which, in turn, implies that x̂ converge exponentially to xopt., min + α1.

A.3 Proof of Proposition 3.8.1

We report here the proof of Proposition 3.8.1 which states the following.

Proposition. Consider a randomly persistent communicating network of n nodes run-
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ning the a-GL algorithm over a connected measurement graph Gm. Assume the weights
εi are such that

0 < εi ≤

∑
j∈Ni

1
Rij

−1

, ∀ i ∈ V,

and assume that x̂i, i ∈ V, x̂(i)
j , j ∈ Ni, be initialized to any real number. Then the

following facts hold true

1. the evolution k → x̂(k) converges almost surely to an optimal solution xopt. ∈ X ,
i.e., there exists α ∈ R such that

P
[

lim
k→∞

x̂(k) = xopt., min + α1

]
= 1 ,

2. the evolution k → x̂(k) is exponentially convergent in mean-square sense, i.e., there
exist c > 0 and 0 ≤ ρ < 1 such that

lim
k→∞

E
[
‖x̂(k)− (xopt., min + α1)‖2

]
≤ cρhE

[
‖x̂(0)− (xopt., min + α1)‖2

]
.

Proof. Consider the case 0 < ε <<
(∑

j∈Ni

1
Rij

)−1
then we can apply Corollary 3.2 of

Fagnani and Zampieri (2008). Indeed for all i ∈ V, we have that Qi has all the diagonal
terms strictly greater than zero. Moreover

Q̄ = E [Qi] =
n∑
i=1

γiQi =
n∑
i=1

γi
[
I+ 1i1Ti (P − I)

]
= I+ Γ(P − I) = (I− Γ) + ΓP

where Γ = diag{γ1 . . . γn}. Observe that pij 6= 0 if (i, h) ∈ Em. Since 0 < γi < 1 then, if
pij 6= 0 then qij 6= 0. Additionally Q̄ii > 0∀i. Hence, from the fact that Gm is connected
we have that Q̄ is primitive. Corollary 3.2 in Fagnani and Zampieri (2008) implies that
ξ(k)→ ξ almost surely. Moreover, from the results of Section IV of Fagnani and Zampieri
(2008) it follows that the convergence is exponential in mean-square. If there exists i
such that εi =

(∑
j∈Ni

1
Rij

)−1
, we can not longer apply Corollary 3.2 of Fagnani and

Zampieri (2008) since in this case Qi has the i-th term of the main diagonal which is
equal to zero. We reason as follows. Assume that, at time k, the node transmitting is
node i. Observe that, if x̂i(k + 1) 6= x̂i(k) then J(k + 1) < J(k). Hence we can apply
Theorem 4.5 of Bullo, Carli, and Frasca (2010) to deduce that x̂(k)→ X . It remains to
prove that x̂(k)→ xopt. ∈ X . Consider again the evolution ξ(k + 1) = Qi(k)ξ(k). Let us
write ξ(k) = ξ⊥(k) + α(k)1, it is known that 1T ξ⊥(k) = 0 and ξ⊥(k)→ 0 which leads
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us to write

ξ(k + 1) = Qi(k)ξ(k) = Qi(k) (ξ⊥(k) + α(k)1) = ξ⊥(k + 1) + α(k + 1)1 ,

and making the difference of the two last term we get

(α(k + 1)− α(k))1+ ξ⊥(k + 1)−Qi(k)ξ⊥(k) = 0

then, multiplying the left side for 1
n1

T

α(k + 1)− α(k) = 1
n
1TQi(k)ξ⊥(k) .

From section IV of Fagnani and Zampieri (2008) we know that E
[
||ξ⊥(k)||2

]
< cρ−t.

Then E
[
||α(k + 1)− α(k)||2

]
< c̄ρ−t and therefore α(h)→ α constant. Then, in mean

square we have that ξ(k)→ α1 which is equivalent to x̂(k)→ xopt., min + α1.

A.4 Proof of Proposition 3.9.1

We report here the proof of Proposition 3.9.1 which states the following.

Proposition. Consider a uniformly persistent communicating network of n nodes run-
ning the a-GL algorithm over a connected measurement graph Gm. Let Assumptions
3.3.3 and 3.3.4 be satisfied. Assume the weights εi are such that

0 < εi <

∑
j∈Ni

1
Rij

−1

, ∀ i ∈ V,

and assume that x̂i, i ∈ V, x̂(i)
j , j ∈ Ni, be initialized to any real number. Then the

following facts hold true

1. the evolution k → x̂(k) asymptotically converges to an optimal estimate xopt. ∈ X ,
i.e., there exists α ∈ R such that

lim
k→∞

x̂(k) = xopt., min + α1 ;

2. the convergence is exponential, namely, there exists c > 0 and 0 ≤ ρ < 1 such that

‖x̂(k)− (xopt., min + α1) ‖ ≤ cρh‖x̂(0)− (xopt., min + α1) ‖.
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Proof. The proof follows from the statement of Proposition 1 in Nedic and Ozdaglar
(2008) which for convenience has been reported in Appendix A.5 as Proposition A.5.5.
To apply Proposition A.5.5 we show that a-CL algorithm in presence of delays and packet
losses can be rewritten as a consensus with delays that satisfies Assumptions A.5.1, A.5.2,
A.5.3, and A.5.4 reported in Appendix A.5.

Consider the a-GL algorithm in presence of delays and packet losses. Let δi(k) =
x̂i(k)− [xopt.,min]i and assume node i is performing the update at iteration k. Recalling
that xopt., min = Pxopt., min + b and, according to Eq. (A.4) we have that,

δi(k + 1) := piiδi(k) +
∑
j∈Ni

pijδj(k′ij) . (A.3)

while for j 6= i

δj(k + 1) = δj(k) .

The above equations describe a consensus algorithm on the variables δ1, . . . , δn which
satisfies the Assumptions A.5.1÷A.5.4. Indeed Assumption A.5.1 on the weights is
trivially satisfied. Assumption A.5.2 follows from the facts that the communication
graph Gc (which in the setup considered coincides with Gm) is connected, the network
is uniformly persistent communicating and from Assumptions 3.3.3 and 3.3.4 on the
boundedness of the communication non idealities. Assumption A.5.3 is a consequence of
the fact that the network is uniformly persistent communicating and Assumption 3.3.3;
in our setup we have B = Lτ . Finally Assumption A.5.4 follows from Assumption 3.3.4
and equation (A.3). Hence the variables δ1, . . . , δn converge exponentially to a consensus
value α which, in turn, implies that x̂ converge exponentially to xopt., min + α1.

A.5 Additional Materials

In this appendix we review the result stated in Proposition 1 in Nedic and Ozdaglar
(2008). In Nedic and Ozdaglar (2008), the authors consider the following consensus
algorithm with delays1

xi(k + 1) =
m∑
j=1

aij(k)xj(k − tij(k)) (A.4)

1We adopt the notations of paper Nedic and Ozdaglar (2008).
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where xi denotes the state of node i, i ∈ {1, . . . ,m}, the scalar tij(k) is nonnegative and
it represents the delay of a message from agent j to agent i, while the scalar aij(k) is a
nonnegative weight that agent i assigns to a delayed estimate xj(s) arriving from agent j
at time k. It is assumed that the weights aij(k) satisfy the following assumption.

Assumption A.5.1. There exists a scalar η, 0 < η < 1 such that

1. aii(k) ≥ η for all k ≥ 0;

2. aij(k) ≥ η for all k ≥ 0, and all agents j whose (potentially delayed) information
xj(s) reaches agent i during the k-th iteration;

3. aij(k) = 0 for all k ≥ 0 and j otherwise.

4.
∑m
j=1 a

i
j(k) = 1 for all i and k.

For any k let the information exchange among the agents may be represented by a
directed graph (V, Ek), where V = {1, . . . ,m} with the set Ek of directed edges given
by Ek =

{
(j, i)|aij(k) > 0

}
. The authors impose a connectivity assumption on the agent

system, which is stated as follows.

Assumption A.5.2. The graph (V, E∞) is connected, where E∞ is the set of edges
(j, i) representing agent pairs communicating directly infinitely many times, i.e., E∞ =
{(j, i)|(j, i) ∈ Ek for infinitely many indices k}.

Additionally it is assumed that the intercommunication intervals are bounded for
those agents that communicate directly. Specifically,

Assumption A.5.3. There exists an integer B ≥ 1 such that for every (j, i) ∈ E∞, agent
j sends information to its neighbor i at least once every B consecutive iterations.

Finally, it is assumed that the delays tij(k) in delivering a message from an agent j to
any neighboring agent i is uniformly bounded at all times. Formally

Assumption A.5.4. Let the following hold:

1. tii(k) = 0 for all agents i and all k ≥ 0.

2. tij(k) = 0 for all agents j communicating with agent i directly and whose estimates
xj are not available to agent i during the k-th iteration.

3. There is an integer B1 such that 0 ≤ tij(k) ≤ B1 − 1 for all agents i, j, and all k.

The result illustrated in Proposition 1 of Nedic and Ozdaglar (2008) is recalled in the
following Proposition.
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Proposition A.5.5. Let Assumption A.5.1, A.5.2, A.5.3, A.5.4 hold. Then the se-
quences

{
x(i)(k)

}
, i = 1, . . . ,m, generated by Equation (A.4) converge exponentially to a

consensus.

A.6 Proof of Proposition 4.5.1

In the following, to show the convergence of the evolution of Algorithm 3 to the optimal
solution of Problem (4.2), we first show convergence of a more general partition based
ADMM algorithm for the generic case of strictly convex cost under the assumption that
the corresponding optimization problem has a unique solution. Then, we show that,
for the particular case of quadratic cost, Algorithm 3 coincides with the more general
formulation.

Let us consider the Lagrangian associated with Problem (4.9) defined as

L =
r∑
i=1

{
Ji(x(i)

i , {x
(i)
j }j∈Ni) +

∑
j∈Ni

[
λ

(i,j)T
i

(
x(i)
i − z(i,j)

i

)
+ λ(i,j)T

j

(
x(i)
j − z(i,j)

j

)]
+
∑
j∈Ni

[
µ

(i,j)T
i

(
x(i)
i − z(j,i)

i

)
+ µ(i,j)T

j

(
x(i)
j − z(j,i)

j

)]
+ ρ

2
∑
j∈Ni

[
‖x(i)

i − z(i,j)
i ‖2

+‖x(i)
j − z(i,j)

j ‖2 + ‖x(i)
i − z(j,i)

i ‖2 + ‖x(i)
j − z(j,i)

j ‖2
]}
.

Let us define the following local quantities

X(i) =

 x(i)
i{

x(i)
j

}
j∈Ni

 ; Z(i) =


{
z(i,j)
i

}
j∈Ni{

z(i,j)
j

}
j∈Ni

 ;

Λ(i) =


{
λ

(i,j)
i

}
j∈Ni{

λ
(i,j)
j

}
j∈Ni

 , M(i) =


{
µ

(i,j)
i

}
j∈Ni{

µ
(i,j)
j

}
j∈Ni

 .
Let t denote the iteration index, then the ADMM cycles through three steps:

(i) Dual ascent step on the Λ′s and M′s variables: Node i updates the variables
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Λ(i) andM(i) through a gradient ascent of L with step size ρ; precisely,

λ
(i,j)
i (t+ 1) = λ

(i,j)
i (t) + ρ

(
x(i)
i (t)− z(i,j)

i (t)
)
,

λ
(i,j)
j (t+ 1) = λ

(i,j)
j (t) + ρ

(
x(i)
j (t)− z(i,j)

j (t)
)
,

µ
(i,j)
i (t+ 1) = µ

(i,j)
i (t) + ρ

(
x(i)
i (t)− z(j,i)

i (t)
)
,

µ
(i,j)
j (t+ 1) = µ

(i,j)
j (t) + ρ

(
x(i)
j (t)− z(j,i)

j (t)
)
.

(ii) Update of X ′s variables: Node i updates the variable X(i) minimizing the aug-
mented Lagrangian while keeping all the other variables fixed, namely,

X(i)(t+ 1) = arg min
X(i)

{
Ji
(
x(i)
i , {x

(i)
j }j∈Ni

)
+
∑
j∈Ni

[
λ

(i,j)T
i (t+ 1)

(
x(i)
i − z(i,j)

i (t)
)

+λ(i,j)T
j (t+ 1)

(
x(i)
j − z(i,j)

j (t)
)]

+
∑
j∈Ni

[
µ

(i,j)T
i (t+ 1)

(
x(i)
i − z(j,i)

i (t)
)

+µ(i,j)T
j (t+ 1)

(
x(i)
j − z(j,i)

j (t)
)]

+ ρ

2
∑
j∈Ni

[
‖x(i)

i − z(i,j)
i (t)‖2

+‖x(i)
j − z(i,j)

j (t)‖2 + ‖x(i)
i − z(j,i)

i (t)‖2 + ‖x(i)
j − z(j,i)

j (t)‖2
]}

.

(iii) Update of Z ′s variables: Node i updates the variable Z(i) minimizing the aug-
mented Lagrangian while keeping all the other variables fixed, namely,

Z(i)(t+ 1) = arg min
Z(i)

{ ∑
j∈Ni

[
λ

(i,j)T
i (t+ 1)

(
x(i)
i (t+ 1)− z(i,j)

i

)
+λ(i,j)T

j (t+ 1)
(
x(i)
j (t+ 1)− z(i,j)

j

)]
+
∑
j∈Ni

[
µ

(j,i)T
j (t+ 1)

(
x(j)
j (t+ 1)− z(i,j)

j

)
+µ(j,i)T

i (t+ 1)
(
x(j)
i (t+ 1)− z(i,j)

i

)]
+ ρ

2
∑
j∈Ni

[
‖x(i)

i (t+ 1)− z(i,j)
i ‖2

+‖x(i)
j (t+ 1)− z(i,j)

j ‖2 + ‖x(j)
j (t+ 1)− z(i,j)

j ‖2 + ‖x(j)
i (t+ 1)− z(i,j)

i ‖2
]}

.

Proposition A.6.1. Consider the partition-based ADMM algorithm described above.
Let ρ be any real number. Then the trajectory t→

{
X(i)(t)

}
converge exponentially to

the optimal solution, namely, for i ∈ {1, . . . , r}, x(i)
j (t)→ xopt.,j for all j ∈ Ni and, in

particular,
x(i)
i (t)→ xopt.,i .

Proof. Let X, Z, Λ and M be the vectors obtained by stacking together the vectors
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{
X(i)

}
i∈Vc

,
{
Z(i)

}
i∈Vc

,
{

Λ(i)
}
i∈Vc

and
{
M(i)

}
i∈Vc

, respectively, namely,

X =


X(1)

X(2)

...
X(r)

 , Z =


Z(1)

Z(2)

...
Z(r)

 , Λ =


Λ(1)

Λ(2)

...
Λ(r)

 , M =


M(1)

M(2)

...
M(r)

 .

Now consider constraints in (4.9). From their linear structure of Eqs.(4.9), it follows that
there exists suitable matrices A and B such that they can be rewritten as

AX +BZ = 0,

where the matrix A is such that ATA is invertible. Hence Problem (4.9) can be equivalently
formulated as

min
X

F (X)

subject to AX +BZ = 0
(A.5)

where F (X) =
∑r
i=1 Ji(X(i)) is a convex function in X. Observe that, from the assump-

tion that the solution is unique and from the connectness of the graph Gc, it follows
that Problem (A.5) admits an unique solution Xopt. such that x(i)

opt.,i = x(i)
opt.,i, for all

j ∈ Ni, i ∈ Vc. Moreover, Problem (A.5) can be solved by the standard ADMM algorithm
illustrated in Bertsekas and Tsitsiklis (1989) which consists on the following three steps

(i) Dual ascent step on the Λ and M variables:

[
Λ(t+ 1)
M(t+ 1)

]
=
[

Λ(t)
M(t)

]
+ ρ (AX(t) +BZ(t)) .

(ii) Update of X variable:

X(t+ 1) = arg min
X

{
F (X) +

[
ΛT (t+ 1) MT (t+ 1)

]
(AX +BZ(t))

}
.

(iii) Update of Z variable:

Z(t+ 1) = arg min
Z

{[
ΛT (t+ 1) MT (t+ 1)

]
(AX(t+ 1) +BZ)

}
.

It is easy to see that the above steps correspond to the steps (i), (ii), (iii) of the partition-
based ADMM algorithm previously described.
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Proposition 4.2 in Bertsekas and Tsitsiklis (1989) guarantees, that under the assumptions
that F is convex and the matrix ATA is invertible, the trajectory t→ X(t) converges to
the optimal solution Xopt.. This concludes the proof.

For the case where the functions J ′is have the particular quadratic structure illustrated
in (4.3) it is possible to show that Algorithm 3 is equivalent to the partition-based ADMM
algorithm described above. To do so, we next introduce the following lemmas.

Lemma A.6.2. The update of the variable z(i,j)
k , k ∈ {i, j}, is given by

z(i,j)
k (t+ 1) = λ

(i,j)
k (t+ 1) + µ(j,i)

k (t+ 1)
2ρ + x(i)

k (t+ 1) + x(j)
k (t+ 1)

2 .

Proof. Without loss of generality assume that k = i. The value z(i,j)
i (t+ 1) is computed

by setting to zero the gradient of the function

f(z(i,j)
i ) = λ

(i,j)T
i (t+ 1)

(
x(i)
i (t+ 1)− z(i,j)

i

)
+ µ(j,i)T

i (t+ 1)
(
x(j)
i (t+ 1)− z(i,j)

i

)
+

+ ρ

2‖x
(i)
i (t+ 1)− z(i,j)

i ‖2 + ρ

2‖x
(j)
i (t+ 1)− z(i,j)

i ‖2.

We have

∂f(z(i,j)
i )

∂z(i,j)
i

= −λ(i,j)
i (t+ 1)− µ(j,i)

i (t+ 1)− ρ
(
x(i)
i (t+ 1)− z(i,j)

i

)
−

ρ
(
x(j)
i (t+ 1)− z(i,j)

i

)
.

From ∂f(z(i,j)
i )

∂z(i,j)
i

= 0 we get the statement of the Lemma.

Lemma A.6.3. If λ(i,j)
k (0) = −µ(j,i)

k (0), k ∈ {i, j}, then

λ
(i,j)
k (t) = −µ(j,i)

k (t) ,

for t > 0.

Proof. The statement of the Lemma can be proved by induction. Let λ(i,j)
k (`) = −µ(j,i)

k (`),
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for ` = 0, . . . , t− 1. Then the updates take the form

λ
(i,j)
k (t) = λ

(i,j)
k (t− 1) + ρ

(
x(i)
k (t− 1)− z(i,j)

k (t− 1)
)

= λ
(i,j)
k (t− 1)

+ ρ

(
x(i)
k (t− 1)− λ

(i,j)
k (t− 1) + µ(j,i)

k (t− 1)
2ρ −

xik(t− 1) + x(j)
k (t− 1)

2

)

= λ
(i,j)
k (t− 1) + ρ

xik(t− 1)− x(j)
k (t− 1)

2

where the second equality follows from the previous Lemma, while the second equality
comes from the inductive hypothesis. In a similar way one can obtain

µ
(j,i)
k (t) = µ

(j,i)
k (t− 1) + ρ

xjk(t− 1)− x(i)
k (t− 1)

2 ,

that, together with the inductive hypothesis, implies that λ(i,j)
k (t) = −µ(j,i)

k (t).

Lemma A.6.4. If λ(i,j)
k (0) = −µ(j,i)

k (0), k ∈ {i, j}, then

z(i,j)
k (t) = z(j,i)

k (t) ,

for t ≥ 0.

Proof. From Lemma A.6.2 and Lemma A.6.3, we have

z(i,j)
k (t) = λ

(i,j)
k (t) + µ(j,i)

k (t)
2ρ + x(i)

k (t) + x(j)
k (t)

2 = x(i)
k (t) + x(j)

k (t)
2 = z(j,i)

k (t) .

Lemma A.6.5. If λ(i,j)
k (0) = µ

(i,j)
k (0), k ∈ {i, j}, then

λ
(i,j)
k (t) = µ

(i,j)
k (t) ,

for t ≥ 0.

Proof. The Lemma can be prove by induction. Let us assume that λ(i,j)
k (`) = µ

(i,j)
k (`)

for ` = 0, . . . , t− 1. From Lemma A.6.2 and Lemma A.6.3, we have that

z(i,j)
k (t) = x(i)

k (t) + x(j)
k (t)

2
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and, in turn, that

λ
(i,j)
k (t) = λ

(i,j)
k (t− 1) + ρ

(
x(i)
k (t− 1)− x(i)

k (t− 1) + x(j)
k (t− 1)

2

)
,

µ
(i,j)
k (t) = µ

(i,j)
k (t− 1) + ρ

(
x(i)
k (t− 1)− x(j)

k (t− 1) + x(i)
k (t− 1)

2

)
.

From Lemmas A.6.2 and A.6.3 we get the following corollary.

Corollary A.6.6. If for t ≥ 0, λ(i,j)
k (t) = −µ(j,i)

k (t) = µ
(i,j)
k (t) = −λ(j,i)

k (t), k ∈ {i, j},
then

z(i,j)
k (t+ 1) = z(j,i)

k (t+ 1) = x(i)
k (t+ 1) + x(j)

k (t+ 1)
2 ,

λ
(i,j)
k (t+ 1) = λ

(i,j)
k (t) + ρ

2
(
x(i)
k − x(j)

k

)
.

The above Lemmas allow us to simplify the expression of the augmented Lagragian
and, precisely, we can write that

L =
r∑
i=1

{
Ji(x(i)

i , {x
(i)
j }j∈Ni) +

∑
j∈Ni

[
2λ(i,j)T

i

(
x(i)
i − z(i,j)

i

)
+ 2λ(i,j)T

j

(
x(i)
j − z(i,j)

j

)]
+ ρ

∑
j∈Ni

[
‖x(i)

i − z(i,j)
i ‖2 + ‖x(i)

j − z(i,j)
j ‖2

]}
.

We have the following Lemma.

Lemma A.6.7. The minimization over the vector X(i) is given by

X
(i)
i (t+ 1) = arg min

X(i)

{
Ji(X(i)) + ρ

(
X(i)

)T
MiX

(i) −
(
X(i)

)T
B(i)(t+ 1)

}
,

where B(i)(t+ 1) and Mi are defined as in the description of the algorithm.
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Proof.

arg min
X(i)

{
Ji(X(i)

i ) +
∑
j∈Ni

[
2λ(i,j)T

i

(
x(i)
i − z(i,j)

i

)
+ 2λ(i,j)

j

(
x(i)
j − z(i,j)

j

)]
+ ρ

∑
j∈Ni

[
‖x(i)

i − z(i,j)
i ‖2 + ‖x(i)

j − z(i,j)
j ‖2

]}
=

arg min
X(i)

{
Ji(X(i)) + 2

(
F (i)(t+ 1)

)T
X(i) + ρ |Ni| ‖x(i)

i ‖
2 + ρ

∑
j∈Ni

‖x(i)
j ‖

2+

− 2ρ
(
x(i)
i

) ∑
j∈Ni

z(i,j)
i (t)− 2ρ

∑
j∈Ni

(
x(i)
j

)T
z(i,j)
j (t)

}

where

F (i)(t) =



∑
j∈Ni

λ
(i,j)
i (t)

λ
(j1,i)
j1

(t)
...

λ
(j|Ni|,i)
j|Ni|

(t)

 .

Let
Mi = diag

{
|Ni| Imi , Imj1

, . . . , Imj|Ni|

}
.

We have that

Ji(X(i)) + 2
(
F (i)(t+ 1)

)T
X(i) + ρ |Ni| ‖x(i)

i ‖
2 + ρ

∑
j∈Ni

‖x(i)
j ‖

2+

− 2ρ
(
x(i)
i

) ∑
j∈Ni

z(i,j)
i (t)− 2ρ

∑
j∈Ni

(
x(i)
j

)T
z(i,j)
j (t) =

Ji(X(i)) + 2
(
F (i)(t+ 1)

)T
X(i) + ρ

(
X(i)

)T
MiX

(i) +−2ρ
(
x(i)
i

)T ∑
j∈Ni

x(i)
i (t) + x(j)

i (t)
2 +

− 2ρ
∑
j∈Ni

(
x(i)
j

)T x(i)
j (t) + x(j)

j (t)
2
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We can write

− 2ρ
(
x

(i)
i

) ∑
j∈Ni

x(i)
i (t) + x(j)

i (t)
2 − 2ρ

∑
j∈Ni

(
x(i)
j

)T x(i)
i (t) + x(j)

i (t)
2 =

− ρ
(
X(i)

)T
MiX

(i)(t)− ρ
(
x(i)
i

)T ∑
j∈Ni

x(j)
i (t)− ρ

∑
j∈Ni

(
x(i)
j

)T
x(j)
j (t) =

− 2ρ
(
X(i)

)T
MiX

(i)(t)− ρ
(
x(i)
i

)T ∑
j∈Ni

(
x(j)
i (t)− x(i)

i (t)
)

− ρ
∑
j∈Ni

(
x(i)
j

)T (
x(j)
j (t)− x(i)

j (t)
)

=

− 2ρ
(
X(i)

)T
MiX

(i)(t) +
(
X

(i)
i

)T
G(i)(t)

where G(i) is defined as

G
(i)
i (t) = ρ

∑
j∈Ni

(
x(i)
i (t)− x(j)

i (t)
)
,

G
(i)
jh

(t) = ρ
(
x(i)
jh

(t)− x(jh)(t)
jh

)
, 1 ≤ h ≤ |Ni| .

Summarizing we have that

X
(i)
i (t+ 1) = arg min

X(i)

{
Ji(X(i)) + ρ

(
X(i)

)T
MiX

(i) +
(
2F (i)(t+ 1)

)T
X(i)

−2ρ
(
X(i)

)T
MiX

(i)(t) +
(
X

(i)
i

)T
G(i)(t)

}
.

Hence

X
(i)
i (t+ 1) = arg min

X(i)

{
Ji(X(i)) + ρ

(
X(i)

)T
MiX

(i) −
(
X(i)

)T
B(i)(t+ 1)

}
,

where
B(i)(t+ 1) = 2ρMiX

(i)(t)−G(i)(t)− 2F (i)(t+ 1) .

A.7 Proof of Proposition 4.8.1

The proof of Proposition 4.8.1 relies on the time scale separation of the dynamic of the
xi’s and of the auxiliary variables x(i)

j ’s, gi’s and g(i)
j ’s, and fully exploits the following
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Lemma A.7.1. Consider the dynamical system[
x(t+ 1)
y(t+ 1)

]
=
[
I εB

C(t) F (t)

] [
x(t)
y(t)

]
(A.6)

Let the following assumptions hold

1. ∀x,∃!y : y = C(t)x + F (t)y,∀t. As a consequence, we can write y = Gx;

2. the system
z(t+ 1) = F (t)z(t) (A.7)

is asymptotically stable;

3. the system
ξ̇(t) = −BGξ(t) (A.8)

is asymptotically stable.

Then, there exists εmax, with 0 < ε < εmax such that the origin is an asymptotically stable
equilibrium for the system (A.6).

We are now ready to prove Proposition 4.8.1 which states the following.

Proposition. Let Assumption 4.4.1 hold. Consider Problem (4.2) and the r-BJ algorithm.
There exists εmax such that, if 0 < ε < εmax, then, for any x(0) ∈ Rn, the trajectory x(t),
generated by the BJ algorithm, converges exponentially fast to the minimizer of Problem
(4.2), i.e.,

‖x(t)− xopt.‖ ≤ cρt

for some constants c > 0 and 0 < ρ < 1.

Proof. Let us define

gopt. := Axopt. − b , g(i)
opt.,j := gopt.,j , x(i)

opt.,j = xopt.,j ,

and consider the change of variables

x̃ = x− xopt. , x̃(i)
j = x(i)

j − xopt.,j

g̃ = g− gopt. , g̃(i)
j = g(i)

j − gopt.,j
(A.9)

Let us collect all the auxiliary variables x̃(i)
j ’s, g̃’s and g̃(i)

j ’s in the vector ỹ. Then,
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Algorithm 5 dynamic can be expressed as[
x̃(t+ 1)
ỹ(t+ 1)

]
=
[
I εB

C(t) F (t)

] [
x̃(t)
ỹ(t)

]
(A.10)

The proof’s aim is to show that the system (A.10) satisfies the hypotheses of Lemma
A.6. In (A.10), x̃ will be the variable with a slow dynamic, while ỹ will be the variable
with a fast dynamic.
Now, fix the slow variable value x̃ = x̄. It can be shown that the vector ỹ(x̄) that stacks the
values x̃(i)

j = x̄j , g̃ = Ax̄, g̃(i)
j = g̃j , satisfies the condition ỹ(x̄) = C(t)x̄+D(t)ỹ(x̃), ∀t, x̄.

Furthermore, it can be easily found a matrix G such that ỹ(x̄) = Gx̄.
For what concerns the dynamic of the fast variables ỹ, because of Assumption 4.4.1, we
have that after a time lower or equal to 2T + 1, ỹ will reach the value ỹ(x̄) = Gx̄. In fact,
exploiting (4.20), (4.21) and the change of variables (A.9), in the worst case, T iteration
are necessary to have x̃(i)

j = x̄j , ∀i. After that, one iteration is necessary to compute
g̃ = Ax̄ and finally T iteration are necessary to have g̃(i)

j = g̃j ,∀i. As a result, the fast
variable dynamic is exponentially stable, reaching the equilibrium in a finite number of
iteration. That is, fixed x̄, we have

ỹ(t) = Gx̄, ∀t ≥ 2T + 1 (A.11)

Furthermore, from (A.6) we have that

ỹ(t) =
t−1∏
k=0

F (k)y(0) +
t−1∏
k=1

F (k)C(0)x̄ + · · ·+
t−1∏
k=2

F (k)C(1)x̄ + . . . C(0)x̄

=
t−1∏
k=0

F (k)y(0) + Φx̄ (A.12)

Since equation (A.11) is satisfied for every initial condition y(0), it turns out that

t−1∏
k=0

F (k)y(0) = 0

for every y(0) and for every sequence F (0), . . . , F (t− 1). As a consequence, the system
(A.7) is asymptotically stable.
Now, consider the dynamical system

ξ̇(t) = −BGξ(t) . (A.13)
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It can be shown that
BG = D−1ATR−1A

and thus, choosing as a Lyapunov function

V (ξ) = ξT
ATR−1A

2 ξ ,

we can see that system (A.13) is asymptotically stable. As a result, system (A.10) satisfies
the hypotheses of Lemma A.6, and thus there exists εmax, with 0 < ε < εmax such that,
by using the robust block Jacobi Algorithm 5,

lim
t→∞

x(t) = xopt. .

A.8 Proof of Lemma 5.9.1

Lemma. Consider f̃α,ε as in (5.19). Then, it holds that

lim
α→+∞
ε→0+

f̃α,ε(x) = ‖x‖∞ .

Proof. In the following, we will prove the result by first taking the limit for α followed
by the limit for ε. It is easy to show, thanks to a Taylor series expansion of f̃α,ε around
ε = 0, that exchanging the order of the limits does not change the result.
Consider the function

f̃α,ε(x) = 1
α

log
(

1
n

∑
i

exp(α|xi|1+ε)
)
.

Let us define |x|1+ε
max := maxi |xi|1+ε. It is possible to rewrite

f̃α,ε(x) = |x|1+ε
max + 1

α
log

( 1
n

∑
i

exp
(
α(|xi|1+ε − |x|1+ε

max︸ ︷︷ ︸
≤0

)
))

.

Now, since the exponent in the second term is always < 0 except for the components
where the maximum is attained which are exactly equal to 0, we have

lim
α→+∞

f̃α,ε = |x|1+ε
max .
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Finally, the Taylor series expansion around ε = 0+ of |x|1+ε
max is equal to

|x|max +
∑
n

1
n! |x|max logn(|x|max)εn −→

ε→0+
|x|max .

which concludes the proof.

A.9 Proof of Lemma 5.9.2

Lemma (Strong convexity of fα,ε). Consider the function fα,ε : Rn` 7→ R defined as in
(5.20). Then, for all 0 < ε ≤ 1 and for all α > 0, fα,ε is strongly convex in x.

Proof. To prove strong convexity fα,ε(x) we exploit the second order characterization of
strong convexity which states that a function is strongly convex if and only if

∇2
xfα,ε(x)−mI is positive semidefinite.

for some m > 0. The Hessian of fα,ε is indeed a diagonal matrix whose i-th diagonal
entry is equal to

α(1 + ε) exp(α|xi|1+ε)︸ ︷︷ ︸
>0

(
ε
|xi|ε

|xi|
+ α(1 + ε)|xi|2ε

)
.

Note that, the entire expression can fail to be positive only if the second term in the right
hand side fails to be positive. Moreover, the only possible point of failure is xi = 0 where
we encounter a 0

0 limit. However, being |xi|ε = o(|xi|) for any finite value 0 < ε ≤ 1, we
have that

∂2fα,ε(x)
∂x2

i

−→
|xi|→0

+∞ .

Now, since each diagonal component is bounded below by a positive mi > 0, by taking
m := mini mi we can conclude for strong convexity.

A.10 Proof of Proposition 5.10.2

Proposition (Convergence of the dual ascent algorithm). Consider Problem (5.24) and
assume that Slater’s condition holds, namely, a strictly feasible solution for (5.24) exists.
Then, there exists ρ such that for any ρ ≤ ρ, the dual ascent algorithm (5.25) converges
to the optimal solution of (5.24).
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Proof. First of all, we recall that assuming Slater’s conditions hold there is zero duality
gap zero, i.e. solving the primal problem (5.24) is equivalent to solve its dual problem
which is defined as

maximize
λ

d(λ) := inf
x

fα,ε(x) + λT
(
Ax− b

)
, (A.14)

s.t. λ ≥ 0 .

where A :=
[
ΞT (ΞQcrit)T

]T
and b :=

[
χT ϕT

]T
. Moreover, thanks to strong convexity

of fα,ε, the solution is unique. Thanks to Proposition 6.1.1 in Bertsekas (2008), it follows
that d is everywhere continuously differentiable and, moreover

∇λd(λ) = Ax∗λ − b

where x∗λ := argminx fα,ε(x) + λT g(x). In addition, the dual ascent algorithm (5.25)
coincides with a gradient projected Bertsekas (2008) applied to (A.14) which, thanks to
Proposition 2.3.2 in Bertsekas (2008), is known to converge, for sufficiently small step
sizes, namely 0 < ρ < 2

L = ρ, if ∇λd is Lipschitz continuous with Lipschitz constant L.
To prove Lipschitz continuity of ∇λd, observe that it is linear respect to x∗λ. Then, we
just need Lipschitz continuity of x∗λ respect to λ. From the definition of x∗λ and thanks
to first order optimality condition, it holds that

∇xfα,ε(x∗λ) = −ATλ .

By defining ζ := −ATλ and recalling from (5.22) that each component of ∇xf is only a
function of xi, we have that

∂fα,ε(x∗λ)
∂xi

= ζi ,

and it is possible to reduce the analysis to show Lipschitz continuity of the i-th component
of x∗λ respect to ζi. Now, by being fα,ε twice continuously differentiable and thanks to
the inverse function theorem, ∂fα,ε/∂xi is invertible, namely

[x∗λ]i =
(
∂fα,ε
∂xi

)−1
(ζi) ,

its inverse is continuously differentiable and moreover

∂
(
(∂fα,ε/∂xi)−1)

∂xi
=
(
∂(∂fα,ε/∂xi)

∂xi

)−1
<

1
mi

,

where the last inequality holds since fα,ε is strongly convex. Then, x∗λ is Lipschitz
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continuous respect to ζ and so respect to λ being the former a linear function of the
latter.
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