

Dynamic shape detection and analysis of deformable structures in biomedical imaging

Dip. di Ing. Dell'Informazione Dottorato in Scienza e Tecnologia dell'Informazione – XXII Ciclo

Ph.D. Advisor: Prof. Angelo Cenedese

School Coordinator: Prof. Matteo Bertocco

Ph.D. Candidate: Alberto Silletti

Outline

- Introduction: what is a shape?
- The shape detection problem
 - generalized active contours
 - reticular shape detection
- Dynamic shape detection
- Analysis
- Synthesis

Introduction: What is a shape?

A fuzzy concept, many definitions occurs over scientific and common literature:

- The spatial arrangement of something as distinct from its substance; "geometry is the mathematical science of shape" (wordReference)
- A shape is all the geometrical information that remains when location, scale and rotational effects are filtered out from an object (George Kendall, mathematician)

The shape detection problem

Given an image I(data), and choosen a shape representation model $\mathcal{R}(\Phi)$ the shape detection problem consist of:

$$\mathcal{R}\left(\mathbf{\Phi}\right) = \operatorname*{arg\ min}_{\mathcal{R}\left(\mathbf{\Phi}_{c}\right) \in S} \mathcal{E}\left(I, \mathbf{\Phi}_{c}\right)$$

where \mathcal{E} is a suitable energy function and \mathcal{S} is the space of the possible representations.

Shape detection involves:

- ullet the design of $oldsymbol{\mathcal{E}}$
- the procedure to minimize over \$

non optimal \mathcal{E}

optimal (minimum) £

Generalized Active Contours 1/4

An Active Contour is a curve $C(s) \in \mathbb{R}^d$, $s \in [0,1]^d$

evolving in pseudo-time according to an associated energy:

$$\mathcal{E}(\mathcal{C}) = \mathcal{S}(\mathcal{C}) + \mathcal{P}(\mathcal{C})$$

$$S(C) = \int_{\partial C} \alpha(s) \left| \frac{\partial C}{\partial s} \right|^2 + \beta(s) \left| \frac{\partial^2 C}{\partial s^2} \right|^2 ds$$

$$\mathcal{P}(\mathcal{C}) = \int_{\partial C} \mathcal{D}\left[I\right] ds$$

Generalized Active Contours extends the framework:

$$\mathcal{E}_{g}(\mathcal{C}) = \mathcal{S}_{g}(\mathcal{C}) + \mathcal{P}_{g}(\mathcal{C})$$

$$\int_{\partial C} \alpha(s) \left| \frac{\partial C}{\partial s} \right|^2 + \beta(s) \left| \frac{\partial^2 C}{\partial s^2} \right|^2 ds + \sum_{i=1}^{n_f} \gamma_i \mathcal{F}_i$$

$$\int_{\partial C} \mathcal{D}\left[I\right] ds + \sum_{j=1}^{n_g} \lambda_j \mathcal{G}_j$$

where \mathcal{F}_i and \mathcal{G}_j are suitable energy terms, each of those addressing a peculiar aspect of the shape (such as color, texture or central moments).

Generalized Active Contours 2/4

Generalized Active Contours build \mathcal{F}_i and \mathcal{G}_j energies as probability density functions. Let's pretend you want to capture the dark protein appendixes:

3. Build an energy term as:

$$\mathcal{E}_{\tau} = -\Gamma_{\tau}(\tau_c)$$

1. Choose a metric to characterize them, such as color at boundary:

$$\tau(\mathcal{C}) = \int_{\partial \mathcal{C} \pm r} I(s) ds$$

2. Infer the probability density Γ_{τ} - analitically, empirically or by training -

Generalized Active Contours 3/4

The work provides a Toolbox with several build-in energy terms

Generalized Active Contours 4/4

Assuming all the density function are Gaussian, we rewrite the energy terms as:

We can assess the quality of our Snaking

thresholds

We can assess the quality of our Snaking algorithm looking at the eigenvectors: if they are close to zero, then we have a robust
$$T \cdot \begin{bmatrix} \sigma_i & 0 & 0 & \dots \\ 0 & \sigma_2 & 0 & \dots \\ 0 & 0 & \ddots \\ \vdots & & & \sigma_i \end{bmatrix} \cdot T^T$$
 We can also simplify the matrix over certain thresholds

Reticular shape detection

-The random walk agents approach-

Idea: many Random Walk Agents \mathcal{A}_i flood the frame, each of them finding a path. Each agent has a position \mathbf{p} and an energy $\hat{\mathcal{L}}$.

Agents locally minimize an energy term \hat{E} , a local approximation of \hat{E} . \hat{E} is unknow and difficult to design, whereas \hat{E} is

$$\hat{\mathcal{E}}(\theta_i) = \frac{\int_{\Omega_i} \sqrt{(I(\omega) - 1)^2} d\omega}{\int_{\Omega_i} d\omega} \qquad \mathbf{p}(t+1) = \mathbf{p}(t) + k \cdot g\left(\mathcal{E}\right)$$

Reticular shape detection

-The random walk agents approach-

Code snippet 4 - Randow Walk Agents main loop

```
PQ ← initPriorityQueue() //create a priority queue
     G \leftarrow initGraph()
                                      //create an empty graph
     while PQ not empty() {
           A ← dequeue (PQ) //extract the best agent
           valid, border ← validateAgent(A,I,G)
           if valid
                 G← add2Graph (G, A) //add to the graph
           if (valid and not(border)) {
                 E \leftarrow computeEnergyFunction(I, A_i)
9
                 D < pickDirections(E)</pre>
10
                 for k=1 to |\mathbf{D}| {
11
                       A_k \leftarrow moveAgent(A, D_k)
12
                      PQ \leftarrow enqueue(A_k, PQ)
13
14
15
```

Reticular shape detection

-The random walk agents approach-

Given a sequence of temporal coherent images $\{I_1, \dots, I_t, \dots, I_N\}$, Dynamic shape detection is the problem of detecting the shape in each frame:

$$\Phi_{1} = \underset{\Phi_{c} \in S}{\operatorname{arg min}} \, \mathcal{E}\left(I_{1}, \Phi_{c}\right)$$

$$\vdots \vdots$$

$$\Phi_{N} = \underset{\Phi_{c} \in S}{\operatorname{arg min}} \, \mathcal{E}\left(I_{N}, \Phi_{c}\right)$$

Images temporal coherence: $I_{t+1} = I_t + \Delta_t^{t+1}$

Shape temporal coherence: $\mathbf{\Phi}_{t+1} = \mathbf{\Phi}_t + \mathbf{\delta}_t^{t+1}$

The optimum δ_t^{t+1} satisfies: $\Phi_{t+1} = \Phi_t + \delta_t^{t+1} = \operatorname*{arg\ min}_{\Phi_c \in \mathcal{S}} \mathcal{E}\left(I_{t+1}, \Phi_c\right)$

We compute δ_t^{t+1} using the *J-maps* approach

-the J-maps approach-

Choosen a location $p_t = [x,y] \in I_t$,a $J_{p_t}(\Delta x, \Delta y)$ map is scalar function whose values are (inversely) related to the probability of p_t being translated into $p_{t+1} = [x + \Delta x, y + \Delta y] \in I_{t+1}$

$$J_{p_t}(\Delta x, \Delta y) = \int_P \left| \mathcal{N}_t(p_t) - \mathcal{N}_{t+1}(p_{t+1}) \right| dp$$
$$\delta_t^{t+1} = \underset{vx}{\arg \min} J_{p_t}$$

where \mathcal{N}_t is around $p_t = [x \ , \ y] \in I_t$, and \mathcal{N}_{t+1} is around $p_{t+1} = [x + \Delta x \ , \ y + \Delta y] \in I_{t+1}$

- ullet The J-maps describe the deformation of I_t into I_{t+1}
- The args -min of the J-maps is the Optical Flow Field
- •The args-min computed in the location of points of $oldsymbol{\Phi}(X)$ is $oldsymbol{\delta}_t^{t+1}$

-the J-maps approach-

Correction: we impose
$$\frac{\partial \delta_t^{t+1}}{\partial p} o 0$$

The J-maps correction is an iterative steps. For each map J_p we consider a set of neighbor maps $\{J_{p_1},J_{p_2}\ldots J_{p_n}\}$, and compute the global minima for each of them: $\{(v_{x1},v_{y1}),(v_{x2},v_{x2}),\ldots (v_{xn},v_{xn})\}$

We correct J_p according to: $\bar{J}_p = J_p \cdot (1 - \mathcal{G}\left(\left[\bar{v}_x, \bar{v}_y\right], \Sigma_{xy}\right))$

where \mathcal{G} is a Gaussian build on $\{(v_{x1}, v_{y1}), (v_{x2}, v_{x2}), \dots (v_{xn}, v_{xn})\}$

-the J-maps approach-

Shape analysis

Shape analysis is the process of extracting metrics and descriptors from shape or sequence of shapes.

$$\{\mathcal{R}(\mathbf{\Phi}_0),\ldots,\mathcal{R}(\mathbf{\Phi}_t),\ldots,\mathcal{R}(\mathbf{\Phi}_N)\} \xrightarrow{analysis} \mathbb{R}^k$$

The idea is to forget about the Representation Model and use only a reduced set of "numbers" to capture properties of the shape. These values are forces, lengths, labels, descriptors, medical diagnosis, classifications.

Shape synthesis

The synthesis step involves the creation of a model of the structure of interest., *mechanical, chemical, stastical...*

We build a *mechanical model* for the Drosophila epithelium.

The idea is to simulate what we see in the microscopes in "silico" (Matlab in our case).

Here we use a "FEM" simulator (work in progress)

-not mentioned in the slides-

Full Body Scanner project

Robust Registration of dermatoscopic images

Spectral methods for point set matching

Questions?