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Summary

The interest in HVAC (Heating, Ventilation and Air-Conditioning) technology

has rapidly increased in the last years. HVAC systems have become important

in the design of medium-large buildings in order to ensure thermal comfort

in the environments with respect to the temperature and humidity of the air.

Control, optimisation and maintenance procedures are fundamental in HVAC

systems in order to guarantee people comfort and energy efficient solutions in

their management.

Two different topics are covered in this thesis.

Energy Efficient Control of Ice Thermal Energy Storage Systems

HVAC plants have recently begun to be matched with thermal energy stor-

age systems. If properly designed, installed, and maintained, these systems can

be used to store energy when its cost is low and exploiting it when the price

increases. In particular, in HVAC cooling systems, a common thermal storage

medium is ice. From a control and optimisation point of view, a cooling plant

with ice storage proves to be a complex system. Standard control strategies

seem not to be able to achieve the right trade-off between energy efficiency and

demand satisfaction.

In this thesis, in order to design efficient control strategies for storage sys-

tems, a HVAC model with ice storage is developed in a simulation environ-

ment. The thermal behaviour of the HVAC system is derived from the mass

and energy conservation equations; in particular the ice storage is considered

a hybrid system, thus taking into consideration both sensible and latent heat.

Three standard control methods are compared with a non-linear predictive con-
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trol strategy. The simulations results show that the implemented non-linear

predictive control strategy provides the best control for the efficient energy

management of ice storage systems.

Fault Detection in HVAC Systems

Operating problems associated with degraded equipment, poor mainte-

nance, and improperly implemented controls, plague many HVAC systems.

Fault detection methods can therefore play a key role in monitoring complex

HVAC plants, detecting anomalous behaviours in such a way as to keep the

systems in their best operational conditions with minimum costs.

In this thesis, fault detection and diagnosis methods on variable air volume

(VAV) systems are first designed. To this aim, a VAV system model with two

zones is developed; the control of system is obtained with a direct feedback

linearisation technique. Supervised classification methods are used to detect

and diagnose the simulated faults in the model. The simulations results show

the good performances of the classification in the detection and diagnosis of

the most common faults in VAV systems.

Detection methods are then developed for the most relevant faults affecting

chillers. To this aim, data collected in the research project 1043-RP promoted

by ASHRAE (American Society of Heating, Refrigerating and Air Conditioning

Engineers) are used. In this project experimental studies were conducted on

a centrifugal water-cooled chiller in order to collect data in both normal and

faulty situations. The developed technique is based on one-class classification

methods with a novelty detection approach, where only normal data are used

to characterize the correct system behaviour. The classification results confirm

the effectiveness of the proposed method for the detection of the most common

faults in chillers.



Sommario

Negli ultimi anni l’interesse per la tecnologia HVAC (Heating, Ventilation and

Air-Conditioning) è rapidamente cresciuto. I sistemi HVAC sono diventati im-

portanti nella progettazione di edifici medio-grandi al fine di assicurare comfort

termico negli ambienti rispetto alla temperatura e umidità dell’aria. Procedu-

re di controllo, ottimizzazione e manutenzione sono fondamentali nei sistemi

HVAC al fine di garantire il comfort delle persone e soluzioni energeticamente

efficienti nella loro gestione.

In questa tesi vengono trattati due diversi argomenti.

Controllo Energeticamente Efficiente di Sistemi ad Accumulo di

Energia Termica a Ghiaccio

Recentemente si è cominciato ad abbinare impianti HVAC con sistemi ad

accumulo di energia termica. Se adeguatamente progettati, installati e man-

tenuti, questi sistemi possono essere usati per accumulare energia quando il

suo costo è basso e sfruttandola quando il prezzo aumenta. In particolare, nei

sistemi HVAC per raffreddamento, un mezzo diffuso per accumulo termico è il

ghiaccio. Da un punto di vista di controllo e ottimizzazione, un impianto per

raffreddamento con accumulo a ghiaccio si dimostra essere un sistema comples-

so. Strategie di controllo standard non sembrano essere capaci di ottenere il

giusto compromesso tra efficienza energetica e soddisfacimento della domanda.

In questa tesi, al fine di progettare strategie di controllo efficiente per si-

stemi con accumulo, si sviluppa in un ambiente di simulazione un modello

HVAC con accumulo a ghiaccio. Il comportamento termico del sistema HVAC

viene derivato dalle equazioni di conservazione di massa e energia; in parti-
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colare l’accumulo a ghiaccio viene considerato un sistema ibrido, tenendo così

in considerazione sia il calore sensibile sia quello latente. Tre metodi di con-

trollo standard vengono confrontati con una strategia di controllo predittivo

non-lineare. I risultati delle simulazioni mostrano che la strategia di control-

lo predittivo non-lineare implementata fornisce il migliore controllo per una

gestione energeticamente efficiente di sistemi con accumulo a ghiaccio.

Rilevamento Guasti in Sistemi HVAC

Problemi di funzionamento associati ad apparati degradati, scarsa ma-

nutenzione, e controlli erroneamente implementati, affliggono molti sistemi

HVAC. Metodi di rilevamento guasti possono dunque giocare un ruolo chiave

nel monitorare impianti HVAC complessi, rilevando comportamenti anomali

in modo da mantenere i sistemi nelle loro migliori condizioni operative a costo

minimo.

In questa tesi vengono dapprima progettati metodi di rilevamento e diagno-

si guasti su sistemi a tutta aria a portata variabile (VAV-Variable Air Volume).

A questo scopo, viene sviluppato un modello di un sistema VAV con due zo-

ne; il controllo del sistema viene ottenuto con una tecnica di direct feedback

linearisation. Metodi di classificazione supervisionati vengono usati per rile-

vare e diagnosticare i guasti simulati nel modello. I risultati delle simulazioni

mostrano le buone performance della classificazione nel rilevamento e diagnosi

dei guasti più diffusi nei sistemi VAV.

Vengono successivamente sviluppati metodi di rilevamento per i guasti più

rilevanti che affliggono i refrigeratori di liquido (chiller). A questo scopo, ven-

gono utilizzati i dati raccolti nel progetto di ricerca 1043-RP promosso da

ASHRAE (American Society of Heating, Refrigerating and Air Conditioning

Engineers). In questo progetto sono stati condotti studi sperimentali su un

chiller centrifugo raffreddato ad acqua al fine di raccogliere dati sia in situa-

zioni normali sia in situazioni in presenza di guasto. La tecnica sviluppata

si basa su metodi di classificazione a una classe con un approccio di novelty

detection, dove solamente dati normali vengono utilizzati per caratterizzare il

comportamento corretto del sistema. I risultati di classificazione conferma-

no l’efficacia del metodo proposto per il rilevamento dei guasti più diffusi nei

chiller.
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HVAC (Heating, Ventilation, and Air Conditioning) systems are important

in the design of medium and large buildings, such as hospitals, factories, etc.

where safe and healthy conditions are regulated with respect to temperature

and humidity. HVAC systems operating principles are based on the laws of

thermodynamics, and on many discoveries and inventions that have been made

since the end of 1800s.

In this introductory chapter, first the main components of the HVAC sys-

tems are described. Many of the listed components will be considered for

study and modeling in this thesis. A possible distinction between HVAC sys-

tems is then done, based on the fluid that is used to exchange heat with the

environment [29]. Since in this thesis HVAC cooling mode operations will be

considered, the vapour-compression cycle is finally described, since it is used

in most HVAC refrigerating units.

HVAC Components

Boilers A boiler is a closed container in which the water, or another fluid,

is heated under pressure. The fluid is then circulated out of the boiler in a

system of ducts to be used in different applications related to heating.

Chillers A chiller is a machine that removes heat from a liquid through a

vapour compression cycle, or through a heat absorption cycle. The liquid that

is cooled is usually water, although there can be other substances in a vari-

able percentage, as inhibitors of corrosion or other additives. The cold outlet

water from the chiller is then used to cool and dehumidify the air in com-

mercial, industrial and institutional buildings of medium and large size or for

other applications in the field of refrigeration. Different plant configurations

can be found: some chillers are “assembled” on site, since the chiller compo-

nents (compressor, heat exchangers, etc.) are purchased separately and then

assembled in a specific place; mono-bloc chillers (more recently used) are in-

stead sold as single machines already assembled that are simply connected to

the system. Depending on the mode of heat exchange with the external envi-

ronment, chillers are also divided into air-condensed ones (heat is transferred

to the outside air, Figure 1) and water-condensed ones, where the heat is ex-

tracted from the environment to be transferred to a second water circuit with

cooling towers.



4 HVAC Systems

Figure 1: Air-condensed chiller by Rhoss S.P.A.

Air conditioners An air conditioner is a device designed to extract or pro-

vide heat in the environments. Air conditioners are mainly used as heating

and cooling household systems and for the cooling inside vehicles. A system

that, in addition to conditioning, also guarantees the control of heating and

ventilation becomes a HVAC system.

Air ducts Air ducts are used to provide and remove air in the environments.

Appropriate air quality and speed are very important in order to ensure people

thermal comfort. To this end, air ducts usually have filtering systems to remove

dust and bacteria in the air that is introduced in the zones.

Diffusers A diffuser is a mechanical device that is designed to control the

characteristics of a fluid at the entrance of the rooms. Diffusers are used to

slow the fluid’s velocity, to enhance its mixing into the surrounding fluid and

then to distribute the air flow in the desired directions in the rooms. Diffusers

usually have different forms, depending on the specific application.

Air-filters Filters are useful for removing contaminants from air, mainly

solid particles such as dust, pollen, mold and bacteria. The materials used for

filtering may be of different types. They range from fibers, such as cotton, to

other materials that attract particles by means of static electricity.

Grids Grids are part of the terminals of an air distribution system, being

mainly used as input units of the exhaust air in the ducts. In some cases, grids

can also be used as exit points for the air that is supplied into the zones.

Radiant panels Radiant panel heating systems provide heat through pipes

located behind the surfaces of the environments. Three kinds of radiant heating
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can be distinguished:

• radiant floor heating: a hydraulic circuit with water temperature of

30/40◦C flows under the floor; floor panels are mainly used in residential

buildings;

• radiant wall heating: wall panels are mainly used as integration of other

heating systems such as those behind the floor, for balancing the high

heat losses in certain environments;

• radiant ceiling heating: ceiling panels are used where there is the need

to heat very large rooms (industrial buildings, etc. ).

Pumps A pump is a device that moves fluid by mechanical action. Pumps

usually operate by reciprocating or rotary mechanism and they can operate

at a constant speed, or offer a variety of speeds, depending on the specific

application.

Heat exchangers A heat exchanger is a device built to exchange heat effi-

ciently from one fluid to another, without any mixing between the two fluids.

Heat exchangers often take the name of cooling coils (or heating), for the form

often adopted by the pipes. The most commonly employed fluids are water, a

solution of glycol and water, steam or refrigerant, depending on the particular

application.

Cooling towers Cooling towers (Figure 2) are heat removal devices used to

transfer process heat to the atmosphere. Cooling towers use the evaporation of

water to remove heat and cool the working fluid to near the wet-bulb air tem-

perature. They are mainly used coupled with water-condensed chiller systems

in order to reject to the atmosphere the heat from the building zones.

Pipes Pipes are used for the transport of fluids. Pipe materials may be

different: glass, aluminium, steel, plastic. In the pipes there may be different

components, such as valves or other equipment, which typically measure and

control the pressure, flow and temperature of the fluid.

Humidifiers A humidifier is a device that increases humidity in the envi-

ronments. The most common humidifier, the “evaporative” one, consists of

few basic parts: a reservoir, a wick and a fan. The wick is made of a porous
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Figure 2: Cooling tower by Rhoss S.P.A.

material that absorbs water from the reservoir and provides a large surface

area. The fan blows air onto the wick to ensure the evaporation of the water.

Dehumidifiers A dehumidifier is a device which reduces the level of humid-

ity in the air, usually for health or comfort reasons, or to eliminate dank smells.

Dehumidifiers extract water from the air, by cooling it and reaching the con-

densation temperature. A disposal system is needed to discard the condensate

water.

Air handling units An air handler, or Air Handling Unit (AHU), is a device

used to handle the air in a heating, ventilation, and air-conditioning system.

An air handler is usually a large metal box containing a blower, heating or cool-

ing elements, filters, sound attenuators, and dampers. The air that is treated

in air handling units is usually a mixture of recirculated air from environments

and external air. This solution allows both the renewal of the air in the rooms

(through the contribution of external air) and the reduction of energy con-

sumption. Usually the air handler is connected to ducts for air distribution,

carrying air throughout the building and then returning it to the AHU.

Valves A valve is a device that regulates, directs or controls the flow of a

fluid by opening, closing, or partially obstructing its passageways.

Fans A mechanical fan is a device used to create flow within a fluid (gas or

air). A fan usually consists of rotating blades which act to move the fluid.

Depending on their use, fans may operate at a single speed or offer a variety

of speeds.
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Dampers A damper is a particular valve or plate that stops or regulates the

air flow inside a duct, or other air handling equipments. In particular, dampers

are used to control the air flow that enters in the zones of a building.

Tanks Tanks are often employed within HVAC systems to provide additional

system fluid volume in order to increase system inertia and prevent short cy-

cling of heating or cooling apparatus.

Thermal energy storages Thermal energy storage technology is used to

store energy (with a storage medium) when energy costs are high. The stored

energy is used during the on-peak period when the energy price increases. If the

thermal energy storage is well managed through smart control and optimisation

procedures, it can ensure reduced energy costs and energy consumption, and

decreased maintenance costs for the HVAC system.

HVAC Systems Classification

The classification of air conditioning systems can be made according to the fluid

used to regulate the temperature and humidity in the environments. Using this

criterion we can distinguish [29]:

All-air systems

All-air systems are the most common installations for heating and cooling ap-

plications. They control the air temperature of the zones by supplying heating

or cooling air from a central source via a network of air ducts. These systems

increase or decrease the room temperatures by changing either the volume or

temperature of the supplied air. Since air velocity is important for thermal

comfort, most buildings that require cooling employ all-air systems, providing

the best control of the quality, temperature and humidity of the air. The com-

ponents of an all-air HVAC system usually include an air handling unit which

includes a fan, heating and cooling coils, filters to clean the air, and often

elements to humidify it. Dehumidification, when required, is accomplished by

cooling the air below the dew-point temperature and then reheating it. The

conditioned air from the AHU is supplied to the spaces by a network of air

ducts and then air returns from the conditioned spaces through a parallel net-

work of return-air ducts. All-air systems also include a duct which supplies
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external air to the AHU and one which pulls out some or all of the exhaust air

to the external environment.

All-water systems

Water can be used for carrying energy in both heating and cooling systems.

Water actually carries more energy per unit volume than air and therefore

requires the least space for piping. All-water distribution systems have a

relatively low installation cost when compared to all-air systems. The min-

imal space required for distribution piping makes them an excellent choice for

retrofit installation in existing buildings or in structures with significant space

constraints. The disadvantage of these systems is that they provide little or

no control over air quality and humidity.

Air and water systems

All-water systems usually provide low humidity levels during winter, while

humidity values are closely related to internal loads during summer. Therefore,

when an accurate humidity control is required, mixed air-water installations

can be used [29].

The Refrigeration Cycle

The refrigeration cycle is the key process for HVAC applications that require

cooling and dehumidification. The vapour-compression refrigeration cycle is

used in most household air-conditioning systems as well as in many large com-

mercial and industrial chiller systems. Figure 3 shows the vapour-compression

refrigeration cycle: it consists of compressor, condenser, expansion valve and

evaporator.

Compressor

The mechanical compressor has two main tasks:

• to pump refrigerant through the cooling system;

• to compress gaseous refrigerant in the system so that it can be condensed

to liquid releasing the absorbed heat from the building environments.
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Condenser

Condensers are typically refrigerant-to-air (in air-cooled systems) or refrigerant-

to-water (in water-cooled systems) heat exchangers which are used to get rid

of the heat extracted from the interior of the buildings. The condenser re-

ceives the high-pressure gas from the compressor and convert this gas to a

liquid: air or water passing over the condenser coils carries off the heat and as

a consequence the gas condenses.

Expansion valve

Expansion valves are flow-restricting devices that cause a pressure drop of the

refrigerant. In fact, the refrigerant enters the valve as a high-pressure liquid.

The refrigerant flow is then restricted by an orifice, causing its change from a

high-pressure liquid to a low-pressure liquid. After leaving the expansion valve

the refrigerant enters the evaporator.

Evaporator

The evaporator is a heat exchanger that allows the refrigerant to evaporate

from liquid to gas while absorbing heat coming from the environments: when

the liquid refrigerant reaches the evaporator its pressure has been reduced by

the expansion valve, dissipating its heat content; this causes the refrigerant to

absorb heat from the environments and then to vaporize. The absorbed heat

is then carried by the refrigerant from the evaporator to the compressor, from

which the whole refrigeration cycle is repeated.

The thermodynamic properties of the cycle can be analysed on the diagram

shown in Figure 4, [29]. From point 1 to point 2, the vapour is compressed at

constant entropy and exits the compressor superheated. From point 2 to point

3 and on to point 4, the superheated vapour travels through the condenser

which first cools the vapour and then condenses it into a liquid by removing

additional heat at constant pressure and temperature. Between points 4 and

5, the liquid refrigerant goes through the expansion valve where its pressure

abruptly decreases. That results in a mixture of liquid and vapour at a lower

temperature and pressure as shown at point 5. The cold liquid-vapour mixture

then travels through the evaporator coils and it becomes vaporized by cooling

the warm air. The resulting refrigerant vapour returns to the compressor at

point 1 to complete the thermodynamic cycle.
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Figure 3: Vapour-compression refrigeration system.

Figure 4: Thermodynamics of the vapour-compression cycle.



Part I

Energy Efficient Control of Ice

Thermal Energy Storage

Systems





1
Introduction

HVAC (Heating, Ventilation, and Air Conditioning) systems are designed to

ensure safe and healthy conditions in the environments of medium and large

buildings. The three tasks of Heating, Ventilation, and Air-Conditioning are

interrelated, guaranteeing people thermal comfort and providing good air qual-

ity.

A fundamental point to consider for HVAC plants is their energy consump-

tion, making extremely important to obtain the best use of the operative units.

To minimise energy consumptions, optimisation procedures are required, whose

objective is to define the operational procedures that lead to the fulfillment of

the desired conditions by minimising operating costs of the system. HVAC

systems have to provide healthy and comfortable conditions for the occupants,

but this must be done efficiently by using the available resources and reducing

the emission of pollutants into the air and water. It comes as no surprise that

much of HVAC control and optimisation is a compromise: a trade-off that re-

sults in reasonable comfort at minimum energy use (Figure 1.1) and financial

costs.

Recently, energy efficiency politics have encouraged the adoption of differ-

ent time slots of energy prices. In order to exploit low price slots, HVAC plants

have begun to be matched with Thermal Energy Storage (TES) systems. Such

systems allow accumulating energy and using it in subsequent moments. The

use of TES systems often results in significant benefits, such as: reduced en-

ergy costs and energy consumption, increased flexibility of operation, decreased

initial and maintenance costs, reduced equipment size, more efficient and effec-

tive utilization of equipment, conservation of fossil fuels (by facilitating more

efficient energy use) and reduced pollutant emissions (e.g. CO2) [9], [30].

In particular, in HVAC cooling systems, a popular thermal storage medium



14 Introduction

Figure 1.1: Energy-Violation of comfort: optimisation techniques ensure ac-

ceptable comfort levels with reduced energy costs.

is ice: the cooling capacity of an ice Cold TES (ice-CTES) system under total

freezing is 18 times as high as that of a water-CTES system operating between

12◦C and 7◦C [10]. An ice-CTES has operating phases, namely, a charging

phase where (typically at night) heat is removed from water to produce ice,

and a discharging phase, where, when the building requires cooling, heat is re-

moved from the building and added to the ice. The melted ice is reused during

the next charging period. The advantage of this cooling scheme is that the

main electrically driven device in cooling systems, namely, the compressor, is

operated during low-electrical cost periods, i.e. at night [10]. However, experi-

ence with operating TES systems demonstrates that poor design and operation

of the control systems can lead to bad energy efficiency [1]. It is worthwhile

noting that a cooling plant with TES is a complex system. Highly non-linear

behaviour and strong cross coupling of inputs and outputs make its modeling

and control a non-trivial task. Classical control design methods seem not to

be able to achieve the right trade-off between energy efficiency and demand

satisfaction: they can not provide reasonable comfort at minimum energy use

and financial costs.

Different approaches have been proposed in the literature in order to find

suitable controls for TES systems. In [15] a simulation environment for the

analysis of ice storage controls is presented. In [16] Henze et al. provide some

guidelines to obtain an improvement of TES system energy performances; these

guidelines are derived from the analysis of optimal control and its comparison

to TES system standard control strategies. In [14] a predictive control de-

sign for a three-story office building equipped with two chillers with constant
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coefficient of performance and a thermal energy storage system is illustrated.

In this part of the thesis, a model-based approach is developed to design ef-

ficient control strategies for HVAC systems equipped with ice-CTES. The ther-

mal behaviour of the HVAC plant is analysed by resorting to a lumped formu-

lation of the conservation equations and a simulation environment is designed

accordingly. The contribution of this work is twofold. The first contribution re-

gards modeling of the ice-CTES. Differently from what has been proposed so far

in the literature, the ice-CTES is modelled as a hybrid system, where the water

phase transitions (solid-melting-liquid, liquid-freezing-solid) are described by

combining continuous and discrete dynamics, so that both latent and sensible

heats are considered. It is worth noting that the ice latent heat represents a

large portion of the total storage energy (i.e. 90%). However it is appropriate

to consider also the sensible heat portion in order to adequately evaluate the

energy efficiency of the HVAC system when operated with different control

strategies. The second contribution is the comparison, in the developed sim-

ulation environment, of three standard control strategies (constant-proportion

control, chiller-priority control and storage-priority control) and an advanced

control strategy based on Model Predictive Control (MPC), which has been

successfully used in building cooling systems with water-TES, [23] and [24].

The optimisation step is developed by using a stochastic technique, the Parti-

cle Swarm Optimisation (PSO) algorithm, that has already been proved to be

a practical solution in energy-related industrial applications [3]. The simula-

tions show that model predictive control provides the best control solution for

the efficient management of ice-CTES systems.

The first part of thesis is organized as follows:

• In Chapter 2 the thermal energy storage technology is presented. The

differences between sensible and latent TES systems are highlighted.

Finally, two different management solutions (full-storage and partial-

storage) for TES systems are described.

• In Chapter 3 the considered ice cold thermal energy storage plant is

modelled. Standard control strategies for TES systems are compared

with a predictive control strategy, proving that MPC provides the best

control in terms of energy efficiency and demand satisfaction.

• Some concluding remarks are given in Chapter 4.





2
Thermal Energy Storage

Thermal Energy Storage (TES) is one of the key technologies for energy conser-

vation, and therefore, it is of great practical importance for heating and cooling

thermal applications. TES technology is perhaps as old as civilization itself.

Since recorded time, people have harvested ice and stored it for subsequent

use. For example, during the fourth century BC, Persian engineers mastered

the technique of storing ice in the “Yakhchal” in the desert during summer.

The ice could be brought in during the winters from the nearby mountains,

but more often a wall close to the “Yakhchal” along east-west direction was

made. In winter, the water was channeled to the north side of the wall. The

cold temperatures and the shadow of the wall made the water freeze quickly.

The “Yakhchal” constructions had a domed shape above ground (Figure 2.1)

but had a subterranean storage space up to 5000 m3 that had thick walls

made out of a special mortar composed of sand, clay, egg whites, lime, goat

hair, and ash in specific proportions, and which were resistant to heat transfer.

The ice was then used to chill food during hot summer days and to make the

“Faloodeh”, the traditional Persian frozen dessert.

TES systems have been employed in more recent history for many ap-

plications, ranging from solar hot water storage to building air conditioning

systems. The TES technology has only recently been developed to a point

where it can have a significant impact on modern technology. It is a key com-

ponent of many successful thermal systems: a good TES should allow little

thermal losses, leading to energy savings, while permitting the highest reason-

able extraction efficiency of the stored thermal energy.
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Figure 2.1: “Yakhchal” in Yazd, Iran.

2.1 Cold Thermal Energy Storage

Cold Thermal Energy Storage (CTES) technology is an innovative way of stor-

ing night-time off-peak energy for daytime peak use for cooling applications,

becoming one of the primary means of addressing the electrical power imbal-

ance between high daytime demand and high night-time abundance. In many

locations, demand for electrical power peaks during summer. Often, at night,

the electricity is much less expensive. As a consequence, it is convenient to

store energy during night and release it during daytime, shifting peak cooling

loads to off-peak periods.

A CTES consists of a storage cold medium, a container, and input/output

devices. Containers must both retain the storage material and prevent losses

of thermal energy. Cooling energy can be stored either by chilling or freezing

water (or other materials as glycol and eutectic salts). Water is the storage

material of choice for a variety of practical and thermodynamic reasons, in-

cluding its ready availability, relative harmlessness, and its compatibility with

different equipments.

Two different CTES system typologies can be distinguished in HVAC plants:

• sensible CTES;

• latent CTES.
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Figure 2.2: Water and ice capacities.

2.1.1 Sensible CTES Systems

In sensible CTES, energy is stored or released by changing the temperature of

the storage medium. Each medium has its own advantages and disadvantages.

The high heat capacity of water (4.186 kJ/kg K) often makes water tanks

a logical choice for CTES systems that operate in a temperature range for

building cooling applications. The amount of energy stored in a sensible CTES

can be expressed as:

Q = mcp∆T = ρcpV∆T , (2.1)

where cp is the specific heat of the storage medium, ∆T is the temperature

change, V is the volume of the medium and ρ is its density.

2.1.2 Latent CTES Systems

In latent CTES, the heat transfer occurs when a substance changes from one

phase to another and the energy is stored by allowing the substance to change

its phase at a constant temperature. The main advantage of latent CTES

systems is a higher capacity with respect to sensible CTES systems (bringing

to a dimension reduction of the storage), and a smaller temperature operative

range since the heat transfer occurs at constant temperature. Figure 2.2 shows

that the cooling capacity of an ice-CTES system under total freezing is 18 times

as high as that of a water-CTES operating between 12◦C and 7◦C. It can be

seen that a big amount of energy can be exploited when water temperature

is 0◦C, when it is in two-phase conditions (transition time). The amount of

energy that can be exploited during the transition phases is:

Qtran = m · λ , (2.2)

where m is the mass of the medium and λ is the specific latent heat (e.g. in

the water λ = 334,4 kJ/kg).
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2.2 CTES Systems Management

Two different management solutions can be adopted when setting the operative

conditions of a CTES system.

2.2.1 Full-Storage CTES

A full-storage strategy shifts the entire peak cooling load to off-peak hours.

The system is typically designed to operate during night at full capacity during

all non-peak hours in order to charge the storage. Full-storage (load-shifting)

designs use storage to fully decouple the operation of cooling generating equip-

ment (e.g. chiller) from the peak cooling load. The peak cooling load is met

through the use (i.e. discharging) of the storage while the cooling generating

equipment is idle.

2.2.2 Partial-Storage CTES

In a partial-storage strategy, the cooling generating equipment (e.g. chiller)

operates to meet part of the peak-period cooling load, and the rest is met by

the storage. The chiller is sized at a smaller capacity than the design load.

Although partial-storage does not shift as much load (on a design day) as a full-

storage system, partial-storage systems can have lower initial costs, particularly

if the design incorporates smaller equipment by using low-temperature water

and cold-air distribution systems.

The following standard control strategies are usually adopted to manage

partial-storage CTES systems :

• Chiller-Priority Control (Figure 2.3(a)): The simplest of the existing con-

trol strategies for thermal energy storage is chiller-priority control. Here

the chiller runs continuously under conventional chiller control (direct

cooling), subject to a power-limit while the storage provides the remain-

ing cooling power if required. In this strategy a complete discharge of

the storage is not guaranteed.

• Constant-Proportion Control (Figure 2.3(b)): This strategy implies that

the storage meets a constant fraction of the cooling load under all con-

ditions. Thus, neither chiller nor the storage have priority in providing

cooling. Constant-proportion control is rather easy to implement by as-

signing a fixed fraction of the total temperature difference between the
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Figure 2.3: Partial-storage standard control strategies.

water supply and return flow to be realized by the storage and the re-

mainder by the chiller. Finding the best load fraction for each application

is a matter of trial and error. Caution should be exercised that the chiller

can always meet its load fraction.

• Storage-Priority Control (Figure 2.3(c)). Storage-priority control ex-

ploits as much stored energy as possible during the on-peak period. It is

generally defined as that control strategy that aims at fully discharging

the available storage capacity over the on-peak period. Chiller begins to

meet load only after the full discharge of the CTES.





3
Modeling and Control of Ice-CTES Systems

Modeling and control of TES systems play a key role in HVAC systems re-

search. By resorting to control and optimisation techniques, an efficient energy

management of TES systems can be achieved. Significant energy savings can

be obtained if the TES is well managed, whereas the electrical energy consump-

tion markedly increases without proper control and optimisation procedures.

An ice-CTES system is taken as a reference in this study. A partial-storage

management is adopted: during the night the storage is fully charged, while

during the daytime both storage and chiller are used to satisfy cooling demand.

A non-linear predictive control strategy is adopted to efficiently manage the

CTES discharging, whereas a simple PI-controller is used during the charging

phase: in fact in this system control design it is always useful to recharge the

ice-CTES completely for both high load and low load conditions coming in

the following daytime due to the low energy price during the night. A simple

controller can be used during the charging phase.

3.1 Plant Description and Modeling

In Figure 3.1 the block structure of the considered system is reported. We can

clearly distinguish:

• The energy production section: it consists of two parallel air-condensed

chillers. One chiller is used during night in order to charge the ice cold

thermal energy storage; during day the other one and the ice-CTES are

used together to satisfy cooling demand.

• The hydraulic section: a common primary-secondary pumping arrange-

ment with by-pass is adopted. The hydraulic section is composed of



24 Modeling and Control of Ice-CTES Systems

pipes, a temperature-modulating control valve and a diverting valve that

allows charging/discharging operations.

• The load section: the building thermal load and capacity are represented

in the simulation scheme by the load block and a water tank of suitable

capacity.

The following scenario is an example of a partial-storage system at nominal

conditions. During off-peak nighttime hours the nighttime-chiller (ChN) works

as ice maker: a glycol solution (e.g. 25% ethylene glycol) is pumped through

the chiller coils and the CTES in the chilled-water loop (VA-CD = 0, Figure

3.1). The -5◦C ethylene glycol produced by the chiller freezes the water con-

tained inside the CTES and charges it for use during the next day’s cooling.

Ice-making has the effect of de-rating the nominal chiller capacity by approx-

imately 30-35%. Compressor efficiency, however, varies only slightly because

lower nighttime temperatures result in cooler condensation temperatures and

help to keep the unit operating efficiently (reducing the compressor pressure

ratio). A full charging cycle of an ice tank requires approximately 6-12 hours,

depending on its size. During the discharge cycle in the following day (VA-CD

= 1, Figure 3.1), the glycol solution pre-cooled by the daytime-chiller (ChD)

is further cooled by the ice-CTES. The temperature-modulating valve, in the

bypass loop around the TES, permits a sufficient quantity of glycol solution to

bypass the storage, mixed with solution arriving from the CTES, and allows

one to achieve the desired temperature of the supplied glycol solution that is

distributed to the cooling devices (e.g. air-handler coils). The solution leaving

the building re-enters the chiller and is cooled again.

The thermal behaviour of the plant can be usefully analysed by a lumped

formulation of the conservation equations. The elements of the plant are simu-

lated through blocks, and the heat transfer processes are considered as concen-

trated inside the blocks. Furthermore, the following hypotheses are introduced:

• The water thermal properties are considered constant;

• The water is considered incompressible;

• The plant has constant water mass flow rate;

• Water tank and piping are considered adiabatic.
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Figure 3.1: Plant structure of the HVAC system.

The system dynamics are governed by the mass and energy conservation laws,

which are implemented as block equations for each component of the plant.

The dynamic behaviour of the plant is thus obtained solving the fluid flow

problem and the energy balance. The fluid flow problem consists only in the

determination of the mass flow rate and the equations for the k-th block may

be simply written as follows:

ṁi,k − ṁo,k = 0 , (3.1)

and therefore, for all k,

ṁk := ṁi,k = ṁo,k , (3.2)

where dependence on the time variable τ is omitted for notation convenience.

The energy equation is deduced from the conservation laws; for each block the

energy equation at time τ can be written as follows:

Q̇g,k + ṁi,kcplTi,k − ṁo,kcplTo,k − Q̇w,k − Q̇s,k = 0 . (3.3)

where:

• Q̇g,k is the amount of cooling power generated by the block;

• Q̇s,k is the time derivative of the amount of energy stored in the block;
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Nomenclature - Scripts.

C price of electricity [dW−1min−1] V volume [m3]
ChN nighttime-chiller VA-CD charging/discharging valve
ChD daytime-chiller VA-TES modulating control valve
cpl water specific heat [J kg−1K−1] Z part load factor [-]
cps ice specific heat [J kg−1K−1] α tuning coefficient [dK−2]
h tank well-mixed section fraction [-] β moving window weight factor [-]
HS CTES Hybrid System ∆ difference operator [-]
ṁ mass flow rate [kg s−1] ε efficiency [-]
N moving window size [-] λ specific latent heat [J kg−1]
PLR Part Load Ratio [-] ν VA-TES valve opening [-]
Q energy [J] ρ water density [kgm−3]
T water temperature [◦C] σ loss coefficient [K−1 s−1]
Tair air temperature [◦C] τ time [min]
Tc control horizon [min] τc tank section time constant [min]
Tp prediction horizon [min]

Nomenclature - Subscripts.

ch chiller n nominal
e electrical o outlet
f water tank or piping s accumulation or storage
g generation TES thermal energy storage
i inlet tran transition
k block index v VA-TES valve
l load w wastage

• Q̇w,k is the wasted power, if the block is not considered adiabatic;

• To,k is the outlet water temperature from the block;

• Ti,k is the inlet water temperature in the block;

• cpl is the water specific heat.

3.1.1 Chiller

In the hypothesis of using air condensed chillers, the nominal cooling power

and the nominal electric power consumption, at full (100%) load conditions,

are expressed (by using a multiple linear regression) as a function of the inlet

chiller water temperature, external air temperature and water mass flow rate:

Q̇g,ch100% = ag + bgTi,ch+cgTair + dgṁch + egTi,chṁch , (3.4a)

Q̇e,ch100% = ae + beTi,ch+ceTair + deṁch + eeTi,chṁch . (3.4b)
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The coefficients in (3.4a) and (3.4b) can be obtained from manufacturer’s data.

The energy performances of the chiller at full load conditions are evaluated

through the Energy Efficiency Ratio (EER), i.e. the ratio of the nominal cooling

capacity and nominal power absorption:

EER100% =
Q̇g,ch100%
Q̇e,ch100%

. (3.5)

The part load operation influence is taken into account by multiplying the

full cooling capacity by Part Load Ratio (PLR, defined as the chiller cooling

load divided by its maximum capacity for the given values of air and glycol

inlet temperature) as well as by multiplying the full load power consumption

by a part load factor Z, which is calculated as a function of PLR and air

temperature, [4]:

Q̇g,ch = PLR · Q̇g,ch100% , Q̇e,ch = Z · Q̇e,ch100% . (3.6)

The Energy Efficiency Ratio at part load conditions is simply:

EER =
Q̇g,ch

Q̇e,ch
. (3.7)

In this HVAC plant, chiller block is considered adiabatic and its water

content is neglected; the energy balance equation (3.3), at time τ , can thus be

written as follows:

Q̇g,ch = ṁchcpl (To,ch − Ti,ch) . (3.8)

3.1.2 CTES

The ice-CTES is modelled as a hybrid system, where the water phase transi-

tions are described by combining continuous and discrete dynamics. Although

the ice latent heat represents a large portion of the total storage energy in

the TES (in order of 90%), we also consider here the sensible heat portion to

exhaustively evaluate the energy efficiency of the HVAC system when operated

with different control strategies.

In the CTES an event changes the phase from solid to melting, thereby

also changing the continuous dynamics of the water: the absorbed thermal

energy melts ice and the temperature of the water does not change during

melting since water is in a two-phase condition. The change from a single-phase

condition (liquid, solid) to a two-phase condition (melting, freezing) happens

when a given temperature level is reached (i.e. the saturation temperature
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Figure 3.2: Ice-CTES Hybrid System (HS): the phases of the water.

corresponding to the water pressure). Instead, a transition from a two-phase

condition to a single-phase condition occurs when a given energy (i.e. latent

heat fusion energy) is added or subtracted to the water. Figure 3.2 shows

the different phases (and their corresponding continuous dynamics) and the

transitions between them.

From (3.3), we can depict the ice-CTES as a heat exchanger, where the

variation of the state of charge can be expressed as the sum of the exchanged

powers:

Q̇s,TES = ṁTES cpl(Ti,TES − To,TES )− Q̇w,TES . (3.9)

The first term on the right side of (3.9) represents the power exchange between

the water solution and the ice-CTES during process operations, which is:

ṁTES cpl(Ti,TES − To,TES ) = εṁTES cpl(Ti,TES − TTES ) . (3.10)

According to the lumped formulation, TTES is the average temperature of the

water/ice in the CTES. To take into account the efficiency of the heat exchange,

the coefficient ε, i.e. the ratio of the actual rate of heat transfer to the maximum

possible rate, is added in (3.10). Such coefficient varies during the charging

and discharging processes (due to the change of heat transfer coefficient and

transfer area) and can be expressed as a function of the nominal capacity,

the state of charge of the TES and the difference between the glycol and ice

temperatures.

Due to the storage dimension and the high difference between water/ice

temperature in the storage and the external air temperature, it is important
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to consider also the energy dispersion in the TES. In order to take into account

the heat transfer to the ice from the surroundings, the second term on the right

side of (3.9), involves TES energy wastage:

Q̇w,TES = σQn,TES (TTES − Tair) . (3.11)

The loss coefficient σ is related to the degree of isolation of the storage with

respect to the external environment.

3.1.3 Modulating Valve

In the bypass loop around the TES, the temperature-modulating valve (VA-

TES, Figure 3.1), by manipulating its opening ν, allows a quantity of glycol

(from chiller) to bypass the ice storage and to be mixed with the outlet TES

glycol, achieving the chilled glycol setpoint value for the building. At each

time τ , material and energy balance equations yield:

ṁvcplTo,v = (1− ν)ṁvcplTo,ch + νṁvcplTo,TES . (3.12)

3.1.4 Water Tank and Piping

The water tank is modelled as two separate parts connected in series. In the

first part a well-mixed condition is assumed and the energy balance equation

is:

ṁfcplTi,f (τ) = ṁfcplTf (τ) + hρVfcpl
dT f (τ)

dτ
, (3.13)

where h is the well-mixed section fraction of the tank total volume. In the

second part a perfect stratification condition is considered:

ṁfcplTo,f (τ) = ṁfcplTf (τ − τc) , (3.14)

where τc is the tank section time constant defined as:

τc = (1− h)
ρVf
ṁf

. (3.15)

The same approach is used to model piping blocks, although water mixing

is negligible due to the low water velocity. More details about the derivation

of the previous equations can be found in [2].

3.1.5 Building Thermal Load

For the building load block, at time τ , the energy balance equation is:

Q̇g,l = ṁlcpl (To,l − Ti,l) . (3.16)
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Table 3.1: Charging/discharging operations.

charging discharging

chiller ChN ChD

VA-CD 0 1

Eqs. (3.6)-(3.15), HS (3.6)-(3.16), HS

ν 1 [0, 1]

y To,ch Ti,l

u PLR [PLR; ν]

d Tair [Q̇g,l;Tair]

x [To,ch;Qs,TES ] [Ti,l;Qs,TES ]

3.1.6 Model Summary

The overall discrete dynamical system (with a one-minute sampling time)

during charging/discharging operations (according to Table 3.1) can be sum-

marised as follows:

Σ : x(τ + 1) = f(x(τ),u(τ),d(τ)) , (3.17a)

y(τ) = h(x(τ)) , (3.17b)

x(0) = x0 , (3.17c)

τ ≥ 0 , (3.17d)

y ∈ Y := [ymin, ymax] ⊂ R , (3.17e)

u ∈ U := [umin,umax] ⊂ Rdim(u) , (3.17f)

d ∈ D := [dmin,dmax] ⊂ Rdim(d) , (3.17g)

x ∈ X := [xmin,xmax] ⊂ R2 , (3.17h)

where x,u,d, are the vectors of state, control variables and disturbances,

respectively, y is the output variable, f is a non-linear map, h is a simple map

that selects the first element of x. The sets Y,U,D, X are the feasible domains.

3.2 CTES Charging

During TES charging, only the Part Load Ratio is used in order to control

the outlet chiller water temperature and all the glycol solution coming from

the chiller enters the storage to charge it (Table 3.1). In detail, a PI-controller
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Figure 3.3: TES temperature and Normalised TES energy during charging time.

with feed-forward is used: knowledge about the external air temperature can

be fed forward and combined with the PI-controller to improve the system per-

formance; the reference trajectory for the outlet chiller water temperature is

set to -5◦C. Figure 3.3 shows temperature inside the CTES and the normalised

TES energy during a 12-h charging cycle (from 06 pm to 06 am). The nor-

malised TES energy is set to 0 when storage water temperature is 7◦C while

it is set to 1 when storage ice temperature is -5◦C. Since the energy price is

low during the night, it is useful to consider also the ice/water sensible heat

and to charge the storage until its temperature reaches the outlet chiller water

temperature.

3.3 CTES Discharging

In order to satisfy cooling demand during working hours, standard control

strategies and a non-linear model predictive control approach are compared.

In this section, the non-linear predictive control problem is first described, then

simulations results for TES discharging are provided.

3.3.1 NLMPC Problem Formulation

The controller consists of three fundamental elements: a predictor that predicts

the outputs based on the model and process information, a cost function, and

an algorithm to solve a constrained non-linear optimisation problem. The aim



32 Modeling and Control of Ice-CTES Systems

of the proposed Non-Linear MPC1 (NLMPC) is to minimise electricity costs

during building operating hours, while keeping the cooling demand satisfied.

We define the electricity bill as:

B(τ) = C(τ)Q̇e,ch(τ)∆τ . (3.18)

The model predictive control action, at time τ , is obtained by solving the

optimisation problem:

find arg min
ū

J(x̄, ū, d̄,B,Tc,Tp) , (3.19a)

with J =

t+Tp∑

τ=t

B(τ) + α |ȳ(τ)− r̄(τ)|2 , (3.19b)

s.t. x̄(τ + 1) = f(x̄(τ), ū(τ), d̄(τ)) , (3.19c)

ȳ(τ) = h(x̄(τ)) , (3.19d)

ū(τ) ∈ U , ∀τ ∈ [t, t + Tc] , (3.19e)

ū(τ) = ū(t + Tc) , ∀τ ∈ [t + Tc, t + Tp] , (3.19f)

d̄(τ) ∈ D , ∀τ ∈ [t, t + Tp] , (3.19g)

x̄(τ) ∈ X , ∀τ ∈ [t, t + Tp] , (3.19h)

ȳ(τ) ∈ Y , ∀τ ∈ [t, t + Tp] , (3.19i)

where Tp and Tc are the prediction and the control horizon with Tc ≤ Tp;

the term r refers to the reference trajectory; α is a weight coefficient that

determines the trade-off between energy efficiency (first term in (3.19b)) and

demand satisfaction (second term in (3.19b)). The vectors of state, input, dis-

turbances and output (x,u,d, y) are given in Table 3.1. In order to distinguish

the real system from the system model used to predict the future within the

controller, we use a bar to denote the internal variables in the controller (e.g.

x̄). The control action sent to the plant is the first element of the optimal

sequence ū.

3.3.1.1 Disturbances Forecasting

To solve (3.19a), disturbances forecasting (cooling load and external air tem-

perature) are required. Therefore, the strategy proposed in [5] is implemented:

an ANN (Artificial Neural Network2) algorithm is used to obtain accurate
1A brief description of the MPC approach is provided in Appendix A
2Artificial neural networks are explained in Appendix B
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predictions by exploiting a limited dataset of standard measures available in

HVAC installations like the one considered here. In particular, it is assumed

that load forecasting for the next day is made at midnight. In the first step,

training of the ANN on data from previous days is performed. Then, input

predictions are used as the inputs of the ANN model to forecast the coming

24-h cooling load profile. Only cooling devices (e.g. air handling unit) sched-

ule, external dry-bulb and wet-bulb temperatures are used as inputs of the

ANN model to obtain a cooling load forecasting. In fact, in practical situa-

tions, information on internal loads (lighting, computers, and occupancy) is

not available. However since internal gains are highly correlated to the cooling

devices schedule, a satisfactory load prediction performance can be achieved:

e.g. in Figure 3.4 actual and predicted load data are compared for two weeks

in a typical commercial building.

Forecasting of the external air temperature, T̂air, is made with a weighted

moving average, since we suppose that weather forecast is not available:

T̂air,j+1(τ) =
1

N

[
βjTair,j(τ) + βj−1Tair,j−1(τ) + . . .

. . .+ βj−N+1Tair,j−N+1(τ)
]
, (3.20)

where Tair,j refers to the temperature of the j-th day. Figure 3.5 shows an

example of air temperature prediction for two weeks.

3.3.1.2 Optimisation

To solve the non-linear optimisation problem (3.19a) a nature-inspired, meta-

heuristic algorithm (PSO) is used, [18]. Such choice is motivated as follows.

First, PSO algorithm makes few or no assumptions about the optimisation

problem to be solved; it does not need gradient information of the objective

function under consideration, as required by classic optimisation methods such

as gradient descent and quasi-Newton methods, and it can search very large

spaces of candidate solutions. Moreover, the PSO algorithm is suitable for

avoiding local minima. With respect to other stochastic optimisation tech-

niques (e.g. Genetic Algorithms) PSO is more advantageous because there are

few parameters to set. Furthermore, it can be easily implemented and it is not

computationally expensive, since its memory and CPU speed requirements are

low. The implementation of the PSO algorithm is detailed in Appendix C.

There are many PSO variants, and in this thesis, to determine the optimal
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future control inputs, a version of PSO algorithm which deals with constraints

is used. The sub-optimal solution for the optimisation problem (3.19a) ob-

tained by applying the PSO algorithm has been validated with a brute-force

search method. The computations required by the optimisation process can

be performed within a fixed time length thus granting on-line implementation.

3.3.1.3 NLMPC Implementation

The prediction and control horizons depend on the length of time window where

disturbances predictions are available (until the end of the working hours [5]).

The control sampling time is set to 15 minutes. To reduce the computational

burden, a move blocking strategy is used by imposing inputs (PLR and ν) to be

constant over several time-steps in the prediction horizon [7]. It is worth noting

that to ensure feasibility for the NLMPC problem, the storage is assumed to

always have enough energy to satisfy time-varying, uncertain building load

demands.

3.3.2 Simulations Results

To illustrate the performance of the non-linear MPC we compare the predictive

control with the three standard control strategies:

P) Constant-Proportion Control (e.g. Chiller 40% and ice-CTES 60%);

C) Chiller-Priority Control;

S) Storage-Priority Control.

In the hypothesis that the ice-CTES is fully recharged by the chiller during

nighttime, we report simulation results during daytime, when CTES discharge

occurs (from 06 am to 06 pm). We set r̄(τ) equal to 7◦C for each τ . We

introduce three time slots of electricity price: F1 (high price, on-peak), F2

(medium price, on-peak) and F3 (low price, off-peak). Two building cooling

load case studies are considered: low load (L) and high load (H ) conditions,

Figure 3.6(a) and 3.6(b), respectively.

L) Figures 3.7(a) and 3.8(a) show the manipulated variables with the differ-

ent control strategies. Figure 3.8(a) includes time slot F3 meaning that

TES energy has been produced during the night (off-peak period). In

Figure 3.9(a) the inlet load-side water temperature is reported. Finally,
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Figure 3.10(a) and 3.11(a) show the temperature inside the CTES and

the normalised TES energy, respectively. It can be seen that in this case

all control strategies meet cooling building load (Figure 3.9(a)). How-

ever, NLMPC controller and storage-priority controller satisfy demand

by using only storage energy, while the remaining strategies use chiller

power and do not discharge the CTES. In this way, part of the energy

produced during the night is not used to satisfy cooling demand, causing

energy wastage.

H ) It can be seen that proportion control and storage-priority control do not

satisfy cooling demand (Figure 3.9(b)): the resulting discharging process

turns out to be too fast (Figures 3.10(b) and 3.11(b)), and the chiller

cannot satisfy cooling demand. Instead, chiller control priority strategy

and predictive control always provide sufficient cooling power. However,

in chiller-priority case complete discharge of the CTES is not achieved.

Some comments on the NLMPC simulation results are in order. From

information given by disturbances forecasting, predictive control strategy

can completely discharge the ice storage within the end of the working

hours. During F1 time slot (high price) the NLMPC algorithm prefers

using TES energy (produced during the night), while during F2 time slot

(medium price), NLMPC tends to exploit chiller power instead of the

storage energy (Figures 3.7(b) and 3.8(b)). The increase of the VA-TES

valve opening in the late afternoon is explained by the need of exploiting

of the last energy in the storage, since its temperature has exceeded 0◦C.

In Table 3.2 the normalised electricity bills for all control strategies are

given, also including nighttime bill during the next charging. Nighttime-chiller

has a lower Energy Efficiency Ratio (EER) with respect to the one used during

the day due to the fact that cooler water temperature is needed to recharge

the TES. However it is convenient to fully recharge the TES to exploit low

electricity price. Bills are normalised on the bill of the chiller-priority strategy

(100, high case) and they are not reported when the demand is not satisfied. It

can be seen that the NLMPC provides the lowest energy bill, always satisfying

cooling demand.

The NLMPC controller gives the best performance due to the fact that

we consider the actual disturbances equal to the predicted ones. The case in

which the actual load and external air temperature differ from the predicted
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Table 3.2: Electricity bills.

L H

Constant-Proportion Control 59 -

Chiller-Priority Control 67 100

Storage-Priority Control 41 -

Non-Linear Model Predictive Control 41 94
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(b) High cooling load case

Figure 3.6: Building cooling load and external air temperature.

values is also considered in this study. When actual and forecast values do not

match, the NLMPC algorithm uses d̄c(τ) for each τ instead of d̄(τ) where:

d̄c(τ) = d̄(τ) + q̄(τ) , (3.21)

and q̄ is an appropriate function that allows smoothly connecting the actual

values of d̄(t) with its future values as previously predicted.

In the following example we consider an unpredictable load disturbance

from 01 pm to 03 pm, Figure 3.12. The inlet load side water temperature

trajectory performed by the NLMPC is depicted in the same figure. It can

be seen that updating predictions results in good performances since the error

from the reference trajectory (7◦C) is negligible for typical HVAC building

applications.
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Figure 3.7: Part Load Ratio.
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Figure 3.8: VA-TES valve opening.
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Figure 3.9: Inlet load-side water temperature.
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Figure 3.10: TES temperature.
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Figure 3.11: Normalised TES energy.
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Figure 3.12: Inlet load-side water temperature with load prediction update.





4
Conclusions

Cold Thermal Energy Storage (CTES) systems nowadays play a key role in

HVAC plants. CTES technology can be used to shift peak loads from on-peak

to off-peak periods, storing energy during the night when the energy price is

low, exploiting it in the following daytime when the energy price is higher.

Due to CTES systems complexity, control and optimisation procedures are

fundamental in order to ensure energy efficiency and load demand satisfaction.

In this part of the thesis an ice-Cold TES system is considered. Ice storage

technology ensures a reduction of the storage dimension with respect to water-

CTES, due to the amount of energy that can be extracted during the transition

phases. The thermal behaviour of the plant is analysed with a lumped formu-

lation of the conservation equations (energy and mass). In particular, the ice-

CTES is described in terms of a hybrid system, thus taking into consideration

the dynamics of both sensible and latent heat. Standard control strategies are

compared with a NLMPC-based approach. The NLMPC is developed by using

a predictor based on plant model and process information, a cost function, and

a PSO algorithm. The predicted outputs of the plant are also obtained from

cooling devices scheduling as a mean for inferring information on the internal

loads, which is in general not available in practice. Extensive dynamic sim-

ulations show that NLMPC exhibits better performance (in terms of energy

efficiency and demand satisfaction) than conventional strategies.

The use of a stochastic algorithm like PSO (which does not use derivative

information) for the optimisation task gives the possibility to easily extend the

predictive control strategy to other plant configuration (e.g. chiller downstream

configuration) or inserting extra terms in the performance index (e.g. comfort

index) in future developments of the research.





Part II

Fault Detection in HVAC

Systems





1
Introduction

The discipline of process control has made many advances in the last three

decades with the advent of computerization. Low-level control actions, which

used to be performed by human operators, are now routinely performed in an

automated manner with the aid of computers. With progress in advanced con-

trol systems, the benefits to different industries (e.g. chemical, petrochemical,

cement, steel) have been enormous. However, a very important control task in

managing process plants still remains largely a manual activity, performed by

human operators: this is the task of responding to abnormal events in a pro-

cess. This involves the timely detection of an abnormal event, diagnosing its

origins and then taking appropriate supervisory control decisions and actions

to bring the process back to a normal, safe and operating conditions.

Fault Detection and Diagnosis (FDD) is a sub-field of control engineering

which deals with monitoring a system, identifying when a fault occurs, and

pinpointing the type of fault and its location. “Fault” is a deviation of at

least one characteristic property or parameter of the system from the usual

or standard condition. “Detection” refers to the discovery of the anomaly

that occurs in the system. “Diagnosis” means “locating” the place where the

fault occurs and identifying its origin. The first studies on fault detection

and diagnosis go back to the early 70s, but research in applying it to HVAC

systems began to develop only in the late 80s - early 90s. It is in fact found

that different faults may occur in HVAC systems, which can cause discomfort

and waste of energy. However, efficient FDD methods for HVAC systems still

remain as a challenge and commercial FDD systems have appeared in the

market in recent years only. To this aim, it is particularly relevant to access

data that describe both regular and faulty behaviour of the system. Such data

can be available from actual plants, or it is possible to generate artificial data
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by means of simulations, a common practice nowadays. This can be done by

resorting to models which are able to describe the response of the system in

both normal and faulty operating conditions.

FDD techniques can be divided into model-based [20] [21], when they are

based on a model tied to the physics that characterizes the system, and pro-

cess history-based (or data-driven), when the FDD methods are based on data

without considering structures a priori known. The first case has the advan-

tage of working with a physics-based model but the disadvantage of making

approximations of different types, since modern systems are very complex and

often highly non-linear. Model-based techniques can be divided into quantita-

tive methods and qualitative-based ones. Examples of quantitative techniques

are state space representations or transfer functions, in which for example

FDD methods can be performed resorting to Kalman filters such as in [35],

[34]. Qualitative model-based approaches are related to logic and rule-based

techniques. Process history-based methods include for example black-box rep-

resentations [38], artificial neural networks [19], but also more recent tools such

as machine learning techniques (support vector machines, k-nearest neighbour,

etc.) and often need a large amount of data.

A data-based approach is chosen in this thesis to develop fault detection

methods for HVAC systems; in particular the second part of the dissertation

deals with two different fault detection problems.

The first topic tackles the fault detection and diagnosis of the most common

faults usually affecting Variable Air Volume Air Conditioning (VAVAC) plants.

These systems are designed to provide good comfort performances with low

energy costs. However different faults can happen in VAVAC plants, causing

discomfort for the occupants and energy wastage. Since a real VAV plant is not

available to perform experimental tests, a simulation environment, based on a

dynamic model of a controlled two-zone VAVAC system, is developed in the

thesis: it can simulate the behaviour of the system in both normal and faulty

operating conditions. A supervised classification method is used to detect and

diagnose the simulated faults in the plant: support vector machines coupled

with a posterior probability are used to perform classification. The proposed

supervised learning technique is shown to be effective in the detection and

diagnosis of the simulated faults.

The second topic approaches the fault detection problem with application

to vapour-compression chillers. In this case, fault detection is performed on the
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datasets from the research project 1043-RP of the American Society of Heat-

ing, Refrigerating and Air Conditioning Engineers (ASHRAE). In this project

experimental studies were conducted on a centrifugal water-cooled chiller in

order to collect data in both normal and faulty situations. Only data relating

to the correct behaviour of the chiller are used to identify the reference model

of functioning by resorting to one-class classification and a novelty detection

approach with the help of principal component analysis. The proposed method

is tested in the detection of the most relevant faults plaguing chiller systems.

The second part of the thesis is organized as follows:

• Chapter 2 describes the variable air volume air conditioning technology.

A lumped-parameter model of a two-zone VAVAC system is developed.

A direct feedback linearisation technique is used to control the system.

Two-class support vector machines are used to perform detection and

diagnosis of the simulated faults in the VAVAC system.

• In Chapter 3 the ASHRAE research project 1043-RP is presented. A

steady-state detector is employed in order to select the subset of the

ASHRAE database in stationary conditions. One-class classification cou-

pled with principal component analysis is used for the detection of the

most common faults in vapour-compression chillers. ROC analysis is

used to evaluate the detection results.

• Final observations are given in Chapter 4.

Machine Learning, classification and novelty detection are of critical im-

portance in this dissertation and are introduced in the following sections.

1.1 Machine Learning and Classification

Machine learning concerns the construction and study of systems that can

learn from data. Machine learning algorithms are classified into three main

categories:

• Unsupervised learning algorithms operate on unlabelled examples, i.e.

input data where the corresponding output is unknown. The problem

of unsupervised learning is trying to find hidden structures in unlabelled

data, leading to one of the most difficult task in machine learning theory.
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• Semi-supervised learning is a class of learning techniques that make use

of labelled data in addition to unlabelled data. Semi-supervised learning

falls between unsupervised learning (without any labelled training data)

and supervised learning (where all the training data are considered la-

belled).

• Supervised learning algorithms are trained on labelled examples, i.e. in-

put where the output is known. Supervised learning algorithms attempt

to identify a function or mapping from inputs to outputs which can then

be used to speculatively generate an output for previously unseen inputs.

A very important branch of machine learning theory is classification, i.e. the

problem of identifying the set to which a new observation belongs, on the basis

of a training set of data containing observations whose category membership

is known. The core of classification deals with representation and generalisa-

tion. Representation is the property of well representing data; generalisation

property quantifies the ability of the system to perform well on unseen data.

Finding the right trade-off between the previous characteristics is a key object

of study in the field of learning theory.

In classification algorithms the individual observations are analysed in

terms of a set of quantifiable properties, known as different explanatory vari-

ables, features, etc.; these properties may variously be categorical (e.g. A, B,

AB or 0 for blood type), ordinal (e.g. large, medium or small), integer-valued

(e.g. the number of occurrences of a word in a text) or real-valued (e.g. a mea-

surement of blood pressure). Some algorithms work only in terms of discrete

data and require real-valued or integer-valued data discretised into groups (e.g.

less than 5, between 5 and 10, or greater than 10). An algorithm that imple-

ments classification is known as a classifier. The term classifier sometimes

also refers to the mathematical function, implemented by a classification al-

gorithm, that maps input data to a category. Examples of classifiers in the

literature are neural networks algorithms, support vector machines, k-nearest

neighbours, Gaussian mixture models, and decision trees.

Finally, it is worth noting that classification algorithms are suitable for fault

detection and diagnosis problems: labelling measured data with fault-free or

faulty conditions can be seen as a binary classification problem.

In this part of the thesis machine learning algorithms are chosen to deal

with the FDD problems; support vector machines will be used to perform

classification: they have the capability of dealing with high-dimensional dataset
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and they can provide flexible solutions and complex classification rules.

1.2 Novelty Detection

Novelty detection is the identification of new or unknown data/situations that

a machine learning system is not aware of during the training phase [25]. Nov-

elty detection is becoming fundamental in different applications such as fault

detection and diagnosis: it is becoming a key issue as engineering systems are

becoming more and more sophisticated (and more “data-rich”) and downtime

due to unexpected faults should generally be minimised [33]. Novelty detection

belongs to the class of unsupervised or semi-supervised problems. In this con-

text faults are seen as novelties for the system, i.e. events that have not been

observed in past time. In fact, getting labelled data in FDD applications can

be very arduous. Labelled data contain qualitative information related to the

functioning condition of the system (normal or faulty for example) and they

can sometimes be:

• costly because labelling is done manually by a human expert;

• unfeasible because anomalous data may be rarely seen in the system,

where none, or more generally, few of the potential anomalies already

happened in the past.

Several statistical approaches are employed in the literature for novelty

detection, amongst them: Gaussian mixture models, hidden Markov models,

hypothesis testing; however, all the aforementioned methods assume that data

distributions are Gaussian in nature: this, as in the modeling of HVAC systems,

can be a strict assumption. Other approaches that do not impose restrictions

on data distribution are based on: k-nearest neighbour, statistical clustering,

one-class support vector machines. One-class support vector machines are used

for one-class classification, and, in this part of the thesis, they will be used to

tackle the novelty detection problem for FDD applications.





2
Fault Detection and Diagnosis for VAVAC

Systems

Heating, Ventilation and Air Conditioning (HVAC) systems are designed to

provide thermal comfort for people in the buildings. Comfort can be achieved

by maintaining a desired level of humidity, pressure, air motion and quality.

One of the most popular HVAC applications, Variable Air Volume Air Con-

ditioning (VAVAC), is designed to provide low energy cost, low maintenance

and good comfort performances. In VAV systems, the supply air is kept at a

constant temperature and internal room temperatures are controlled by vary-

ing the volume of air through damper actuators. In a control system design

perspective, VAVAC systems are relatively complex due to their intrinsically

multi-variable, coupled, and non-linear characteristics. Zone temperature sen-

sors are used to control the damper, maintaining the room temperatures at

the desired value.

A single-duct VAVAC plant is illustrated in Figure 2.1. Starting from the

left side of the figure we can see that a mixture of external air (1) and recircu-

lated air (13) enters the Air Handling Unit (AHU) (2). The main components

of this unit are the filter (3), the cooling coil (4), the heating coil (5) and the

supply fan (6) that supplies the primary air towards individual rooms. The

speed of the supply fan is controlled by an AC drive (7). The temperature of

each room is measured by a thermostat (9), and is controlled by adjusting the

position of the damper of the corresponding VAV box (8). The return air fan

(10), which is controlled by the AC drive (11), pulls out exhaust air outside

the building (12), and part of the air (13) is recirculated to the air handling

unit.



52 Fault Detection and Diagnosis for VAVAC Systems

Figure 2.1: Single-duct variable air volume air conditioning system.

2.1 VAVAC Components

In the following a description of the main components of a VAV system is

provided.

2.1.1 Air Handling Unit

An air handling unit is typically composed of a large metal shell which contains

a supply fan, heating and cooling coils, filters, valves. The AHU is connected

to the ducts for air distribution, that carry air in the zones, and bring the

exhaust air back to the unit. If heating is required, the unit may contain a

burner or a heating coil with steam or hot water that are supplied by a boiler.

In case of cooling, the air-handler contains coils with cold water coming from

the cooling generating equipment.

The main components of an air handling unit are described in the following:

Filter Air filtration provides clean and dust-free air for the comfort of the

building occupants.

Heating and/or cooling coils Air handling units need to provide heating,

cooling, or both to regulate the supply air temperature; to this aim, heat
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exchanger coils are placed within the unit: hot or cold water circulates in the

coils and exchange heat with the air in the unit.

If dehumidification is required, then the cooling coil is employed to over-

cool so that the dew point is reached and condensation occurs. A heating

coil placed after the cooling coil re-heats the air (therefore known as a re-heat

coil) to the desired supply temperature. This has the effect of reducing the

relative humidity level of the supply air. A humidifier is often needed in case

of continuous heating, in order to ensure a comfortable level of air humidity.

Fans Air handlers typically employ fans driven by an AC induction electric

motor to move the air. Fans may operate at a single speed, offer a variety of

speeds, or be driven by a variable frequency drive to allow a wide range of air

flow rates.

2.1.2 Ducts

The ducts system brings the handled air from the air handling unit to the

internal rooms and then brings back the exhaust air from the zones to the unit.

The ducts system also allows the connection with the external environment for

the renewal of the air and the removal of a part of the exhaust air, while the

remaining part is usually recirculated to the air handling unit.

2.1.3 VAV Terminal Units

A VAV terminal unit is a sheet-metal assembly installed upstream of its re-

spective zone. The unit consists of an air-modulation device, control hardware

and, depending on the system application, possibly a heating coil, a filter, and

a small terminal mixing fan. Modulating the airflow to each individual space

is accomplished using a temperature-controlled damper that varies the airflow

resistance in the supply duct to that space. Typically, either a pneumatic or

electric controller can be used to adjust the damper.

2.1.4 Mixing Boxes

In a mixing box flows with different characteristics (temperature, humidity, air

mass flow rate) mix producing a homogeneous flow. A mixing box is placed

before the air handling unit to mix the external air flow with the recirculated

air one.
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2.2 Two-Zone, Single-Duct VAVAC System

Modeling

- +

Zone 1 Zone 2

Psychrometric subsystem Supply subsystem

Exhaust subsystem

VAV terminal units

Figure 2.2: Two-zone, single-duct VAV system.

In this thesis a dynamic model of a two-zone, single-duct VAVAC plant is

developed. In Figure 2.2 the block structure of the considered VAV system is

reported. We can distinguish:

• the Psychrometric subsystem, whose elements are the plant items that

are involved in the air conditioning process;

• the Supply subsystem, whose elements are the variable-duty supply fan

and a network of air distribution ducts, VAV terminal units, and air

terminal devices;

• the Zone subsystem, which comprises the individual zones;

• the Exhaust subsystem, whose individual elements are a variable-duty

extract/return air fan, return air diffusers, a network of extract ducts,

and the extract air terminal devices in the zone.

The thermal behaviour of the VAVAC system is analysed with the energy

and mass conservation equations. The dynamic behaviour of each subsystem

is thus obtained solving the fluid flow and the energy balance problems.
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Nomenclature.

Az,j wall area of j-th zone [m2]
Cpa heat capacity of air [Jkg−1K−1]
Cpc heat capacity of cooling coil [Jkg−1K−1]
Cpw heat capacity of water [Jkg−1K−1]
ṁa air mass flow rate [kgs−1]
ṁa,j air mass flow rate of j-th zone [kgs−1]
ṁext external air mass flow rate [kgs−1]
ṁm = ṁa mixed air mass flow rate [kgs−1]
ṁr recirculated air mass flow rate [kgs−1]
ṁw chilled water mass flow rate [kgs−1]
Mc mass of cooling coil [kg]
Q̇j internal and external heat source of j-th zone [W]
Q̇int,j internal heat source of j-th zone [W]
Q̇ext,j external heat source of j-th zone [W]
Q̇in,j inlet power contribution in the j-th zone [W]
Q̇out,j outlet power contribution from the j-th zone [W]
r percentage of recirculation [%]
Tai inlet air temperature of cooling coil [◦C]
Tao = Tsa outlet air temperature of cooling coil (supply)[◦C]
Text external air temperature [◦C]
Tm = Tai mixed air temperature [◦C]
Tr recirculated air temperature [◦C]
Twi inlet water temperature of cooling coil [◦C]
Two outlet water temperature of cooling coil [◦C]
Tz,j temperature of j-th zone [◦C]
(UA)c heat exchange coefficient [WK−1]
Uz,j thermal transmittance of j-th zone [Wm−2K−1]
Vz,j volume of j-th zone [m3]
ρa density of air [kgm−3]
τ time [min]

2.2.1 Zone Subsystem

Without loss of generality, the system is considered in cooling mode. As the

zone temperature increases, the controller opens the damper to supply cold air,

whereas it closes the damper when the temperature decreases. In this way, the

heat generated by internal loads, such as people occupancy, lights, electronic

devices, etc., and external loads (i.e. solar thermal gains) is dissipated. The

following assumptions are made:

• the air in the zone is fully mixed, so that the zone air temperature dis-

tribution is uniform;

• the density of the air is constant and is not influenced by temperature

changes.
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Under the above assumptions, and by using energy governing equations,

the j-th zone thermal dynamics are governed by the following equation:

Q̇in,j + Q̇int,j + Q̇ext,j + Q̇d,j + Q̇out,j = Vz,jρaCpa
dTz,j
dt

. (2.1)

The inlet power contribution Q̇in,j depends on the air mass flow rate of each

zone and the difference between the room temperature and the supply air

temperature:

Q̇in,j = ṁa,jCpa(Tsa − Tz,j) . (2.2)

The outlet power contribution Q̇out,j is null since the outlet air temperature is

equal to the zone one. The power exchange with outside (Q̇d,j) is proportional

to the difference between the external environment and internal air tempera-

tures:

Q̇d,j = Uz,jAz,j(Text − Tz,j) , (2.3)

where Uz,j is the thermal transmittance of exterior walls (through the Az,j
contact area). Q̇int,j is the contribution of internal loads (lighting, computers,

occupancy) while Q̇ext,j refers to the solar power contribution (from windows).

By substituting (2.3) and (2.2) into (2.1), the dynamic of the temperature of

each zone is obtained:

dTz,j
dτ

=
1

Vz,jρaCpa
[Q̇j + ṁa,jCpa(Tsa − Tz,j) + Uz,jAz,j(Text − Tz,j)] . (2.4)

Q̇j is the sum of internal and external heat sources (Q̇int,j , Q̇ext,j).

2.2.2 Exhaust Subsystem

In the exhaust subsystem the two flows coming from the rooms mix; the ther-

mal properties of this part are described by the following mixing box equations:

ṁaCpaTr = ṁa,1CpaTz,1 + ṁa,2CpaTz,2 , (2.5)

ṁa = ṁa,1 + ṁa,2 . (2.6)

ṁa is the air mass flow rate in the ducts of the VAVAC system while Tr is the

return air temperature.

2.2.3 Psychrometric Subsystem

The Psychrometric subsystem includes the mixing box and the cooling coil

model:
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Mixing box In the mixing box the recirculated air mass flow mix with the

external air producing an homogeneous flow with temperature Tm. The energy

and mass balance equations imply:

ṁm = ṁr + ṁext , (2.7)

Tm = rTr + (1− r)Text , (2.8)

where:

r :=
ṁr

ṁm
. (2.9)

Cooling Coil Model The cooling coil provides conditioned air with a water-

to-air heat exchange. The heat balance equations describe the heat transfer

between hot air and cold water in the coil. The following assumptions, during

the thermal exchange, are made:

• the temperature of air inside the coil is constant and equal to the inlet

air temperature;

• constant air and water flow rate;

• direct relationship between coil mass temperature and outlet water tem-

perature;

• steady-state heat transfer between coil mass and air flow;

• the thermodynamic properties of the fluids are independent of tempera-

ture variations;

• in the cooling coils the inlet water temperature is assumed constant,

supposing that the water comes from the cooling generating equipment

(e.g. chiller).

Following [32] and [36], the following model is adopted for the cooling coil:

McCpc
dTwo
dt

= ṁwCpw(Twi − Two) + (UA)c(Tai − Two) . (2.10)

ṁaCpa(Tao − Tai) = (UA)c(Two − Tai) . (2.11)

The manipulation of (2.10) and (2.11) leads to:
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dTao
dt

=

[
ṁwCpw
ṁaCpa

(Twi − Two) + (Tai − Tao)
]

(UA)c
McCpc

, (2.12)

dTwo
dt

=





[ṁwCpw(Twi − Two) + ṁaCpa(Tai − Tao)]
McCpc

, if ṁw 6= 0 , (2.13)

ξ · (Twi − Two) , if ṁw = 0 . (2.14)

It is worthwhile to note that ṁa is greater than zero to ensure that a minimum

volume flow rate is drawn into the VAV system. The condition (2.14) is added

to ensure that Two reaches Twi when ṁw = 0 (with ξ[s−1] > 0).

2.2.4 Supply Subsystem

In the supply subsystem the air coming from the air handling unit divides into

two flows for the air-conditioning of each room. The two flows have the same

temperature Tsa and the mass balance equation is:

ṁa,1 + ṁa,2 = ṁa . (2.15)

2.2.5 Model Summary

Let the states, the inputs and the disturbances of the system be expressed as:

x =




x1

x2

x3

x4




=




Tz,1

Tz,2

Tsa

Two



, u =




u1

u2

u3


 =




ṁa,1

ṁa,2

ṁw


 , d =




d1

d2

d3


 =




Q̇1

Q̇2

Text


 .

(2.16)

We define:

a1 =
1

Vz,1ρa
, b1 =

1

Vz,2ρa
,

a2 =
1

Vz,1ρaCpa
, b2 =

1

Vz,2ρaCpa
,

a3 =
Uz,1Az,1
Vz,1ρaCpa

, b3 =
Uz,2Az,2
Vz,2ρaCpa

.

(2.17)
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The resulting non-linear MIMO system described by (2.4)-(2.15) is character-

ized by the following equations:

ẋ1 = a1u1(x3 − x1) + a2d1 + a3(d3 − x1) , (2.18)

ẋ2 = b1u2(x3 − x2) + b2d2 + b3(d3 − x2) , (2.19)

ẋ3 =

[
Cpw
Cpa

u3

(u1 + u2)
(Twi − x4) +

(
r
x1u1 + x2u2

u1 + u2

+(1− r)d3 − x3

)]
(UA)c
McCpc

, (2.20)

ẋ4 =





[
Cpwu3(Twi − x4) + Cpa(u1 + u2)

(
r
x1u1 + x2u2

u1 + u2

+(1− r)d3 − x3

)]
· 1

(McCpc)
, if u3 6= 0 , (2.21)

ξ · (Twi − x4) , if u3 = 0 . (2.22)

We remember that the inlet water temperature Twi is considered constant.

Finally, the first three states are considered also outputs of the VAVAC system:

y =




y1

y2

y3


 =




x1

x2

x3


 . (2.23)

Defining the non-linear function f which comprises all the differential equa-

tions, the overall dynamical system can be summarised as:

ẋ = f(x,u,d) , (2.24a)

y = h(x) , (2.24b)

where the map h selects the first three elements of x.

2.2.6 Direct Feedback Linearisation Control

The model described in (2.24) is a non-linear coupled system. In this thesis

a direct feedback linearisation technique ([11],[37]) is used to transform the

original system model into a simpler equivalent form, exploiting the Dini’s

implicit function theorem on non-linear differential equations (2.18)-(2.22).

Considering the non-linear system (2.24), the Dini’s theorem ensures that,

if:

∃x0 :
∂f

∂u

∣∣∣∣
x0

6= 0 , (2.25)
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there exists a function g and a new input v in a neighbourhood of x0 such

that:

u = g(x,v,d) , (2.26)

and

ẏ = v . (2.27)

The VAVAC model has three outputs, so three linear control loops are

defined with the new input:

v =




v1

v2

v3


 :=




ẏ1

ẏ2

ẏ3


 . (2.28)

In this way a linear, decoupled system is obtained:



ẏ1

ẏ2

ẏ3


 =




1 0 0

0 1 0

0 0 1







v1

v2

v3


 . (2.29)

The following inputs are applied in order to linearise the system:

u1 =
v1 − a2d1 − a3(d3 − x1)

a1(x3 − x1)
, (2.30)

u2 =
v2 − b2d2 − b3(d3 − x2)

b1(x3 − x2)
, (2.31)

u3 =

[
McCpc
(UA)c

v3 − (r
x1u1 + x2u2

u1 + u2
+ (1− r)d3 − x3)

]
Cpa(u1 + u2)

Cpw(Twi − x4)
. (2.32)

In the decoupled system the following feasibility conditions are assumed:

x1 6= x3 , x2 6= x3 , x4 6= Twi . (2.33)

The previous conditions are not restrictive assumptions; in fact the supply

air temperature is usually set to a lower value with respect to the zones air

temperature. Furthermore the outlet water temperature of the cooling coils

(x4) is always higher than the inlet water temperature since we are in cooling

mode operation.

A conventional closed-loop proportional control scheme is adopted and with

the appropriate choice of ki={1,2,3}, we can arbitrarily place the closed-loop

poles of the linearised system:
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


v1

v2

v3


 =




k1(y1,set − y1)

k2(y2,set − y2)

k3(y3,set − y3)


 . (2.34)

2.2.7 Simulations Results

Tests on the two-zone controlled VAVAC system are reported in this section.

In the simulations results the volumes of the zones are Vz,1 = 36 m3 and

Vz,2 = 90 m3. The external wall areas are Az,1 = 12 m2 and Az,2 = 18 m2. The

portion of exhaust air is equal to 25% (r = 0.25). The external air temperature

is equal to 27◦C, if not otherwise specified. The inlet chilled water temperature

Twi is set to 7◦C. It is assumed that the supply air temperature (Tsa) setpoint

is equal to 15◦C. The initial indoor air temperatures Tz,1 and Tz,2 as well as

their setpoints are equal to 22◦C. The disturbances are assumed constant if

not otherwise specified.

The following cases are considered:

1. In Figure 2.3 a step change in air temperature setpoints occurs in each

zone. In the first zone, at time 200 s the set point increases from 22◦C

to 23◦C, while in the second zone at time 600 s the setpoint decreases

from 22◦C to 21◦C. The considerable times of the responses are due to

the presence of saturated actuators. It is worthwhile to note that the

coupling between the loops of the system is eliminated: a temperature

setpoint variation in each zone has no influence on the other zone.

2. In Figure 2.4 the responses to step changes of the supply air temperature

Tsa are shown. The control exhibits good performance and the times of

the responses are small (around 10 s).

3. In Figure 2.5 simulation time is 10 hours. Outdoor external temperature

disturbance and internal heat gain load profiles (which are the same for

the two zones) are modelled as sine waves (Figure 2.5(a)). The influence

of external temperature and internal loads variations on outputs and

control signals are shown in Figure 2.5(b).
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Figure 2.3: Two-zone, single-duct VAV modeling: room temperatures setpoint

variations.
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Figure 2.5: Two-zone, single-duct VAV modeling: varying disturbances.
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2.3 Support Vector Machines

Support Vector Machines (SVMs) are supervised learning models that analyse

data and recognize patterns, and they are widely used for classification and

regression analysis. Given a set of training samples, each marked as belonging

to one of two categories, an SVM training algorithm builds a model that assigns

new observations to one category or the other, making it a non-probabilistic

binary linear classifier. A SVMs model is a representation of the samples as

points in space, where samples of the separate categories are divided by a gap

that is as wide as possible. New observations are then mapped into that same

space and predicted to belong to a category based on which side of the gap they

fall on. Support vector machines have been introduced within the context of

statistical learning theory and structural risk minimisation. Some remarkable

features of SVMs are: the use of non-linear kernels which allows separation of

non-linearly separable data and the use of structural risk minimisation that

improves the ability of generalisation even with a reduced number of data and

avoids over-fitting of the samples [13]. SVMs are gaining popularity in a wide

range of applications. They are largely used as classifier and a fault detection

and diagnosis problem can be formulated as a classification problem. In the

following, we briefly describe SVMs and their tuning. The support vector

classification theory is detailed in Appendix D.

Given a sample training dataset of n points S = {(xi, µi)}, where xi is

the i-th input vector and µi ∈ {−1,+1} is its label (in this case −1 means

faulty, 1 means fault-free), an optimal hyperplane is computed in a feature

space to construct the SVM. The basic idea of the SVM learning algorithm

can be summarised in two steps. First, the vector input space is transformed

to a higher dimensional feature space by a non-linear transformation function

φ. Then, the optimal separating hyperplane can be constructed in this space

by solving:

arg min
w,b

1

2
||w||2 + C

∑

i

ξi , (2.35a)

subject to:

ξi ≥ 0 , µif(xi) ≥ 1− ξi , ∀i , (2.35b)

with

f(xi) = wTφ(xi) + b . (2.35c)
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w and b are the hyperplane parameters. {ξi} are the slack variables. f(xi)

provides the signed distance of xi from the separating hyperplane. The classi-

fication rule induced by f is:

G(xi) = sign[f(xi)] . (2.36)

The non-linear transformation φ can be realised by defining a proper kernel

function k:

k(xi,xj) = 〈φ(xi),φ(xj)〉 . (2.37)

Common choices for the inner product k(xi,xj) are:

Radial Basis (RBF) : exp[−‖xi − xj‖2/(2σ2)] , (2.38)

Polynomial : (1 + 〈xi,xj〉)p , (2.39)

Neural Network : tanh(a1 〈xi,xj〉+ a2) . (2.40)

For its simplicity, the RBF function is the most popular kernel used in

support vector machine classification: with a RBF kernel it is possible to build

classification models able to well represent non-uniform data shapes, without

over-fitting the samples. Using a RBF kernel function, SVM optimisation

results strongly depend on the proper setting of the parameter σ, which has

a significant effect on accuracy and generalisation performances. With a large

value of σ, the number of support vectors1 is low, resulting smooth decision

boundaries. As σ decreases, the support vectors increases, leading to a greater

curvature of the decision boundaries.

Moreover, the parameter C in (2.35a) determines the magnitude of the

SVM margin. For a large value of C a large penalty is assigned to slack vari-

ables focusing attention more on (correctly classified) points near the decision

boundary. A smaller value of C provides a much larger margin, focusing at-

tention on generalisation performances [13].

Posterior probability for support vector machines. Standard support

vector machines do not provide a posterior probability after assigning labels

to data. However a posterior probability could be useful in fault detection and

diagnosis methods. A probabilistic information related to the distance of the

points from the separating hyperplane can be introduced: the underlying idea

is that observations with large distance from the separating hyperplane will
1See Appendix D
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have a high probability of faulty or fault-free conditions, while the points close

to the separating hyperplane will have a higher uncertainty in the decision.

Platt [28] suggests using the sigmoid function as a posterior probability:

P [µ = 1|x] ≈ PA,B(f) :=
1

1 + exp(Af +B)
, (2.41)

f := f(x) . (2.42)

In [28] the best setting of parameters A and B is determined by solving the

following regularised maximum likelihood problem (with N+ number of the

positive labels, and N− number of the negative ones):

arg min
A,B

−
n∑

i=1

(
ti log(pi) + (1− ti) log(1− pi)

)
, (2.43)

pi = p(xi) = PA,B(f(xi)) , ti =





N+ + 1

N+ + 2
if µi = +1 ,

1

N− + 2
if µi = −1 .

(2.44)

In [22] (2.43) is proved to be a convex (unconstrained) optimisation prob-

lem.

2.4 Fault Detection and Diagnosis

The model described in Section 2.2 is able to simulate the response of the two-

zone controlled VAVAC system in both normal and faulty operating conditions.

The following most common and relevant faults are investigated:

• Stuck Chilled Water Valve The chilled water valve that regulates

the water mass flow rate is considered blocked; it is worth noting that

in normal conditions the control signal u3 is equal to ṁw (see Section

2.2) whereas during the fault the corresponding actuator is considered

blocked, bringing to a different value of the water mass flow rate with

respect to the value provided by the control system. In Figure 2.6 an

example of stuck chilled water valve is illustrated: the profile of the fault

is assumed with a ramp shape (the fault starts after two hours of normal

conditions, then gradually increases for 2 hours to reach its maximum

value, then it remains in such state for 2 hours). During the fault the

chilled water mass flow rate ṁw decreases by 40% with respect to nor-

mal conditions. As a consequence the supply air temperature increases,
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Figure 2.6: Two-zone, single-duct VAVAC system: Stuck Chilled Water Valve

(-40%).

bringing hotter air towards the zones. The control system cannot keep

the setpoint values in the two rooms: air mass flow rates of the two zones

increase in order to maintain the desired temperatures in the rooms, but

they reach the saturation values. The control signal of the water mass

flow rate u3 acts in opposite direction with respect to the fault, but it is

not an actual input of the system (the real input value is ṁw).
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Figure 2.7: Two-zone, single-duct VAVAC system: Stuck VAV Box Damper

Zone 1 (-20%).

• Stuck VAV Box Damper The position of the damper of the VAV

terminal unit is in a wrong position, leading to a different air mass flow

rate in the zone; in Figure 2.7 we assume that VAV box damper of

zone 1 is blocked: its position is incorrect (-20%) with respect to normal

conditions (air mass flow ṁa,1 decreases). In order to keep the setpoint
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in zone 1, u1 signal acts in opposite direction with respect to the fault

but it is not a real input of the system. The chilled water mass flow rate

increases in order to ensure lower supply air temperature and the control

signal u2 decreases in order to guarantee the setpoint value in the second

zone.
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Figure 2.8: Two-zone, single-duct VAVAC system: Temperature Sensor Offset

Zone 1 (+2◦C).

• Temperature Sensor Offset One sensor has an offset in the measured

temperature; in Figure 2.8 it is assumed that the sensor of zone 1 has

an offset of +2◦C with respect to actual conditions. Due to the temper-

ature offset the control system acts in order to maintain the measured

temperature at 22◦C value (with an actual temperature of 20◦C).
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Figure 2.9: Two-zone, single-duct VAVAC system: Stuck Recirculation Damper

(+10%).

• Stuck Recirculation Damper After the malfunctioning of the recir-
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culation damper a different fraction of the external air mass flow is intro-

duced in the zones; for example in Figure 2.9 the recirculation damper

position is assumed wrong (+10%) with respect to normal conditions. In

order to guarantee load satisfaction in the zones the chilled water mass

flow rate decreases during the fault.

2.4.1 Training Data for SVMs Learning

An important step in machine learning methods is the selection of the data

to be used in the training phase. With the VAV simulation environment, a

database including fault-free data and data under the different faulty condi-

tions is developed. The following variables are collected for the SVMs learning:

• States:

– Supplied air temperature;

– Air temperatures of the zones;

– Outlet water temperature from the cooling coils;

• Manipulated variables:

– Chilled water mass flow rate;

– Air mass flow rates of the zones;

• Disturbances:

– Cooling loads in the zones;

– External air temperature;

• Other data:

– Recirculated air temperature;

– Mixed air temperature.

The database includes simulations with different operative conditions (dif-

ferent setpoints for the controlled variables and different disturbances) and

simulating both normal and faulty behaviours at different levels of severity.

Finally, only steady-state data are chosen for the SVMs training; in this way

the samples in the SVMs space represent stationary conditions of the system:

dynamic behaviours and delays would add useless complexity to the classifica-

tion model.
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Table 2.1: Faults and Affected Parameters.

Faults Affected Parameters SVM

stuck chilled water valve chilled water mass flow rate 1

stuck damper zone 1 air mass flow rate zone 1 2

stuck damper zone 2 air mass flow rate zone 2 3

sensor zone 1 temperature sensor offset zone 1 4

sensor zone 2 temperature sensor offset zone 2 5

stuck recirculation damper percentage of air recirculation 6

2.4.2 FDD Results

SVM 1 N NO FAULT 1

YES FAULT 1

SVM 2
N

NO FAULT 2

YES FAULT 2

Platt's Prob.
Y

Y
Platt's Prob.

Figure 2.10: Multi-layer SVMs: parallel configuration.

In the following FDD results for the VAV simulated faults are provided,

assuming that only one fault at a time may occur in the plant.

Since SVM-based technique is formulated for two-class classification prob-

lems, in order to deal with different faulty conditions, a multi-layer SVMs

structure is implemented, Figure 2.10. Six SVMs are trained according to the

simulated faults, as shown in Table 2.1. For each investigated fault, half of the

dataset is used for training, while the rest of data are used for fault diagnosis

validation.

In order to achieve an optimal trade-off between generalisation and repre-

sentation performances, the parameters C and σ of each SVM are tuned by

solving an optimisation problem. The goal is to find the parameters values

that minimise the diagnosis error:

arg min
C,σ

1

n

n∑

i

H(−µif(xi)) , (2.45)

where H is the Heaviside step function. The minimisation problem (2.45) is
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Figure 2.11: Stuck Chilled Water Valve: +30%.

solved by using the particle swarm optimisation algorithm2.

The Platt’s probability is finally provided for each of the simulated fault.

In order to solve the optimisation problem (2.43) the solution proposed in [22]

is used, where a simple Newton’s method is chosen.

2.4.2.1 Stuck Chilled Water Valve

To evaluate the performance of the FDD system we start with the stuck chilled

water valve fault. We assume that the chilled water mass flow rate increases

by 30% with respect to normal conditions (fault-free), Figure 2.11. SVMs cor-

rectly detect and diagnose the fault: SVM 1 is −1 during faulty condition. The

posterior probability, which is closed to zero, confirms the correct classifica-

tion (we remember that Platt’s method measures the probability of fault-free

conditions). False alarms do not occur during the fault since other SVMs are

1.

In Figure 2.12 the case of analogous fault by -30% degree is depicted:

detection and diagnosis are correct.
2Details about the optimisation algorithm are given in Appendix C
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Figure 2.12: Stuck Chilled Water Valve: -30%.
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Figure 2.13: Stuck VAV Box Damper Zone 1: +30%.
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Figure 2.14: Stuck VAV Box Damper Zone 1: -30%.
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Figure 2.15: Temperature Sensor Offset Zone 1: +3◦C.
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Figure 2.16: Stuck Recirculation Damper: -30%.

2.4.2.2 Stuck VAV Box Damper

It is assumed that VAV box damper of zone 1 is blocked: its position is incorrect

(+30%) with respect to normal conditions (air mass flow increases). Since the

system is coupled both SVM 2 and SVM 3 are reported, Figure 2.13. In

this case, we can appreciate the help of the posterior probability, since the

two SVMs signals have not the same values during faulty conditions. SVM 2

Platt’s probability is closed to zero and SVM 3 one is almost always greater

than 0.5 during faulty behaviour: the posterior probability can help the final

decision in case of false alarms.

The case of analogous fault by -30% degree is illustrated in Figure 2.14:

posterior probabilities support the classification results.

2.4.2.3 Zone Air Temperature Sensor Offset

It is assumed that the sensor of zone 1 has an offset of +3◦C with respect to

actual conditions. In this case SVMs correctly detect the fault of zone 1 sensor

temperature: SVM 4 is -1 during faulty condition and the posterior probability

confirms the diagnosis, Figure 2.15.
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Figure 2.17: Stuck VAV Box Damper Zone 1: varying disturbances.

2.4.2.4 Stuck Recirculation Damper

The recirculation damper position is assumed wrong (-30%) with respect to

normal conditions. SVMs and posterior probabilities guarantee that the fault

is correctly detected and diagnosed: SVM 6 is -1 and its Platt’s probability is

null during the presence of the fault, Figure 2.16.

2.4.2.5 Fault Under Varying Disturbances

The case of varying disturbances is also considered. Let us suppose that the

outside temperature varies sinusoidally (from 25◦C to 33◦C) and internal loads

vary as depicted in Figure 2.17. The case of a fault on VAV box damper

position is investigated: its position is assumed wrong (Figure 2.17, air mass

flow, continuous line) with respect to normal conditions (Figure 2.17, air mass

flow, dashed line). SVMs system correctly detects and diagnoses the fault.

This is confirmed by the value of SVM 2 posterior probability; it is worth

noting that probability information adds uncertainty to the decision when the

loads and the external air temperature peaks, since the actual air mass flow

rate is similar to normal one.





3
Fault Detection for Chiller Systems

Although there is a large body of literature on fault detection and diagnos-

tics for applications in critical processes, relatively little exists for applications

in chillers or other vapour compression equipments. With the increased in-

strumentation of chillers, the interest in FDD systems for refrigeration units

is rapidly growing. The benefits of applying FDD to chillers can include less

expensive repairs, timely maintenance, and shorter downtime. In the 90s the

American Society of Heating, Refrigerating and Air Conditioning Engineers

(ASHRAE) compiled a survey of common faults in chillers and ranked them

according to the frequency of occurrence and cost to repair. The major Amer-

ican chiller manufacturers participated in this survey. A large number of pos-

sible faults and failures were identified in this study. However, not all of them

were considered for further examination in detection and diagnostics methods.

For example, most electrical and compressor failures do not need sophisticated

detection methods, since their presence is easily detected (e.g. motor burnout).

However the survey also showed that degradation faults, on the other hand,

generally led to a loss of performance, and were not easily detected (since

the chiller was often still operational). After the previous survey, ASHRAE

engineers performed experimental tests on a 316-kW centrifugal water-cooled

chiller. The goal was to develop a rich database of measurements under dif-

ferent faulty conditions for the development and evaluation of fault detection

and diagnostic methods applied to refrigeration units.

3.1 Chiller Data

Data collected in the ASHRAE research project included both transient and

steady-state conditions for the following faults: loss of water flow in the evap-
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Table 3.1: Considered chiller faults.

Fault Type with Symbol Normal Operation SL1 SL2 SL3 SL4

Reduced condenser water flow (fwc) 264-270 gpm 234-250 gpm 209-219 gpm 187-190 gpm 159-166 gpm
Reduced evaporator water flow (fwe) 214-216 gpm 194-196 gpm 175-177 gpm 155-156 gpm 137-141 gpm

Refrigerant leak (rl) 300 Ibs 270 lbs 240 lbs 210 lbs 180 lbs
Refrigerant overcharge (ro) 300 lbs 330 lbs 360 lbs 390 lbs 420 lbs

Excess oil (eo) 22 lbs 25 lbs 29 lbs 33 lbs 37 lbs
Condenser fouling (cf) 164 tubes 144 tubes 131 tubes 115 tubes 90 tubes

Non-condensables in refrigerant (nc) 0% N 1.0% N 1.7% N 2.4% N 5.7% N

orator and condenser, refrigerant leak, refrigerant overcharge, presence of ex-

cess oil, condenser fouling, presence of non-condensables in the refrigerant, and

faulty expansion valve. The faulty conditions in the chiller were tested at four

levels of severity (Table 3.1), with the exception of the defective pilot valve,

which was a preexisting fault found in the chiller. In detail, the reduced con-

denser and evaporator water flow were simulated by reducing the base water

flow rate, respectively 270 and 216 gpm (US gallons per minute), by about

10% at each fault level. ASHRAE engineers removed and added refrigerant

from the system in order to simulate respectively the refrigerant leak and re-

frigerant overcharge; the base refrigerant charge in the system was 300 pounds

(lbs); each fault level changed the refrigerant charge by about 10%. Oil was

added to the system to test the excess oil conditions; the base oil charge in the

system was 22 pounds and each fault level increased the oil charge by vary-

ing amounts as shown in Table 3.1. Tubes were plugged in the condenser to

test the condenser fouling; the condenser contained 164 tubes; Table 3.1 shows

the number of available tubes for each fault level. Nitrogen was added to the

system to simulate non-condensables in the refrigerant; Table 3.1 shows the

amount of nitrogen in the system for each fault level. Finally, the defective

pilot valve fault was suspected during the commissioning phase of the chiller,

when the superheat could not be properly adjusted. Once the pilot valve was

replaced, a substantial improvement in the superheat control as well as overall

capacity confirmed the suspicion.

Moreover, ASHRAE engineers conducted also normal experimental tests,

collecting data describing the correct functioning of the chiller. These tests

were used as “benchmarks” for the normal operational values with respect to

faulty-operating conditions.

3.1.1 Test Matrix

Research project engineers chose the following three control variables to per-

form the tests: the outlet evaporator water temperature (Teo), the inlet con-
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denser water temperature (Tci), and the chiller cooling capacity; for each fault

27 experimental tests were performed by varying the control variables as shown

in Table 3.2. A range was given for the load capacity, since cooling load could

not be directly controlled during the tests. Both steady-state and transient

data were collected during the tests. The transient data were ensured by the

changes in the operating setpoints. On the other hand, stationary operative

points could be reached by providing enough time to arrive at steady-state

conditions.

Table 3.2: Control variables and corresponding values during the 27 tests in the

ASHRAE research project.

Teo [◦C] Tci [◦C] Capacity [%]

50 85 90-100

50 85 50-60

50 85 25-40

50 75 90-100

50 75 50-60

50 75 25-40

50 70 70-80

50 65 45-50

50 62 25-35

45 85 90-100

45 85 50-60

45 85 25-40

45 75 90-100

45 75 50-60

45 75 25-40

45 70 70-90

45 62 45-50

45 62 25-35

40 80 90-100

40 80 50-60

40 80 25-40

40 70 90-100

40 70 50-60

40 70 25-40

40 65 70-80

40 62 45-50

40 62 25-35

3.1.2 Steady-State Detection

Steady-state detection is a critical step for optimisation, control and perfor-

mance evaluation of processes. Many methods for analysis and processing of

data require that the system is in steady-state conditions. The system is consid-
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ered in steady-state conditions when all its variables are around an operational

value that does not vary unless significant events such as the application of an

input, working points changes or a disturbance action, occur.

In this thesis the following variables are used for steady-state detection on

ASHRAE data:

• the chilled water supply temperature;

• the pressure of refrigerant in evaporator;

• the entering condenser water temperature;

• the pressure of refrigerant in condenser.

The previous characteristics can provide adequate information about the

functioning of the chiller. The two water temperatures are related to the

two external water cycles. The two pressures provide information about the

refrigerant. For each of the previous variables, the unknown parameters in

the following linear regression model are estimated (with a fixed moving time

window length):

y = mt+ b . (3.1)

If ‖m‖ is below a chosen threshold the variable is considered in steady-state

conditions. The threshold T is chosen as a function of the standard deviation

of the data σ:

T = a0 + a1σ . (3.2)

The optimal coefficients a0 and a1 are chosen empirically by trials.

Finally, only the subset where all the four variables are found in steady-

state, is considered in steady-state conditions. At the end, about 60% of the

original datasets are considered in stationary conditions.

3.1.3 Chiller Features Selection

ASHRAE datasets contain data evolutions of 66 variables of the chiller. Expe-

rience gained from past studies [8], [26] indicates that anomaly/fault detection

can be more sensitive if certain characteristic quantities or characteristic pa-

rameters are used instead of the basic sensor measurements: ASHRAE datasets

contain many features that provide redundant information since they are highly

correlated; other features provide no useful information for anomaly detection
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Table 3.3: Characteristic features employed in the detection analysis.

Characteristic Features

Evaporator Water Temperature Difference

Condenser Water Temperature Difference

Calculated Condenser Heat Rejection Rate

Calculated Evaporator Cooling Rate

Refrigerant Suction Superheat Temperature

Refrigerant Discharge Superheat Temperature

Liquid-line Refrigerant Subcooling from Condenser

Compressor Power

Calculated Compressor Efficiency

Evaporator Approach Temperature

Condenser Approach Temperature

Oil Feed minus Oil Vent Pressure

Oil in Sump minus Oil Feed Temperature

Pressure of Refrigerant in Evaporator

Pressure of Refrigerant in Condenser

analysis. Definitions of the d = 15 characteristic features used for fault detec-

tion are provided in Table 3.3. These characteristic features can be directly

deduced from the sensor measurements using arithmetic operations and ther-

modynamic refrigerant properties.

3.2 The One-Class Classifier

In this section the reference model that characterizes the correct system be-

haviour of the chiller is derived: the analysis is developed working on the

steady-state data of the 15 variables in Table 3.3 from the ASHRAE research

project. A semi-supervised approach is adopted, where only fault-free data are

supposed labelled (in fault-free conditions) and are used to identify the refer-

ence model of functioning of the system. In this context the fault detection

problem is tackled with a novelty detection approach, underlying that we want

to classify data, which have not been observed in the past (in faulty behaviour)

and are seen as novelties for the machine learning system. To this aim, a one-

class classifier is developed, which learns from training sets containing only

fault-free data. As a consequence, a key observation is that, unlike the FDD
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Figure 3.1: Chiller operating points at normal (i.e. fault-free) conditions. The

Energy Efficiency Ratio (EER) is defined as the ratio of heat removal from the

evaporator over energy input to the compressor. ASHRAE 1043-RP project.

system developed for the VAV plant, fault diagnosis is not performed in this

case, since faulty data are not used for training. The goal will be to distinguish

a faulty condition from a normal one, without identifying the typology of the

fault.

Moreover, it is worth saying that most of the variability in the selected

data (Table 3.3) describing normal working behaviour is due to information

relating to the operative conditions of the system; for example Figure 3.1 de-

picts some important chiller operating points in normal conditions. In this

section, Principal Components Analysis (PCA) is employed to group in the

first principal components the dominant variability of the data that is associ-

ated with the behaviour of system through the different operating conditions.

Differently from the common use of principal component analysis, in which the

components associated with the highest eigenvalues are usually considered in

data analysis, in this case these components will be those less informative for

the novelty detection problem.
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3.2.1 Principal Component Analysis

A classification problem becomes significantly harder as the dimensionality of

the data increases. Sometimes data are sparse in the space they occupy leading

to difficulties for the learning phase. A high data dimensionality is a problem

for many classification algorithms given the consequent high computational

cost and memory usage. Moreover, huge dimensionality in the data can lead

to poor understanding of the describing model [13].

In this work, Principal Component Analysis (PCA) is employed for dimen-

sionality reduction. PCA is a linear projection-based method that transforms

a set of variables into a new set of uncorrelated variables, named Principal

Components (PCs). PCA is run for a dataset defined by an n× d design ma-

trix X where the d columns are variables and the n rows are observations. X

is written in terms of the n × l scores matrix T , where l ≤ d, and the d × l
loadings matrix P , plus a residual matrix E, as follows:

X = TP T + E =
l∑

i=1

tip
T
i + E , (3.3)

where ti = Xpi. The vectors {pi} are the PCs and if l = d, then E = 0.

PCs are arranged in order of magnitude of variability of X explained: the first

PC, p1, can be geometrically interpreted as the direction where most of the

variability lies, then other PCs define orthogonal directions where less and less

variability is contained. PCA is called also eigenvalue decomposition, as each

of the PCs is related to an eigenvalue of the matrix in exam, ordered in terms

of magnitude. The transformation induced by PCA can therefore be employed

for reducing the dimensionality of the problem, as just l < d variables can be

employed to express a certain amount of variability in the input dataset.

In this thesis, principal component analysis is applied on the data belonging

to the 15 characteristic features (Table 3.3) of the normal dataset. In Figure 3.2

the cumulative explained variance of the 15 considered principal components

is depicted. It is worth noting that the first three components contain more

than 95% of the variability.

3.2.2 One-Class SVMs

One-Class Support Vector Machines (OCSVMs) are a powerful tool to perform

one-class classification. OCSVMs may be viewed as standard two-class SVMs1,
1SVMs theory is detailed in Appendix D
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Figure 3.2: Cumulative explained variance at the increase of the PCs considered.

where all the training data lie in the first class, and only the origin is taken as

member of the second class. Given a training datasetX = {x1, ..,xn}, xi ∈ Rd,
the OCSVMs algorithm maps the data into a higher dimensional feature space

and finds a hyperplane to separate all the data objects from the origin with

maximum margin, by solving the following quadratic programming problem:

arg minw,ξ,ρ

1

2
‖w‖2 +

1

νn

n∑

i=1

ξi − ρ , (3.4)

subject to

{
〈w,φ(xi)〉 ≥ ρ− ξi
ξi ≥ 0

, (3.5)

where n is the number of training samples, ξ = [ξ1 . . . ξn] and φ is generally a

non-linear map. w represents the hyperplane vector and ρ is its offset in the

feature space. The slack variable ξi measures the degree of misclassification of

the data. The trade-off parameter ν ∈ (0, 1] is an upper bound on the fraction

of training samples outside the decision boundaries and a lower bound on the

fraction of support vectors [31].

As in the two-class SVMs system, the RBF function is used as kernel to

perform one-class classification:

k(xi,xj) = 〈φ(xi),φ(xj)〉 = exp[−‖xi − xj‖2/(2σ2)] . (3.6)

OCSVMs Tuning In the considered semi-supervised context, the goal is to

identify the correct region of functioning of the chiller by setting the respective

boundaries (which correspond to the separating hyperplane in the enlarged

space).
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An optimal parameters tuning is needed for the OCSVMs: we remember

that the width parameter σ of the Gaussian kernel has a significant impact

on accuracy and generalisation performance. As σ increases, the number of

support vectors decreases and the decision boundaries become looser. In ad-

dition, the parameter ν also affects the shape of the decision boundaries of

the OCSVMs: as ν increases, the number of support vectors increases and the

number of misclassified training samples grows.

Since ν is closely related to the fraction of misclassified training samples

(i.e. points representing correct functioning but outside the fault-free region

provided by the classifier), it is usually set to a small value to ensure a small

misclassification error rate on the training phase: therefore, choosing an ap-

propriate value for σ is the main challenge of building a satisfactory OCSVM

model. To this aim, the heuristic approach proposed by [17], which chooses σ

via Tightness Detecting, is employed. Based on the assumption that training

samples are representative, an ideal decision boundary of OCSVMs should be

neither tight to ensure the generalisation of classifiers, nor loose to ensure the

sensitivity to faulty data. Since the relationship between the tightness of the

boundaries and σ is monotonous, an iterative algorithm is used to choose the

width of the Gaussian kernel via Tightness Detecting so that an appropriate

tightness of decision boundaries is found. The steps of the algorithm are:

1. find the initial upper bound σu and lower bound σl;

2. take σ = (σu + σl)/2. Operate the OCSVM algorithm to obtain the

decision boundaries;

3. evaluate the tightness of the boundaries via Tightness Detecting. If the

Tightness Detecting result turns out to be tight, let σl = σ; if it is loose,

σu = σ; if neither tight nor loose, stop iteration;

4. if σu−σl is less than the given threshold, stop iteration. Otherwise return

to step 2.

Tightness Detecting To evaluate the tightness of the decision boundaries,

Want et al. [17] propose the following algorithm. The underlying idea is that

if there exists one large hole inside the boundaries, these will be considered

loose; if the boundaries nearby two neighbouring samples are concave, they

will be considered tight.
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The algorithm implementation is as follows; given the training set T ⊂ Rd

and the signed distance f from the separating hyperplane in the enlarged space

we define the threshold T . Furthermore we calculate all distances between any

two training samples; we define the nearest distance Di for each sample xi and

then the parameter D:

D = max
i
{Di} = max

i
{min

j
‖xi − xj‖} . (3.7)

1. Evaluate if the boundaries are loose. For all pairs (xi,xj) such that

‖xi − xj‖ > T,xi,xj ∈ T, i 6= j, if there exists at least one (or more)

pair whose midpoint x̄ is inside the decision boundaries:

f(x̄) ≥ 0 , (3.8)

and

T ∩ {x| ‖x− x̄‖ ≤ D

2
,x ∈ Rd} = ∅ , (3.9)

the decision boundaries are considered loose and then go to step 2. If

no judgment is made after checking all the above conditioned pairs, the

boundaries are considered not loose and go to step 2.

2. Evaluate if the boundaries are tight. For all pairs (xi,xj) such that

‖xi − xj‖ ≤ T,xi,xj ∈ T, i 6= j, if there exists one (or more) pair whose

midpoint x̄ is outside the decision boundaries:

f(x̄) < 0 , (3.10)

the boundaries are judged tight, and then go to step 3. If no judgment is

made after checking all the above conditioned pairs, the boundaries are

judged not tight and go to step 3.

3. Give a judgment for tightness of decision boundaries. Referring to the

judgment provided in 1. and 2., give a final judgment. There are two

special cases:

• considering the possibility that the distribution of the training sam-

ples is non-uniform, the boundaries may be judged loose and tight

simultaneously; when this situation happens, the boundaries are

preferred to be considered tight;

• the other case is that the boundaries are judged neither loose nor

tight; when this situation happens, the optimal σ is found.
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Figure 3.3: Examples of tightness of the decision boundaries; the sub-optimal

classifier can be seen as a trade-off between the loose (that barely adapts to the

data at hand) and the tight solution (that clearly over-fits the samples available).

To evaluate the performance of the Tightness Detecting algorithm, the fol-

lowing example is provided. We consider a dataset of points belonging to a

Rosenbrock banana set, whose points are supposed to belong to the normal

functioning of a system. Figure 3.3 depicts the training data fed to the Tight-

ness Detecting algorithm. Three different boundaries are shown. In detail, the

green boundary is considered loose, whereas the magenta boundary is consid-

ered tight; the light blue one is considered sub-optimal, i.e. neither loose nor

tight, and is the output of the Tightness Detecting algorithm.

In order to validate the decision boundaries, we use as validation data

different fault-free working points and we suppose that a Gaussian distribution

represents a faulty behaviour of the system (Figure 3.4). The circles represents

normal working points while the points represent faulty situations. There are

four possibilities:

• Faulty data correctly classified;

• Fault-free data correctly classified;

• Faulty data classified as fault-free data;
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Figure 3.4: Validation phase for the Tightness Detecting algorithm.

• Fault-free data classified as faulty data.

It is worth noting that the boundaries play a key role in classification results.

With looser boundaries there would be a higher number of faulty situations

classified as normal with a lower number of fault-free data classified as faulty.

Conversely, the opposite occurs with tighter boundaries.

3.2.3 Reference Model

In the following the reference model that characterizes the baseline system

behaviour of the chiller is derived. The dataset of the principal components

of fault-free data is divided into training (67% of samples) and validation (the

remaining 33%); training principal components are then fed to the one-class

classifier. The tuning phase of the one-class SVM is tackled as follows: the

parameter ν is set to a small value to ensure a small misclassification error rate

in the training phase, as motivated in Section 3.2.2, whereas the parameter σ

is chosen via tightness detecting.

Different classifiers are computed depending on the input subset selection

considered, adopting a smart reduction of the principal components fed to the
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Figure 3.5: Error rate as function of the number of discarded top eigenvectors.

one-class classifier. Classifiers performances are then tested on new data with

faulty (see Table 3.1) and fault-free related runs.

Two experiment types are developed based on different choice of the classi-

fier input; in the first case, the classifiers
{
G(i)

}d−1

i=0
are computed by adopting

different input spaces {Ui} as follows:

G(i)(Ui) , Ui = [pi+1 . . .pd] , (3.11)

for i = 0, . . . , d − 1 . The performances, in terms of misclassification error

rates, are provided in Figure 3.5 for three different types of faults: the er-

ror rate is defined as the ratio of wrongly predicted data on total testing data.

The abscissa of Figure 3.5 represents the number of PCs discarded in the input

space; more precisely, the leftmost point corresponds to the error rate without

dimensionality reduction, while the next point corresponds to the error rate

when data are projected onto the space spanned by all eigenvectors except that

associated with the largest eigenvalue, and so on. It is worth noticing that the

curves generally have a U-shape: the minimum error rate is never achieved

when the PCs that contain most of the input variability are included into the

input space; better results are obtained once the first PCs are discarded. This

can be interpreted as an improvement of the classification performance once

the most of the variability (mainly the one related to operating conditions
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Figure 3.6: Error rate as function of the number of discarded minor eigenvectors.

changes) is left out from the input space. This result motivates the use of

PCA analysis as procedure for ordering the variability of the system in exam

and allowing the concealed anomalies related variability to be highlighted and

more easily identified by the classifier. Projecting the data onto the directions

of eigenvectors associated with smaller eigenvalues (i.e. from the 8th to the last

one) and then feeding the classifier with the corresponding principal compo-

nents, the average error rate is at least halved, compared to the error without

dimension reduction.

The idea that the first PCs describe most of the usual operating condition

variability is also supported by a second type of experiment, where the classi-

fier input space is changed again; the new classifiers
{
H(i)

}d−1

i=0
differ for the

working input space Vi employed:

H(i)(Vi) , Vi = [p1 . . .pd−i] , (3.12)

for i = 0, . . . , d−1 . The results for this second type of experiments are reported

in Figure 3.6: it can be seen how the misclassication error rate increases as

the number of discarded PCs associated with the smallest eigenvalues is aug-

mented. This proves how first PCs are not informative features for novelty

detection.

This intuition can be also corroborated by the following observation. Fig-
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Figure 3.7: Principal components: fault-free (blue points) and fwe SL4 (red

points).

ure 3.7 depicts normal validation data (blue points) and faulty data (i.e fwe

data, red points) projected onto the first four principal components and the

last four principal components (the principal components are coupled in 2-D

dimensions). It is worth noting that while the first principal components do

not exhibit substantial differences, normal and faulty data are easily separable

in the last principal components.

Similar results can be appreciated for the other faults: first principal com-

ponents are not easily separable; they add useless information and complexity

to the one-class classification problem; discarding them helps the different val-

ues of the smallest principal components to be highlighted in the classification

task.

Following the experiments outcome, the classifier G(7) is chosen to evaluate

the classification performances in Section 3.3, as it exhibits the lowest average

error rate with the considered faults.

3.3 Classification Results

In order to assess the performances of the one-class classifier, data in faulty

conditions (Table 3.1) coupled with normal validation data are used. We evalu-

ate the ability of the classification model to distinguish normal behaviour from

anomalous one with Receiving Operating Characteristic (ROC) analysis, ex-

ploiting the Area Under the ROC Curve (AUC) as indicator of discriminatory

power.
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3.3.1 ROC Analysis

In a two-class prediction problem (binary classification), in which the outcomes

are either positive (P, in this case in fault-free conditions) or negative (N, faulty

conditions), there are four possibilities. If the outcome from a prediction is P

and the actual value is also P, then it is called a True Positive (TP); however if

the actual value is N then it is said to be a False Positive (FP). Conversely, a

True Negative (TN) occurs when both the prediction outcome and the actual

value are N, and False Negative (FN) happens when the prediction outcome is

N while the actual value is P. The four outcomes can be formulated in a 2× 2

confusion matrix, as follows:

Table 3.4: Confusion matrix

Condition positive Condition negative

Test outcome positive True Positive (TP) False Positive (FP)

Test outcome negative False Negative (FN) True Negative (TN)

The following parameters are usually adopted to evaluate the performance

of the classification:

• the True Positive Rate (TPR) measures the proportion of positives which

are correctly identified:

TPR =
TP

TP + FN
; (3.13)

• the True Negative Rate (TNR) measures the proportion of negatives

which are correctly identified:

TNR =
TN

FP + TN
; (3.14)

• the Positive Predictive Value (PPV) is the proportion of positive out-

comes which are true positive:

PPV =
TP

TP + FP
; (3.15)

• the Negative Predictive Value (NPV) is the proportion of negative out-

comes which are true negatives:

NPV =
TN

TN + FN
; (3.16)
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• the False Positive Rate (FPR) measures the proportion of negatives

which are wrongly identified:

FPR =
FP

TN + FP
; (3.17)

• the False Negative Rate (FNR) measures the proportion of positives

which are wrongly identified:

FNR =
FN

TP + FN
; (3.18)

• the Accuracy (ACC) is the proportion of outcomes which are correctly

identified:

ACC = (TP + TN)/(P +N) . (3.19)

A Receiver Operating Characteristic (ROC), or simply ROC curve, is a

graphical plot which illustrates the performance of a binary classifier system

as its discrimination threshold varies. The corresponding Area Under the ROC

curve (AUC) measures the ability to correctly classify data.

For example in Figure 3.8 we suppose that normal and faulty behaviours are

described with two Gaussian distributions with different standard deviations

and different means. Assuming that the threshold provided by the classifier is

the black vertical continuous line, that separates the FN-TN values from the

TP-FP ones, the ROC curve plots the true positive rate and the false positive

rate at different thresholds settings (dashed line). In Figure 3.9 examples of

ROC curves are plotted. The red line, which passes through the point (0,1),

represents a perfect test in which 100% of the data are correctly classified (AUC

= 1). The dashed line refers to the performance of a random classifier (AUC =

0.5). The blue line represents a ROC curve representing a good classification

result since the curve is above the diagonal (the classification results work

better that random classifier).

3.3.2 Reduced Condenser and Evaporator Water Flow

The classification results for the reduced evaporator and condenser water flows

are now provided. In Figures 3.10 and 3.11, we compute the ROC curves to

analyse the classification model on sets composed by normal validation data

and data related to the two anomalies at the four severity levels. It is worth

noting that the classification task has excellent performances: the area under

the ROC curve is always higher than 0.9.
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Figure 3.8: Faulty and fault-free data: two different Gaussian distributions.
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Figure 3.9: Examples of ROC curves.
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Figure 3.10: ROC analysis: reduced evaporator water flow.
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Figure 3.11: ROC analysis: reduced condenser water flow.
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Figure 3.12: ROC analysis: refrigerant leak.

3.3.3 Refrigerant Leak and Overcharge

The performances of the classification of refrigerant leak and refrigerant over-

charge faults are given by ROC curves in Figures 3.12 and 3.13. All the ROC

curves are above the diagonal representing a good classification result. It is

worth noting that the classification score markedly increases as the severity

levels raises: high intensity faults are easier to be detected than low intensity

faults (as intuitively expected).

3.3.4 Excess Oil

In this case the SL2 and SL3 faults are perfectly detected while the SL1 fault

has good performances (Figure 3.14). Data on SL4 severity level reach sta-

tionary conditions in few points, and they are not given to the classifier for

performance analysis.

3.3.5 Condenser Fouling and Non-Condensables in
Refrigerant

Excellent results are achieved for the condenser fouling and non-condensables

in refrigerant (Figures 3.15 and 3.16), where classification works optimally even
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Figure 3.13: ROC analysis: refrigerant overcharge.
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Figure 3.14: ROC analysis: excess oil.
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Figure 3.15: ROC analysis: condenser fouling.

in low severity levels. Only the first three severity levels results are reported

in Figure 3.16 since the fourth severity level test could not reach all desired

operating conditions during the tests in the project.

3.3.6 Comments

The classification has exhibited good results with all the considered faults. It is

not easy to make a comparison between the results for the different typologies

of faults, since their severity levels do not have a common scale of comparison.

However, the ROC analysis confirms that both the reduced condenser and

evaporator water flow rate are easily detected, [8].

Furthermore, it is interesting to exploit the distance of the data in exam

from the OCSVM decision boundary as a mean for inferring information about

anomaly severity: the underlying idea is that observations with small fault na-

ture will be close to the normal data (and therefore to the decision boundary),

while severe faults related samples will be distant from normally classified data

and the OCSVM decision boundary.

Figure 3.17 shows the signed distances (in the 8D dimensional space) of all

the test points belonging to two anomalies (reduced evaporator water flow and

reduced condenser water flow) where only two principal components (p11-p12)
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Figure 3.16: ROC analysis: non-condensables in refrigerant.

are used for visualization. A positive distance value corresponds to a test point

classified as normal, whereas a negative one refers to an anomalous behaviour;

it can be seen that as the severity level of fault rises, the magnitude of negative

distance increases. This is confirmed by the boxplot representation depicted

in Figure 3.18, where statistical properties of the data, related to the reduced

evaporator water flow rate, at different severity levels, are shown. This suggests

that the distance from the decision boundary could be exploited for predictive

maintenance purposes.
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4
Conclusions

Faulty operations of Heating, Ventilation and Air Conditioning (HVAC) sys-

tems can lead to discomfort for the occupants, energy wastage, unreliability and

shorter equipment life. Cost-effective Fault Detection and Diagnosis (FDD)

methods can therefore ensure an increase in the system uptime, reliability, and

overall efficiency.

In this thesis the FDD task has been approached as a binary classification

problem. Support vector machines have been used to perform classification:

they can deal with high dimensionality of the data and can provide non-linear

decision boundaries in the classification model.

First, the most common relevant faults affecting VAVAC systems have been

investigated, with the help of a simulation environment which allows to gen-

erate data that describe both regular and faulty system behaviour. A process

history-based FDD method, which combines a supervised approach with a two-

class SVMs system and a posterior probability has been employed. Extensive

simulations have shown how the proposed FDD method correctly detects and

diagnoses the different kinds of faults which plague VAVAC systems.

Then, a semi-supervised approach has been used to detect the most com-

mon chiller systems faults, under the assumption of unavailability of faulty

labelled data. A novelty detection tool has been presented, being able to

identify anomalous situations using only fault-free data in the training phase.

The proposed combination of one-class classification (with one-class SVMs)

and principal component analysis for discarding the high variability related

to usual operating conditions changes has been shown to be effective in the

detection performance.

Future works of the research can include the design of FDD methods, which

could take advantage from an on-line version of the classification, being able to
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detect the system faults under real time working conditions and comprehending

adaptive solutions for automatic faults labelling. A interesting FDD research

topic is the multi-faults detection and diagnosis for HVAC plants, i.e. the

development of FDD techniques that could be able to understand multiple

deviations of the data from normal conditions.
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Two different arguments have been covered in this thesis:

Energy Efficient Control of Ice Thermal Energy Storage Systems

The first part of this dissertation has corroborated the use of predictive

control for the energy efficient management of ice Cold Thermal Energy Storage

(ice-CTES) systems.

A model-based approach has been developed to design the ice-CTES plant.

In detail, the storage has been modelled as a hybrid system, thus taking into

consideration both sensible and latent heat. Three standard control strate-

gies (constant-proportion control, chiller-priority control and storage-priority

control) and a Non-Linear Model Predictive Control (NLMPC) approach have

been compared in the management of the ice-CTES system. The NLMPC

implementation needs the prediction of both outputs and disturbances of the

plants. The disturbances of the plant have been obtained with an artificial

neural network algorithm that can achieve sufficiently accurate predictions by

measuring quantities that are typically available in standard HVAC installa-

tions, as explained in:

• A. Beghi, L. Cecchinato, M. Rampazzo, and F. Simmini. Load Forecast-

ing for the Efficient Energy Management of HVAC Systems. In IEEE

International Conference on Sustainable Energy Technologies (ICSET),

2010.

Particle Swarm Optimisation (PSO) algorithm has been used to minimise

the objective function associated with the predictive control problem. Non-

linear model predictive control has been shown to be the better control strategy

for the efficient energy management of ice-CTES systems. The results of this

research have been published in:

• A. Beghi, L. Cecchinato, M. Rampazzo, and F. Simmini. Modeling and

Control of HVAC Systems with Ice Cold Thermal Energy Storage. In

IEEE 52nd Annual Conference on Decision and Control (CDC), 2013.

• A. Beghi, L. Cecchinato, M. Rampazzo, and F. Simmini. Energy efficient

control of HVAC systems with ice cold thermal energy storage. Journal

of Process Control, 24(6):773-781, 2014.
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Fault Detection in HVAC Systems

In the second part of the dissertation fault detection methods for HVAC

systems have been developed.

First a Fault Detection and Diagnosis (FDD) system has been designed to

detect and diagnose the most common faults affecting Variable Air Volume Air

Conditioning (VAVAC) plants. To this aim, a lumped-parameter model of a

two-zone VAVAC system has been developed; a direct feedback linearisation

technique has been adopted to control the resulting non-linear and coupled

system. The FDD task has been approached as a supervised classification

problem. The proposed supervised learning technique has exhibited good per-

formance in the detection and diagnosis of the VAVAC model simulated faults.

Fault detection algorithms have been later developed to detect the most

relevant faults plaguing chiller systems. Data from the research project 1043-

RP of the American Society of Heating, Refrigerating and Air Conditioning

Engineers (ASHRAE) have been used. The developed fault detection technique

is based on one-class classification coupled with a novelty detection approach.

The one-class classifier has shown to be effective in the fault detection of the

chiller faults. Research results of the second part of the thesis have been

published in:

• A. Beghi, L. Cecchinato, L. Corso, M. Rampazzo, and F. Simmini. Pro-

cess History-Based Fault Detection and Diagnosis for VAVAC Systems.

In IEEE International Conference on Control Applications (CCA), Part

of the IEEE Multi-Conference on Systems and Control (MSC), 2013.

• A. Beghi, L. Cecchinato, C. Corazzol, M. Rampazzo, F. Simmini, and

G.A. Susto. A One-Class SVM Based Tool for Machine Learning Nov-

elty Detection in HVAC Chiller Systems. In 19th IFAC World Congress

(accepted), 2014.
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A
Non-Linear Model Predictive Control Strategy

Model Predictive Control (MPC) is an advanced method of process control

originated in the late seventies. The term Model Predictive Control refers to

a very wide range of control methods which make an explicit use of a model of

the process to obtain the control signal by minimising an objective function.

There are different MPC algorithms, that differ amongst themselves in the

model used to represent the process, the noises and the cost function to be

minimised. However, the ideas appearing in all the predictive control families

are:

• use of a model to predict the process output at future time instants;

• minimisation of an objective function in order to calculate a sequence of

future control inputs;

• the MPC is a receding control strategy, i.e. only the first control signal

of the calculated sequence is applied to the system.

MPC control has been widely received by the academic world and by in-

dustry. There are many applications of predictive control successfully in use

at the present time, not only in the process industry but also in different ap-

plications ranging from robot manipulators to biomedical systems. The good

performance of these applications shows the capacity of the MPC to achieve

highly efficient control systems able to operate during long periods of time.

A.1 Model Predictive Control Principles

The methodology of all the controllers belonging to the MPC family is char-

acterized by the following principles:
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• The future outputs for a determined horizon Tp, called the prediction

horizon, are predicted at each instant τ , using the process model. These

predicted outputs depend on the known values up to instant τ (past

inputs and outputs) and on the future control signals, which are those

to be calculated.

• The set of future control signals is calculated by optimising an objective

function in order to keep the process as close as possible to the reference

trajectory. The performance index usually takes the form of a quadratic

function of the errors between the predicted output signal and the refer-

ence trajectory. The control effort is included in the objective function

in most cases.

• Only the first control signal is sent to the process while the other control

signals are discarded.

A.2 Mathematical Formulation of NLMPC

Actual systems often contain non-linear dynamics. When dealing with non-

linear models, predictive control strategy is known as Non-Linear Model Pre-

dictive Control (NLMPC). Generally, a discrete non-linear system can be sum-

marized as follows:

x(τ + 1) = f(x(τ),u(τ),d(τ)) , (A.1a)

y(τ) = h(x(τ),u(τ)) , (A.1b)

x(0) = x0 , (A.1c)

τ ≥ 0 , (A.1d)

y ∈ Y := [ymin,ymax] ⊂ Rdim(y) , (A.1e)

u ∈ U := [umin,umax] ⊂ Rdim(u) , (A.1f)

d ∈ D := [dmin,dmax] ⊂ Rdim(d) , (A.1g)

x ∈ X := [xmin,xmax] ⊂ Rdim(x) , (A.1h)

where x,u,d,y, are the vectors of state, control variables, disturbances

and output variables, respectively, f and h are general non-linear maps. The

sets Y,U,D, X are the feasible domains (system constraints).
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Figure A.1: Principle of predictive control.

Many formulations for the objective function can be found in MPC litera-

ture. One of the most used non-linear model predictive control cost function

is written as follows:

arg min
ū

t+Tp∑

τ=t+1

α(τ) ‖ȳ(τ)− r̄(τ)‖2 +

t+Tc∑

τ=t+1

β(τ) ‖ū(τ)‖2 + γ(τ) ‖∆ū(τ)‖2 ,

(A.2a)

s.t. x̄(τ + 1) = f(x̄(τ), ū(τ), d̄(τ)) , (A.2b)

ȳ(τ) = h(x̄(τ), ū(τ)) , (A.2c)

ū(τ) ∈ U , ∀τ ∈ [t, t+ Tc] , (A.2d)

ū(τ) = ū(t+ Tc) , ∀τ ∈ [t+ Tc, t+ Tp] , (A.2e)

d̄(τ) ∈ D , ∀τ ∈ [t, t+ Tp] , (A.2f)

x̄(τ) ∈ X , ∀τ ∈ [t, t+ Tp] , (A.2g)

ȳ(τ) ∈ Y , ∀τ ∈ [t, t+ Tp] , (A.2h)

where Tp and Tc are the prediction and the control horizons with Tc ≤ Tp; α(·),
β(·) and γ(·) are weight coefficients; ∆ is the difference operator; ‖·‖ is a norm

chosen in such a way as to weigh the trajectory error (from the reference r̄)

and the control effort. To distinguish the real system from the system model

used to predict the future within the controller, in (A.2) a bar is used to denote
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the internal variables in the controller.

The implementation concepts of the predictive control strategy are repre-

sented in Figure A.1. The system model is used to predict the future plant

outputs, based on past and current information and on the proposed optimal

future control actions, which are calculated by minimising the cost function

taking into account the constraints. Only the first control input is applied

to the plant. The procedure is repeated at each iteration. The cost function

(A.2a) is generally non-convex, leading to a non-convex optimisation problem

to be solved.

A in-depth analysis of NLMPC theory can be found in [12].



B
Artificial Neural Networks

Artificial Neural Networks (ANNs) are computational models inspired by the

nervous systems (e.g. the brain). Artificial neural networks are generally pre-

sented as systems of interconnected “neurons”; they can be used to solve engi-

neering problems of artificial intelligence as those that arise in different tech-

nological fields (in electronics, computer science, and other disciplines). In

most cases, an artificial neural network is an adaptive system that changes its

structure on external inputs/outputs and the information that flows through

the network during the learning phase. In this way the neural network is able

to understand complex relationships between inputs and outputs that other

analytic functions fail to represent. An artificial neural network receives exter-

nal signals on a layer of nodes, each of which is connected with many internal

nodes, in a multiple levels organization. Each node processes the received

signals and transmits the result to the subsequent nodes.

A neural network is composed by three kinds of layers:

• an input layer;

• hidden layers;

• an output layer.

There are different kinds of artificial neural networks. One of the most

important is the feed-forward neural network. It has been shown that a feed-

forward neural network with one hidden layer can approximate any function,

and this is the most used scheme amongst ANNs in black-box identification,

[13]. In Figure B.1 a general scheme for a feed-forward artificial neural network

with one hidden layer is shown. Nodes represent variables while arches are
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w1 w2 . . . wmO

v1 v2 v3 . . . vmH

u1 u2 u3 . . . umI−1 umI

HIDDEN LAYER

OUTPUT LAYER

INPUT LAYER

Figure B.1: Single hidden layer neural network.

associated to functions that describe interconnection between variables. In the

scheme {ui}mI
i=1 are the inputs and {wi}mO

i=1 are the outputs. Features {vi}mH
i=1

are created from combinations of the inputs:

vi = ha(α0i + αTi U) , i = 1, . . . ,mH , (B.1)

where U is the matrix of the inputs, while outputs are created from combina-

tions of the created features:

wi = hb(β0i + βTi V ) , i = 1, . . . ,mO , (B.2)

where V is the matrix of hidden features. The activation function ha(·) is

usually chosen to be non-linear (sigmoid, arctan, radial basis function), while

the output function hb(·) is typically chosen linear. For more details the reader

is referred to [13].

Coefficients α· and β· are called weights and are chosen in such a way as

to minimise the Mean Squared Error (MSE):

MSE =

∑n
j=1(ŵj −wj)

2

n
, (B.3)

where, n is the number of observations, w is the real output vector and ŵ is

the predicted one.
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  Neural Network

Adjust weights

Compare
Input Output

Target

Figure B.2: ANN back-propagation algorithm.

The algorithm that is commonly employed for the training of the ANNs is

the back-propagation algorithm, where weights are computed in a two-phase

procedure where, after an initial guess, the prediction error is computed and

then propagated backwards in the ANN structure to correct weights; then with

the new weights the new prediction errors are calculated (Figure B.2). This

procedure is iterated several times in order to reach the minimum value of

(B.3). Further information about the ANNs tool can be found in [13].





C
Particle Swarm Optimisation Algorithm

Collective behaviours are a key concept in several studies of modern research

in many disciplines, from econometric studies to social sciences, from com-

puter science to control and optimisation theory. Particle Swarm Optimisation

(PSO) is a population-based optimisation technique inspired by the motion of

bird flocks (Figure C.1), [18].

The key idea in the PSO method is in the way to combine two different

types of perspectives (individual and social perspectives) to predict the best

update for the position in the next iteration [27], maintaining a balance be-

tween exploration and exploitation in the space. At each iteration, each particle

combines information from the current motion vector, an individual correction,

and a social correction. The contribution of these components results in the

prediction of the position in the next iteration.

The basic algorithm implementation is as follows. Let f : S ⊆ Rn→ R be

the cost function to be minimised. The particles are manipulated according to

the following equations related to velocity and position of the j-th particle:

ṗj(t+ 1) = wṗj(t) + c1R1(t)(pj,P(t)− pj(t))

+ c2R2(t)(pG(t)− pj(t)) , (C.1)

pj(t+ 1) = pj(t) + ṗj(t+ 1) . (C.2)

The positions pG(t) and pj,P(t) represent the global and local best particles

positions at iteration t respectively. w is an inertia weight, c1 > 0 and c2 > 0

are the cognitive and social parameters, respectively, and R1 and R2 are n×n
diagonal matrices of random numbers uniformly distributed in [0, 1]. The
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Figure C.1: Bird flock.
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Figure C.2: PSO, graphical illustration of position update.
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velocity is updated according to the following components, Figure C.2:

• previous velocity, ṗ(t): it represents the inertia term, that avoids sudden

changes in the direction of the particle;

• individual correction, pP(t)−p(t): it quantifies the dynamic of the par-

ticle with respect to past performances. It takes care of the memory of

the individual particle, and its desire to go back to its best position;

• social correction, pG(t)− p(t): it quantifies the dynamic of the particle

with respect to the performance of the swarm; the particle tends to move

towards the best position of the swarm.

The steps of the PSO algorithm can be summarised as follows:

1. Set values for swarm size, inertia weight, cognitive and social parameters.

Initialize a population of particles with random positions and velocities.

Initialize each particle’s best position to its initial position. Determine

the initial global best position among all particles.

2. Update the velocity and position of each particle according to equations

(C.1) and (C.2).

3. For each particle, compute the value of f(pj).

4. Compare each particle current value with the corresponding local best

value. If the current value is better, then update the local best value.

5. Determine the particle of the current swarm with the best objective func-

tion value. If such value is better than pG, then update pG.

The algorithm ends when a stopping criterion is met, for example if the

objective function no longer improves or after a certain number of iterations.

pG is the solution provided by the algorithm.
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C.1 Constrained Optimisation in PSO

A constrained optimisation problem in particle swarm optimisation algorithm

can be written in the following form:

find arg min
p∈S

f(p) , (C.3a)

subject to gi(p) ≤ 0 , i = 1, . . . q , (C.3b)

hj(p) = 0 , j = q + 1, . . .m , (C.3c)

where p is the position of the particle and S is the whole search space. There

are q inequalities and m− q equality constraints.

Different approaches can be adopted to manage constraints in PSO optimi-

sation. In order to decide whether a particle is in the feasible region, a penalty

function can be introduced, for example:

φ(p) =
∏

i

emax(0,gi(p))
∏

j

emax(0,|hj(p)|) . (C.4)

It is worth noticing that φ(p) ≥ 1, and all the positions such that φ(p) = 1 are

feasible. By minimising φ(p), the particle tends to move towards the feasible

region. When the particle moves away from the feasible region, assuming that

the previous particle position is in the feasible region, one possible strategy

(as explained in [3]) is to let the particle move towards a position between

the previous position and the just calculated position minimising the objective

function f :

p̄(t+ 1) = p(t) + β(p(t+ 1)− p(t)) . (C.5)

The new position can be found by solving the following optimisation prob-

lem:

arg min
β∈[0,1)

φ(p̄(t+ 1)) . (C.6)

Since the values of p(t) and p(t + 1) are known, a value of β is selected

to get the minimum of the function φ. Since β is only a scalar coefficient, the

problem can be dealt as an one-dimensional search optimisation problem and

can be easily solved by means of, e.g., golden section search methods [6].



D
The Support Vector Classifier

The mathematical theory for the support vector classifier is briefly described

in the following. The reader is referred to [13] for a in-depth analysis of the

support vector classification problem.

D.1 Separating Hyperplanes

The training data for the classifier are n pairs (x1, µ1), ..., (xn, µn), where xi ∈
Rd and µi ∈ {−1, 1}. Training data can thus be divided into two classes with

respect to the value of µ.

Defining the following hyperplane:

{x : f(x) = xTw + b = 0} , (D.1)

where w is a unit vector (||w|| = 1), a possible induced classification rule can

be:

G(x) = sign[xTw + b] . (D.2)

From geometry we know that, given the point x, f(x) provides the signed

distance of x from the hyperplane.

From the previous observation we can deduce that if the two classes are

separable (see Figure D.1(a)) it is possible to find a function f(x) = xTw +

b with µif(xi) > 0 ∀i. Therefore the hyperplane that creates the biggest

margin M between the training points for class 1 and −1 can be found; the

optimisation problem for the linearly separable case can thus be written:

max
w,b,||w||=1

M , (D.3a)
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(a) Separable case. (b) Non-Separable case.

Figure D.1: Support vector classifiers.

subject to:

µi(x
T
i w + b) ≥M , i = 1, . . . , n . (D.3b)

If we set M = 1/||w|| the previous optimisation problem can be easily

written in the equivalent form [13]:

min
w,b
||w|| , (D.4a)

subject to:

µi(x
T
i w + b) ≥ 1 , i = 1, . . . , n , (D.4b)

which is the standard way of writing the support vector problem for sepa-

rable data.

We suppose now that data are not linearly separable. In this case M is

still maximized, but some points are on the other side of the margin (Figure

D.1(b)). The slack variables (ξ1, ξ2, . . . ξn) are defined and the constraints in

(D.3) are modified in the following way [13]:

µi(x
T
i w + b) ≥M(1− ξi) , (D.5)

∀i, ξi ≥ 0,
∑n

i=1 ξi ≤ constant. As in the previous case this problem can be

more conveniently written as follows:

min
w,b
||w|| , (D.6a)
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subject to:

µi(x
T
i w + b) ≥ 1− ξi ∀i , (D.6b)

ξi ≥ 0 ,
∑

ξi ≤ constant . (D.6c)

D.2 Optimisation

The problem (D.6) is a convex optimisation task, since it is quadratic with

linear inequality constraints. A quadratic programming solution is shown using

Lagrange multipliers [13]. To this aim, equation (D.6) can be re-expressed in

the equivalent form adding the cost parameter C:

min
w,b

1

2
||w||2 + C

n∑

i=1

ξi , (D.7a)

subject to:

ξi ≥ 0 , µi(x
T
i w + b) ≥ 1− ξi ∀i . (D.7b)

The Lagrange (primal) function of the previous optimisation problem is:

LP =
1

2
||w||2 + C

n∑

i=1

ξi −
n∑

i=1

αi[µi(x
T
i w + b)− (1− ξi)]−

n∑

i=1

γiξi , (D.8)

which has to be minimised with respect to w, b and ξi. If the respective deriva-

tives are set to zero, the following equations are obtained:

w =

n∑

i=1

αiµixi , (D.9)

0 =
n∑

i=1

αiµi , (D.10)

αi = C − γi , ∀i , (D.11)

with the positivity constraints αi, γi, ξi ≥ 0, ∀i. By substituting equations

(D.9)-(D.11) into (D.8), the Lagrangian dual objective function is found:

LD =

n∑

i=1

αi −
1

2

n∑

i=1

n∑

i′=1

αiαi′µiµi′x
T
i xi′ , (D.12)

giving a lower bound on the objective function (D.7a) for the feasible set. The

dual function LD has to be maximized subject to 0 ≤ αi ≤ C and
∑n

i=1 αiµi =
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0. In addition to (D.9)-(D.11) the Karush-Kuhn-Tucker conditions comprise

the constraints:

αi[µi(x
T
i w + b)− (1− ξi)] = 0 , (D.13)

γiξi = 0 , (D.14)

µi(x
T
i w + b)− (1− ξi) ≥ 0 , (D.15)

for i = 1, . . . , n. The equations (D.9)-(D.15) uniquely define the solution to

the primal and dual problem. From (D.9) we see that the solution for w has

the form:

ŵ =

n∑

i=1

α̂iµixi , (D.16)

with nonzero coefficients α̂i only for the observations i for which the constraints

in (D.15) are exactly satisfied (due to (D.13)). Therefore, only these observa-

tions, called the support vectors, determine the solution. From (D.13) b can

be found with any of the margin points (which are characterized by 0 < α̂i,

ξ̂i = 0, [13]), and an average of all the solutions is usually used. The dual

(D.12) maximisation is a simpler convex quadratic programming problem with

respect to primal problem (D.8), and can be solved with standard optimisation

techniques.

Once obtained the solutions b̂ and ŵ, the classification rule can be finally

written as:

Ĝ(x) = sign[f̂(x)] = sign[xT ŵ + b̂] . (D.17)

D.3 Kernels

The described support vector classifier can find linear boundaries in the input

feature space. However it is possible to make the procedure more flexible: the

idea is to transform the vector input space into a higher dimensional feature

space using new basis functions φm(x),m = 1, . . . ,M . The support vector clas-

sifier is then computed using φ(xi) = (φ1(xi), φ2(xi), . . . , φM (xi)), i = 1, . . . , n

as input features and produce the (non-linear) function f̂(x) = φ(x)T ŵ + b̂.

Finally the classifier is Ĝ(x) = sign[f̂(x)].

In detail, it is possible to represent the optimisation problem (D.8) and its

solution involving the input features only via inner products. Using a basis

expansion the Lagrange dual function is:
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LD =

n∑

i=1

αi −
1

2

n∑

i=1

n∑

i′=1

αiαi′µiµi′ 〈φ(xi),φ(xi′)〉 . (D.18)

From (D.9), the solution f(x) can be written as:

f(x) = φ(x)Tw + b =
n∑

i=1

αiµi 〈φ(x),φ(xi)〉+ b . (D.19)

Given αi, b can be determined as in the previous case.

From (D.18) and (D.19) we see that the transformation φ(x) is not needed

to be specified, but only knowledge of the kernel function is required:

k(x,x′) =
〈
φ(x),φ(x′)

〉
, (D.20)

that computes inner products in the enlarged space. k is a symmetric positive

(semi-) definite function [13]. Common choices for the inner product k are:

• p-th degree polynomial: k(x,x′) = (1 + 〈x,x′〉)p ,

• Radial basis: k(x,x′) = exp[−‖x− x′‖2 /(2σ2)] ,

• Neural network: k(x,x′) = tanh(a1 〈x,x′〉) + a2) .





References





References 129

[1] H. Akbari and O. Sezgen. Case Studies of Thermal Energy Storage (TES)

Systems: Evaluation and Verification of System Performance. Technical

report, Lawrence Berkeley Laboratory, University of California (United

States), 1992.

[2] M. Albieri, A. Beghi, C. Bodo, and L. Cecchinato. Advanced control

systems for single compressor chiller units. International Journal of Re-

frigeration, 32(5):1068 –1076, 2009.

[3] A. Beghi, L. Cecchinato, G. Cosi, and M. Rampazzo. A PSO-based al-

gorithm for optimal multiple chiller systems operation. Applied Thermal

Energy, 32:31 – 40, 2012.

[4] A. Beghi, L. Cecchinato, and M. Rampazzo. A multi-phase genetic al-

gorithm for the efficient management of multi-chiller systems. Energy

Conversion and Management, 52(3):1650 – 1661, 2011.

[5] A. Beghi, L. Cecchinato, M. Rampazzo, and F. Simmini. Load Forecast-

ing for the Efficient Energy Management of HVAC Systems. In IEEE

International Conference on Sustainable Energy Technologies (ICSET),

2010.

[6] R.P. Brent. Algorithms for Minimization without Derivatives. Prentice-

Hall, 1973.

[7] R. Cagienard, P. Grieder, E.C. Kerrigan, and M. Morari. Move block-

ing strategies in receding horizon control. Journal of Process Control,

17(6):563 – 570, 2007.

[8] M.C. Comstock and J.E. Braun. Development of analysis tools for the

evaluation of fault detection and diagnostics for chillers. Technical report,

ASHRAE Research Project 1043-RP, HL 99-20 Report 4036-3, 1999.

[9] I. Dincer, S. Dost, and X. Li. Performance analyses of sensible heat stor-

age systems for thermal applications. International Journal of Energy

Research, 21(12):1157–1171, 1997.

[10] I. Dincer and M.A. Rosen. Thermal Energy Storage: Systems and Appli-

cations. John Wiley & Sons, Ltd, West Sussex, United Kingdom, 2011.

[11] L. Gao, L. Chen, Y. Fan, and H. Ma. A Nonlinear Control Design for

Power Systems. Automatica, 28(5):975–979, 1992.



130 References

[12] L. Grüne and J. Pannek. Nonlinear Model Predictive Control. Springer,

2011.

[13] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical

Learning. Springer New York, 2009.

[14] G.P. Henze, C. Felsmann, and G. Knabe. Evaluation of optimal control

for active and passive building thermal storage. International Journal of

Thermal Sciences, 43(2):173 –183, 2004.

[15] G.P. Henze, M. Krarti, and M.J. Brandemuehl. A Simulation Environment

for the Analysis of Ice Storage Controls. HVAC&R Research, 3(2):128–

148, 1997.

[16] G.P. Henze, M. Krarti, and M.J. Brandemuehl. Guidelines for improved

performance of ice storage systems. Energy and Buildings, 35(2):111–127,

2003.

[17] W. Huangang, Z. Lin, X. Yingchao, and X. Wenli. An Approach to Choos-

ing Gaussian Kernel Parameter for One-Class SVMs via Tightness De-

tecting. In 4th International Conference on Intelligent Human-Machine

Systems and Cybernetics (IHMSC), volume 2, pages 318–323, 2012.

[18] J. Kennedy and R. Eberhart. Particle Swarm Optimization. In IEEE

International Conference on Neural Networks, volume 4, pages 1942–1948,

1995.

[19] W.-Y. Lee, J.M. House, and N.-H. Kyong. Subsystem level fault diagnosis

of a building’s air-handling unit using general regression neural networks.

Applied Energy, 77(2):153–170, 2004.

[20] S. Li. A Model-Based Fault Detection and Diagnostic Methodology for

Secondary HVAC Systems. PhD thesis, Drexel University, 2009.

[21] J. Liang and R. Du. Model-based Fault Detection and Diagnosis of HVAC

systems using Support Vector Machine method. International Journal of

Refrigeration, 30(6):1104–1114, 2007.

[22] H.-T. Lin, C.-J. Lin, and R.C. Weng. A Note on Platt’s Probabilistic

Outputs for Support Vector Machines. Machine Learning, 68(3):267–276,

2007.



References 131

[23] Y. Ma, F. Borrelli, B. Hencey, B. Coffey, S. Bengea, and P. Haves. Model

Predictive Control for the Operation of Building Cooling Systems. IEEE

Transactions on Control Systems Technology, 20(3):796–803, 2012.

[24] Y. Ma, A. Kelman, A. Daly, and F. Borrelli. Predictive Control for En-

ergy Efficient Buildings with Thermal Storage: Modeling, Simulation, and

Experiments. IEEE Control Systems Magazine, 32(1):44 – 64, 2012.

[25] M. Markou and S. Singh. Novelty detection: a review - part 1: statistical

approaches. Signal Processing, 83(12):2481–2497, 2003.

[26] I.B.D. McIntosh, J.W. Mitchell, and W.A. Beckman. Fault detection

and diagnosis in chillers–Part 1: Model development and application.

ASHRAE Transactions, 106(2):268–282, 2000.

[27] S.M. Mikki and A.A. Kishk. Particle Swarm Optimization: A Physics-

Based Approach. Morgan and Claypool, Arizona State University, 2008.

[28] J.C. Platt. Probabilistic Outputs for Support Vector Machines and Com-

parisons to Regularized Likelihood Methods. In Advances in Large Margin

Classifiers, pages 61–74. MIT Press, 1999.

[29] M. Rampazzo. Efficient Management of HVAC Systems. PhD thesis,

Ph.D. School in Information Engineering, University of Padova, 2010.

[30] M.A. Rosen, I. Dincer, and N. Pedinelli. Thermodynamic Performance of

Ice Thermal Energy Storage Systems. ASME-Journal of Energy Resources

Technology, 122(4):205–211, 2000.

[31] B. Schölkopf, J.C. Platt, J.C. Shawe-Taylor, A.J. Smola, and R.C.

Williamson. Estimating the Support of a High-Dimensional Distribution.

Neural Computation, 13(7):1443–1471, 2001.

[32] B.R. Sorensen. Modelling and simulation of a HVAC system. Technical

report, Narvik Intitute of Technology, 1999.

[33] G.A. Susto, A. Beghi, and C. De Luca. A Predictive Maintenance System

for Epitaxy Processes Based on Filtering and Prediction Techniques. IEEE

Transactions on Semiconductor Manufacturing, 25(4):638–649, 2012.

[34] N. Tudoroiu and M. Zaheeruddin. Fault detection and diagnosis of valve

actuators in HVAC systems. In Proceedings of IEEE Conference on Con-

trol Applications, 2005.



132 References

[35] N. Tudoroiu, M. Zaheeruddin, E.-R. Tudoroiu, and V. Jeflea. Fault Detec-

tion and Diagnosis (FDD) in Heating Ventilation Air Conditioning Sys-

tems (HVAC) Using an Interactive Multiple Model Augmented Unscented

Kalman Filter (IMMAUKF). In Conference on Human System Interac-

tions, 2008.

[36] J. Wang, Y. Wang, and H. Shao. Performance improvement of VAV air

conditioning control system through diagonal matrix decoupling and Lon-

works technology. Energy and Buildings, 37(9):911–919, 2005.

[37] L. Xuquan, S. Zhigang, and H. Songtao. A Novel Control Method of a

Variable Volume Air Conditiong System for Indoor Thermal Environment.

In 2nd International Conference on Computer Engineering and Technology

(ICCET), volume 2, 2010.

[38] H. Yoshida, S. Kumar, and Y. Morita. Online fault detection and diagnosis

in VAV air handling unit by RARX modeling. Energy and Buildings,

33(4):391–401, 2001.


	Summary
	Sommario
	Contents
	HVAC Systems
	I Energy Efficient Control of Ice Thermal Energy Storage Systems
	Introduction
	Thermal Energy Storage 
	Cold Thermal Energy Storage
	Sensible CTES Systems
	Latent CTES Systems

	CTES Systems Management
	Full-Storage CTES
	Partial-Storage CTES


	Modeling and Control of Ice-CTES Systems  
	Plant Description and Modeling
	Chiller
	CTES
	Modulating Valve
	Water Tank and Piping
	Building Thermal Load
	Model Summary

	CTES Charging
	CTES Discharging
	NLMPC Problem Formulation
	Disturbances Forecasting
	Optimisation
	NLMPC Implementation

	Simulations Results


	Conclusions

	II Fault Detection in HVAC Systems 
	Introduction
	Machine Learning and Classification
	Novelty Detection

	Fault Detection and Diagnosis for VAVAC Systems 
	VAVAC Components
	Air Handling Unit
	Ducts
	VAV Terminal Units 
	Mixing Boxes 

	Two-Zone, Single-Duct VAVAC System Modeling 
	Zone Subsystem
	Exhaust Subsystem
	Psychrometric Subsystem
	Supply Subsystem
	Model Summary
	Direct Feedback Linearisation Control
	Simulations Results

	Support Vector Machines
	Fault Detection and Diagnosis
	Training Data for SVMs Learning
	FDD Results
	Stuck Chilled Water Valve
	Stuck VAV Box Damper
	Zone Air Temperature Sensor Offset
	Stuck Recirculation Damper
	Fault Under Varying Disturbances



	Fault Detection for Chiller Systems 
	Chiller Data
	Test Matrix
	Steady-State Detection
	Chiller Features Selection

	The One-Class Classifier
	Principal Component Analysis
	One-Class SVMs
	Reference Model

	Classification Results 
	ROC Analysis
	Reduced Condenser and Evaporator Water Flow
	Refrigerant Leak and Overcharge
	Excess Oil
	Condenser Fouling and Non-Condensables in Refrigerant
	Comments


	Conclusions 

	Final Remarks
	Appendices
	Non-Linear Model Predictive Control Strategy
	Model Predictive Control Principles
	Mathematical Formulation of NLMPC

	Artificial Neural Networks
	Particle Swarm Optimisation Algorithm 
	Constrained Optimisation in PSO

	The Support Vector Classifier
	Separating Hyperplanes
	Optimisation
	Kernels


	References

