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Heating, Ventilation and Air Conditioning (HVAC)

HVAC systems ensure safe and healthy conditions in the environments
of medium and large buildings
Control, optimisation and maintenance procedures are fundamental in
HVAC systems to guarantee people comfort and energy efficient solu-
tions

Typical energy consumption breakdown
in an office building
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Energy Efficient Control of Ice TES Systems

Part I

Energy Efficient Control of Ice Thermal
Energy Storage Systems
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Energy Efficient Control of Ice TES Systems

Why Thermal Energy Storage (TES)?

Energy efficiency politics encourage the adoption of different time slots
of energy price
TES technology can be adopted to store energy when its cost is low
and exploit it when the price increases
Optimisation techniques can find the right trade-off between energy
efficiency and people thermal comfort
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Energy Efficient Control of Ice TES Systems

Conventional Cooling vs TES
Conventional cooling Cooling with thermal storage

Operation of cooling with thermal storage
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Energy Efficient Control of Ice TES Systems

HVAC System with Ice-Cold TES
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Energy Efficient Control of Ice TES Systems

Ice-CTES Model

Ice storage has a much higher capacity with respect to water storage, due to
the heat that can be exchanged during the latent phases
The ice-CTES is modelled as a heat exchanger: it exchanges heat with the
water coming from the chiller and with the external environment (energy
dissipation)
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Energy Efficient Control of Ice TES Systems

Non-Linear Model Predictive Control (NLMPC)

x = [Ti ,l ,Qs,TES ]

y = [Ti ,l ]

u = [PLR , ν]

d = [Load,Tair ]
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Energy Efficient Control of Ice TES Systems

NLMPC Formulation

Constrained finite time optimal control problem

find argmin
ū

t+Tp∑
τ=t

C(τ)Q̇e,ch(τ)∆τ + α |ȳ(τ)− r̄(τ)|2

subject to: system dynamics, constraints, initial conditions

C: price of electric energy (F1>F2>F3)

Q̇e,ch: chiller electric power consumption
ȳ : inlet load-side water temperature
r̄ = 7 [◦C ]: inlet load-side water temperature setpoint
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Energy Efficient Control of Ice TES Systems

Discharging: Conventional Strategies
Constant-Proportion (P)
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Constant-Proportion: the storage and the chiller meet a constant frac-
tion of the cooling load
Chiller-Priority Control: chiller runs to satisfy cooling load up to its
maximum capacity while the storage provides the remaining cooling
power
Storage-Priority Control: chiller provides cooling power only after the
complete discharging of the storage
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Energy Efficient Control of Ice TES Systems

Discharging Example: Conventional and NLMPC
Inlet load-side water temperature

Normalised chiller power

TES temperature

VA-TES valve opening
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Energy Efficient Control of Ice TES Systems

Conclusions and Future Works

Conclusions
Optimisation techniques are crucial in order to efficiently manage TES sys-
tems

A HVAC system with ice-CTES is developed in a simulation environment

Conventional control strategies and a non-linear MPC approach are compared

Non-linear MPC provides the lower energy cost, satisfying cooling demand

Future Works

Comparison with different plant structures (e.g. chiller/storage in parallel
configuration)

Design of optimisation techniques for both charging and discharging opera-
tions
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Energy Efficient Control of Ice TES Systems

Publications
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Fault Detection in HVAC Systems

Part II

Fault Detection in HVAC Systems
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Fault Detection in HVAC Systems

FDD and Classification

Different faults may occur in HVAC systems, which can cause
discomfort and waste of energy
Cost-effective Fault Detection and Diagnosis (FDD) methods can
ensure an increase in system reliability and overall efficiency
Binary classification methods are developed: data are labelled with
faulty or fault-free conditions
To perform data-based FDD either real data from actual HVAC
plants are available or artificial data from models are needed
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Fault Detection in HVAC Systems Fault Detection and Diagnosis for VAVAC Systems

1 Fault Detection and Diagnosis for VAVAC Systems

2 Fault Detection for Chiller Systems
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Fault Detection in HVAC Systems Fault Detection and Diagnosis for VAVAC Systems

VAVAC Systems

Variable Air Volume Air Conditioning (VAVAC) systems ensure
satisfactory comfort levels for the occupants with high energy ef-
ficiency
The supplied air is kept at a constant temperature while internal
temperatures are controlled by varying the air mass flow rate in
the zones
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Fault Detection in HVAC Systems Fault Detection and Diagnosis for VAVAC Systems

VAVAC System: Two-Zone, Single-Duct

- +

Zone 1 Zone 2

Psychrometric subsystem Supply subsystem

Exhaust subsystem

VAV terminal units
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Fault Detection in HVAC Systems Fault Detection and Diagnosis for VAVAC Systems

VAVAC System: Two-Zone, Single-Duct

Psychrometric subsystem

chilled water

air filter

cooling coil

fresh, recirculation
and exhaust air
dampers
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Psychrometric subsystem Supply subsystem

Exhaust subsystem

VAV terminal units
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Fault Detection in HVAC Systems Fault Detection and Diagnosis for VAVAC Systems

VAVAC System: Two-Zone, Single-Duct

Supply subsystem

variable-duty supply
fan

network of air
distribution ducts

VAV terminal units

air terminal devices
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VAV terminal units
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Fault Detection in HVAC Systems Fault Detection and Diagnosis for VAVAC Systems

VAVAC System: Two-Zone, Single-Duct

Exhaust subsystem

return air fan

return air ducts

- +

Zone 1 Zone 2

Psychrometric subsystem Supply subsystem

Exhaust subsystem

VAV terminal units
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Fault Detection in HVAC Systems Fault Detection and Diagnosis for VAVAC Systems

Model: States, Inputs and Disturbances

x1 = Tz,1 air temperature of 1st zone [◦C]
x2 = Tz,2 air temperature of 2nd zone [◦C]
x3 = Tsa supply cold air temperature [◦C]
x4 = Two outlet water temperature of cooling coil [◦C]

u1 = ṁa,1 air mass flow rate of 1st zone [kgs−1]

u2 = ṁa,2 air mass flow rate of 2nd zone [kgs−1]

u3 = ṁw chilled water mass flow rate [kgs−1]

d1 = Q̇1 internal and external heat gains of 1st zone [W]

d2 = Q̇2 internal and external heat gains of 2nd zone [W]
d3 = Text external air temperature [◦C]
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Fault Detection in HVAC Systems Fault Detection and Diagnosis for VAVAC Systems

VAVAC Non-Linear Model and Control

ẋ1 = a1u1(x3 − x1) + a2d1 + a3(d3 − x1)

ẋ2 = b1u2(x3 − x2) + b2d2 + b3(d3 − x2)

ẋ3 =

[
Cpw

Cpa

u3
u1 + u2

(Twi − x4) +

(
r
x1u1 + x2u2
u1 + u2

+ (1− r)d3 − x3

)]
· (UA)c
McCpc

ẋ4 =

[
Cpwu3(Twi − x4) + Cpa(u1 + u2)

(
r
x1u1 + x2u2
u1 + u2

+ (1− r)d3

−x3
)]
· 1

(McCpc)

y1 = x1 , y2 = x2 , y3 = x3
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Fault Detection in HVAC Systems Fault Detection and Diagnosis for VAVAC Systems

The Direct Feedback Linearisation (DFL) Control

Consider the class of controllable non-linear plants:

y (n) + an−1y
(n−1) + ... + a1y

(1) + a0y = f (y (n−1), ..., y (1), y , u)

Theorem
If ∂f

∂u

∣∣
y0
6= 0, there exists a function g and a new input v in a

neighbourhood of (y
(n−1)
0 , ..., y

(1)
0 , y0) such that:

u = g(y (n−1), ..., y (1), y , v)

y (n) + an−1y
(n−1) + ...+ a1y

(1) + a0y = v = f (y (n−1), ..., y (1), y , u)
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Fault Detection in HVAC Systems Fault Detection and Diagnosis for VAVAC Systems

Direct Feedback Linearisation Scheme

New inputs

v1v2
v3

 :=

ẏ1ẏ2
ẏ3


Control signals

u1 =
v1 − a2d1 − a3(d3 − x1)

a1(x3 − x1)

u2 =
v2 − b2d2 − b3(d3 − x2)

b1(x3 − x2)

u3 =

[
McCpc

(UA)c
v3 − (r

x1u1 + x2u2

u1 + u2
+ (1− r)d3 − x3)

]
Cpa(u1 + u2)

Cpw (Twi − x4)

Proportional controller

v1v2
v3

 =

k1(y1,set − y1)
k2(y2,set − y2)
k3(y3,set − y3)


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Fault Detection in HVAC Systems Fault Detection and Diagnosis for VAVAC Systems

Support Vector Machines

Support Vector Machines (SVMs) perform classification by linearly
separating data in two categories with maximum margin
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Fault Detection in HVAC Systems Fault Detection and Diagnosis for VAVAC Systems

SVMs Learning

Objective function

argmin
w,b

1
2
||w||2 + C

n∑
i=1

ξi

subject to:

ξi ≥ 0 µi f (xi ) ≥ 1− ξi ∀i

with

f (xi ) = wTφ(xi ) + b

Decision function

G(xi ) = signf (xi )

SVMs data and parameters
{xi}: training samples

{µi}: training labels
fault-free condition: 1
faulty condition: -1

{ξi}: slack variables

w, b: hyperplane parameters

φ: transformation function

C : trade-off coefficient

Kernel function

k(xi , xj ) = φ(xi )Tφ(xj ) = exp
(−||xi − xj ||2

2σ

)
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Fault Detection in HVAC Systems Fault Detection and Diagnosis for VAVAC Systems

SVMs Parameters Tuning

SVMs performances depend on the setting of the parameters C and σ
The right trade-off between generalisation and representation perfor-
mances is achieved by minimising the FDD error:

argmin
C ,σ

1
n

n∑
i=1

H(−µi f (xi ))

H is the Heaviside step function
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Fault Detection in HVAC Systems Fault Detection and Diagnosis for VAVAC Systems

Posterior Probability

Standard SVMs do not produce a posterior probability
Platt’s method, that maps the output of SVMs into a probability
with a sigmoid function shape, is used:

P[µ = 1|x] ≈ PA,B(f ) :=
1

1 + exp(Af (x) + B)
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0
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P
[µ
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Fault Detection in HVAC Systems Fault Detection and Diagnosis for VAVAC Systems

SVMs Training and Validation

Stationary normal/faulty data
States

Supply cold air temperature
Air temperatures of the zones
Outlet water temperature of
cooling coil

Manipulated variables

Air mass flow rates in the
zones
Chilled water mass flow rate

Disturbances
Heat gains in the zones
External air temperature

Other data
Recirculated air temperature
Mixed air temperature

Faults and Affected Parameters
Faults Affected Parameters SVM
stuck chilled water valve chilled water mass flow rate 1
stuck damper zone 1 air mass flow rate zone 1 2
stuck damper zone 2 air mass flow rate zone 2 3
sensor zone 1 temperature sensor offset zone 1 4
sensor zone 2 temperature sensor offset zone 2 5
stuck recirculation damper percentage of air recirculation 6

FDD structure
SVM 1 N NO FAULT 1

YES FAULT 1

SVM 2
N

NO FAULT 2

YES FAULT 2

Platt's Prob.
Y

Y
Platt's Prob.
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Fault Detection in HVAC Systems Fault Detection and Diagnosis for VAVAC Systems

FDD Examples

Stuck Chilled Water Valve (+30%)
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Temperature Sensor Offset (+3◦C).
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Fault Detection in HVAC Systems Fault Detection for Chiller Systems

1 Fault Detection and Diagnosis for VAVAC Systems

2 Fault Detection for Chiller Systems
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Fault Detection in HVAC Systems Fault Detection for Chiller Systems

ASHRAE Research Project 1043-RP

In the 90s the American Society of Heating, Refrigerating and Air
Conditioning Engineers (ASHRAE) performed experimental tests
on a 316-kW centrifugal water-cooled chiller in order to produce
a database of measurements in both normal and different faulty
conditions
The faulty conditions were tested at four levels of severity

Fault Type with Symbol Normal Operation SL1 SL2 SL3 SL4

Reduced condenser water flow (fwc) 264-270 gpm 234-250 gpm 209-219 gpm 187-190 gpm 159-166 gpm
Reduced evaporator water flow (fwe) 214-216 gpm 194-196 gpm 175-177 gpm 155-156 gpm 137-141 gpm

Refrigerant leak (rl) 300 Ibs 270 lbs 240 lbs 210 lbs 180 lbs
Refrigerant overcharge (ro) 300 lbs 330 lbs 360 lbs 390 lbs 420 lbs

Excess oil (eo) 22 lbs 25 lbs 29 lbs 33 lbs 37 lbs
Condenser fouling (cf) 164 tubes 144 tubes 131 tubes 115 tubes 90 tubes

Non-condensables in refrigerant (nc) 0% N 1.0% N 1.7% N 2.4% N 5.7% N
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Fault Detection in HVAC Systems Fault Detection for Chiller Systems

Features Selection

A steady-state detector is employed in order to select the measurements
in stationary conditions
15 characteristic features are deduced from the steady-state data using
simple arithmetic operations

Characteristic Features

Evaporator Water Temperature Difference

Condenser Water Temperature Difference

Calculated Condenser Heat Rejection Rate

Calculated Evaporator Cooling Rate

Refrigerant Suction Superheat Temperature

Refrigerant Discharge Superheat Temperature

Liquid-line Refrigerant Subcooling from Condenser

Compressor Power

Calculated Compressor Efficiency

Evaporator Approach Temperature

Condenser Approach Temperature

Oil Feed minus Oil Vent Pressure

Oil in Sump minus Oil Feed Temperature

Pressure of Refrigerant in Evaporator

Pressure of Refrigerant in Condenser
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Fault Detection in HVAC Systems Fault Detection for Chiller Systems

Fault and Novelty Detection

Fault detection can be seen as a novelty detection problem in which
the faults are seen as novelties, i.e. events that have not been observed
in the past
A one-class classifier is developed to tackle the novelty detection prob-
lem: only data of one class (i.e. fault-free) are considered labeled and
are used in the training phase
Fault diagnosis can not be performed, since faulty data are not used
during the training phase
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Fault Detection in HVAC Systems Fault Detection for Chiller Systems

One-Class Support Vector Machines (OCSVMs)

OCSVMs may be viewed as standard two-class SVMs where all the
training data lie in the first class and only the origin is taken as member
of the second class:

argmin
w,ξ,ρ

1
2
‖w‖2 +

1
νn

n∑
i=1

ξi − ρ

subject to
{
〈w,Φ(xi )〉 ≥ ρ− ξi
ξi ≥ 0

ρ is the offset of the hyperplane in the feature space
Since a radial basis function is used as kernel, an appropriate value for
the Gaussian parameter σ is required: the tightness detecting algorithm
is used to choose σ
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Tightness Detecting Algorithm: Example

The magenta boundaries are
considered tight, enhancing
representation properties
The green boundaries are con-
sidered loose, enhancing gener-
alisation properties
The cyan boundaries are con-
sidered sub-optimal, i.e. neither
loose nor tight, and they are the
output result of the tightness
detecting algorithm
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Fault Detection in HVAC Systems Fault Detection for Chiller Systems

Experimental Settings

Principal component analysis is applied on the d = 15 character-
istic features in fault-free behaviour, thus concentrating most of
the variability in the first principal components
The principal components {pj} of the fault-free data are fed to the
one-class classifier in order to characterize the correct behaviour
of the system
Different classifiers are computed by changing the training input
space:

Input spaces {Ui} with Ui = [pi+1 . . .pd ] , for i = 0, . . . , d − 1
Input spaces {Vi} with Vi = [p1 . . .pd−i ] , for i = 0, . . . , d − 1

The computed classifiers are tested on new data in fault-free and
faulty conditions
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Classifiers Error Rates with Different Input Spaces

Classifier input: {Ui}
The abscissa represents the number of dis-
carded principal components, from the first
to the last one. The minimum error is never
achieved with the first components included
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Classifier input: {Vi}
The abscissa represents the number of dis-
carded principal components, from the last to
the first one. The error increases as the num-
ber of discarded components is augmented
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If the first seven principal components are discarded the lower classifi-
cation error rate is obtained
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Faults and Principal Components

First principal components are not informative in a novelty detec-
tion perspective
First components exhibit normal variability due to changes in op-
erating points and they contain information that does not change
when an anomaly occurs
They add useless information and complexity to the one-class clas-
sification problem, concealing the interesting changes associated
to novelties
Last principal components are strongly informative for novelty de-
tection
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Classification Performances

Positive and negative data
Positive data: in fault-free conditions

Negative data: in faulty conditions

Classification results for positives and negatives

True Positives (TP)

False Positives (FP)

True Negatives (TN)

False Negatives (FN)

Classification parameters

True Positive Rate
= TP

TP+FN

True Negative Rate
= TN

FP+TN

Positive Predictive
Value = TP

TP+FP

Negative Predictive
Value = TN

TN+FN

False Positive Rate
= FP

TN+FP

False Negative Rate
= FN

TP+FN
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Classification Performances: ROC Analysis

FP
TP
FN
TN

ROC
THRESHOLD

A Receiver Operating Characteristic (ROC) curve is created by
plotting the True Positive Rate and the False Positive Rate, for a
range of different thresholds
The corresponding Area Under the ROC Curve (AUC) is an indi-
cator of the classifier performances
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ROC Analysis: Examples

Reduced evaporator water flow
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fwe SL1 (AUC = 0.91978)

fwe SL2 (AUC = 0.99121)
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fwe SL4 (AUC = 0.99988)

random  (AUC = 0.5)

Refrigerant leak
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rl SL1  (AUC = 0.56919)

rl SL2  (AUC = 0.71761)

rl SL3  (AUC = 0.81265)

rl SL4  (AUC = 0.97404)

random (AUC = 0.5)

All the ROC curves are above the diagonal representing a good
classification result (better than random classification) and the
classification score increases quickly as the severity level raises
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Fault Detection in HVAC Systems

Conclusions and Future Works

Conclusions
HVAC systems maintenance and energy efficiency can be increased by adopt-
ing fault detection methods
A two-zone, single-duct VAVAC system model is developed
Two-class classification methods are used in order to detect and diagnose the
simulated faults in the VAVAC model
A novelty detection approach is used to identify anomalous situations in
chiller systems with the help of a one-class classifier
The one-class classification is shown to be effective in the detection of the
most common faults affecting chiller systems

Future Works
Automatic faults labelling methods for novelty detection

Multi-fault algorithms
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