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FOREWORDS

We are not even close. We are so far from developing efficient dnestaCom-
puter Vision and Image Analysis algorithms that we could compare ourseleb#-to
dren learning basic arithmetic. | use to think to the field as close to the stromdté:
all, 90% of our brain is needed to process the visual signals from the eyes

During these years as a PhD students, | have implemented a number of applica
tions and algorithms, and in the end | got a sort of “magical power”: | canforetell
what is good, what solution will work, and what will probably never ddisTwork
discusses a portion of my whole work, namely the most important works adoge
all, why those work well. Asking the right question is the goal to find the right an-
swer, so | asked myself: “Why does this work so well?”, or “Why dotsns work
as expected?”

The theoretical framework developed along the chapters answergihest#ons.
The thesis provides a unified approach and provide the reader a totthtl she
problems.

STRUCTURES AND AIMS OF THIS WORK

The goal of this work is to discuss a three-step-approaatetect analyzeand
synthesizea shape given an image, or a sequence of images. Chapter 1 discusses
what is ashape The concept of shape is fuzzy: before delving with more complex
topics we need at least to agree on what we call “shape”. Chapterfl¥ lpriesent the
biological case studies we used along the work.

Chapter 3 deals with the single shape detection problem, the easiest pratdem o
could face: given a single image with a single shape of interest, how do signde
an algorithm to detect it? Chapter 4 extends the single shape detectiondappmoa
reticular shapes, a kind of shapes common in biological images. Chaptersisxhe
single shape detection approach (and its reticular analogous) to a sequiémages,
exploiting the temporal coherence.

Chapter 6 analyzes the shape, developing new metrics and measureshapie
ter 7 closes the work dealing with the synthesis step.

A special section is chapter 8, which covers the Toolbox we developeetéatd
shapes. The Toolbox is meant to provide functions reusable on a plefinablems.

Conclusions and future works are discussed in chapter 9.
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1

Shape Detection, Shape Analysis, Simulation

“What is a shape?” Before delving with complex topics, the work intraduces
the notion of shape and the problem of its definition, investigating a amber of
interpretations proposed over the years. A three step paradignishape detection;
shape analysis; synthesis and simulation) is developed to study biologl struc-
tures. The paradigm recurs along the whole work and some examplese briefly
provided. The chapter is organized as follows: section 1.1 investigathe concept
of shape, section 1.2 introduces the3 step paradigm and section 1.3 closes the
chapter discussing the most popular shape representation models

1.1 Whatis a Shape?

The starting point of this work is the concept gfiape The term is fuzzy and not
uniquely defined as many definitions occurs over scientific and common literatu
Common knowledge refers to shape as the part of the space occupiedobyeat,

as determined by its external boundary, abstracting from propertiésasucolour,
content, and material composition, as well as from the object’s other spatsies
(position and orientation in space, size).

A shape is the characteristic surface configuration of a thing; an outlineotaur;
something distinguished from its surroundings by its out{ifeerlex Dictionary)

The spatial arrangement of something as distinct from its substancegsy is
the mathematical science of shap@VordReference.com)

Sometimes it's easier to define a shape in terms “what it is not™:

The form of an object - how it is laid out in space, not what it is made ofytaare it
is

George Kendall, mathematician and statistician, provided a more comprega§ivie d
tion taking into account interior:
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A shape is all the geometrical information that remains when location, scade a
rotational effects are filtered out from an object

Providing a rigorous definition of shape is thus a difficult problem, conipert
what philosopher St. Agostine says about time:

What is time? If you don't ask me, | know what it is. If you ask, | caanswer

Indeed, during the last decade the definition proposed by GeorgeaKgiad mildly
accepted, as discussed in [40]

A plane shape A& R? has a 1-dimensional side given by features of its boundary
C =0A; and a 2-dimensional side given by its interior. No successful themshayie
description can ignore one or the other

In the following we denote any object of interest and its shape resplyciis& and
®(X): the process of extractindg(X) from X is referred along this work as shape
intuition. Unfortunately even this is a fuzzy concept, rooting its basis in therpatte
recognition capability of the humans. It's deeply wired inside the brain anera v
dark matter to investigate. Thus, a rigorous mathematical definition of botle simajp
intuition is beyond the purposes of this work, still we refer to them groundmthe
common knowledge and the abstract ideas everyone has.

1.2 Detection, analysis, synthesis, simulation

The study of any biological structure flows along a four step approsttdpe detec-
tion, shape analysisynthesiandsimulation

Shape intuition, as abstractly defined in section 1.1 takes place from selesor
tectingX. In other words, we glance the shape of an object not directly Koinut
from the image oK impressed on our retina through the eyes (the sensing devices).

The world as Will and Representati¢arthur Schopenhauer)

The intuition process thus takes the form

sensors I intuition

X

®(X) (1.1)

wherer is the sensors’ output.

Therepresentatiorstep provides an analytical model for ®(X). The choice is
here crucial and greatly influences the next phases. On one sidepiesentation
model grants concreteness and allows for computational algorithms; othéresae
it discards information.

representation
STy

x sensors intuition ®(X) (1.2)

As an extreme example consider figure 1.1a, representing a circle shapset
of markers. Figure 1.1b represents the same (deformed) circle. Thesespation
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(@) (b) (c)

Figure 1.1:Landmarks defined shapes The choice of an analytical model for
®(X) is a crucial step and largely affects the successive computation. For oestan
the figure shows two different landmark defined shapes (a and b)e lattdmarks
are too coarse, much information is lost and as result it may be impossilalestrt
the original difference (c)

model discards information, and thus it's very likely to end up with a distancaanetr
such that®(X,) # ®(X,). This opens a relevant point: while the representation step
does not explicitly define a metric space (it does not explicitly define a praskict
operator nor a distance metric), it limits the set of spaces and skew the dafifitio
the distance metric towards “specific” functions. In general, an ideakseptation
should guarantee

Xa=Xp < ®(Xa) = B(Xp) (1.3)

For practical cases, this never holds.

A number of shape representation modeldhas been proposed over the years,
for instanceC? curves, implicit functions, landmarks based-shapes, constructive ge-
ometry ect. As a general advice, note that representing an object ased@fccurve
rather than a union of boxes (constructive geometry) or a networkhgregy lead
to very different results. In a nutshell, the representation models arequatalent.
Section 3 deals with this extensively.

Shape detection is the name of the overall process including sensors acquisition,
shape intuituion and shape representation.

y sensors - intuition, ®(X) representationK (1.4)
X detection R (1.5)
®(X)

In this work, being the input in form of digital imageshape detectiomainly in-
volves computer vision and image processing techniques. Indeed,raurlédion is
general and does not assume any peculiar sensor input nor aggentation format.

Shape analysis takes as input a shape representation model and analyses it, re-
sulting in measures.

X detection analysis Rk (1.6)
P(X)
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R¢is a “set of number”, coding the output of the analysis. These numbeitd be
forces, lengths, labels, descriptors, medical diagnosis, classification§he type of
analysis is task dependent and so is the high level interpretation of thedeerai

3

——Standard Active Contour
— Proposed Active Contour

g 8

Cell Boundary Activity
5 5

s 8 & &

«sf [—Standard Active Contour
« | —Proposed Active Contour

€ 2
g

s

o S L ,

“Time (rame)

(@) (b)

Figure 1.2:Miocardial cell activity and spikeness A miocardial cell (a) is outlined
in a video sequence using & Contour. (b) shows the graphs of the cell activity and
spikeness over time as directly computed from thedtour

For instance we analyzed the deformation of the cells usingléfi@motionap-
proach [60] and extract relevant metrics such as central moments epgkand cell
activity (fig 1.2). This is crucial to assess the cell vitality and to distinguish &etw
different type of cells. In melanocytic lesions (fig. 1.3), we first computériose
such as area, color and perimeter, and then proceed to a comparisatifterent
segmentation algorithms. In the drosophila epithelium, we compute the stress and
the deformation of the epithelium cells over time, correlates the vertices, agrd inf
dynamics.

Figure 1.3:A melanocytic lesion Melanocytic lesions, or “Banal nevus”, or “Nevo-
cytic nevus”, have to be constantly monitored by dermatologists. Durintifétiene,
an adult can grow oveb00of these lesions

Synthesis provides a dynamical model fot. This involves the understanding of
the high level behavior of the object. The goal is to simplify the obseX/eahd to
discard noisy and irrelevant information. While the representation mdektlose to
the data (it is basically an analythical form®fX)), the synthesis model is close
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to the real objecK. It may for instance be a mechanical modeMofwith masses,
springs and dampers), a probabilistic model, a Markov chain, etc.

detection synthesis
D(X)

Modelar 1.7)

This work presents a probabilistic modelization of melanomas and the creation of
a “prototype”. We also introduce a mechanical model for drosophila noggesis,
inspired to cloth simulation.

o (7 curves RE
o R"™M get of features
o G = (V,E) graph based %z\
detection . o L = {LbLz . 'L_j} landmark )
X @(X) ® (O level set synthesis
e B(x,y) grid based
: l.).(.kl,kz, -+, A;) deformable models Model 7

Figure 1.4:The complete view Detection, Shape Representation Models, Analysis
and Synthesus as discussed along this work

1.3 Shape representation

A shape representation, as discussed in section 1.2, is a suitable modetsent¢he
abstract concept of shagg X). Itis a model in the sense that it “models” the category
of shape to belong to some predefined configuration, such as contisudases or
reticular grids. Thus, the shape representation is the first necessdrgaiion layer,
yet pretty close to the data but still a modelization.

Many shape representation models have been proposed over thelyeansajor-
ity of them are born from practical problems rather than from theoretieaddations,
thus in many cases each representation has its own strengths (usualy fonuthe
practical application) and drawbacks (usually negligible).

e CY hypersurfaces The shape is embedded indadimensional space as a
CY(sy,,---,84) continuous surface, whele® € R? ands < [0,1] for i =
1,---,d [34]. CYis constrained to be continuos such that @%(s) = C(§).

S8

Smoothness is not enforced; Shapes can be closed or open a€welirves
andC? surfaces (figure 1.5) are very common examples [59, 48], wherecesp
tively C> € R?, 51 =se [0,1] andC3 € R3, s; =s€ [0,1], s, =t € [0,1]. Spline
curves and spline surfaces, popular in computer graphics, are commba imp
mentation. The form fo€ is here analythically provided by the Bezier curve
theory which defines a poid for everys < [0, 1].

e R™Mshape functions sometimes also called “contour functions”, modgX)
as a set ofrf) m-dimensional functions [35, 45]. Each function is pointwise
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Figure 1.5:C? and C2 surfaces C? and C surfaces are very popular in computer
graphics to model paths and solids. Bezier and Spline curves [7, 8jgean easy
framework to implement them and obtain smooth surfaces. The natueahg#iza-
tion of the curve in(s,t) allows also for easy texturing

related to the shape and describe a peculiar aspect of the contour inititat po
Popular shape functions are for instance distance from the centraidiy%-
vector function”), angle-tangent function, integral of the contour tlengtc.
Figure 1.6 shows an example of radius-vector.

125
120 4

115 4

110
r 105
YO X chl

951

O 90 4
85+
80 4

0 1 2

3
[

Figure 1.6:Radius Vector function. The Radius Vectork(¢) originates from the
centroid of the shape and interse@$X) within a certain anglep. The length (mag-
nitude) of the vector defines the scalar value of the Radius Vector functiermis of

¢

e A G=(V,E) graphsmodel a shape using relevant points (verti¢¢snd their
relationships (edgel). Weighted edges usually represents geometric relation-
ships (such as euclidean point distance) while vertices may be coupledowith a
solute coordinates to locate them in a reference space [15, 16, 1 ph Gaaed
shapes straightforward model reticular structures such as cellularlaphite
blood vessels on retina (fig 1.7)

¢ Inthelandmark approach, one assumes that the shape of an object can be rep-
resented by the coordinates of a set {Ll, Ly--- Lj} of landmarks, which are
points of particular interest. “Anatomical” landmarks designate part of the or
ganism corresponding to biologically meaningful location (e.g. the coffrear o
eye, the tip of the fingers). “Mathematical” landmarks are points correspond
ing to some mathematical or geometrical property (points of high curvature,
extreme points, etc.). The landmark shape representation is popular in motion
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@) (b)

Figure 1.7: Reticular structures. Nature presents a wide spectrum of reticular
structures, aring mostly from cells packing or from vascular systemssh@ys the
drosophila’s wing epithelium, with a white protein marker highlighting the bsda
graph, in red, captures the cellular structure. (b) shows the bloodeless a retina
image

graph of ¢

Figure 1.8:Implicit function ¢(y,z) = y>+ 22— 1. An implicit functiond(y,z) is

a scalar function that defines a shape as the set of all pdintg € R? such that
¢(y,z) = 0. Implicit functions are widely used in the Level Sets approach [48], in
which¢(y,z) changes in time to reflect the changes of the shape

capture techniques, where markers are physically attached to a bottgeket
via cameras to extract the shape dynamics.

e ¢ implicit functions model a shape as the zero-isocontour of a funci@¢f2].
Suppose you define a functidr{x), x beloning to some domain (for instance
x € R?) and¢ a scalar real function. The zero isocontour is the set of all paints
whered (x) = 0. To fix ideas, consideli(y, z) = y>4z° — 1. The shape is defined
by the(y,z) = 0 isocontour, which is the boundary of the unit sphere defined
as{x:|x|=1}. More generally, inR" the implicit function$(x) is defined
over allx € R", and its isocontour has dimension- 1. Initially the implicit
representation might seem wasteful, since the implicit function is defined on
all of R" while the contour has only dimension- 1. However, a number of
powerful tools are here available. Adding dynamics to implicit functions is for
instance natural and leads to the level sets and the fast marching methelg, wid
used in computer graphics to simulate fluids.
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e Thevolume element representation (voxel)V(x) models the space embed-
ding the objeciX as a discrete space (a grid of square elements, voxels). Each
voxel represents a value in the space, according to some criterionsin-For
stance, one can say that the voxels totally inside the object are “insidé& wh
all the other are “outside”. As with pixels, voxels themselves typically do not

Figure 1.9:Torus Voxels representation A voxels model can represent almost any
shape with a tunable degree of quality. Voxels are also widely used toseyraon-
solid, “fluid”, objects such as smoke, electron cloud and air

contain their position in space, but rather it is inferred on their position velati

to other voxels. Voxel representation is suitable to model blurry objeath,as
electron clouds, or smokes, where each voxel is marked with the probaibility
the object (or with the density of the object) opposed to a simple inside/outside
representation.

¢ A deformable model(or template)D(A1,A2,---,Ax) is a standard shape for a
class of objects [7]. The template contains a number of paranigtensl a cost
functionalc(Aq, - - - ,Ax) specifing how good the customization of the template
fits the data. The goal is to tune the parameters to minimize the functional. De-
formable models, explicitely enforcing the membership class of an object, have
been extensively applied in the “expert vision” systems, where strooglkn
edge is available and the class of the shapes to be recognized is preefsedygd
(fig. 1.10)

e Constructive Solid Geometry (CSG)allows to define a complex shape by
using boolean operators on other CSG shapes or primitives [20]. A prinistiv
the simplest possible solid object, typically prisms, cylinders, pyramids, spher
and cones. Combining an (infinite) number of primitives virtually leads to any
possible shape, whereas this is practically limited by computation efficiency.
Constructive geometry has many practical uses. It is used in cases sihrer
ple geometric object are desidered, or where mathematical accuracy is impor
tant. Natively CSG assure that objects are “solid” or water-tight if all primitiv
are water-tight. This can be important for some manufacturing or engineer-
ing applications. By comparison, when creating a shape based upoddrgun
representations, additionals checks must be performed to assure itgratirdl
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(@) (b)

Figure 1.10:Deformable model of an eye Deformable models greatly restricts the
space of possible shapes imposing a “model” of appearance, giydefined by few
paramentes. (a) for examples shows an eye template in terms of a modesgr of
geometric parameters. (b) In successive iterations of a gradienedésdgorithm,

an equilibrium configuration is reached in which the template fits the eye closely
(reprinted from [61])

to prevent “holes”. Furhermore, a point in space can be easily testandsag

the shape to determine whatever it is inside, outside or on the boundary. This
is a desiderable quality for some applications such as collision detection (for
instance in computational physics).
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Case Studies

The chapter provides a brief understanding of the most importantcase studies
we faced along the work, providing a basic medical / chemical knowlagk. In par-

ticular, the Drosophila Melanogaster fruit fly, myocardial cells and melanocytic

lesion case studies are here presented.

2.1 The Drosophila Melanogaster

Drosophila melanogaster (Greek for dark-bellied dew lover) is a spetiegptera,

or the order offlies in the family Drosophilidae The species is commonly known
as the common fruit fly or vinegar fly. This species is one of the most commonly
used model organisms in biology, including studies in genetics, physiologso ot
pathogenesis and life history evolution because they are easy to takefchreed
fast, and lay many eggs.

Drosophila is so popular, it would be almost impossible to list the number of
things that are being done with it. Originally, it was mostly used in genetics, for
instance to discover that genes were related to proteins and to study ghefrgémetic
inheritance. More recently, it is used mostly in developmental biology, loakisge
how a complex organism arises from a relatively simple fertilised egg. Emhryo
development is where most of the attention is concentrated, but there is gileata
deal of interest in how various adult structures develop in the pupa, niostlged on
the development of the compound eye, but also on the wings, legs ancoghes.
Among the main reasons that determined the “success” of the drosophila:

e the care and culture requires little equipment and use little space even when
using large cultures, and the overall cost is low

e it is small and easy to grow in the laboratory and their morphology is easy to
identify once they are anesthetized
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e it has a short generation time (about 10 days at room temperature) esalsev
generations can be studied within a few weeks

e it has a high fecundity (females lay up to 100 eggs per day, and perbags 2
in a lifetime)

e its complete genome was sequenced and first published in 2000. [2]

Figure 2.1: Male and female adult Drosophila Melanogaster Males (left) are

smaller than females (right). In Drosophila melanogaster, not only the lEsrare

larger than males for most body dimensions but also the sexes differ irpigtion,

the number of visible abdominal segments, structure of the genitalisgmref sex
combs, shape of various body parts, behavior and numerous otiterds

Figure 2.2:Adult female specimen A 2.5 x 0.8 mm Drosophila melanogaster fly

Wildtype fruit flies have brick red eyes, are yellow-brown in color, aadditrans-
verse black rings across their abdomen. Males are easily distinguisireddmales
based on color differences, with a distinct black patch at the abdomemdéseable
in recently emerged flies, and the sexcombs (a row of dark bristles on sus t@frthe
first leg). Furthermore, males have a cluster of spiky hairs (claspgm®usnding the
reproducing parts used to attach to the female during mating.

The developmental period for Drosophila melanogaster varies with temperatu
as with many ectothermic species. The shortest development time (egg to @dult),
days, is achieved at 28 C. Females lay some 400 eggs (embryos), aleoat &
time. The eggs, about® millimetres long, hatch after 1215 hours. The resulting
larvae grow for about 4 days while molting twice (into 2nd- and 3rd-instaak); at
about 24 and 48h after hatching. During this time, they feed on the micmuisrga
that decompose the fruit, as well as on the sugar of the fruit itself. Thelartee
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encapsulate in the puparium and undergo a four-day-long metamorpddtesisvhich
the adults eclose (emerge).

Figure 2.3: A patch of Drosophila epithelium. Drosophila epithelium as viewed
from a confocal laser scanning microscopy over time, during the endeyelopmen-
tal stage. In white: one can track E-cadherin protein tagged with a Whiterekoent
Protein, which plays an important role in cellular adhesion

Fluorescence optical microscopy has become an essential imaging tecfarique
research in biology, especially in the field of developmental biology. Reeehno-
logical progress have enabled the development of faster microsctipeaghigher
resolution to collectimages of living biological samples. In parallel, importeogness
have been made in the development of stable and bright fluorescemtspralron-
focal microscopy gave us a fourty-frames-long video sequence tloeerembryo de-
velopment stage (see image 2.3). Cells are highlighted in white by means @éapro
marker.

2.2 Myocardial cells

Myocardial cells pertains to the muscular tissue of the heart (the myocardiis:)
eases to myocardium infarction are a common cause of death in develapaden
The initiation and evolution of cardiac failure depends on the accumulatiotdpf o
poorly contracting cells. When myocardium is damaged by injury, such aara dt-
tack, the functional contracting heart muscle dies and is replaced witlumetignal
scar tissue.

Heart transplantation is currently the last resort for end-stage hahntef, but
is hampered by a severe shortage of donor organs and rejectione €isgineering
and cell-based therapies have been recently proposed as promisingtaléerin this
context, cellular transplantation and tissue engineering approachegmavged as
promising alternatives to heart transplantation. Damaged cells could beed plith
healthy ones, providing an endless lifetime for the whole tissue. Either, toé&ewh
tissue could be cultivated in vitro and then transplanted.

In details, the former approach involves the transplantation of isolated ¢ells d
rectly in the injury. Various types of cells have been considered for thairef
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damaged myocardial tissue such as fetal cardiomyocytes, embryonicedtenibone
marrow derived stromal and mesenchymal stem cells ([36] [21]). Hewveell trans-
plantation has several disadvantages, including substantial cell deattafier the
injection of cells. In addition, cell orientation and electromechanical cdiorecafter
cell engraftment are only partially controllable. The latter approach taa@rdgen-
eration could be the myocardial implantation of tissue created in vitro ([46).[4Be
aim of an engineered cardiac graft is to provide a large source of ivler cells
to repopulate the myocardium or to provide directly a contracting tissue toceepla
an injured myocardial area. However, the high mechanical stresssesjeel by the
permanent cardiac contraction/relaxation cycle, as well as the electricatitegof
the tissue within the native cardiac muscle, add to the complexity of myocardiad tissu
engineering.

Figure 2.4 shows typical cultures as view from a microscope.

Figure 2.4: A vitro of myocardial cells. Myocardial cells are circled in red. The
white spots are mainly air bubbles. Cells adhere to the glass and becomies so
transparente

Selecting the type of cells and creating a suitable environment in which cells can
grow and organize themselves in a functional way are thus foundameokdéms,
technically and biologically. Numerous studies have experimentally addréisse
potential of different types of stem cells to differentiate in contractile cetismSells
are self-renewing and undifferentiated primitive cells that develop intatiomal,
differentiated cells. After differentiation, these cells should integrate huwittionally
and structurally into the surrounding viable myocardium and develop a netfo
capillaries and larger size blood vessels for supply of oxygen and nistrie the
injured region. In this direction, “Biomaterials” are used to provide stratsupport
during the initial stages of tissue formation. The cells utilize the biomaterial as a
support for initial attachment and remodeling, but then slowly begin to généreir
own components and grow independently.

Thein vitro characterization of a single cell physiology is of primary importance
both to evaluate the mature differentiation of stem cell toward cardiac lineatie b
to select and grow only to most promising cells. The complete differentiatiorr{o ca
diomyocyte is characterized not only by the expression of mature “cantakers”
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(proteins such as MHC, actinin, desmin, ANP or troponin) but also by théex
tion of spontaneous and rhythmic contractions. In this context, the possiljikty-o
trapolating automatically relevant physiological information about the cell sudis
contraction from optical analysis, offers an interesting and sensitivédoueasure
online the cardiac functionality.

2.3 Melanocytic lesion

A melanocytic lesion, also known as a “nevus”, is a type of lesion that cantevus
cells. Some sources equate the term “mole” with “melanocytic nevus” [44]erOth
sources reserve the term “mole” for other purposes.

According to the American Academy of Dermatology, the majority of moles ap-
pear during the first two decades of a persons life, while about oney @20 babies
is born with moles. Acquired moles are a form of benign neoplasm, while cenge
ital moles, or congenital nevi, are considered a minor malformation or hamartoma
and may be at a higher risk for melanoma. A mole can be either subdermai (und
the skin) or a pigmented growth on the skin, formed mostly of a type of cell know
as a melanocyte. The high concentration of the bodys pigmenting agent, méanin
responsible for their dark color.

The most common variants of nevus are:

e Dysplastic nevugnevus of Clark): usually a compound nevus with cellular and
architectural dysplasia. Dysplastic nevi can be flat or raised. Whileuaegy
in size, dysplastic nevi are typically larger than normal and tend to hae irre
ular borders and irregular coloration. Hence, they resemble melanopegrap
worrisome, and are often removed to clarify the diagnosis. Dysplasticanevi
markers of risk when they are numerous (atypical mole syndrome). dicapr
to the National Cancer Institute (NIH), doctors believe that dysplasticarevi
more likely than ordinary moles to develop into the most virulent type of skin
cancer called melanoma.

e Blue nevuss blue in color as its melanocytes are very deep in the skin. The
nevus cells are spindle shaped and scattered in deep layers of the demmis.
covering epidermis is normal.

e Spitz nevuss a distinct variant of intradermal nevus, usually in a child. They
are raised and reddish (non-pigmented). A pigmented variant, called\tbe ne
of Reed, typically appears on the leg of young women.

e Acquired nevuss generically any melanocytic nevus that is not a congenital
nevus or not present at birth or near birth.

It often requires a dermatologist to fully evaluate moles. For instance, alsimall
or bluish black spot, often called a blue nevus, is usually benign but ofteakeis
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Figure 2.5:Blue and Dysplastic naevi A Blue nevus (left) shows the typical blue
halos. A Dysplastic nevus (right) displays irregular border and coloratio

!/

for melanoma. Conversely, a junctional nevus, which develops at thégaraf the
dermis and epidermis, is potentially cancerous.

A basic reference chart used for consumers to spot suspicious motes ih
the mnemonic A-B-C-D, used by institutions of dermatology The letters stand for
Asymmetry, Border, Color, and Diameter. Sometimes, the letter E (for Elevation o
Evolving) is added. If a mole starts changing in size, color, shape ocecisly, if
the border of a mole develops ragged edges or becomes larger thacilaepeser, it
would be an appropriate time to consult with a physician. Other warning sighslan
amole, even if smaller than a pencil eraser, that is different than the etheéizegins
to crust over, bleed, itch, or becomes inflamed. The changes may indaati®ping
melanomas. The matter can become clinically complicated because mole removal
depends on which types of cancer, if any, come into suspicion.

A recent and novel method of melanoma detection is the “Ugly Duckling Sign”
[38] It is simple, easy to teach, and highly effective in detecting melanoma. Sim-
ply, correlation of common characteristics of a person’s skin lesion is niafgons
which greatly deviate from the common characteristics are labeled as an Ugky D
ling, and further professional exam is required. The “Little Red Ridingdiign,

[38] suggests that individuals with fair skin and light colored hair mighetdifficult-
to-diagnose melanomas. Extra care and caution should be rendere@x#miming

such individuals as they might have multiple melanomas and severely dyspkstic n

A dermatoscope must be used to detect “ugly ducklings”, as many melanomas in
these individuals resemble non-melanomas or are considered to be “Wwoblesep
clothing”. These fair skinned individuals often have lightly pigmented or anugie
melanomas which will not present easy-to-observe color changesaation in col-

ors. The borders of these amelanotic melanomas are often indistinct, makiiad) vis
identification without a dermatoscope very difficult.

People with a personal or family history of skin cancer or of dysplastiusev
syndrome (multiple atypical moles) should see a dermatologist at least oeee oy
be sure they are not developing melanoma.
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Static Single Shape detection

This chapter addresses the single shape detection problem, whichlmMbe used
around the work as a basic building block. Section 3.1 presents the pblem
and gives the theoretical background. Section 3.2 discuss the the Contours
framework, an effective metodology to detect shapes. We extd the framework
in section 3.3, building the Generalized Active Contours, which provedo be
a more reliable and robust tool. Section 3.4 applies the Active Contas and
Generalized Active Contours to a number of case studies, while séoh 3.5 closes
the chapter showing a series of results and experiments.

3.1 Single shape detection

The single shape detection problem is the problem of finding a (singleg shap
a digital imagel. This is the building block of almost any computer vision system,
being its resolution a necessary development step.
Roughly speaking, the problem brings back to a minimization over th® el
the possibile representatian(®.) [7, 52]:

R (®P) =arg minz (I, dc) (3.1)
R (Pc)eS

choosing as optimat_(®) the one that minimizes the energy functiondll , d.). =

is a scalar function of the (image) ddtas well of the candidate shaga. In the
following, to keep notation simple, we’ll writ® for £ (®) where the context is clear.
Thus, equation 3.1 becomes

® =arg minz (I,®P;) (3.2)
[ORS

Even though the problem is of easy statement, there are two main issues @aying
central role.
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Firstly, the computation of the global minima is often unfeasible. In other words,
but for trivial problems with a tightly defined structure, it's impossible to fintbaed
form for the minimization or to explore exhaustivedyDepending on the nature of the
problem, the cardinality dbcould be even infinite [18]. Thus, most often, algorithms
find suboptimal solutions. Secondly, the definitionzois not unique and there are no
general guidelines on how to build it. A goadshould be a concave function with a
unique minima. Furthermore; has to be related to the high-level perceptiortof
In a nuthshell, the minima of should be visually recognizable as “good” matches
for the shape.

Having an ideal function to search ov8idoes not guarantee the success of the
global detection procedure, since also the definitioreofiefines the (upper level)
quality boundary. Analogously, given a bad exploration proceduf® afgood con-
cave functionale cannot guarantee good results. These observations suggest that a
reliable shape detection algorithm should ground on a good implementationhof bo
the aspects.

3.2 Active Contours

Active Contours, also called Snakes [34], are a framework for delitgean object
outline from possibly noisy data. Formally, an Active Contour is a curve

c(s) eRY, se|0,1]° (3.3)

evolving in psuedo-time according to an associated ene(gy):

E(c)=5(c)+2(c) (3.4)
where
2 2 .12
s = [La® % +86)|55| ds  #(e)= [ olcNds @9

The internal energy (¢ ) enforces the smoothness of the cutveThis is a high
level absumption stating that smooth surfaces in the real world maps to smedtdh “d

2
in the sensor. The tenﬁ—g drives the final rest shape towards short curves, while

2
2 . .
the term ?,Tg imposes low curvature values. In other words, the former grants high

energy to elongated contours (elastic force) and the latter to bendedlimggtire
contours (rigid force)o(s) andf(s) are scalar terms to balance the magnitude of the
energy term in each segmentof

The external energy (¢) is minimal whenc is at the object boundary position.
The most straightforward approach consists in choosifig= — |l |. This drives the
final rest shape towards the edges of the image. Again, this is a high $seghation
on the nature of the data, enforcing that the object’s boundary in thevogll maps
to points of high derivative in the image.
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Active Contours naturally behave according to the framework in 3.1, evhet
£(c)=5(c)+2(c) (3.4) andr (®) = c(s) (3.3). In this case, the energy function
is well-defined and able to cope with a plethora of application simply tuning the pa-
rametersi(s) andp(s). Furthermore, a large literature has been developed to explore
efficiently S, such as inflating and balloning Active Contours [32], Magnetostatic Ac-
tive Contours [57], geodesic A.C. [11] and GVF A.C. [58, 24]. Thenbination of
these two aspects makes Snakes one of the most effectively used toapanddtec-
tion.

According to the variational principle, forces acting ofs) can be derived as:

0E

F(s) = 2 (3.6)
_0s(c) , or(c)
F(s) = 3s + s (3.7)
thus 0 0 02 02
c c

F(s)=-02]l] +26—S (cx(s)as) +2@ (B(S)asz> (3.8)

and the minimum rest shape is reached for:
F(s)=0 (3.9)

3.3 Generalized Active Contours

“Standard” Active Contours suffer from a number of major drawbacks

Firstly, they are not able to cope with images with soft edges or heavy texture
The external energy term(¢) requires, in fact, edges to be strong and clear in order
to attract the contour. This requirement is often unheeded. Furtherneateyorld
images often show a myriad of edges of similar intensity, causing the snakekto pic
one of them almost randomly.

Secondly, the exploration @& starts from an initial guess contour and proceeds
in a sort of “steepest descendant” way to reach a good minima for. Thus, the
initial configuration is crucial. In absence of an automatic procedure panator
has to manually initialize the algorithm. The initialization problem lies in the design
of the functionalz (¢) that is not a concave function (indeed, itf& from being a
concave function) and thus cannot converge to a global minima.

Lastly, the internal energy functional ¢ ) imposes smoothness on the curve
This is not always the case, since spiky, bouncy, and sharp-cshages are very
common in nature as well in industrial design.

The proposed Generalized Active Contours are a novel approday axtends
the classical formulation introducingeneralized energyerms sq(c) and 24(c),
calledmodel energyndimage energyFormally

Lg(C) = Sq(C) +2g(C) (3.10)
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and
2
w01 =5 (5 m)  mO=mlollg) (@D

wherei = {1~--nf}, j ={1---ng} and 7 and g; are additional shape and image
energies. In other words, formula 3.11 means that the energy functigyial$ and
Pg(c) are functions not just of the derivatives of the cutvand of the imagé, but
indeed of some supplementary energigandg .

To keep things simple, formula 3.11 can be revised as a straight linear cembina
tion:

2

2
1p(s)|2<

0%

oc

0s

2 N¢ Ng
ds+ S v, rpc=/@|ds+ NG
i;\/ufl 9(C) . 1] JZl iGj

(3.12)
beingy; andA; scalar values playing the same weighting role¢é) andp(s). Note
that that formula 3.12 is an over-simplification since it excludes all the (dg$sibn
linear combination ofr; andg; and, even more, uses the derivativegdb impose
smoothness constraints.

The term#; and g plays a central role. Each of these models a peculiar aspect of
the objectX and drives the Active Contour towardsthat peculiar aspect. General-
ized Active Contour provides a unified framework to build these terms in aaigo
and robust way. Furthermore, close in spirit to the aphorism of chapter 1

so(c)= [ _a(s

A plane shape A& R? has a 1-dimensional side given by features of its boundary
C = 0A; and a 2-dimensional side given by its interior. No successful themskaye
description can ignore one or the other

the termsy; andg; allow for an easy treatment of the boundarieg ais well for the
interior.

Before delving with the creation of; andgj, it's importat to remark a conceptual
difference between them. The formes, addresses and drives the Active Contour
towards distinctive features af, such as area, length of the perimeter, smoothness
of the corners, sphericity of, central moments, centroid. The latter;, on the
opposite drives the Contour towards distinctive featurel of, such as the internal
color, the blur of the edges, the texture, the external neighbor colarallRe the
original distintion between (¢) and 2 (¢) introduced in equation 3.4, the terms
are shape-related, whitg; are data-related.

Suppose now that the objeXtis characterized by a certain metricproviding a
single scalar value or a vector. In other wordguantitatively “measures” a certain
feature of the object. For this reason, we call inatricfor X. The first step is to
identify such a metric.

Beingl ¢ the probability density function of the metricone could build a related
energy term as follow:

E-[ - —r'[(Tc) r'[ S R+ r-[ S 1 (313)
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where®, € Sis a candidate shape, anglis the value of the metrit on ®¢. '¢(T¢)
expresses the likelihood @.. Low values indicate a low probability fab. to be a
good candidate (and thus high energy), whereas high value desiggatel ditness
(and thus low energy) (see figure 3.1). The probability density fundtiomay be
derived in closed form analytically, approximated via an object trainingosesyen-
tually approximated empirically. In general, for non trivial metric, the closethfis
unknown and a learning phase is necessary.

Figure 3.1:Probability density function for a scalar metric 1. The definition of the
probability density functiomi; is the the first step to define a generalize energy term
£+ In the figure, a good value af delivers a low energy state for the candidate shape
®, thus indicating®. as a “good” candidate for minimization

According to its nature, the generalized energy term of equation 3.13 mayebe
of the termsy; or G;. Practically speaking, there is no big deal in classifying it as one
or either term, considering also that some metrioggy originated energies; of non
clear classification.

The strength of 3.13 is twofold. Firstly, any relevant metric can be turnead éma

2 2
ergy term. The approach does not limit to straighforward metric su%%%%s f,isg

or [I; indeed it opens to a possibly very high number of them. This is especially
important for noisy and fuzzy images, where little or no information is carnedlb

Secondly, 3.13 provide an easy way to incorporare prior knowledgéact, the
design off ; reflects the prior about the shape, the expectation of the meteiated
to the shape and thughat we knowabout the shape.

3.3.1 A unique energy

N¢ n
Consider the sum terny v 7 + zg AjG; of formula 3.12, and suppose that all the
i=1 =1

probability density functionB; originating#; andg j are uncorrelated Gaussidn &
Aq( He ,2r), Wherey, andZ; are respectively the expected value and the covariance
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matrix). The distribution

T >3 0 0
l-'l2 O Zz O
r (%3 ' 0 A (3.14)
=N (h2) =N - :
H Hi : 2
L Unf+ng i L an+ng ]
is a multivariate Gaussian distribution “grouping” all of them. Note that
N ng _
lewz?\jgjw\[(ﬁ,z) (3.15)
i= =1

especially in the sense of formula 3.1, being the result an argument minima. Thu
formulas 3.12 and 3.10 can be restated as:

ac 2 azc 2 n¢ Ny
| a5 +BO) |5z +o st 3 yri+ 3 Mg~
, = 1=t (3.16)
/ a(s) oc 2+B(s) oc +o [l ds+neng- A (1,Z)
ac 0s 0s? 9 ’
and
£4(C) = 54(C)+2g(C) = 5(C)+2(C)+ning- A (1) (3.17)

Taking one further step, one may remove the assumption of independesunesa

T ow 1 [ T T2 Zas
Ho 221 222 223
M=o (L) = 5 a1 |
’ Mi ’ bX
[ Mnstng L an+ng,nf+ng i

(3.18)
This is especially true for measures that exhibits a high correlation, suateasnd
perimeter, inside/outside color, central moments.

3.3.2 Color clustering

Color clustering is the problem of partitioning an imdge areas of uniform color. A
good clusterization dividekin few regions of almost uniform color [31]. The num-
ber of classes (arlustery may be either defined a priori either dynamically adjusted
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Figure 3.2:Color segmentation of dermoscopic imageModified C-fuzzy provides
a good segmentation for dermoscopic images. Two melanomas aredieoted

according to the complexity of the image. Figure 3.2 shows a typical outpu¢en d
moscopic images of melanocytic lesions. The result is a number of shapbspfea
those defined by a group of adjacent pixels. Segmentation again invajuasian
3.2. The slight difference is that the minimization is implicitly carried on a number of
shapes (=cluster) rather than a unique one. Even if the color clusterinmgization
usually does not appears in analytical forms like equation 3.5 or 3.11, itégdhjdist

a different way to express the terg).

The modified fuzzy c-mean algorithm we developed is an example. The algo-
rithm computes the Principal Components of the image, using the Karhunen-Lo
transform, and then the 2-dimensional histogfgir associated with the two compo-
nents of largest variance. Given the number of clusters, the followindgreorrsive)
equations optimally cluster the color space:

1

Ukx = ————
kX d(x, ¢y

(3.19)

vk: argmin Ik:/()(Uk,x)bzyx,ck|b3h(x)b4dx (3.20)
h(

wherex is a point in the 2d color space is the center of clustét in the color
space,Ui x refers to the fuzzy membership &fto clusterk, |- | is the Euclidean
distance antb;,by,bs andb, are scalar values obtained through learning process. The
histogram clustering is then mapped back to the original image and a morplablogic
postprocess removes the smallest areas.

Bringing back to equation 3.12, in the fuzzy c-mean we@et 0,3 =0,y =0,
D [I] = 0 andng = 1. In a nutshell, the unique (image) energy tegmis expressed
by equation 3.20, and there are no constraints on the shape model na iomathe
derivatives.

3.4 Case studies

3.4.1 Miocardial cells

Miocardial cells balance the internal forces and external activity, yigldirest shape
that is a tradeoff between internal spring forces and external strgtebtivity. Cells
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evolve in time while continuously changing the shape appearance by prajfraip-
pendages that adhere to the culture surface to force and help thmd&tor evolution
(1D-side of the shape characterization). In this sense, the smoothnesbotitigary
profile counteracts this behavior: conversely, by acting on a term allaivengound-
ary curvaturex to assume negative values for some time windows, a spiky appearance

is enforced. 2
Sepikd C) = /S K(9ds  K(s) = acsgs) (3.21)

Following formula 3.13, we define a spikeness-related probability densittiin as

Min(Sspike Smax)
N

Mspike= (3.22)

and a related energy term
Espike= —I spike (3.23)

wherea( is a normalizing scalar value to make the integral of 3.21 converge to 1.
[spike iS thus a piece-wise linear function with upper boungy For our practical
purposessmaxWas choosen to be an unreachable high value.

Cells viewed from a microscope often show a bright halo, due to the scatterin
properties of the living material enhanced by the thinness of the cells abtberb At
the same time, protein appendices absorb light, resulting in black spots nesudthe
of the fiber. These optical phenomena are very common in back-lit orgzatierials
and can be used to attract the contour in absence of strong edges.fotigaition is
related to the inside cell texturd,{ defined insideX) and neighborhood feature§,(
defined outsideX, AX), and these data related contribution® (hape descriptors)
are referred as

Pw(C) = /X[I (W) — fy(w)]?dw  fu(w) = inner texture prototype (3.24)
Po(C) = /AX 1 (w) — fp(w)]? dw fp(w) = neighborhood prototype

Using again 3.13, we build two probability Gaussian density functions

1 _2w(0)?

MTw= e 3.25
r 1 % (3.26)
— .. Cfw .
fu af, V21
and hence two energy terms
Ep=—Ip (3.28)

whereo, and o, are suitable scalar values. For our experiments we ofter chose
ow = 0y, = 1. Fig. 3.5 presents the results of the application of the proposed model



3.4. CASE STUDIES 37

in some frames from a video sequence of a cell deformation. The staAdtve

Contour formulation is not able to correctly detect the cell shape: erootmaulate
over frames and end up with a general failure of the tracking algorithmetietess,
even in the first frames of the sequence, the Active Contour fails in ¢agtall the
fine details, such as protein spikes and ridges, yielding erroneous ssatistic the
definition of the energetic terms, we used a number of metrics (see figureB834
and chapter 8).

inward non matching Active Contour C(s) inward non mafChlﬂQ Active Contour C(s

region region
Active Contour’s Active Contour’s
interior region ® interior region ®

Figure 3.3:Texture difference Generalized Active Contour minimizeg,, in the ex-
ample leading to a contraction of the shape, pulling-out the different tektgion.
Referring to figure 3.5g forces the bright halo surrouding the cell to be left out

surrounding feature Active Contour C(s) surrounding feature Active Contour C(s)

of interest of interest
>ﬂ////

7~ Active Contour's #7———— Active Contour’s
neighborhood Q neighborhood Q

Figure 3.4:Neighbor texture difference ¢ (s) tries to minimize the neighborhood
energyzs,. In the example, (fw) specify that the surrounding color has to be “blue”,
and thus the Snake is attracted by the blue spot. Referring to figureg,5orces
the dark protein appendices to be included

3.4.2 Cardial Patch

The patch alternates periods of inactivity to sudden movements. To unueestd
measure the temporal sampling frequency is crucial: even though the wialeokear
and color-contrasted, we found that the frame rate was too low.

We build a color-related energy term, able to capture the reddish battkrgog
of the patch. The following is a measure of the red contrast of the shape

R(C) = f}(X'rddXX (3.29)
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Figure 3.5:Miocardial cell shape detectionThe first row is obtained using the pro-
posed Active Contour model, while the second row is produced with the alrfgin
mulation. The model uses ag d constant zero-function (the black color) and gsaf
constan255function (the white color)

wherel; indicates the red channel of the color imdgé&ollowing the example traced
out in equation 3.22 we build a piecewise linear probability density function:

MMed = W (3.30)

where agairN is a normalizing value anBmaxis an upper bound value f&: Eeq is
again build as simply as

Ered = —[ red (3.31)

Figure 3.6 shows the framework applied on the “cardiac patch sequence”

Figure 3.6: Cardiac pulsating patch The cardiac patch sequence presents abrupt
movements and sudden changes of position and size of the tissuez,gterm
attracts the contour towards a good fit even when the movements is lagyanique
pseudo time integration
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3.4.3 mbarivideo

For the “sea flower” sequencewe used a technique similar to the cardial tissue,
exploiting the lightness difference in the blue color channel. The energy Egr
obliges the Active Contour to capture a shape with high blue contrast:

B(c) = Jdx (3.32)
wherely indicates the blue channel bf
min(B, B
M blue = WLICL ) N max (3.33)
andBnaxis an upper bound value f@ Ep,e is again build as simply as
Eplue = —I blue (3.34)

Figure 3.7 shows results from a video sequence of 350 frames.

Figure 3.7: Sea Flower image sequencActive Contours are unreliable on blurry
images such as underwater shots, where camera movements andub@ulibf the
light make edges dull. Generalized Active Contour provides a better stetpetion
tool, in this case easily embedding the color information

Icourtesy of Dr. D.Cline, www.mbari.org
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3.5 Experiments

3.5.1 Miocardial cells

Figure 3.8: Miocardial cell single shape detection Generalized Active Contours
are a reliable tool to detect shapes. The figure shows 12 still images araktected
shapes (red lines). Each shape was obtained using the same energy teithout
any parameter tuning. Images are here more contrasted than thosallgaised in
the experiments to make them more visible in this work

The section displays 12 frames taken from the 10 miocardial cells image se-
guences. Figure 3.8 shows Photoshop contrasted frames, artificiallgdafterthe
purpose of clarity for this work (see figure 5.7 to have an example of tiedega).
Generalized Active Contours proved to be an effective tool to detegtesh with no
or little tuning required: each shape was in fact obtained using the sangy ¢aens.

3.5.2 Cardial patch

The section presents the results of the Generalized Active Contourschiaptiee two
cardial patch sequences (see section 3.4.2). The video sequenchaiacterized by
a similar behavior of the tissue. Figure 3.9 displays the user interface veéoged
to support non technicians.
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Figure 3.9: Cardiac pulsating patch The cardiac patch sequence presents abrupt
movements and sudden changes of position and size of the tissueggftierm
attracts the contour towards a good fit even when the movements are iiargely

simulation step

Figure 3.10:Color segmentation of dermoscopic images

3.5.3 Melanoma

In figure 3.10 we presents the results of the c-fuzzy color clusteringitdgoon 12
dermoscopic images of melanocytic lesions.
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Reticular Shape detection

This chapter deals with the detection of reticular shapes. Section.2 introduces
the problem and provides the theoretical background while sectio.2 presents
a novel approach based on Random Walk Agents. Section 4.3 showpesses
results to remove false positive detections. Section 4.4 closes thapter showing
results obtained on the drosophila epithelium and the corneal funds.

4.1 Reticular shape detection

Reticular shapes arise in a number of situation in nature and human desdig(se
4.1). The detection of such structures again follows equations 3.1 and Ghamter

Figure 4.1:Examples of reticular shapes Reticular shapes arise commonly in na-
ture as well in the industrial design. Tightly packed structures such as icettse
ephitelium or blood vessels originates such shapes. From left to right: rbtowd
vessels, drosophila melanogaster epithelium, aerial street view, abfunedus

3.
Given the high degree of freedom of reticular structures, ordinapycgehes to
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minimization such as the ones presented in chapter 3 and 5 do not yield $atisfac
results. From one side, the computation complexity is higher than the single shap
detection; from the other side, the design of the energetic tersinot well under-
stood.

Next section presents a Random Walk approach, a tool to emulate the human v
sion when capturing reticular structure. The idea is to flood the irmagth Random
Walk agents, each of them finding a path in the digital frame. Path are created
locally minimazing an energy terra, being an analytical approximation af. In
general,z is not known or difficult to obtain, whereasisn't. In a nutshell, the Ran-
dom Walk Agents approach shifts the problem from the (difficult) one sighéngz
to the easier one of designirﬁ;

4.2 The Random Walk Agents

A Random Walk Agent is an agentthat travels the digital frame, tracking paths over
its passage [4], [29]. In its basic incarnation, an agent is a discrete tistensyvith
an internal walk model and an external inpaut

plt+1) =p(t) +k-g(£ ()., (4.1)
where

y(t)

is the current point position on the domdinC R? of the image frame and(-) is
a heading direction function, depending en position, direction and speed of the
motion.k is a constant scalar value, defining the advancement step size.

The following is the observation equation:

p(t) = { X(t) ] €L, 4.2)

X(t) 10 0
yt)=|yt) | =] 0 1|pt)+]| 0 |6(1). (4.3)
o(t) 00 1

Note that here the variabterefers to the agent pseudo-time, not to a collection of
time-related digital images such as in chapter 5. Note also that equation 4indkee
things very didactic, uses the simplest possible walk model. More complex models
are of course viable.

The role ofZ is to drive the agent towards those locations of the image charac-
terized by the presence of the reticular structure. We'll discuss moresattetbign of
£ in the next section.

Several instances of the explorer agémt,, i = 1,...,N; }, are concurrently present
in the field of vision, and each generates at any time more than one directias tha
viable to advance the exploration. More precisely, for each paiy}; the set of
m; possible directioniem, i=1..., m}— originating(m; — 1) new agents—are col-
lected in the vecto®; € R™,
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Globally, the observationg(t) of all the explorer agentg; yield a graph model
G = (A, ) (beinga’ andZ nodes and edges, respectively), where each node(
is characterized by the stafg,y,©} of the locations visited by one of tha, and the
edges keep track of the path traveled by each agent (figure 4.2). rEpis grovides
a goodrepresentatiorof the retrieved structure. The level of detail embedded in the
description can be augmented either with a more refined algorithmic procedure
with a finer discretization of the input data.

=,

Figure 4.2:The Random Walk approach Several agents (left, in yellow) explores
the frame. The set of the paths of all the agents is the recovered retidtlatise.
On the right, a possible graph representation models, where nodesspmnds to the
locations|x(t),y(t)] and edges connect two adjacent nodes

4.2.1  design

Consider an agem in a location[x(t),y(t)] of the frame. The purpose gf£) is to
provide a set of directior® = {64, ..., 8y, } for advancing such tha(t + 1), y(t + 1)]
is still a location on the reticular structure. With reference to a pictorial int&tfios,
the aim is thus to explore the surroundings of the current position and ietyitivove
from a good location to another good location.

£ [0,211) — R gathers local information. For each secfar centered on the
current positiorp, the image texture is compared with a reference one, according to:

) /Q V1)~ ler () 2do
Z(ei) = fQi do

A natural choice is to build circular sectafs such as in figure 4.3, on the right.
Sectors of different shapes are still possible: for a number of thdganshof interest
rectangular sectors also proved to be effective (figure 4.3, right).

The set of the heading directions is given by:

(4.4)

©={61,...,6n,} = arg%—z — 0 andz < threshold (4.5)
0
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Figure 4.3:Sectors of different shape A template function built on circular sectors is
a natural choice, since it mimics the field of view of human beings (left).rGttapes
are also possible, depending on the problem: in the drosophila casetangular
shape efficiently serves the purpose (right)

where the “threshold” cuts out all the direction with a high energy c%t.: 0 en-
forces that the point has to be a minimum.

Energy Value (minus)

ant

L L L L L
100 150 00 250 30

[} (dégme)

Figure 4.4 function. Local minima of the energy function (here displayedé};
correspond to heading direction for advancing. A smoothed versiomjridtemall
random disturbances, is more reliable for noisy images

The heading direction§; are the inputs of equation 4.1, thus generating a corre-
sponding number of agenfst;,i = 1,...,N; }.

Let us first observe that small loops have to be avoided. Small loopseanasit
in uniform areas of the image, where the energy func&c(ﬁ) is not prone to dif-
ferentiate between redundant directions. In these situations, a directistilgly as
any other, and the choice is driven mainly by noise and randomness. djpeihs
because®| >> 1 and6; ~ 6;,1 V¥ 6; € O. In other words, all the values 6f ¢ ©
are very similar and these directions spans uniformly the surroundingpenvémt, so
there is no particular reason to pick one direction over another. This limitatiuneis
to the local nature of the brightness functiof®). Nonetheless this is still a desirable
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feature because it bounds the algorithmic complexity and it respects thenfiemdal
walking ideabehind the algorithm.

In order to avoid the aforementioned small loops, after extracting a poimttine
queue, it is tested against the creation of loops in the graph. Large loops@pted
because they correspond to actual closed paths (for instance the teerine cell),
while small loops are disregarded (figure 4.5).

A joining procedure is also required to fill small gaps and close large labpeo
agentsa; and4;j end up close to each other such that y}; — {X,y};[ < &, wheree
is a threshold, they are joined together.

The algorithm also marks dundary nodeshose nodes close to the boundary
of the digital image: The expansion process ends there (figure 4.5).

Figure 4.5:Small loops creation and dead branchesThe early closure of the path,
and thus the creation of small loops, is a frequent issue (left). This is due todality
of the energy function. These loops are often false positives. Dead lesa(rapht)
span over the interior of the cells

4.3 Post processing

Random Walk Agents generate a structure spanning over the originailaetshape,
but the expansion process may create dead-branches. Theskdsrane character-
ized by extremal non-border nodes of degree 1. A cleaning posegsdakes the
graph as its input, and iteratively removes all such points. The procéslitera-
tive and stops when no more removal occurs. A snhapping procedurgdins the
following types of points:

e a pair of neighboring nodes of degrée- 2
e anode of degred > 2 and a neighbor border node
e a pair of neighbor border nodes

Again, the procedure is iterative and stops when no more fusions takes pla
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4.4 Case studies

4.4.1 Drosophila epithelium

Drosophila reticular structure presents bright patterns of light supesetpim a dark
background. The brightness is due to the protein markers, that adhée dellular
boundaries and results in white when viewed by means of a microscope.

Thus, when viewed from atop, the entire structure is “bright” and “whis@me-
how, the energy terms have capture this. As discussed in the introductohesign
of £ should reflects locally the global properties of the shape to detect. Inydartic
we applied equation 4.4 and chosdasthe constant-value function 1 (the color code
for white in RGB images):

(4.6)

Figure 4.6:Detection of the reticular shape on the drosophila “wing” epithelium
Cells’ boundaries are highlight in white using a marker protein. The Ramdfdéalk
Agents run all over the frame in the attempt of minimizing equation 4.6. Thenbotto
row shows results on several images (fra22,27,40 from the “wing” sequence)

Figure 4.6 shows results applied to a number of images of the drosophila wing

epithelium. On an average of 80 images, the false positive error rate t{datet

an unexisting edge) is 5% and the false negative (missing an existing edifé) is
The ground truth was provided by an unbiased human observer. Eate fvas
considered as unique and processed with the Random Walk Agents atgowith

did not exploit the temporal coherence as in section 5.4.2. The top rowsstinaw
typical flooding behavior of the walkers. The 4 images 4.6 were obtainkithdha

the algorithm respectively at the beginning, d#11/2 and almost 34 of the total
computation.
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Analyzing the results we noted some blank areas not covered by the wHlker
is due to the absence of the protein markers on the edges of the cells, gesultin
poorly contrasted regions

Figure 4.7 shows the result from the “notum” still frame. Here the protein emark
is different from the one used in figure 4.7, as well the illumination, the nuraber
cells and the resolution of the image.

Figure 4.7:Detection of the reticular shape on the drosophila “notum” epithe-
lium. The very high resolution frame shows the result of the Random Walkaqipro
on the “notum” frame

4.4.2 Corneal fundus

Figure 4.8: Preliminary results from a corneal fundus image The image shows
preliminary results from the corneal fundus. Errors are mainly due to tekground
illumination. An image preprocessing step is here needed to adjust difeecdtight-
ning
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Dynamic Single Shape detection

The chapter extends the single shape detection framework develed in chapter 3
to a sequence of images. Section 5.1 states the basis of the probgerd provides a
theoretical solution. Section 5.2 exploits the images temporal cofence to design
a faster and more robust detection, while section 5.3 extends th@paroach to the
Generalized Active Contours (developed in 3.3). Finally, section 5.4 stvs results
in a number of case studies.

5.1 Tracking - Dynamic Single shape detection

The natural extention of the shape detection problem as seen in chaptecarisider
a (time) sequence of imagés,...l,...,In}. We call this problendynamicsingle
shape detection, referring to the evolution of the shape over time.

The goal is to detect the object of inter&sin each imagé;, obtaining a sequence

of shaped ®1(X),... P (X),...,Pn(X)}. The common approach is to apply equation
3.2 at each time step:

&, =argminey({la,...,In},Pc)
D.eS
O =arg minzey({l4,...,In}, P
t o t({l1 N}, Pe) (5.1)

Py = arg mian({Ila REE) IN}7CDC)
DeeS

Itis a common assumption to considgrdependent uniquely on the current time.
ThUSEt<{|1,. . .,||\|}) = ft(lt)) ande;=E,=... = En:
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®; =arg mine (11, Pc)
deS

®; = arg minz (ly, d
t DS (ke Pe) (5-2)

Py = arg minz (Iy, P)
dceS

5.2 Anincremental approach

The lack of temporal coherence is the main disadvantage of the appsdadhand
5.2. Simple stated, temporal coherence is the property of an image frambe
similar to its neighbot1. Formally:

lipr =l +A0H (5.3)

whereA%+1 is a function of the same domain §f and A measures the difference
between two consecutive frames. The temporal coherence is high|iherD and
low when |A| >> 0, according to a norni-|. Equation 5.3 suggests that one can
computed;, 1 as an adjustment ab;

Pryq =D+ (5.4)

wheredit1 is a “morphing” of®; into @, 1. The role ofd is analogous td, save for
0 is here an abstraction whose analytical form depends on the shapsaefation
model.

To clarify the idea, we anticipate concepts of section 5.3, considering therGe
alized Active Contours presented in section 3.3. Heiea displacement vector field
applied pointwise ta-(s). 9, evaluated in positiom (s), is the displacement vector
mappingci(s) into ¢i41(s)

c+1(8) = a9 + & (c(s)) (5.5)
Following equation 5.2, the optimudj*? satisfies

Py =D+t = arg n;inz (lt+1, Pc) (5.6)
cE

and hence the chain solution for 5.2 is

®; =arg minze (11, de)
dceS
CDZ = ¢)1—|—5]2_

3 (5.7)
®pg =P+ 3

Oy =DPno1+ )4
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5.3 Active Contour incremental approach

Velocity or Optical Flow# is a concept of computer vision literature [6, 3, 28]. Given
two imagesl; andl;,1, the purpose of the optical flow is to assign each pixel in

to a position intal;. 1, not necessarly a unique pixel or a location inside the frame.
Commonly, optical flow algorithms outputR? — R? function, a vector field whose
elementsr (x,y) = (Vx,Vy) describe the displacement of pixglsy) of imagel; into

l;1. Roughly speaking:

It(x7y) = |t+1(X+VX7Y+Vy) (58)

In the following, and only for this section, we keep notation consistent witfidlyéor
expansion series usingx,y) =1 (x,y,t).
Considering small displacements and small time steps, equation 5.8 becomes

[(X,y,t) =1 (X+ X,y + dy,t + dt) (5.9)

which is known as thémage constraint equationAssuming the movement to be
small, the image constraint Kix, y,t) through Taylor series can be rewritten as

0

al 8t +h.ott (5.10)

al ol
[(X+0x,y+0y,t +6t) =1(X,y,t)+ — I —OX+ ay2'>y+

where h.o.t. means higher order terms, usually neglected. From thedersgua

follows that: N N N
6—6 + ayé’)er 3

A dx aldy aldt

S8 =0 (5.11)

e A 5.12
axat ayst | atat (5.12)
which results in N a al
or more commonly
ol ol ol
I Vx + = 3y Vy = T (5.14)

5.14 is an equation in two unknowns and cannot be solved as such. Thevisk
as theaperture problem To find the optical flow another set of equations is needed,
given by some additional constraint.

5.3.1 J-maps

This section presents a method to compute the optical flow efficiently. The loptica
flow is computed only on specific locations, namelis).

For a givers, Considern; (¢t) a circular portion of a certain radius kf centered
on ¢¢(s). Recalling section 1.3;;(s) is aR? point. Consider now . 1(¢t + [0, Wy,
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an analogous circular portion &f.1 centered onci(s) + [Vy,%]. Ag(ct) C Iy and
N 1(Ct + [Vx, W) C g1
We compute the optical flow (¢ (s)) according to:

F(c(s) =7 (xy) = (v, W) =arg min/A}M(Ct) — Ag+1(C + [%, %)) |da (5.15)

Uedy

whereA is a 2D domain. In a nutshell, we choosefa&c (s)) the vector|vy, vy| that
minimizes the difference betweeg (¢t) andAG41(Ct + [V, Wy))-

On images with low coherence, the approach still holds but has to be revised
Equation 5.15 may in fact output a sub-optimal vector. This is especially true in
presence of several minima of the same magnitude. Figure 5.1 shows twd typica
maps of the value of the integral in 5.15 accordingol. High coherence images
(left) generate a precisely located and unique minima, while low-coherencgedna
(right) exhibit more than one good minima. We call these maks or Js-maps
wheres indicates that they refer to the points).

Figure 5.1:J-maps. Highly coherent images bnd L. 1 generates a J-map with a
unique “good” minimum (left). The yellow circle indicates the minimum of the inte-
gral 5.15 (y and \), while the yellow cross the ground-truth provided by a human.
Low coherent images (right) generates instead a J-map with many |ldo@han of
similar value (A,B,C,D). Here the global minima (yellow cross, D) does noke
spond to the ground truth (circle, C)

Given the situation depicted on figure 5.1, it's impossible to assess the pogition o
the true minima. The idea here is not to consider a single J-map, rather alsetof
precisely a set of neighbor J-maps and to mutually correct them. The intudldse h
true because the optical flow (x,y) has to be smooth[J# | ~ 0. Thus, neighbor
J-maps will have similar values and similar minima. In other words, if we consider a
set of close point$c(s1),c(s2),...,C(sh)} and apply the smoothness constraint, we
getF (c(s1)) = F(Cc())~...F(c(sn)) and thusly, = Js, =~ ... =~ Js,.

Figure 5.2 shows a set of neighbor J-maps (J-maps associated to mgightis),
with a yellow cross on the global minima. Intuitively, it is possible to detect thar err
on the right and to (somehow) correct it.

The J-maps correction is an iterative steps. For each irdage consider a set
of neighbor images$Js,,Js, - . . Js, }, and compute the global minima of each of them:
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D%

i

Figure 5.2:Low coherent J-maps J-maps from low coherent images show a num-
ber of local minima, and sometimes fail in detecting the ground truth. Nolesthe
neighbor J-maps exhibits a similar appearance, and thus it's possibleogs @heck
them and detect potention errors. For instance the image on the rightssaghiobal
minima not consistent with the global minima of the other J-maps - not ¢ensigith

the smoothness constraint

{(Wxa, W1), (2, V2), - - - (Vxn, Vxn) }. The average value

=}
=}

Ve =) Vyi \Ty = > Wi (5.16)
= =

and the covariance matrix

Oxx - Oxy (5.17)

sz: |:

indicates respectively the optical flow average direction (8) and the confidence of
this measure.
We correct)s according to

Oxy Oyy

= (1 ([ %), Zey) (5.18)

where(N) is the Gaussian function. Image 5.3 shows equation 5.18 applied to the
example of image 5.2. The image on the righigsand the three remaining images
on the left are{Js;, Js,,Js; }. After the correction step over all the images, the “new”

YN e

Figure 5.3:Correction of the J-Maps. The J-map on the rightl, is computed from
Js according to equation 5.18. The blu cross is the position of the old global mimim
The red cross is the center of the gaussign\y). The yellow cross is the location of
the new global minimum
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J overwrite the “old”J. The entire procedure may be repeated, until a steady state is

reached.
Figure 5.4 compare the morphing of a reticular structure computed resggctiv

with the raw optical flow algorithm and the improved one. Figure 5.5 compare the

Figure 5.4:Morphing of a reticular structure . The inexact computation of the opti-
cal flow can morph a shape (left, a reticular shape in red) into a wrong(oeater).
The improved optical flow algorithm guarantees instead optimal resultbtjrig he
images refer to a video sequence of the drosophila morphogenesisradpy mean
of a microscope. Red lines, over imposed on the original frames, shtowethular
structure. The image on the left refers to frame 21, images on center ating oight
refer to frame 22. See also images 5.5. Courtesy of Prof. Jeff Axelood la

optical flows after and before refinement.
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Figure 5.5:Optical flow field. The two images refer to the optical flow vector field
computed on 5.4. The raw computation (left) yields a wrong result. Thethmess
constraint is not respected. The refined optical flow is instead a smeactbnfield.

See also images 5.4
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5.4 Case studies

5.4.1 Miocardial cells

We found the image sequences of miocardial cells to be noisy and poothastad.
The sampling frequency was low -a couple of frames per hour-, allowmgehs to
undergo abrupt changes of shape. The illuminination changed froueseg to se-
guence, according to a number of parameters such as serum deptirigyycdhpmber
of cells, chemical impurities and lightness condition of the lab.

Generalized Active Contours (see chapter 3 ) along with J-Maps shionsel a
reliable tool. The workflow we used is to first segment the shape usingactitours,
then to evolve it over one time frame using J-Maps, and finally refine th# eggin
by means of active contours. Using notation of equation 5.4, the idigiéd computed
as discussed in section 3.3 whiig* is obtained using J-maps followed by an active
contours adaptation. The initial segmentatiiais achieved by means of Generalized

iand

Figure 5.6:Schematic workflow of dynamic single shape detection using J-maps
and Generalized Active Contours

Active Contours. For the each successive frame, rather than cdpaushape from
scratch again, we morph it according to equation 5.4. H¥Fé is provided by a
two step approach: first computing J-maps and applying thety,tthen refining the
result using active Contours

Figure 5.7 shows results from a number of image sequences.

5.4.2 Drosophila epithelium

Each video sequences of the Drosophila epithelium contain 40-50 edgivesdrames,
obtained by means of a microscope. The patch contains 300-400 celldesenif
sizes. Cells split, merge together, deform and migrate; new cells enter the &=d
old ones exit. To handle the plethora of behaviors, we extended the teehprig-
sented in the flowchar 5.6 of section 5.4.1. The resulting technique is a corgéine
many of the techniques developed so far, such as random walk ageetabeed Ac-
tive Contours and J-maps. To initialize the algorithm, we detect the shaparie fra
using the Random Walk approach as explained in section 4.4.1. The algonitgs

a graphical representation of the shape. Using J-maps (as seen im $2)iowe
morph the graph according to equation 5.7, obtaining an approximation afidipe s
for the successive frame (see figure 5.9). We now convert the gnaplan active
Contour-like structure. To keep things simple and linear we omit the details of the
conversion. In a nutshell, a reticular active Contour is similar to a curvilinetive
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2 . . 3 § ‘.: Gl
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Figure 5.7: Miocardial cell dynamic shape detection We used the workflow in
figure 5.6 to track cells. We employed the method on a total 10 sequemesisndges
show some frames taken from sequence nudlier7 and8, respectively on column
1,2,3 and 4. Interestingly enough, each sequence has a different illumination and a
different level of noise. The first two rows were manually contrastguhbyoshop to

the only purpose of clarity for this publication. The final row, instead, shthe raw
video - the input of the algorithm

Figure 5.8:Schematic workflow of dynamic single shape detection using J-maps
and Generalized Active Contours The initial segmentatiofPg is achieved by means
of Generalized Active Contours. For the next frame, rather than caphe&eshape
from scratches again, we morph it according to equation 5.4. HEréis provided
by a two step approach: first computing J-maps and applying thebg, tinen refining
the result using active Contours

Contour -the one described in section 3.2- and it is still driven by equaighand
3.5. Indeed, the integrals for the computation of the elastic energies hastintak
account the reticular structure. To our knowledge, this is a new extentibe tctive
Contours.

Evolving the Active Contour in a pseudo time removes false positives edges a
refine the structure. Finally, we generate a set of random walk agentdach node
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of the graph. This is necessary to fill holes and to “expand” the shagédlo possibly
appeared portion of the frame.

Figure 5.9: Morphing of the Drosophila reticular structure using J-Maps. The
image shows the reticular shape detected in frarheverimposed on fram&2. The
green arrows schematically represents the morph obtained by meadasaps, ap-
plied here to two cells

Figure 5.10 shows results applied to a number of images of the drosophila wing
epithelium.

Figure 5.10:Dynamic shape detection on the drosophila “wing” epithelium The
sequence is the same of image reffig:drosoRes, whereas the shage detected
using the algorithm in figure 5.8, exploiting the temporal coherence. Theotop
shows the detected reticular shape for fragn&0,20 and 30. The bottom row shows
the network overimposed to the original frame
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6

Shape Analysis

The chapter deals with shape analysis. Section 6.1 explain what @alysis,
while sections 6.2 and 6.3 discuss the analysis respectively of the naimdial cells
and the drosophila epithelium. Section 6.4 analyzes the variability of honan
and algorithmic melanoma border identification. Section 6.5 closes thehapter
analyzing the cardial patches.

6.1 Whatis shape analysis

Shape analysis is, generally speaking, the process of extracting mattidescriptors
from a single shape representation model or a sequence of them a@]ndtshell,

given a set of shapdspy, ..., Py,..., Py} and their representatidm. (Po), ..., R (Pr), ..

the purpose of the analysis step is to extract useful “numbers” andégfjuGener-
alizing equation 1.6, this means

(R (Do), R (Dy),..., & (Dy)} 28 Rk (6.1)

These values are forces, lengths, labels, descriptors, medical daghassifications
etc [22]. Where the context is clear, we will use

(Dg,..., Dp,..., Dy} 2OV gk (6.2)

instead of 6.1. Equation 1.6 of section 1.2 simply considets 1. Roughly speak-
ing, in fact, one can perform an analysis on the single shape, thus usingation

LR (PN)},

relative to the single timég, or on the whole set of shapes, exploiting the temporal

information.

The measure of shape mainly serves two purposes: on the one side there is

control purposeon the other there is @assification purposeaiming at learning the
shape representation.

Given a planar shap& C R? a simple way to derive a measuremdiif) ¢ R"
is to refer to linear filtersf (A) = [W(A)da, with Y(e) suitable base functions [35].
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A polynomial set of functiongy(x,y) = xPy) in the filter formulation produces the
order (p+q) curve momentsnyq(c). Although the moment description captures
various levels of the shape distribution, single moments (especially the high ord
ones) link poorly to perceivable principal deformation, thus failing in supg the
perception with actual measurements.

fi(9) = [ ditxy)axay (6.3)
Moa(C) = § X(S)Y(9)3(s)ds (6.4)

with d linear density of the contour. Knowing the centre of mass of the cueve, -

andyc = % allows making the moments invariant undi@mslation, to produce the
central line momentsy

ealC) = (X(5) = c)P ((8) ~yc)3(s)ds 65)

6.2 Miocardial cells analysis

Vitality of the cells is an important monitoring parameter to assess the quality of a
colture. Miocardial cells, in particular, undergo a series of shapeftnanation over
time: the magnitude of these changes is a direct measure of the vitality of the cells.
One observes in fact that healthy cells evolve their shapes frequeilg eells in
poor health exhibit quite a static behavior.

A computer aided system can detect a badly conditioned colture and reaet in
sponse, for example adjusting temperature, chemicals and mechanicadstiegure
6.1 illustrates a feedback system in which a computer acquires images olisremnce
proactively adjust the colture’s environment [23].

input
parameters

initial parameters: o - ; z

- temperature S5 ® o & PN
- chemical g = ' N i
- electric field — . s

cells colture shape detection
& shape analysis

v

-9

Figure 6.1:Shape analysis and colture feedbackThe quality of a cell colture de-
pends on a number of parameters such as temperature, electric aguket@fields,
chemicals. A computer vision system performing shape detection anel ahalysis
can automatically regulate them to achieve a defined goal, such as maxirthzing
number of living cells, the overall vitality of the colture, or the growth rate

In this context, then, we will try to translate the shape information into useful
parameters conveying the “vitality” idea, Not fully satisfied by the meaningésin
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of the central moments, and to enforce consistency with the perceptionmm@eated
the set of shape descriptors introducing a measurbéricity W, spikenessand

boundary activity. Sphericity is a scaled ratio between shape aseand perimeter
N

2n-a(c)
Yic)="—72-/ 6.6
inspired by the definition oéllipticity andellipticity variance given in [7].
We applied the classical definition of to@lrvature Kot [45] as
0°C(s)
alc) = § |55 ds 6.7)
which through normalization leads to tAgerage Curvature
Kot (C)
Kavg(C) = e (6.8)
e

The quantitiespikeness, andboundary activity v are thus defined as

&(c) :745

wherec;j refers to the shape at time stepj andn controls the temporal averaging.
Boundary Activity makes explicit use of the time lapse for its computation.

The computation of these quantities benefits from the underlying proposdée S
model, in that it is more accurate and conveys more information about thendyga
of the shape and the deformation process. Table 6.2 shows differienaesimber
of metrics between the Generalized Active Contour and the classical nretest
performed on the image sequence of image 6.2.

2 t—1 2
aacsgs)—xa\,g(c) ds u(c):</\(c)—i-JZnA(q)> (6.9)

i

Figure 6.2:Miocardial cell shape detectionWe repropose figure 3.5. The first row is
obtained using the proposed Active Contour model, while the second roadisqed
with the original formulation
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Metrics Generalized Active Contour| Classical Active Contour
frame 55| frame 135 frame 185 | frame 55| frame 135 frame 185
Area 3092.0 | 3540.0 3852.0 2921.0| 2984.0 2707.0
Perimeter 227.37 | 256.84 295.59 210.53 | 210.82 196.70
Area/ Perimeter 13.60 13.78 13.03 13.87 14.15 13.76
Sphericity 0.751 0.674 0.554 0.828 0.843 0.879
Ellipticity 0.779 0.739 0.602 0.855 0.865 0.887
Ellipticity Variance 0.981 0.967 0.967 0.983 0.981 0.988
Total Curvature 483.1 485.7 877.8 334.1 258.0 220.16
Average Curvature 2.12 1.89 2.96 1.58 1.22 1.11
Spikeness 2.43 2.61 491 1.08 0.82 0.49
Boundary Activity 28.38 54,53 497.11 24.23 28.12 98.49

We consider in particular the parameter we have just introduspitenessand
boundary activity.

“of | —Standard Active Contour
3 —— Proposed Active Contour

g

s~ | — Standard Active Contour
—— Proposed Active Contour

B k2
Spikeness
W o B B

Cell Boundary Activity
g @

‘W’\‘W\hﬂ
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o 5 0 £
Time (frame)

0 50
Time (frame)

Figure 6.3:Shape metrics.Evolution of spikeness and boundary activity, according
to the proposed and original snake model
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Figure 6.4: Boundary Activity and Spikeness synthetic shape test The figure
shows theboundary activity (red) and thespikeness (blue) measures computed on
a 100-frames-long synthetic video sequence. We build the test to highligtiffdre
ences between the two and show how they can be decoupled

To better understand the means of these parameters, and the validity of tele mod
that allows their computation, we run a number of synthetic test. In the firgfitrste
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6.4), a circular shape (frame 1) deformes into a spiky shape (framen@d3han back
again to the initial one (frame 50). As expected,$pé&kenesdine has a maximum on
frame 25. On the other side, being the length of the perimeter almost undftecte
the local transformation, theoundary activity keeps close to zero. From frame 50,
the circle becomes an ellipse. Thpikenesaneasure now stays close to zero, while
theboundary activity shows a significant rise.

= ’ . -
) ). | )
\ » v \
/

z | — Ellipticty ‘ / \ ’ /
N ey A
PN o
N/
B A
@ N 74// S~ \/ i \

o 10 0 El) 0 50 50 70 E3) 50 100
Time(frame)

Figure 6.5:Boundary Activity and Ellipticity synthetic shape test

In the second test, on figure 6.5, a circle (frame 1) morphs into an elliEaadfr
32) and then back again into a circle (frame 64). The same transformafiiesap
again from frame 64 to 96, at a double speed. &Hipticity measure (blue) scores
from 0.97 to Q18, with minima and maxima points of the same value. On the con-
trary, theboundary activity (red) reaches an higher value during the second faster
transformation.

" frame 11 ‘frame 30 T frameto0”

i S e o

— Boundary Activity
‘ — Spikeness

40 50 60 70 60 a0 100
Time(frame)

Figure 6.6:Boundary Activity and Spikeness synthetic shape test (2)

Figure 6.6 shows our final test, a complex transformation. The shapegaoede
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abrupt changes from frame 1 to 11 (detected by the high values of thmuedlary
activity line), and then a constanst and slow stretch (frames 30 and 70. All tlese te
generate shape synthetically and morph them in time according to a knowfotrans
mation, whose intensity and direction can be controlled. The analysis refiests
transformations. The goal is to develop a small set of measures able taptktioe
many effects of a transformation. In a nutshell, even if a shape deformsoma
plex way (such as in figure 6.6), measures recover from the complextyiaa a
simplified yet consistent analysis.

6.3 Drosophila ephitelium

We peformed a twofold analysis. On a single frame, we extracted the nesivad¢
ture removing irrelevant information. On a sequence level, we correlagesketis of
obtained network structures using a point set matching algorithm.

6.3.1 Network extraction

The information gathered by the Random Walk Agents may be overabuiodambd-

eling purposes, especially when the goal is to obtain compact-size modeilslefle
and agile, to be used both for simulation and for prediction of the behavitireof
structure. Each location reached by a random walk agent is a node irgfiie ¢Hav-

ing a small parametdein equation 4.1 thus leads to a very precise but dense graph.
In this respect, only the subsgt of the nodes associated to non-sc&afand the
correspondent edgas) are interesting in the description, that is:

Gr = (\;, Er) Ny C ACst.dim(O(ny)) > 1V € 4G,

where dim(© (n;)) indicates the cardinality of vectd® for noden;. If the border
effects are neglected, the resulting graphis a 3-connected graph, in which the
minimum vertex degree (valency of the graph verticesl)4s3.

In a nuthsell, reconstruction of the geometric model of the cells is carried on
considering only nodes with degree greather than 2. These nodesrsidared the
corner of the edges of the cells. The new graghconsists of such corners and new
edges created between a pair of corners if in the original graph therasteight
path (a path connecting them not passing through any other cornedpiBy so, we
prune a lot of nodes and edges and end up with a light, compact refaésenf the
cellular structure.

Figure 6.7 shows results of the network simplification procedure applied to (a
small portion of) frames 13 and 42.

6.3.2 Point set matching

The general problem of point set matching is a fundamental topic in comysien
and is key for the registration of multiple images. We developed a general, non
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Figure 6.7:Network simplification. Images show as circle the vertices of the graph.
The first row, computed on frani& of the drosophila “wing” video sequence, shows
a very dense structure. Each node corresponds to a point tracedrdgdamm walk
agent. The structures on the right is the simplified graph, where onlysnadité
degree superior thaB were kept. This leads to a “straightening” of the edges and
to a more compact representation. The bottom row shows the same smtiplifion
frame42

iterative technique based on spectral methods. The purpose of thisxgsdtidllus-

trate the approach, and then apply it to the drosophila image sequencemk&eise

of apairing matrix which relates pairs of points taken from the two sets. In addition,
we allow the elements of the pairing matrix to depend on a combination of possible
metrics, each of which is defined over the two sets of points.

The technique performs robustly on a variety of application domains, byratto
ically adapting the set of useful metrics to the particular case under stpdyifigally,
the multiplicative structure of the pairing matrix ensures that if a particular metric is
not discriminative enough for a pair of images (versus other similarity mesgktitris
automatically overridden by the other more relevant metrics.

Consider two sets of poind$ = {xi,...,xm} andY = {y1,...,yn}, with elements
lying in RY for some finited, and not necessarily with the same cardinality. We intro-
duce apairing matrix z € R™, with entriesz; € R. Each element;j is intended to
express a measure of similarity between pairg X andy; € Y and will be specified
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shortly.

Given a matrixz, the selection of pairs of matching points from the two sets is
performed after a normalization procedure: the matriis preprocessed by comput-
ing its singular-value decomposition

z=TDU, (6.10)

whereD € R™, whereasT,U are properly-sized orthogonal matrices. We replace
diagonal elementd,, of D,p = 1,2,...,min{m,n}, with identity constants, which
yields

z =TEU, (6.11)

wheree; =djj,i # j,i=1,...mj=1....nep=1p=1...,mn{mn}. This
technique is generally known aghitening The largest elements in correspond to
candidate matching pairs as follows: the gaijry;) is matched if and only if;; is the
largest element both of roiand of columnj. This strong correspondence implies a
“mutual consent” to the match: indeedzf is the largest element of roibut not of
columnj, pointx; is similar toy;, but not the contrary. As such, the péir,y;) is not

a valid match.

If one considers each roinas ann dimensional vector;, thenz is a map from
point x; into vectorr;. Ideally, a pairing matrixz should be sparse, with a single
non-zero element per row and linearly independent rows. In suclse gecoin-
cides with one of the coordinate axis&f and as such is the farthest possible from
any other vector row. More generally, if a row vectpis close to a coordinate axis
g € R", then it is likely for the pair(x;,y;) to be a match. However, if two vectors
ri, andri,, i1,i> € {1,...,m}, are adjacent to the same coordinate a&jsthen the
corresponding pointg, andx;, “compete” for the match witly;. Setting the singular
values ofz to be unitary corresponds to a spatial outspread of its row vectors, thus
alleviating such potential conflicts. Figure 6.8 displays an instanceasfd z matri-
ces corresponding to sets of cardinality three. In this example whera, the above
operation corresponds to the normalization the volume of the associated prism.

Let us consider the following set of metridg: X xY - R,k=1,...,5:

Metric Definiton
di(x,y;) [ I —Yijllp,p>0
da(xi,yj) | cos(m(i),m(j))
da(x;,yj) | cos(i(i),f(j))
da(xi,yj) | [d(x) —d(yj)|
ds(x,yj)|  td(x,y;)

1. di is a p-norm distance between pairs of points taken from the two sets. The
present case studies consider the Euclidean nprmZ).
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Figure 6.8: A withening example Graphical comparison of pairing matrix

0.7000 0.7500  0.4000

(left) and its normalized versiox (right), where z = | 09000 0.9500 041000] and

Z:

0.3000 0.9000  0.8500

0.8519 0.1527 0.5010 . ~
04249 07607 04907|. Notice that the row vectors ir,,r3 of Z do not cluster
0.3062 0.6309 0.7129

and better spread in space. The pairing matzixyields one pair(2,2), whereasz
yields the pairg1,1),(2,2),(3,3)

2.

dz is a measure of the distance of the intloden(i) and the j-thmoden]j) as-
sociated to each of the two sets. As suggested in [49], the moéla point set

is computed as follows: first, a square proximity matrix defined according to
the intra-distances between the features of the image is introduced; it @ssucc
sively diagonalized and its first mim,n} eigenvectors, sorted according to the
largest eigenvalues, are regarded as its modes. The distance betevewuts

m(i) andnyj) of the two graphs is then computed as their cosine.

This metric is valid if the setX,Y are embedded with a graphical structure.
The distancals is characterized analogously ds however the modem are
computed by considering a proximity matrix that has non-zero elements only
if the corresponding pair of vertices are connected by an existing edipe in
graph.

. The metricd, is defined as the absolute value of the difference between the

graphical degree of a pair of points, taken respectively from X aom fY. The
functiond is the degree of a node in a graph. As €y this metric is valid if

the setsX,Y are embedded with a graphical structure. However, if no graphical
structure is present over the sets X and Y, then one such graph caduoedh
artificially: for instance, edges can be created between pairs of pointsiif th
distance is less than a tunable threshold.

. Provided an image underlying the point sets, the meiridefined by a function

t d, computes theéexture differencéetween a neighborhood rfe X and one
of yj € Y. Here the points;, y; are intended as features of the corresponding
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images.

More formally, let us consider the finite discrete domiaia Z? made up of the
pixels of the two-dimensional image frame. Given a paiatR?, we define a
neighborhoody (z,8) C Z? as the set of pixels of the image with centroid lying
within a radiusd > 0 fromz A function : L — R™" specifies théntensityof

the image over its domain.

Let us now consider the two imagég, Ly underlyingX,Y. Given a radiu

of choice, the functiond(z;,z) computes the absolute value of the difference
between the intensities of the pixels in the neighborhoods of poirgsdz:

td(z,2) = z z |1(p1) —1(p2)]-
P1eN (z1,0)Nkx  P2EA(22,0)NLy

This approach is related to a similar procedure used in [51].

Consider the two sets of feature poiddsandY, with cardinalitym andn respec-
tively. The outcomes of the point set matching procedure is compared witinabhad
truth. The ground truth is known for the synthetic case studies, wheve#sef case
studies based on real images it is directly assessed over the data setsgmnoheht
and unbiased observers. Let us introduce the following four entities:

1. Xim € X,Y;m C Y are the two sets of feature points that are correctly matched,
of cardinality respectivelyrm, Nim

2. Xs € X,Y;s C Y are the two sets of feature points that are correctly left un-
matched, of cardinality respectivetys, nis

3. Xim € X,Yim C Y are the two sets of feature points that are wrongly matched,
of cardinality respectivelynsm, Nim

4. Xis € X,Yis C Y are the two sets of feature points that are wrongly left un-
matched, of cardinality respectivaty;s, Nts

Notice, as intuitive, thatn, 4 ms—+ M¢m -+ Mss = mand thaiym + Nis+ Nim -+ Nis = N.
We define as percentages, over both sets of points, the following quantities

1. true matchesas the ratio of feature points that are correctly matched, i.e.

Mim+Ntm
m+n

2. true singlesas the ratio of feature points that are correctly left un-matched, i.e.

Mis+Nks
m+-n

3. false matchesas the ratio of feature points that are wrongly matched, i.e.
Mim+Nfm
m+n

4. false singlesas the ratio of feature points that are wrongly left un-matched, i.e.
Mts+Nfs
m+n

The outcome of the case studies will be evaluated according to the introquakiy
measures.
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Synthetic Graph Matching

We consider a graphical structu®&= (V,E) with two dimensional spatial compo-
nents, which are constrained to lay within the unit square in the positiverauiad
[0,1]2. The cardinality of the set of nod&sis equal to 50 and their spatial compo-
nents are generated uniformly at random within the specified domain. TeesetE
is created between pairs of node¥iaccording to a Bernoulli distribution with mean
equal to 0.5, however the edges that are longer than a specified tldré325) are
discarded. Figure 6.9 shows an example of a graph.

The graph is then morphed into a new structGre- (\7,I§), according to the
following procedure:

1. The setE C E is generated fronE by discarding each edge according to a
Bernoulli probability distribution with meak;

2. The setV C V is generated fronv by discarding each edge according to a
Bernoulli probability distribution with mealfi,, and additionally by eliminating
the residual edges that connect to verticeB VE;

3. The spatial components associated to the elemeftsie obtained from those
belonging to the corresponding elementskrby perturbing them with the
addition of a random variable that is uniformly distributed within the square
%[—1, 1]. In other words, the original coordinates are subjected to a uniform
perturbation that amounts ¥, % of their maximum possible value.

The matching procedure proposed is tested on a cohort of pairs dﬁsg(r@pé),
parameterized by the input configurati@, Py, M) used to generate them: for each
combinationPe, Py, M) of perturbation parameters we average the outcomes of 2000
simulations.

Figures 6.9 and 6.10 represent respectively a single pair of testofaph P, =
M, = 15%), and the outcomes of the matching procedure.

We have employed the first four metrids, d», d3 andds. The metricds is not
employed, since the artificial graphs have no underlying physical imageahabe
exploited for the matching procedure. Table 6.1 reports the results fbrosadigu-
ration of the perturbation parametéiz, P, M) are the average of the 2000 simula-
tions. The experiments are divided in five batches: in the first, we uniformbifgno
the three perturbation parameters; in the following four, we fix two of thesthee
rameters and modify the remaining one by using values that match those ofthe fir
batch of experiments. The monotonicity of the performance outputs of thathlgo
with respect to the perturbation level provides evidence of the consystéiice pro-
cedure (see first set of simulations). The results of the last four grofugimulations
“lie within” those of the first batch (the comparison ought to be done by lapkin
the accrued true and false value pairs). By comparing the third reswdtbfgroup of
experiment with the first two, one can observe that the elimination of edyestaes
affects the quality of the outcomes more than the perturbation of the spatiali-coo
nates of the vertices. This is despite the fact that spatial perturbatiomgesanin
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Figure 6.9:Synthetic graph generation and perturbation The original graph (left)
containss0nodes. The perturbed graph (right) was generated uBing Py, = M, =
15% The blue labels mark the nodes and provide the ground truth corresnoe
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Figure 6.10:0Outcomes of the matching procedure Graphs refer to the synthetic
ones of Figure 6.9. Here the blue labels indicate correctly matched nddes (
matches), whereas red labels shows the wrongly matched ones. Wildest la-
bels are correct single nodes

feature crossover. Furthermore, as intuitive, the elimination of an edgerésult of
the last four groups) affects the results more than that of a vertex @Geesuit).

Point Set Matching over a Literature Benchmark: The “CMU House”

We have finally tested our procedure on a known benchmark from theudemyision
literature, known as the “CMU House” [1]. This benchmark contains a&&tl0
pictures of a toy house, taken over a black background. We have®dra set of
features from each image by applying a corner detector [56]. The ebtaiets have
a cardinality that is very similar to the sets used in [10, 54] for the same benkhma
which allows for a fair comparison with those results.

We have tested our algorithm on two experimental setups. Firstly, we haveedatc
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Perturbation Output Performance

P P M true true false false
e v V| matches| singles| matches| singles

15.00%| 15.00%]| 15.00%| 71.01% | 7.50% | 19.37% | 3.12%
12.00%| 12.00%, 12.00%, 79.83% | 6.66% | 12.07% | 1.44%
9.00% | 9.00% | 9.00% | 87.65% | 4.37% 7.10% 0.88%
6.00% | 6.00% | 6.00% | 93.06% | 3.38% 3.36% 0.20%
3.00% | 3.00% | 3.00% | 97.09% | 1.82% 1.04% 0.05%

12.00%| 15.00%]| 15.00%| 72.40% | 7.21% | 18.59% | 2.80%
15.00%| 12.00%, 15.00%, 73.17% | 6.05% | 18.64% | 2.14%
15.00%| 15.00%]| 12.00%| 78.07% | 8.94% | 12.19% | 1.90%

9.00% | 12.00%| 12.00%| 80.29% | 6.71% | 11.41% | 1.59%
12.00%| 9.00% | 12.00%, 82.31% | 4.32% | 12.05% | 1.32%
12.00%| 12.00%| 9.00% | 84.49% | 6.64% 7.80% 1.07%

6.00% | 9.00% | 9.00% | 87.86% | 5.62% 6.03% 0.49%
9.00% | 6.00% | 9.00% | 89.31% | 3.32% 6.72% 0.65%
9.00% | 9.00% | 6.00% | 90.86% | 5.23% 3.42% 0.59%

3.00% | 6.00% | 6.00% | 93.26% | 3.60% 2.78% 0.36%
6.00% | 3.00% | 6.00% | 95.17% | 1.68% 2.99% 0.16%
6.00% | 6.00% | 3.00% | 94.86% | 3.70% 1.20% 0.24%

Table 6.1: Outcomes of the matching procedure tested on sets of randorahatgeh
and successively perturbed graphs. We have run 2000 simulatioadbrcenfigura-
tion of perturbation parameters and reported the average of the outdéonesch of
the 2000 simulations we have first generated a graph, then perturbeeé pefturba-
tion level is tuned via three parametePs; the probability that an edge is erased from
the original graph;P,, the probability that a vertex is eliminated from the original
graph;My, the level of spatial perturbation applied to a vertex of the original graph.

the 109 sequential pairs of images (1-2, 2-3, ..., 109-110). Figafedisplays the
output of one such pairing: the green labels are obtained from the mafoitong-
dure. Secondly, we have matched 109 pairs of distinctimages, randooggrcfrom
the set. Figure 6.12 displays the output of one such matching: in greerearertkct
labels obtained from the matching procedure, whereas in red are thg autcomes.

The first study is meant to test the robustness of the method with respect to po
sitional jitter, while the second targets the performance against largedrarafons
and the presence of feature occlusions. Table 6.2 displays the resalterages
over the 109 tests. The outcomes of both studies appear to sensibly imprveedrth
[10], and to remarkably improve those in [54]. Notice that the performameasure
in [10, 54] is based exclusively on the second component of the pair @fesyand
hence slightly differs from the one used in this work, which we believe is racce-
rate. Also, the statistics in both [10, 54] are quite limited in sample size and image
range.
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Figure 6.11.CMU house point set matching test The figure shows two successive
images (frames 1 and 2) from the CMU House benchmark [1]. The dedxats are
obtained from the matching procedure. The outcome is, in this case, perfec

Figure 6.12: CMU house point set matching test Two random images (frames
1 and 67) are considered for the matching procedure over the CMU élbaach-
mark [1].As for figure 6.11, the green labels correspond to correctlyched points
(true matches and true singles), whereas the red labels mark wrongroatc(false
matches and false singles)

| Input | Output Performance \

image true true false false
pairs | matches| singles| matches| singles

sequential 93.32% | 5.48% | 0.73% | 0.47%
random | 75.86% | 16.20%| 5.68% | 2.26%

Table 6.2:0utcomes of the matching procedure Outcome of the matching proce-
dure tested on 109 pairs of feature sets extracted from 110 images inlj&]reBults
are averages over the 109 tests. The top line refers to the 109 pairs st im-
ages such asin figure 6.11, whereas the bottom one to 109 pairs ofréydgtracted
images, such as figure 6.12

The Drosophila Wing

This experimental study aims at matching two network structures extractadim
logical datat Each network describes the cellular epithelium of a win@afsophila

1The images have been provided by the Axelrod Lab, at the Departrfidtatbology, Stanford
University School of Medicine, Stanford, USA. Members of the Labehalso contributed in the inter-
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melanogasterthe common fruit fly. The experimental data are obtained with confo-
cal microscopy techniques a few hours after puparium formation. Itiistefest for
the developmental biologist to have access to quantitative data relating tawueke
structure of the epithelium. The graphical structure is extracted from siragiees
that belong to time-lapse movies of the epithelium. The details of the computer vi-
sion technique used to extract the network from a single frame are formmefigpted
in [50]. Along with the collection of the graphical structures correspapdineach
frame, it is important to match the networks extracted from pairs of framesithat
successive in time. This procedure is also known asdbistrationof the frames of
the movie.

The experimental data consist of 50 frames consecutive in time, con@isgcto
49 pairs of images. Figure 6.13 shows frames (frame 22 and 23) takarttiowet
lab experimental data.

Figure 6.13Frames22and 23 considered for the matching procedure The images
are part of a 40 frame movie and refer to a section of the epithelium of thedptula
melanogaster wing. The polygonal structures are 2-d sections of ttiekal cells

For the instance under study, we have employed the melkriasdds. The use of
ds is dictated by the availability of an actual image containing meaningful information
for the matching. Théntra-metrics @,d; andd, are discarded, which is explained
by observing the similarity of the neighborhood structure for most of the node
the graph. In other words, if most of the internal nodes have a similar nuaibe
connected edges, then the information provided by the nektiscredundant. Similar
considerations hold for the metrids, ds.

Figure 6.14 and 6.15 display the graphical structures extracted frommaime$
in Figure 6.13, and labeled with the outcome of the matching procedure. Unlike
the study in Section 6.3.2, the ground truth has been provided by maneavatisn
from an independent and unbiased observer. Table 6.3 displaysttwrms of the
procedure, averaged over the 49 tests. The results appear to begadidewhen
compared to others in the biology literature [37], especially given the corityple

pretation of the outcomes of the registration procedure.
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Figure 6.14:The matching procedure applied to the networks of Figure 6.13The
yellow labels over the nodes correspond to matches (both correct asmtjvones).
The unlabelled nodes are single nodes (both correct and wrong ones)

Figure 6.15:A particular of the matching procedure from Figure 6.14. The struc-
ture undergoes a significant topological change. The green circldipiyk a difficult
match that is correctly resolved

the structures and of the dynamics under study (cells both appear dode divd
to exit the epithelium, the frames are subject to translation, and the imagesitere qu
noisy).

] Output Performance \

true true false false
matches| singles| matches| singles

| 88.23% | 3.61% | 7.92% | 0.24% |

Table 6.3:0utcomes of the matching procedure for the Drosophila test cas@ he
matching procedure was here tested on 49 pairs of networks extraciedS® suc-
cessive frames of a movie. The results are averages over the 49 tégtanovie
refers to the morphogenesis and the dynamics of a section of the wingsdiila
melanogaster
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6.4 Variability in melanomas border identification

We analyze the performances of the color segmentation algorithm decribedtion
3.3.2 applied to images of melanocytic lesions. In particular, we compare thet outp
provided by the algorithm to the output provided by dermatologists, in a Teisty
like fashion. In this contexsegmentatiomeans the classification of all points in the
images as part of the lesion or part of the surrounding, healthy skin.
Unfortunately, segmentation of melanocytic lesions is a surprisingly difficgltt ta
The fundamental reason lies in the fact that lesion borders are oftey & there
exists no operative definition of whether a portion of skin belongs to a lesioot.
Dermatologists rely on subjective judgement. Automated systems attempt to repli-
cate the assessment of human dermatologists through a number of heufkiics.
surprisingly, this leads to appreciable variability in the localization of the prdmis-
der of lesions, not only between automated systems and human dermatolagfists,
also between different human dermatologists [27].
Quantifying this variability is crucial for at least two reasons. First, it allone
to estimate the level of noise affecting large, multi-operator epidemiologicakstud
e.g. correlating lesion size to benignity. Second, human inter-operatiab iy
effectively provides an upper bound to the segmentation accuracywabléeby any
automated system, as long as “ground truth” is provided by the subjectleation
of human dermatologists rather than by a standard operative definitioex&aple,
if even experienced dermatologists disagree on how to classify 5% ofeheoéian
image, no automated system can be expected to classify “correctly” mor@%8an
of the area of that image.

This section thus evaluates the variability in lesion border identification byugpgro
of 12 dermatologists and 4 algorithms. Our is the largest of the studies santar,
the only one that differentiates dermatologists based on dermatoscopydrexpe-
rience. The human inter-operator variability is then compared to the segmantatio
accuracy of the algorithms, representative of the three fundamentalo§tite-art
automated segmentation techniques and of a fourth, novel, technique.

While some studies (e.g. [47]) have one or more dermatologists subjectsrely a
sess the quality of the proposed automated systems, the general carisénateval-
uation methods striving for a greater degree of objectivity are prdtefa]. Most of
these methods rely onground truthsegmentation against which the proposed seg-
mentation is assessed, labeling its pixels as True Positive (TP), False & @SRy
False Negative (FN) or True Negative (TN), depending on whethgratesclassified
as part of the lesion, respectively, in both segmentations, only in the ggdp@gmen-
tation, only in the ground truth segmentation, or in neither of the two. The number
of pixels in the FP and FN categories, usually normalized dividing them eithisreb
size of the proposed lesion (TP+FP), by the size of the ground truth IE&R¥N) or
by the size of its complement (FP+TN), provide a measure of the divezdetereen
the proposed segmentation and the ground truth.

The fundamental problem with these approaches is that any definitiomanfrig
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Table 6.4: Some common metrics to evaluate segmentation

XORError [12] || (55igy) x 100%
Specificity (1— zp7) x 100%
Sensitivity or Recall (1— +5- ) x 100%
Precision (1— zp17p) x 100%

truth” based on the segmentation of a single dermatologist is inherently highiy su
jective. Thus, several recent approaches combine the evaluationltgflenderma-
tologists to obtain a more objective ground truth segmentation. However, dpese
proaches are more complex, and all exhibit some shortcomings.

All of mentioned metrics share a subtler but serious problem: they do natiero
an idea of how well one can expect a proposed segmentation to perfdnite $me
of them are normalized in such a way that, for every (set of) ground(s)tthe best
score a segmentation can achieve is exactly 1, it is generally unrealistiyyfbuanan
dermatologist - and thus for any automated segmentation system - to achséva su
score.

The solution we propose is simple: when evaluating an automated segmentation
system, in addition to the ground truth segmentation(s), one should alwaysyemp
one more “calibration” segmentation provided by an experienced dermatoldpe
divergence of the calibration segmentation from the ground truth (by wérateetric
one may choose) provides a clear, intuitive indication of the best dineegene can
hope for when evaluating by that same metric an automated segmentation system (
even, in fact, a less experienced dermatologistl)a nutshell, we propose the vari-
ability between experienced human dermatologists in the localization of nogtamo
lesion border to be used asgold standardo assess the quality of any automated
segmentation system

While the choice of the basic divergence metric is relatively unimportant, our
choice would fall on the average 9_{%, over all ground truths (i.e. the Misclas-
sification probability of [27]) paired with the complementary averagg-pis to
account for false negatives. The latter metric is similar to Precision andIRaaa
the normalization takes place over the size of the lesion according to the dagjoren
under test (as in [27]) rather than according to ground truth — allowieggience from
each ground truth to have the same weight. This pair of metrics makes extrdezely c
the source of a segmentation’s divergence from ground truth - idergifyirether the
cause lies in many ground truth lesion pixels classified as healthy skin (Ieadirgh
FN) or many ground truth healthy skin pixels classified as lesion (leading Ry,

60 (768 by 576 pixel) images of melanocytic lesions were acquired usingpérieter
digital dermatoscope. 12 copies of each image where then printed on 18 t8ncin
photographic paper. A copy of each image together with a marker was @ieach
of 4 “junior”, 4 “senior” and 4 “expert” dermatologists (respectivelydebat 1 year
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of dermoscopy training, between 1 and 5 years, and more than 5 y&ash. der-
matologist was then asked to independently draw the border of each leisiothey
marker. The images (and borders) were scanned and realigned tortedraame of
reference. Finally, the contours provided by the markers were extracte com-
pared. This allowed the identification, for each pixel of each original imafée
set of dermatologists classifying it as part of the lesion proper or of threwsuding,
healthy skin.

This approach required a considerable amount of engineering effonpared to
that of similar studies in the literature. [27] had dermatologists use Adobe Photo
Shop’s “pencil” tool to draw a polygonal approximation of the contoud] nd [12]
had dermatologists indentify a sparse set of points in the contour and ttrengiints
to a second-order B-spline. [33] had dermatologists draw the bordetairiet com-
puter. Our goal was to maximize the comfort of dermatologists, thus minimizing the
noise in border localization caused by the use of unfamiliar drawing tools.

= Middle
= Junior
Senior
cFuzzy|
SIDE

Figure 6.16: Hand traced borders compared with c-fuzzy and SIDE12 hand
traced borders (red, black and white) and the shape detection obtaiitbdnedi-
fied c-Fuzzy (blue) and SIDE(yellow)

Each of the 4 possible sets of 3 expert dermatologists was used to provide a
“ground truth” from which the divergence of the remaining expert déotogist, of
the 4 senior and the 4 junior dermatologists, as well as of 4 segmentation aigorith
was assessed. Figure 6.17 shows the average value (over the 60 endgibe 3
ground truth segmentations) of the values-gfs and of 5.

The 4 algorithms are representative of the 3 main classes of automated lesion
segmentation techniques in the literature, as well as of a fourth, noveigeehn

The first class uses edges and smoothness constraints to identify the M&ion
implemented GVF Snakes [24]: a promising approach, though with a numiser of
rious shortcomings. The algorithm requires a good initial segmentation t@igv
a preprocessing such as black frame removal or hair removal [13a2&]a morpho-
logical postprocessing to refine the results.

The second class performs color clustering directly on the image: this irsclude
Modified JSEG [12] and SIDE [26]. We implemented the latter.

The third class performs clustering on the color histogram and then maks bac
to the original image. Mean-Shift [39] and Fuzzy c-means [47] areesgptative of
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Ground Truth, average of:
Experts 2, 3,4 Experts 1,3, 4 Experts 1,2,4 Experts 1,2, 3

N P N P F'N P N P
TP4+FP|TP+FP|TP+FP|TP+FP|TP+FP|TP+FP|TP+FP|TP+FP

Cal.Expert | 2.51% | 11.10% [ 10.18% | 3.07% | 9.10% | 3.56% | 5.21% | 5.70%
Sentor 1| 1.50% | 10.58% | 3.15% | 8.41% | 3.06% | 8.74% | 2.85% | 9.72%
Sentor 2 | 1.60% | 13.23% [ 2.66% | 10.71% | 2.65% | 11.04% | 2.39% | 12.00%
Sentor 3| 5.19% | 7.47% | 7.29% | 5.64% | 7.01% | 5.80% | 6.67% | 6.68%
Sentor 4 | 6.27% | 6.61% | 8.84% | 5.07% | 8.58% | 5.26% | 8.10% | 6.06%
Jumor 1| 1.96% | 14.37% | 3.15% | 11.90% | 3.05% | 12.23% [ 2.91% | 13.25%
Junior 2 | 0.85% | 14.51% | 2.19% | 12.17% | 2.15% | 12.52% | 1.99% | 13.53%
Jumor 3| 1.01% | 17.63% | 1.80% | 14.96% | 1.87% | 15.32% [ 1.68% | 16.34%
Junior 4| 1.16% | 11.02% | 3.22% | 8.88% | 3.14% | 9.21% [ 2.94% | 10.19%
c-Fuzzy | 5.34% | 5.62% | 821% | 4.28% | 8.11% | 4.69% | 7.32% | 5.28%

SIDE | 23.58% | 2.88% [ 28.46% | 2.12% | 28.33% | 2.31% | 26.83% | 2.69%

Stat. Thre. | 26.39% | 11.29% | 24.84% [ 11.17% | 25.23% | 12.31% | 22.80% | 12.23%

Snalkes | 10.03% | 19.36% | 12.27% | 17.66% | 12.47% | 18.02% [ 11.46% | 18.62%

Figure 6.17:A Touring test approach. Average divergence of each expert derma-
tologist from the ground truth provided by the other three; and averagergiénce

of senior and junior dermatologists and #4segmentation algorithms from the same
ground truth. Divergence is measured as false negative area (FN: |gskets mis-
classified as healthy skin) and false positive area (FP: healthy skin pixettassdied

as lesion) as a percentage of the proposed segmentation area (TRikds corretly

or incorrectly classified as lesion)

this class. These clustering algorithms work either using the RGB spacehg3
component [33], the Lab space [62], or the Pricipal Component deasitigm [47].

A technique that does not fit into any of the above could be basestatistical
Thresholding in a nutshell, classifying as lesion those portions of skin that statisti-
cally differ in color from healthy skin. Given the average RGB cqlaind matrix
varianceZ of an healthy patch of skin (e.g. taken from the boundaries of the image)
each pixel is classifies as lesion according to

d(c.) > k-|3]

whered is the Euclidean distance in the color space &rid a scalar controlling

the sensitivity of the algorithm. Obviously, the algorithm does not perforith ave
lesions covering only a small region of the image: this is a problem common to many
algorithms that can be easily fixed with a crop of the image frame. The adesntag
of this approach are that it is simple to implement, and that it corresponds ty a ve
“natural” definition of lesion (as the portion of skin exhibiting sufficient calariance

from healthy skin).

The results of Figure 6.17 show appreciable variability in the localization of the
border of melanocytic lesions between human dermatologists. Even an é&paa-
tologist “misclassifies” (compared to a ground truth provided by otherrexigema-
tologists) a portion of the image with an area between 2.2% and 39.1% of thefarea
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the lesion itself. Less experienced dermatologists have an even lowensagrewith
their expert colleagues: the misclassified portion of the image has an dveeehe
7.4% and 62.5% of the area of the lesion itself for “senior” and between arg%o
152.4% for “junior” dermatologists.

Although not entirely apparent from Figure 6.17, this divergence isdoetto
a systematic bias of individual dermatologists towards “tighter” or “looserdbrs:
we ranked all dermatologists for each lesion in order of increasingcudassified
as lesion, and each dermatologist ranked first on at least one leswmat @ghth
or “larger” on at least another. On the other hand, expert dermattdadpsshow a
very slight bias towards “tighter” borders (perhaps a symptom of greatdidence),
and also, as should be expected, a somewhat greater agreement witlexmptéie
dermatologists than with less experienced ones.

It would certainly be interesting to study the impact of such variability on large,
multi-operator epidemiological studies. These results seem to roughlyroahfise
of [27], though they are not directly comparable due to the different ndetogy
([27] evaluates the segmentation divergence of human dermatologists fmarcd
human and algorithmic segmentations, rather than only from human segmentations
They also suggest that dermatoscopy skills require at least sevaralofdraining to
mature.

In terms of algorithms, SIDE, Snakes and Statistical Thresholding did niatrpe
very well, misclassifying a portion of the image with an area respectively leetwe
8.4% and 92.6%, between 12.1% and 245.5%, and between 13.8% and 151@%
area of the lesion itself. These 3 algorithms were outperformed on aveyagery
dermatologist, including ones belonging to the least experienced, “jurotidre. As
for Snakes, this might have been expected. As for Statistical ThresgptHis shows
that unfortunately the most natural, axiomatic definition of lesion (as the pasfion
skin exhibiting sufficient color variance from healthy skin) fails to provideults
that, in practice, match the actual intuition of the human eye. As for SIDE, its poo
performance is somewhat unexpected, given the results of [26]. Thidbedue, in
part, to the fact that SIDE is a particularly difficult algorithm to calibrate ecity
- its performance could perhaps be improved with better fine-tuning thah wdha
managed to achieve.

On the other hand, our variant of Fuzeyneans performed extremely well. On
average, it misclassified a portion of the image with an area between 3.7%928d 5
of the area of the lesion itself (again, using as ground truths the segmestatimn
vided by teams of three expert dermatologists). This is barely worse, dnchise out
of 4 better, than the performance of the fourth, expert dermatologidtass&ontrol”
in each case. It is also significantly better than the performance of all remgaa-
nior and junior dermatologists. Figure 6.16 provides a visual intuition of tladitgu
of the results of this algorithm. Fuzzymeans thus appears an excellent candidate to
provide standardized, objective and highly reproducible segmentatimelahocytic
lesions and assessment of corresponding features that closely maelothioe most
experienced dermatologists.



82 CHAPTER 6. SHAPE ANALYSIS

6.5 The cardial patch

Cardial patches pulsate at regular intervals. This spontaneous betsavad forced

by any chemical or electrical stimulation: provided an healthy environmenpatuos
“knows” it is made of miocardial cells and thus behave according to. Wy zeththe
pulsation (here defined as the variation of the area over time) obtainingciroeldiogram-
like plot. Our analysis directly measures mechanical movements such as iriflefiation,
opposed to ECG which infers mechanical movements by detecting small ellestrica
tivities. In details, we measured the area of the region bounded by theeAtintour
(recall section 3.4.2) and filtered the obtained data with a median filter to deheise
signal. For non technicians, we developed a graphical user intetfatigis context,

we claim our tool to be less invasive than ECG, less expensive and imajjenere
reliable because of the contactless interface with the patch.

Interestingly, some patches present an asymmetric V-shape pulsatioagtena
ized by a little “step” at half the ascent. We are still speculating about theenatur
this, wondering wheter is benignant or malignant. In any case this teacitesuthh
peculiar waveforms could be coded and that the analysis of the traceovide a
guality assessment. The quality check may be performed by a human or dingetly
machine vision system.



Synthesis

This chapter closes the work discussing the concept @ynthesis. Section 7.1
explains what we mean for Synthesis, while section 7.2 shows a praetienodel
for the drosophila melanogaster epithelium.

7.1 Why synthesis

The synthesis step involves the creation ahadel of the structure of interest. Ob-
served data and prior knowledge are the guidelines in the design pradeskls
serve a number of purposes, for instance to predict a behavior, tommetibelly ana-
lyze or to prove properties. Generally speaking, one model is often buglddess a
subset of all the possible purposes; for instance FEM (Finite Elementoiitmod-
els analyze mechanical properties, omitting chemical reactions or magnets field

7.2 A (drosophila) epithelium mechanical model

This section is mainly due to Assistant Professor Alessandro Abate, wiexlsisork-
ing on the model in 2006 and developed the first working code.

7.2.1 Goals of the model

The morphogenesis of the Drosophila Melanogaster fruit fly is well studikiwdlogy,

still some part of the developmental stage are missing. In particular, thetfomud

the grooves in the embryo is unexplained. 3D confocal analysis qualljesirggests
that grooves morphogenesis critically depends on mechanical forpéiedhpo the
epithelium and to the mesoderm. There are a number of distinct forces #mas se
to play a role in the formation of the grooves, suchaasn cablesandmyosin accu-
mulation The main purpose of the model is thus to understand, analytically or with
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simulations, the distribution and the extent of these forces, as well to infen¢he
chanical characteristics on the epithelium. The model should also gathénsigit
and drive new hypotheses.

7.2.2 A package of cells

The epithelium is modeled as a 2D network of cells. For simplicity, each cellaras ¢
sidered to be exagonal, as this is the most frequent shape in the drosmithiedium.
Cells are regularly packed, and they do not split or move relatively to thyghiper
cells. The tissue is flat, but it is folded 3-dimensionally.

Each cell is assumed to be elastic. This is modeled as a mixture of springs and
dampers. Among different possible configurations, we modeled the eéitjes cell
as a spring and a dumper in parallel [5]. We also added internal spdagsecting
opposite vertices, to prevent shrinking and to enforce a convex st&mings and
dampers have the usual number of parameters, such as maximal elongj#fitess,
resting length and friction (see figure 7.1).

The whole movement of the epithelium is obtained applying forces to the vertices
of the cells and integrating them over time. The model we get is very close tMa FE
whereas we choose an explicit eulerian integration scheme rather thanliit iome.

For small time steps, the difference between the two schemes is negligible.
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Figure 7.1:Mechanical model of the Drosophila Melanogaster epithelium The

elasticity of the cell (left) is obtained by means of a network of springs angelam
Each edge of the hexagon is a pair spring-damper in parallel. To pteva@fapse
and to enforce convexity, the model adds 3 virtual edges connectingitppertices.
Again, each of these edges consists of a spring and a damper. Theligpitiiright)

is then modeled as a package of cells, regularly distributed in the space

Referring to cloth simulation [5], in the following we’ll cgtlarticles rthe vertices
of the cells, andspring-damperthe edges. Every particle is described by a set of
numbers:

e positionp
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e velocityv
e acceleratiora
e massm

o forcef

We first compute the forces for every particjeconsidering external forces, springs
and dampers, according to

fi=— 5 ke (lij—Ilpi —pjlle;
rineigh(r;)
— Z Ka - (Vi —Vj) +fext
rineigh(r;)

wherelj;j is the resting length of the spring connectmandr, g; is the versor of the
edge andey: takes in account all the external forces.
Once weve computed all of the forces in the system, we integrate them over time.

L] .

As mentioned, our discretization scheme is a standard forward Euler, wiudices
good results with smalk

{ S:E: : B } - { 58 ] " [ fi\(/tigt/)m ] B (7.2)

7.2.3 Simulation results, parameter identification

We tested our model running several simulations, varying the numbersisf ga-
rameters and forces. The results are qualitatively similar to what commoreyvelos
via microscope, although some works still need to be done. The roadmagltoava
full comprehension of the morphogenesis mechanism is quite long, evenridghe
chanical model seems to be satisfactory. Our efforts lead to the hypotidsie
main external forces driving the formation of the grovesloasal closureforce and
anactin cableone. The former accounts for the closure of the initially flat patch of
cells into a folded, cylindric, one; the latter produces the groves deepgngitito the
fruit fly body.

An open area of research is the identification of the real value of thenedeas
of the model. This is possible applying the model to the real data. The complete
workflow is explained in figure 7.2: we first obtain the reticular shape fifvervideo
sequence using the techniques in chapters 5 and 4. Then, we correlditanties
using the Point Set Matching algorithm (as described in) to capture thetievoaf
the cells over time. If the parameters and the forces are correct, the tim¢éi@valfi
the synthetic cells will match that of the real cells.

Preliminary results are shown in figure 7.3.
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i In vivo
Vid .
aee reticular shape

stiffness .
rest. lentgh .In silico
reticular shape

external forces

Figure 7.2:Towards parameter identification. The mechanical models has a num-
ber of internal parameters, such as stiffness coefficients, frictiomrattiorces. The
exact value of these numbers leads to a simulaiiosilico shape) equals to the shape
captured from the video sequenae\iivo shape). In general, the problem is ill posed,
and the solutions lie in a large subspace. Nonetheless, an analyticabesgegion of
the space, or even a numerical approximation, would lead significaightssin the
morphogenesis

Figure 7.3:Simulations of the grooves formation Several simulations, run with a
different number of cells and parameters, lead to the same qualitativikseBorsal
closure forces and actin cable forces act here a main role in the formatiagheof
grooves. In white: actin cable force, pushing cells in the inside of the gtokofruit
fly; in green: dorsal closure forces, folding the plain patch into a cylinder
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ToolBox

The chapter describes the toolbox we developed to handle Generalizéctive
Contours, Random Walk Agents and J-maps. We use here a compaahd read-
able pseudo-code even though the original source code was implamed in Mat-
lab (Mathworks Inc.)

8.1 Generalized Active Contour toolbox

There are two types of implementation for snake models: the implicit one and the
explicit one. Both implementations rely on a discretization of the continous curve
 (s) both in space and time.

Implicit models, such as the formulation used in [42], embed the snake as the
zero level set of a higher dimensional function and solve the correampequation
of motion for a fixed time step. As briefly discussed in section 1.3, the boyrdar
the Active Contourc (s) is then recovered by = 0, where¢ is a discrete-domain
function. Such methodology is suited for the recovery of objects with conghleges
and unknown topologies. However, due the higher dimensional formul)atimticit
models are unconvenient for shape analysis, visualization, and useciia.

In explicit implementations, on the contrary, the representation of the bogunda
is explicitly stored in a variable for easy access arid) is approximate using a set
of (ordered) point€ = {X1,X2,---Xn} joined by a straight line. More sophisticated
interpolation schemes are possible, such as quadratic or cubic bezies.cur

In other words, implicit models use a Lagrangian representation, whexphsit
models use an Eulerian one.

Each point has a mass, and forces -directly applied to the points- move them in
space. Code snippet 1 shows the main loop of the explicit model provideih with
toolbox. The loop is here intended to work on a static imlags presented in chapter
3. Line 1 and 2 initialize the mass and velocity vectonsindv are respectively arrays
containing the masses of the points (here set to unitary) and the velocitys/éato
the beginning set to zero). Line 3 initializes the position of the poinia our experi-
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Code snippet 1- Generalized Active Contour main loop

1 m«+ 1 /1 mass vect or

2 v < 0 I1velocity vector

3 X < initPosition() /1points initial position

4 | + extractlnage()

5 for t=1to end{

6 f <« conput eForces(I, x) //forces acting on the boundary
7 a<« f/m

8

X,V <« tinelntegration(x,v,a) }//nove points according to the
/lpreferred integration schene

ments we chose a circular rest position. Indeed, the initial position of thésgeinot
a critical factor and almost any other configuration is suitable. This is edlyeicue
for the Generalized Active Contour, which by its nature tends to definedrggterm
£ as a convex function (recall equations 3.4 and 3.10). Line 6 and linetBeumre
of the methodconput eFor ces(...) computes and outputs the forces acting on
the Contour (acting on theoints of the Contoyrwhilet i nel nt egrati on(...)
advances points in time using “a certain time-integration scheme”.

The toolbox provides code for an explicit time integration. Provideddhats O,
the scheme is stable. More accurate schemes, such as Runge-Kutta or iomglgcit
[9], are still possible. If the simulation reveals unstable, one can foroeadies dt
or use a damped integration scheme. A damped scheme dissipates kineti¢ energ
resulting in a (usually) non-oscillating behavior. Snippet 2 shows the dasgieeme
provided in the toolbox, in which the velocityis totally dissipated at every time step
(line 2). In our simulation we almost always used the non-dantipezintegration(.).

Code snippet 2- Forward damped time integration

1 function danpedTi nel nt egration(x, v, a)
2 v <0
3 return timelntegration(x,v,a)

The comput eFor ces( |, x) function is the core function. It defines the en-
ergy (equation 3.10) of the (Generalized) Active Contour and compugefothes
acting on points as derivative (equation 3.6). The function takes two itlpel{posi-
tion of the pointsx and the image . Even though the two inputs are often used to-
gether and simultaneously, one can argue that the former is primarly useihpute
configuration-based energies (suctygs~)) while the latter to compute image-based
energies (such agy(¢)) (recall the distinction betweemodel energyandimage en-
ergyintroduced in section 3.3).
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Code snippet 3 shows a straightforward implementation, derived directhy fr
equation 3.12. Lines 57 compute the classical Active Contour forces according to

Code snippet 3- Generalized Active Contour Force computation
function conput eForces(1, x)
f «0
e <0
for i=1to |x| {

1
2
2
3
4 /I Active Contours forces

5 f[i] « firstDerivativeF(x) lac /9s
6 f[i] « f[i] + secondDerivativeF(Xx) /?c/os?
7 fl[i] « f[i] + imageDerivativeF(l) H0D|

8 I/ Generalized Active Contours forces

9 f[i] <« f[i] + numerical Derivative(Ey(l, x))

10 f[i] « f[i] + nunmerical Derivative(Ex(I, x))
11
12 fli] < f[i] + numerical Derivative(Enn(l,Xx)) }
13 return f
equation 3.8:
F(s)=-02 [I]+23 u(s)a—c +26—2 B(s)az—c (8.1)
N ds s 0s? 0s? '

This a well-known task [7, 48].

Lines 9— 12 show the computation of the generalized forces, in the pseudocode
calculated as numerical derivative (see the variational principle, eqsaié and 3.7)
of the generalized energies, ..., £n ;. For details onthauneri cal Deri vative(),
please look at the very good [41], [53].

8.1.1 The “Energy” toolbox

Many efforts have been directed towards the creation of a toolbox afgfenctions.
The idea is to use these functions as building blocks (code snippet 3) rfara
general purpose algorithm.

Tables | and Il show a number of functionals provided in the toolboxOur
design choice was to mainly use linear and gaussian-based energiesuntlaHis to
be a good tradeoff between complexity and robustness. Indeed, ifahéamsity is
known, one can design more accurate terms.

1To keep notation simple, we here used the synthtd compute the variance of a distribution -
usually color-. We also introduced the trivial function “Area” to compute dhea of a Contour
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Energy Toolbox I/11

Inner Color()

Name Figure Definition
non matching Active Contour C(s) E=— 1. e_ ZLGZZ
ov2n
p=Jo [1(w) — ¢ d

color
Active Contour’s
interior region @

C =desired inner color

Outer Color()

C ™ =interior of ¢
Inner Color energy drives the Contour to have an internal aolor
2
desired external color  Active Contour C(s) —__1 a2
ovon € ¥
p= o (@) ¢l dw

Active Contour’s
interior region ®

Outer Color energy drives the Contour towards an external color

The areas of color remain out of the Contour

C =desired inner color
C T = exterior ofc

Surrounding Inne

Active Contour C(s)

outer color /)|

2

1 _L
E:— -e 202
oV 21

p= oo 1(w) — o] doo

C =desired outer color

Surrounding Oute
Color()

Color() ™
y/, Active Contour’s
" neighborhood
Surrounding Inner Color forces the Contour to have a small interrighber of colorc
2
W
outer color f,',i,” My Active Contour C(s) __ 1 . e_?
/ ov2n
u=Je. [l(w) —c| doo

), Active Contour’s {
" neighborhood

Surrounding Outer Color forces the Contour to have a small exterigiiinar of colorc

The areas of color remain out of the Contour

C =desired outer color

E = — el
H= [cK(s)ds
i 2
Spikeness() E’D K (S) _0 ac(s)

Depending on the sign, force a spiky appearance or a

Hmax =max value foru
A. =normalizing constan
cloudg one
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Energy Toolbox /11

Color Variance()

internal color
variance

Name Figure Definition
" — uz
Active Contour C(s) E= _#ET . 202
. , u=Jo larealc) — | do
Area() ////// / C =desired area size
Niokol
Area energy drives the Contour towards an areasize
%rov:ing gtzﬁ\)/e //// E— _ mln(;l,[pma)a
ontour C S ; /Ih,,, / ’/
‘(’ 7 //nn» ”Il///////////// /I/ ) . C
Enflate() /////////////////////////////// /// Hmax _ma>_< Yalue foru
Deflate() ""lll////// //////// X ll j A. =normalizing constant
[
Enflate (or Deflate) the Active Contours forcing a larger (smaller).area
UmaxiS an upper bound, possibly unreachable
external color variance  Active Contour C(s)
Inter Class

Inter Class Color Variance enhances the color variance between theriated the exterior

Internal Minimal

(Maximal)
Color Variance(

Active Contour C(s)

internal color
O variance

E— _ Min(iLine

A
H=Z2(l(c7))
Mmax =max value foru
A =normalizing constant

Internal Minimal (or Maximal) Variance favours a small (large) intég@or variance

Inter Class
Color()

external color Active Contour C(s)

»

Active Contour’s
internal color

Z2

E = — 1 -e_%2
0/ 21T
u=| /o 1(C)doo+
= Je+ 1(C)dw)|

Inter Class Color enhances the color difference between the interigharkterior
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As a general guideline, we used a gaussian function to impose a spekiéova
a specific metric. For instance, thaner Col or () energy term drives the Contour
towards ac interior color. All the deviations frong are discouraged using a gaussian
weight.

The linear functions are instead used if a specific “equilibrium” value is et d
sired or one wants for a metric to grow as much as possible. For instance, the
Spi keness() energy term encourages the Contour to grow in spikeness regardless
of its value.

8.2 Random Walk Agents toolbox

Recalling chapter 4, the Random Walk Agents are a suitable approach ¢b reite
ular shapes. The idea is to run a number of agents on the “digital landqthpe
imagel), each of them following a path. The paths traced by the Agents generate a
graph structure drawn over the real (reticular) one.

Code snippet 4 shows the main loop of the approach. There are a nufmber o

Code snippet 4- Randow Walk Agents main loop

1 PQ«initPriorityQueue() /lcreate a priority queue
2 G+ initGaph() Ilcreate an enpty graph
3 while PQ not enpty() {

4 A+ dequeue( PQ /lextract the best agent
5 valid, border «+ validateAgent(A 1,Q

6 if valid

7 G add2G aph( G A) //add to the graph

8 if (valid and not(border)) {

9 E < conput eEner gyFunction(l, A)

10 D+ pi ckDirections(E)

11 for k=1to |DO {

12 A¢ < moveAgent (A, Dy)

13 PQ+ enqueue( A, PQ }

14 }

15}

elements playing a role. Line 1 and 2 respectively create a priority ce@wuéth one
Agent and an empty graphB The former is used to list the moving Agents; the latter
to store the positions traced by the Agents and their paths. As discussetion 4e3,
the shape representation model is a graph augmented with the geometritahpos
of the nodes. At the end of the procedure the shape will be given byottesrand the
edges of the graph.

The priority queue provided in the Toolbox is based on a Heap Treel[irtds 4
and 13 show the role of the priority queue: after an Agent moves, it getdsiothe
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gueue. The queue is ranked by increasing values dt faection, thus at every cycle
only the best Agent is choosen for moving.

After an Agent gets dequeued, thal i dat eAgent () function tests for valid-
ity. The Agents must obey a number of rules to be “valid”: for instance a egjaht
does not create small loops nor is too close to an existing no@elirthe Agent is
valid, its position is inserted into the gra@ add2G- aph() takes care of the in-
sertion, creating the right edges. If the agent is valid and is not on tliehat also
moves (line 12). The directions of advancement are givesdmgput eEner gyFunct i on()
andpi ckDi rections() (lines 9— 10), respectively computing the energy func-
tion £ (equation 4.4) and the heading directi@gquation 4.5). FinallygoveAgent ()
implements the motion equation 4.1.

The procedure iterates until the queue is empty, i.e. ho more Agents are on the
frame.

Code snippet 5 shows thval i dat eAgent () function

Code snippet 5 valid Agent

1 function val i dat eAgent (1, G A)
2 G + add2G aph(G A

3 valid<«true

4 if (1 oopLength(G )<10)

5

6

7

valid <« fal se
border < cl oseToBorder (A, )
return valid, border

| oopLengt h() andcl oseToBor der () test for geometrical condition. The
former tests the grap@® to contain a loop smaller than 10 edges [19], the latter for
the position of the AgenA to be close to the border of the imageCode snippet 6

Code snippet 6- compute the Energy

1 function conput eEner gyFunction(l, A)

2 E< nal | oc(360) /lallocate menory for E
3 for theta=0 to 359 {

4 Q<+ createSector (A theta)

5 E[theta] <+ sum(l -Q} Ilintegral 4.4
6 return E

computes the energ&. Line 4 creates a mask centered on the Agenb5], line 5
computes the integral (here a discrete sum) of equation 4.4.
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8.3 J-Maps toolbox

J-Maps were introduced in section 8.3. Briefly recalling to memory, they trel 0
morph a shap@; into @1, whered; is the shape (detected) on fralg@nd ®; . 1
is the shape on framig, 1. They are mostly used in the Active Contour incremental
approach (section 5.3).

Given two framed, ;.1 and a locatiork=x, y on |;, code snippet 5 shows the
creation of a single J-Map. The procedure first allocates the memory @Js{bne

Code snippet 7- J-Map computation

1 function get IMap(l¢, li41,Y,X)
2 N+« 20 /1size of the map
3 J < mal | oc(2N+1, 2N+1) /lallocate nenory
4 for ty=-Nto N{
5 for tx=-Nto N{ Ilscan all the J-Map
6 if (tx2+ty?>N
7 J[ty, tx] + oo
8 el se {
9 for xx=-Nto N{
10 for yy=-Nto N{ I11ikelihood of being the right translation
11 J[ty, tx] < J[ty, tx]+
+ 1 y+yy, x#xx] - Fepal y+ty+yy, x+tx+xx] | } }
12 }
13 }}
14 return J

3), then fills the entries of the map in a doubly-nested loop (line$} The logical
meaning oft y andt x is “guessed shift”; the procedure pretends the original point
y, X to be shifted ory+t y, x+t x and evaluate the likelihood of this on lines-41.

-N 0 N
-N

optimal
nslation

X e

Figure 8.1:J-map. The output ofjet IMap() is a single J-Map. Each point of the
map compute the likelihood of pointx on | to be mapped op+t y, X+t x of k.1

The computation of the all J-Maps iteratively cajlet IMaps() on the points
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of the Contourc.

Code snippet 8- J-Maps computation

1 function get IMaps( I, lt11, G)

2 Ja<~mlloc(.,.,|G|) /lallocate the right amount of nenory
3 for i=1to |Gl { /1for each point of the Contour

4 y, X« G[i]

5 Ja[i] «getIMap(l¢, i1,y %) }

6 returnJa

8.3.1 J-Maps correction

As discussed in section 5.3.1, often J-Maps need to be corrected. Gippets 9
and 10, based on equation 5.18, implements such a correctionwhilThe loop is

Code snippet 9- J-Maps computation

1 function correct JMaps(Ja)

2 loop+ 0

3 while (true) {

4 | oop + | oop+1

5 Jac < onePassCorrection(Ja)
6 noChanges + nunber Of Changes(Jac, Ja)
7 Ja < Jac

8 i f (noChanges==0 or |oop>5)

9 exit Loop

10 }

11 if (1oop>5)

12 return 'fail’

13 return Ja

built around theonePassCorrecti on() function. If no more corrections hap-
pens, then the J-Maps are adjustedinrber Of Changes(Jac, Ja) is a suitable
function that counts the number of global minima locations undergoing a ehdig
noChanges is equal to zero, theonePassCorrecti on() had no effect on the
maps and hence the while loop terminates. Line 11 tests for the number of bops o
the statement. If the number is greater than 5 no convergence has beleedresand

the procedure is manually marked as 'failed’. As we observed in ourexeets, a
typical convergence involves two or three loops. This kind of checkégssary. In
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fact, large deformations and/or abrupt changes of the structure ptitetaéd to a
miscalculation of the optical flow. This is a violation of equation 5.4.

Code snippet 10- J-Maps one pass correction

1 function onePassCorrection(Ja)

2 Jac <~ malloc(...)

3 for i=0to |Jal {

4 Jnn < get Cl oseJMaps(i,Ja)

5 Vy,Vx,0,4— get GaussPar amet er (Jnn)
6 Jac[i] «Ja[i] - gaussW n(vy,%,0) }
7 return Jac

Snippet 10 shows the details of theePassCorr ecti on() function. It takes
as input the whole set of maps to be correctial)( and outputs the adjusted version
(Jas). Given a single J-Map “i”, the functioget Cl oseJMaps() on line 4 returns
all the J-Maps that are close in space to the “i-th”. Recalling the meaning of a J
Map, each J-Map is associated to a point of the Contguso in the end a map is
univocally associated to a precise location in spget.Cl oseJMaps() returns all
the J-Maps that refers to points close to the point referred by the “i-thé. Stibscript
“nn” means “nearest-neighbor”, as the function implements a sort oéstaeighbor
search based on kd-trees (see the excellent [30]).

get GaussPar anet er (Jnn) takes all the mentioned maps and computes the
parameter of the gaussian curve fitting the locations of the local minininof
Finally line 6 weightsla[ i ] multiplying by the gaussian curve.

We repropose figure 5.3 (figure 8.2 below), showing the outpaibof ect IMaps()

on a single J-map.

wd i AR
Figure 8.2:Correction of the J-Maps. The J-map on the rightk, is computed from

Jsaccording to equation 5.18. The blu cross is the position of the old global mimim
The red cross is the center of the gaussiany). The yellow cross is the location of
the new global minimum

-
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Conclusions and Future Works

9.1 Conclusions

This work presented an energy-based unified framework for shefgettn, devel-
oping a theoretical background and then applying it to real caseseSledgction is
the first and most important step to build a robust computer vision system: ttke wo
emphasized theoretical aspects, but also showed a number of applichtipagicu-
lar, the developed algorithms proved to be effective in a number of cagiestboth
in the static and in the dynamic context.

Shape analysis can then be considered (one of) the “goal” of the sledpe-
tion. A chapter is thus dedicated to such topic, addressing popular probieines
community. Having a shape is in fact useless if usefuls facts cannot laeedtr

Shape synthesis is a step further. Synthesis comes when the knowleddegh s
that one can guess the hidden nature of the object and model it. The raodabdch
in silico thein vivo behavior and thus be used to predict events.

9.2 Future works

Much has still to be done. Every chapter ends in an opened way. Thiéosoli a
practical problem and the development of a theoretical background lzatieemin-
imum to consider a real progress towards the full knowledge of a wide syl
Computer Vision and Image Analysis. The effort of this work is to develojstand
methodologies useful in a real-life context. For this reason, we rarety sisghetic
test to prove effectiveness. The ambitious big picture is not to publish@lgo&ing
book, with fancy pictures and formulas, rather to provide reliable toolschMuore
ambitiously, we would like to use these same tools for several years, with little or n
tuning, dealing with different problems.
Generalized Active Contours need to be refined. In particular the linkemstw

probabilistic-based energies and the physicality of the object needs &itbelnder-
stood. Probabilistic density functions are just like black boxes, modelingsipaly
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characteristics otherwise too complex to be used. The concept is similar tasthef c
a dice. The concept of probability hides the complexity of the object, allowangn
easier treatment.

The Random Walk Agents are an interesting tool to detect reticular shapeg.
are based on an analogy with the human vision system, that “follows” tracaitylo
with small movements of the eyes and the head. The walk agents formalize this be-
havior, and tell us what “to follow” means.

The forecoming years will bring us more knowledge, and hopefully mavb-pr
lems will be solved.
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often false positives. Dead branches (right) span over the interior of
thecells. . . . . . . . a7

Detection of the reticular shape on the drosophila “wing” epithe-

lium. Cells’ boundaries are highlight in white using a marker protein.
The Random Walk Agents run all over the frame in the attempt of min-
imizing equation 4.6. The bottom row shows results on several images
(frame2,12,27,40from the “wing” sequence). . . . . . . .. .. .. 48

Detection of the reticular shape on the drosophila “notum” ep-
ithelium. The very high resolution frame shows the result of the Ran-
dom Walk approach on the “notum” frame. . . . . . ... ... .. 49

Preliminary results from a corneal fundus image The image shows
preliminary results from the corneal fundus. Errors are mainly due to
the background illumination. An image preprocessing step is here
needed to adjust difference of lightning . . . . . . ... ... ... 49
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5.5

5.6
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J-maps Highly coherent images bBnd L, 1 generates a J-map with

a unique “good” minimum (left). The yellow circle indicates the
minimum of the integral 5.15 f\and y), while the yellow cross the
ground-truth provided by a human. Low coherent images (right) gen-
erates instead a J-map with many local minima of similar value (A,B,C,D).
Here the global minima (yellow cross, D) does not correspond to the
ground truth (circle, C). . . . . . . . . ... 54

Low coherent J-maps J-maps from low coherent images show a
number of local minima, and sometimes fail in detecting the ground
truth. Nonetheless neighbor J-maps exhibits a similar appearance,
and thus it's possible to cross check them and detect potention errors.
For instance the image on the right shows a global minima not consis-
tent with the global minima of the other J-maps - not consistent with
the smoothness constraint . . . . .. ... ... .......... 55

Correction of the J-Maps. The J-map on the rightls, is computed
from J according to equation 5.18. The blu cross is the position of
the old global minimum. The red cross is the center of the gaussian
(Vx, V). The yellow cross is the location of the new global minimum 55

Morphing of a reticular structure . The inexact computation of the
optical flow can morph a shape (left, a reticular shape in red) into a
wrong one (center). The improved optical flow algorithm guarantees
instead optimal results (right). The images refer to a video sequence
of the drosophila morphogenesis, captured by mean of a microscope.
Red lines, over imposed on the original frames, show the cellular
structure. The image on the left refers to frame 21, images on cen-
ter and on the right refer to frame 22. See also images 5.5. Courtesy
of Prof. Jeff Axelrodlab . . . . . ... ... ... ... ....... 56

Optical flow field. The two images refer to the optical flow vector
field computed on 5.4. The raw computation (left) yields a wrong
result. The smoothness constraint is not respected. The refinedloptica
flow is instead a smooth vector field. See also images.5.4. . . .. 56

Schematic workflow of dynamic single shape detection using J-
maps and Generalized Active Contours. . . . . . .. . ... ... 57

Miocardial cell dynamic shape detection We used the workflow

in figure 5.6 to track cells. We employed the method on a total 10
sequences. The images show some frames taken from sequence num-
ber 4, 5, 7 and 8, respectively on columh,2,3 and 4. Interestingly
enough, each sequence has a different illumination and a different
level of noise. The first two rows were manually contrasted by photo-
shop to the only purpose of clarity for this publication. The final row,
instead, shows the raw video - the input of the algorithm . . . . . 58
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Schematic workflow of dynamic single shape detection using J-
maps and Generalized Active Contours The initial segmentation

@y is achieved by means of Generalized Active Contours. For the
next frame, rather than capture the shape from scratches again, we
morph it according to equation 5.4. He@"! is provided by a two

step approach: first computing J-maps and applying themtdhen
refining the result using active Contours. . . . . .. .. ... ... 58

Morphing of the Drosophila reticular structure using J-Maps. The
image shows the reticular shape detected in frarheverimposed on
frame 12 The green arrows schematically represents the morph ob-
tained by means of J-maps, applied heretotwocells . . . . . .. 59

5.10 Dynamic shape detection on the drosophila “wing” epithelium

6.1

6.2

6.3

6.4

6.5

6.6

The sequence is the same of image reffig:drosoRes, whereas plee sha
is here detected using the algorithm in figure 5.8, exploiting the tem-
poral coherence. The top row shows the detected reticular shape for
frame 2,10,20 and 30. The bottom row shows the network overim-
posedtotheoriginalframe . . . . . ... ... ... ........ 59

Shape analysis and colture feedback The quality of a cell col-

ture depends on a number of parameters such as temperature, electric
and magnetic fields, chemicals. A computer vision system performing
shape detection and shape analysis can automatically regulate them
to achieve a defined goal, such as maximizing the number of living

cells, the overall vitality of the colture, or the growth rate. . . . . . 62

Miocardial cell shape detectionWe repropose figure 3.5. The first
row is obtained using the proposed Active Contour model, while the
second row is produced with the original formulatian. . . . . . . . 63

Shape metrics.Evolution of spikeness and boundary activity, accord-
ing to the proposed and original snake model. . . . . . .. .. .. 64

Boundary Activity and Spikeness synthetic shape testThe figure
shows théoundary activity (red) and thespikeness (blue) measures
computed on a 100-frames-long synthetic video sequence. We build
the test to highlight the differences between the two and show how
they canbedecoupled. . . . . .. .. .. ... ... .. 64

Boundary Activity and Ellipticity synthetic shapetest . . . . . .. 65

Boundary Activity and Spikeness synthetic shape test (2). . . . . 65
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6.7 Network simplification. Images show as circle the vertices of the
graph. The first row, computed on frarhd of the drosophila “wing”
video sequence, shows a very dense structure. Each node cordssp
to a point traced by a random walk agent. The structures on the right
is the simplified graph, where only nodes with degree superior 3han
were kept. This leads to a “straightening” of the edges and to a more
compact representation. The bottom row shows the same simplifica-
tiononframed2 . . . . . . . ... 67

6.8 e 69

6.9 Synthetic graph generation and perturbation The original graph
(left) containsb0 nodes. The perturbed graph (right) was generated
usinglPe = Py, = My = 15% The blue labels mark the nodes and
provide the ground truth correspondence . . . . . . .. .. .. .. 72

6.10 Outcomes of the matching procedureGraphs refer to the synthetic
ones of Figure 6.9. Here the blue labels indicate correctly matched
nodes (true matches), whereas red labels shows the wrongly matched
ones. Nodes without labels are correct single nodes. . . . . . .. 72

6.11 CMU house point set matching test The figure shows two succes-
sive images (frames 1 and 2) from the CMU House benchmark [1].
The green labels are obtained from the matching procedure. The out-
comeis,inthiscase,perfect . . . .. ... ... ... ....... 74

6.12 CMU house point set matching test Two random images (frames
1 and 67) are considered for the matching procedure over the CMU
House benchmark [1].As for figure 6.11, the green labels correspond
to correctly matched points (true matches and true singles), whereas
the red labels mark wrong outcomes (false matches and false singl@4)

6.13 Frames22and 23 considered for the matching procedure The im-
ages are part of a 40 frame movie and refer to a section of the epithe-
lium of the Drosophila melanogaster wing. The polygonal structures
are 2-d sections of the epithelialcells . . . . . ... ... .. ... 75

6.14 The matching procedure applied to the networks of Figure 6.13
The yellow labels over the nodes correspond to matches (both correct
and wrong ones). The unlabelled nodes are single nodes (both torrec
and Wrongones) . . . . . . . 76

6.15 A particular of the matching procedure from Figure 6.14. The
structure undergoes a significant topological change. The greelecirc
highlights a difficult match that is correctly resolved . . . . . . .. 76

6.16 Hand traced borders compared with c-fuzzy and SIDE12 hand
traced borders (red, black and white) and the shape detection ob-
tained with modified c-Fuzzy (blue) and SIDE(yellow) . . . . . . . 79
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6.17 A Touring test approach. Average divergence of each expert der-

7.1

7.2

7.3

8.1

8.2

matologist from the ground truth provided by the other three; and
average divergence of senior and junior dermatologists arntiseg-
mentation algorithms from the same ground truth. Divergence is mea-
sured as false negative area (FN: lesion pixels misclassified as healthy
skin) and false positive area (FP: healthy skin pixels misclassified as
lesion) as a percentage of the proposed segmentation area (TP+FP:
pixels corretly or incorrectly classified as lesion) . . . . . .. ... 80

Mechanical model of the Drosophila Melanogaster epithelium

The elasticity of the cell (left) is obtained by means of a network of
springs and dampers. Each edge of the hexagon is a pair spring-
damper in parallel. To prevent collapse and to enforce convexity, the
model adds 3 virtual edges connecting opposite vertices. Again, each
of these edges consists of a spring and a damper. The epithelium
(right) is then modeled as a package of cells, regularly distributed in
thespace . . . . . . . . . . . . .. 84
Towards parameter identification. The mechanical models has a
number of internal parameters, such as stiffness coefficients, friction,
external forces. The exact value of these numbers leads to a simu-
lation (in silico shape) equals to the shape captured from the video
sequenceiff vivo shape). In general, the problem is ill posed, and
the solutions lie in a large subspace. Nonetheless, an analytical rep-
resentation of the space, or even a numerical approximation, would
lead significant insights in the morphogenesis . . . . . .. .. .. 86
Simulations of the grooves formation Several simulations, run with

a different number of cells and parameters, lead to the same qualita-
tive results. Dorsal closure forces and actin cable forces act here a
main role in the formation of the grooves. In white: actin cable force,
pushing cells in the inside of the drosophila fruit fly; in green: dorsal
closure forces, folding the plain patch into a cylinder. . . . . . .. 86

J-map. The output ofjet IMap() is a single J-Map. Each point of

the map compute the likelihood of pointx on | to be mapped on

yrty, xetxof g o oo 94
Correction of the J-Maps. The J-map on the rightls, is computed

from J; according to equation 5.18. The blu cross is the position of
the old global minimum. The red cross is the center of the gaussian
(Vx, V). The yellow cross is the location of the new global minimum 96
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