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Distributed Optimization

Design of Multi-Agent based, Distributed, Scalable and Robust algorithms for
Large Scale Systems

Distributed
Requiring only local communications among the

“smart” agents, elements of the network

Scalable
Not requiring SW upgrade due to HW upgrade

Robust
Resilient to failure in the communication channel
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Localization:

I two algorithms, i.e., consensus-based and gradient-based
I proved exponential convergence to the optimal least-square solution (in

mean square sense) for random communications
I robustness (with exponential convergence) to packet losses and delays in

the communication channel for deterministic communications

State Estimation:

I two algorithms, i.e., ADMM-based and Block-Jacobi (generalized gradient)
I exponential convergence to the optimal (least-squares) solution
I Block-Jacobi: robust to packet losses and delays in the communication
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vh = νhejθh
ih = ιhejφh

sh = ph + jqh

Assumption 1.
Sync steady state regime

bhk
Assumption 2.
Highly inductive lines

yhk = ghk + jbhk ' jbhk

B: [B]hk = bhk, [B]hh = −
∑

k bhk + bhshunt susceptance matrix;
A graph incidence matrix;
v, i, s, ν, θ vector notation.
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Reactive Power Flow Equations (RPFEs)
(KCL + KVL) + PFEs

i = jBv , s = diag(v)i =⇒ s = diag(v)jBv

APFEs

p = diag(ν)B (diag(sinAθ)ν)

RPFEs

q = diag(ν)B (diag(cosAθ)ν)

Decoupling Assumption:
‖Aθ‖∞ ≤ γ , γ ∈ [0, π2 [

q = diag(ν)Bν

We are interested only
in the relation between
voltage amplitudes ν
and reactive power q
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generators (PV nodes)
`oads (PQ nodes)

B =

[
B`` B`g
Bg` Bgg

]
, ν =

[
ν`
νg

]
, q =

[
q`
qg

]

Load RPFEs

q` = −diag(ν`) (B``ν` + B`gνg)

= −diag(ν`)B`` (ν` − ν∗` )

Open Circuit Solution

ν∗` := −B
−1
`` B`gνg = ν`|q`=0

bhk

νh

qh bshunt 
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Voltage Support

Standard (Security) Requirement

Load buses voltage magnitudes ν` must lie within a predefined
percentage deviation α from a reference voltage νN

‖ν` − νN1‖∞
νN

≤ α

Reasons:
I loads and some components are designed to operate with a voltage in a

narrow region around the network base voltage
I a flat voltage profile minimizes current flows and power losses
I a flat profile usually reduces the sensitivity of the voltage profile with respect

to load changes
I by conventional wisdom, a flat voltage profile indicates safety from voltage

collapse
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Mechanical Equivalent

Vo
lta

ge

Voltage Collapse Boundary
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Security Requirement Inadequacy

νN

νl

b

ql bshunt

Figure: 2 buses case: one generator νN, one load
(ν`, q`), one line b and, possibly, one shunt bshunt
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Security Requirement Inadequacy
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Stress Minimization

Idea: minimize distance from ν∗` subject to operational (security) requirement

Control variables: additional finite amount of reactive power qctrl at load buses

Stress Minimization

minimize
qctrl

‖ν` − ν∗`‖∞

subject to


security requirement
q ≤ qctrl ≤ q (injection limits)
Load RPFEs

Stress Minimization

minimize
qctrl

‖ν` − ν∗`‖∞

subject to


security requirement
q ≤ qctrl ≤ q (injection limits)
Load RPFEs

‖ν` − ν∗`‖∞

Stress Cost/Measure

Issues:
I non linear
I non convex
I hard to solve

Load RPFEs
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Linearization

Assumption: q` + qctrl ' 0, i.e., loading + control overall su�ciently small

First Order Solution (of Load RPFEs)

ν̂` = diag(ν∗` )
(
1︸ ︷︷ ︸

o.c. solution

+ Q−1(q` + qctrl)
)︸ ︷︷ ︸

linear dev. in the loads

Q := diag(ν∗` )B``diag(ν∗` ) : weighted grounded laplacian matrix.
It is sparse and encodes the “sti�ness” of the grid

Stress Cost

‖ν` − ν∗`‖∞

Security Requirement

‖ν` − νN1‖∞
νN

≤ α

Stress Cost

‖Q−1(q` + qctrl)‖∞

Security Requirement

ξ ≤ Q−1qctrl ≤ ξ
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Convex Stress Minimization

Convex Stress Minimization

minimize
qctrl

‖Q−1(q` + qctrl)‖∞

subject to

{
ξ ≤ Q−1qctrl ≤ ξ

q ≤ qctrl ≤ q (injection limits)
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On the Stress Cost

‖Q−1(q` + qctrl)‖∞

In this context, it has been derived in the most natural way, i.e., as approximation
of the distance between the open circuit solution and the current operating
condition

However, it has been formally proved 1 that it represents an index related to the
existence of a solution of the nonlinear RPFEs at the loads.

1J. W. Simpson-Porco, F. Dörfler, and F. Bullo, “Voltage collapse in complex power grids,” Nature
Communications, Mar. 2015, to appear.
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The Planning Problem

Motivations: limited number of expensive resources

Goal: account for the number of available resources and optimally allocate them

Idea: use re-weighted `1-norm — convex approximation of card(·)

Sparse Stress Minimization

minimize
qctrl

‖Q−1(q` + qctrl)‖∞ + γ‖diag (w(qctrl))qctrl‖1

subject to

{
ξ ≤ Q−1qctrl ≤ ξ

q ≤ qctrl ≤ q

re−weighted `1−norm︷ ︸︸ ︷
sparsity parameter
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Simulations: Planning

γ = 0

i generators
loads
controllers
− increasing load absorption
− increasing load injection
no load

γ = 4 · 10−4

γ = 8 · 10−4
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Simulations: Stress Minimization
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Preliminaries

Motivations:
I privacy: utilities might not want to share unecessary info
I feedback control: track time-varying loads

Goal: implement a distributed implementation for stress minimization

Assumptions:
1. every load equipped with a smart-agent with mild computing and

communication capabilities
2. comminication graph built to coincide with the electric graph
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Non sparse structure

Previous formulation (in injection coordinate):

minimize
qctrl

‖Q−1(q` + qctrl)‖∞

Issue: Q−1 dense (full) matrix ⇒ to compute cost and constraint we need info
coming from all the loads

Idea: Q sparse with pattern of the adjacency of the graph connecting the loads
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Reformulation - voltage coordinate

Voltage deviations: x := Q−1(q` + qctrl) =⇒ qctrl = Qx− q`

Security requirements: ξ ≤ Q−1qctrl ≤ ξ =⇒ x ≤ x ≤ x

Injection limits: q ≤ qctrl ≤ q =⇒ q ≤ Qx− q` ≤ q

Online Stress Minimization (in voltage coordinate)

minimize
x

‖x‖∞

subject to

{
x ≤ x ≤ x
q ≤ Qx− q` ≤ q
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A smooth approximation for∞-norm
Final Goal: Implement a gradient-based distributed strategy to solve for online
stress minimization

Issue: ∞-norm not di�erentiable

Idea: exploit a smooth approximation: softmax + | · | exponentiation

A smooth decomposable approximation for∞-norm

Consider the function f̃α,ε(x) defined, for 1� α, 0 < ε� 1, as

f̃α,ε(x) := softmaxα(|x|1+ε) =
1
α
log

(
1
n

n∑
i=1

exp
(
α|xi|1+ε

))

then it holds that
lim

α→+∞
ε→0+

f̃α,ε(x) = ‖x‖∞

Moreover, consider fα,ε(x) := n exp
(
αf̃α,ε(x)

)
. Then, argminx f̃ ≡ argminx f .
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A Distributed primal-dual feedback controller

Smooth Stress Minimization

minimize
x

fα,ε(x) (1)

subject to

{
x ≤ x ≤ x (volt. constr.)
q ≤ Qx− q` ≤ q (inj. constr.)

Lagrangian: L(x,λ,µ) = fα,ε(x) + λT(volt. constr.) + µT(inj. constr.)

Dual Ascent algorithm

x(t+ 1) = argmin
x

L(x,λ(t),µ(t))

λ(t+ 1) =
[
λ(t) + ρ

(
volt. constr.|x(t+1)

)]+
µ(t+ 1) =

[
µ(t) + ρ

(
inj. constr.|x(t+1)

)]+

Convergence:
Assume Slater’s conditions
hold. Then, ∃ρ s.t. ∀ρ ≤ ρ the
primal-dual algorithm con-
verges to the solution of (1)
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Sketch of proof
Note: we reload the notation. Ax− b denote all the constraints. λ all the multipliers.

1. Assuming Slater’s conditions there is zero duality gap, i.e., solving primal and
dual problem is equivalent

maximize
λ

d(λ) := inf
x

f (x) + λT(Ax− b) subject to λ ≥ 0

2. Thanks to strong convexity of f ∃! solution
3. It is possible to show that d(λ) is continuously di�erentiable and that

∇λd(λ) = Ax∗λ − b x∗λ := argminx f + λT(Ax − b)

Moreover, being x∗λ Lipschitz in λ, so is ∇λd(λ) which is linear in x∗λ.
4. Finally, the dual ascent algorithm is a projected gradient on d(λ) which is

known to converge for a su�ciently small step size
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Controller scheme

GRID

Controller (load i)

z-1
qi(t)

yi(t)

qi(t+1)xj,µji

xi,µij

Controller (load j)

z-1
qj(t)

yj(t)

qj(t+1)

Figure: Feedback control scheme: reactive power measurements y are feedback to the
controller which, thanks to local exchange of information between neighbor controllers,
compute the new actuation value q
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Simulations - Load step
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Conclusions

Security requirement possible inadequacy

Novel optimization framework accounting for

I stress minimization

I optimal planning

Distributed implementation trough feedback control
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Thank you
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