1/33

Introduction

Hybrid |CN a case stud

Performanco Indicators

Theoretical analysis

Simulative analysis

Experimental results

Conclusion

Real-Time Networks and Protocols for Industrial Automation

Lucia Seno

Italian National Council of Research, CNR - IEIIT Department of Information Engineering University of Padova, Italy

April 18th, 2011

Summary of Ph.D. research topics

3/33

Introduction

Hybrid |CNs a case study

Performan c Indicators

Theoretical analysis

Simulative analysis

Experimental results

Conclusion

Nowadays Industrial Communication Networks (ICNs) are employed at all levels of factory automation systems

3/33

Introduction

Hybrid ICN: a case study

Performanc Indicators

Theoretica analysis

Simul ative an aly sis

Experimental results

Conclusion

Nowadays Industrial Communication Networks (ICNs) are employed at all levels of factory automation systems

ICNs are especially employed for device level communication

 fast data exchange between controller and sensors/actuators

3/33

Introduction

Hybrid ICN: a case study

Performanc Indicators

Theoretical analysis

Simulative analysis

Experimental results

Conclusion

Nowadays Industrial Communication Networks (ICNs) are employed at all levels of factory automation systems

ICNs are especially employed for device level communication

 fast data exchange between controller and sensors/actuators

Precision of device level data exchange strongly influences the performance of a factory automation system

3/33

Introduction

Hybrid ICN: a case study

Performanc Indicators

Theoretical analysis

Simulative analysis

Experimental results

Conclusion

Nowadays Industrial Communication Networks (ICNs) are employed at all levels of factory automation systems

ICNs are especially employed for device level communication

 fast data exchange between controller and sensors/actuators

Precision of device level data exchange strongly influences the performance of a factory automation system \rightarrow ICNs, differently from general purpose networks, have to satisfy tight reliability and timing requirements

Networks/technologies for IC

4/33

Introduction

Hybrid ICN: a case study

Performanco Indicators

Theoretical analysis

Simulative analysis

Experimental results

Con clusion

Networks/technologies available for IC:

 Fieldbuses: ICNs implementing deterministic protocols (*Token Bus*, *Token Ring*, etc.)

Networks/technologies for IC

4/33

Introduction

- Hybrid ICN: a case study
- Performanco Indicators
- Theoretical analysis
- Simulative analysis
- Experimental results
- Conclusion

Networks/technologies available for IC:

- Fieldbuses: ICNs implementing deterministic protocols (*Token Bus, Token Ring*, etc.)
- Real Time Ethernet (RTE) networks: ICNs based on standard Ethernet IEEE 802.3 and using different techniques in order to improve determinism

Networks/technologies for IC

4/33

Introduction

- Hybrid ICN: a case study
- Performance Indicators
- Theoretical analysis
- Simulative analysis
- Experimental results
- C on clusion

Networks/technologies available for IC:

- Fieldbuses: ICNs implementing deterministic protocols (*Token Bus*, *Token Ring*, etc.)
- Real Time Ethernet (RTE) networks: ICNs based on standard Ethernet IEEE 802.3 and using different techniques in order to improve determinism
- Wireless networks?

Wired ICNs

5/33

Introduction

- Hybrid |CNs a case study
- Performance Indicators
- Theoretical analysis
- Simulative analysis
- Experimental results
- Conclusion

1 Fieldbuses

- Transmission rates up to 10 Mb/s
- Several products available (Profibus, P-Net, WorldFIP, Interbus, CAN, AS-interface, SERCOS | and ||, Modbus, LonWorks, ControlNet, DeviceNet, etc.)
- International Standard IEC 61158
- Hundreds of millions nodes installed!

2 RTE networks

- High transmission rates (up to 100 Mb/s)
- Several products available (EtherNet/IP, Profinet, Ethernet Powerlink, EtherCAT, Modbus on TCP, SERCOS III, etc.)
- International Standards IEC 61158 and IEC 61784
- Increasing deployment

Wireless networks

6/33

Introduction

Hybrid ICNs a case study

- Performan c In dicators
- Theoretical analysis
- Simul ative an aly sis
- Experimental results
- Conclusion

1 Wireless networks

- Differently from wired networks, there are no wireless networks specifically developed for IC → research activity to evaluate/adapt existing wireless networks (IEEE 802.11 WLAN *WiFi*, IEEE 802.15.4 WPAN, IEEE 802.15.1 *Bluetooth*, etc.) according to IC requirements
- Transmission rates varying in a wide range (IEEE 802.15.4 250 Kb/s \rightarrow IEEE 802.11 54 Mb/s)
- Wide deployment in several different fields

Wireless technology for IC: Pros and Cons

7/3

Introduction

Hybrid ICNs a case study

Performan co In dicators

Theoretical analysis

Simulative analysis

Experimental results

Con clusion

Pros:

■ Cabling avoidance →

- Connection of devices that can not be reached by a cable (mobile components, etc.)
- Decreased costs for cabling, installation and maintenance
- Decreased risk of cables and connectors failures

Wireless technology for IC: Pros and Cons

7/3

Introduction

Hybrid ICNs a case study

Performan co In dicators

Theoretical analysis

Simulative analysis

Experimental results

Conclusion

Pros:

■ Cabling avoidance →

- Connection of devices that can not be reached by a cable (mobile components, etc.)
- Decreased costs for cabling, installation and maintenance
- Decreased risk of cables and connectors failures

Cons:

- Wireless channel is error prone \rightarrow
 - \blacksquare High bit error rates (BER $\sim [10^{-3}, 10^{-2}])$
 - Transmission errors caused by different phenomena (path loss, fast and slow fading, noise and interference) exacerbated in industrial environments
 - Non-stationary wireless channel error characteristic

Hybrid networks

8/33

Introduction

Hybrid |CNs a case study

Performance Indicators

Theoretical analysis

Simulative analysis

Experimental results

Conclusion

 $Cons \rightarrow it$ seems unrealistic that wireless networks will totally replace wired ICNs (at least in the short-mid term)!

Hybrid networks

8/33

Introduction

Hybrid ICNs a case study

Performan co In dicators

Theoretical analysis

Simulative analysis

Experimental results

Conclusion

 $Cons \rightarrow it$ seems unrealistic that wireless networks will totally replace wired ICNs (at least in the short-mid term)!

Immediate employment of wireless technology for IC is for wireless extension of already deployed wired communication systems \rightarrow hybrid (wired/wireless) networks

Hybrid networks

8/33

Introduction

Hybrid |CNs a case study

Performance Indicators

Theoretical analysis

Simulative analysis

Experimental results

Conclusion

 $Cons \rightarrow it$ seems unrealistic that wireless networks will totally replace wired ICNs (at least in the short-mid term)!

Immediate employment of wireless technology for IC is for wireless extension of already deployed wired communication systems \rightarrow hybrid (wired/wireless) networks

Why hybrid networks?

Effective solution to the problem of connecting to an already deployed wired industrial communication system few nodes that can not be reached (easily/reliably) by means of a cable!

9/33

Introduction

Hybrid ICN: a case study

Performanc Indicators

Theoretica analysis

Simulative analysis

Experimental results

Conclusion

1 Wireless networks are less performing than wired ICNs (lower tx rates, larger protocol overheads, half-duplex tx, rate adaptation mechanism for |EEE 802.11, etc.) \rightarrow low throughput

9/33

Introduction

- Hybrid ICNs a case study
- Performanc Indicators
- Theoretica analysis
- Simul ative an aly sis
- Experimenta results
- Conclusion

1 Wireless networks are less performing than wired ICNs (lower tx rates, larger protocol overheads, half-duplex tx, rate adaptation mechanism for $_{\text{IEEE 802.11}}$, etc.) \rightarrow low throughput

- Controller on the wired segment
- Optimization of the wireless segment (reducing number of nodes and traffic)
- Increasing throughput (IEEE 802.11n)

10/33

Introduction

Hybrid ICNs a case study

Performanco Indicators

Theoretical analysis

Simulative analysis

Experimental results

Conclusion

2 Wireless networks employ medium access techniques based on randomness (IEEE 802.11 CSMA/CA, etc.) → unpredictable delays, jitter, missing deadlines in data delivery

10/33

Introduction

Hybrid ICNs a case study

Performance Indicators

Theoretical analysis

Simulative analysis

Experimental results

Conclusion

2 Wireless networks employ medium access techniques based on randomness (IEEE 802.11 CSMA/CA, etc.) → unpredictable delays, jitter, missing deadlines in data delivery

- TDMA (IEEE 802.15.4 beacon mode, PCF, iPCF)
- Frame prioritization (IEEE 802.11e)

10/33

Introduction

Hybrid ICNs a case study

Performan c In dicators

Theoretical analysis

Simulative analysis

Experimenta results

Conclusion

2 Wireless networks employ medium access techniques based on randomness (IEEE 802.11 CSMA/CA, etc.) → unpredictable delays, jitter, missing deadlines in data delivery

- TDMA (IEEE 802.15.4 beacon mode, PCF, iPCF)
- Frame prioritization (IEEE 802.11e)
- 3 Wireless networks present high bit error rates → re-transmissions, unpredictable delays, jitter and missing deadlines in data delivery

10/33

Introduction

Hybrid |CNs a case study

Performan co In dicators

Theoretical analysis

Simulative analysis

Experimenta results

Conclusion

2 Wireless networks employ medium access techniques based on randomness (IEEE 802.11 CSMA/CA, etc.) → unpredictable delays, jitter, missing deadlines in data delivery

Solutions:

- TDMA (IEEE 802.15.4 beacon mode, PCF, iPCF)
- Frame prioritization (IEEE 802.11e)
- 3 Wireless networks present high bit error rates → re-transmissions, unpredictable delays, jitter and missing deadlines in data delivery

- Proper antennas placement
- 5 GHz band (IEEE 802.11a)

Hybrid ICNs: a case study

11/33

Introduction

Hybrid ICNs: a case study

Performanco Indicators

Theoretical analysis

Simulative analysis

Experimental results

Conclusion

Wireless extension of Ethernet Powerlink, by means of the IEEE 802.11g WLAN

Hybrid ICNs: a case study

11/33

Introduction

Hybrid ICNs: a case study

Performanco Indicators

Theoretical analysis

Simulative analysis

Experimenta results

Conclusion

- Already deployed Ethernet
 Powerlink system with one
 controller and *M* passive stations
- Necessity of connecting L new wireless passive stations
- Need to satisfy the same reliability and timing requirements satisfied by the pre-existing system
 Solutions?

12/33

Introduction

Hybrid ICNs: a case study

Performanc Indicators

Theoretica analysis

Simulative analysis

Experimental results

Conclusion

GOALs: give insights on hybrid networks implementation, highlight problems and possible solutions concerning the interaction of the two networks, evaluate performance.

12/33

Introduction

Hybrid ICNs: a case study

Performanc Indicators

Theoretical analysis

Simul ative an aly sis

Experimental results

Conclusion

GOALs: give insights on hybrid networks implementation, highlight problems and possible solutions concerning the interaction of the two networks, evaluate performance.

Organization of research activity:

12/33

Introduction

Hybrid ICNs: a case study

Performanc Indicators

Theoretical analysis

Simulative analysis

Experimental results

Conclusion

GOALs: give insights on hybrid networks implementation, highlight problems and possible solutions concerning the interaction of the two networks, evaluate performance.

Organization of research activity:

 theoretical analysis (networks and devices specifications, scientific literature)

12/33

Introduction

Hybrid ICNs: a case study

Performanc Indicators

Theoretical analysis

Simulative analysis

Experimental results

Conclusion

GOALs: give insights on hybrid networks implementation, highlight problems and possible solutions concerning the interaction of the two networks, evaluate performance.

Organization of research activity:

- theoretical analysis (networks and devices specifications, scientific literature)
- simulative analysis (Opnet network simulator)

12/33

Introduction

Hybrid ICNs: a case study

Performanc Indicators

Theoretical analysis

Simulative analysis

Experimental results

Conclusion

GOALs: give insights on hybrid networks implementation, highlight problems and possible solutions concerning the interaction of the two networks, evaluate performance.

Organization of research activity:

- theoretical analysis (networks and devices specifications, scientific literature)
- simulative analysis (Opnet network simulator)
- experimental analysis

Ethernet Powerlink

13/33

Introduction

Hybrid ICNs: a case study

Performance Indicators

Theoretical analysis

Simulative analysis

Experimental results

Con clusion

Ethernet Powerlink (EPL) is a popular RTE network defined by EPL Standardization Group specifications

(www.ethernet-powerlink.org)

2 International Standard IEC61784-2 (CPF#13, CP#1)

Ethernet Powerlink

13/33

Introduction

Hybrid ICNs: a case study

Performance Indicators

Theoretica analysis

Simulative analysis

Experimental results

Conclusion

EPL network architecture

- Data Link layer protocol placed on top of standard Ethernet IEEE 802.3 Phy and MAC
- EPL frames are transmitted in standard Ethernet frames

14/33

Introduction

Hybrid ICNs: a case study

- Performanc Indicators
- Theoretica analysis
- Simulative analysis
- Experimental results
- Conclusion

- EPL Data Link layer protocol specifies a medium access technique based on TDMA
- The Managing Node (MN) polls the Controlled Nodes (CNs) during a cycle of fixed duration (t_{EPL})

Introduction

Hybrid ICNs: a case study

Performanc Indicators

Theoretical analysis

Simulative analysis

Experimental results

Conclusion

- EPL Data Link layer protocol specifies a medium access technique based on TDMA
- The Managing Node (MN) polls the Controlled Nodes (CNs) during a cycle of fixed duration (*t_{EPL}*)

Introduction

Hybrid ICNs: a case study

Performanc Indicators

Theoretical analysis

Simulativo analysis

Experimenta results

Conclusion

EPL cycle Start Period

- EPL Data Link layer protocol specifies a medium access technique based on TDMA
- The Managing Node (MN) polls the Controlled Nodes (CNs) during a cycle of fixed duration (t_{EPL})

14/33

Introduction

Hybrid ICNs: a case study

Performanc Indicators

Theoretical analysis

Simulative analysis

Experimenta results

Conclusion

- 1 Start Period
- 2 Isochronous Period

- EPL Data Link layer protocol specifies a medium access technique based on TDMA
- The Managing Node (MN) polls the Controlled Nodes (CNs) during a cycle of fixed duration (t_{EPL})

14/33

Introduction

Hybrid ICNs: a case study

- Performanc Indicators
- Theoretica analysis
- Simulative analysis
- Experimenta results
- Conclusion

- Start Period
- 2 Isochronous Period
- 3 AsynchronousPeriod

- EPL Data Link layer protocol specifies a medium access technique based on TDMA
- The Managing Node (MN) polls the Controlled Nodes (CNs) during a cycle of fixed duration (t_{EPL})

14/33

Introduction

Hybrid ICNs: a case study

Performan o In dicators

Theoretica analysis

Simulative analysis

Experimenta results

Conclusion

- Start Period
- 2 Isochronous Period
- 3 AsynchronousPeriod
- 4 Idle Period

- EPL Data Link layer protocol specifies a medium access technique based on TDMA
- The Managing Node (MN) polls the Controlled Nodes (CNs) during a cycle of fixed duration (t_{EPL})

Implementation of the wireless extension

15/33

Introduction

Hybrid ICNs: a case study

Performance Indicators

Theoretical analysis

Simulative analysis

Experimenta results

Conclusion

ISO/OSI model specifies that the interconnection between different communication systems has to be achieved by means of Intermediate Systems (ISs)

Types of ISs:

- Phy layer: repeaters
- Data Link layer: bridges
- Higher layers: gateways

Implementation of the wireless extension

15/33

Introduction

Hybrid ICNs: a case study

Performance Indicators

Theoretical analysis

Simulative analysis

Experimental results

Conclusion

ISO/OSI model specifies that the interconnection between different communication systems has to be achieved by means of Intermediate Systems (ISs)

Types of ISs:

- Phy layer: repeaters
- Data Link layer: bridges
- Higher layers: gateways

We offered two different wireless extensions: one realized at the Data Link layer and the other realized at the Application layer.

Extension at the Data Link layer

16/33

Introduction

Hybrid ICNs: a case study

Performance Indicators

Theoretica analysis

Simul ative an aly sis

Experimental results

Conclusion

Bridge-based wireless extension:

WCNs are directly included in the EPL cycle!

WCNs are directly included in the EPL cycle as CNs and the PReq and PRes frames flow across the bridge transparently to the EPL protocol.

Extension at the Application layer

17/33

Introduction

Hybrid ICNs: a case study

Performanco Indicators

Theoretical analysis

Simulative analysis

Experimental results

Conclusion

Gateway-based wireless extension:

WCNs are polled by an application running on the gateway!

WCNs are polled by a specific application running on the gateway, implemented on one of the EPL network CNs. Two different asynchronous cycles are running on the hybrid network: the EPL cycle which involves only CNs and the WCNs cycle realized by the gateway.

Performance Indicators

18/33

Introduction

Hybrid ICNs a case study

Performance Indicators

Theoretical analysis

Simulative analysis

Experimental results

Conclusion

Hybrid networks performance evaluation

Performance Indicators

18/33

Introduction

Hybrid |CNs a case study

Performance Indicators

Theoretical analysis

Simulative analysis

Experimental results

Con clusion

Hybrid networks performance evaluation \rightarrow need to define a set of Performance Indicators (PIs)

- to describe hybrid networks behavior
- to highlight how the choice of system parameters influences the system behavior

Performance Indicators

18/33

Introduction

Hybrid |CNs a case study

Performance Indicators

Th eoretical an aly sis

Simulative analysis

Experimenta results

Conclusion

Hybrid networks performance evaluation \rightarrow need to define a set of Performance Indicators (PIs)

- to describe hybrid networks behavior
- to highlight how the choice of system parameters influences the system behavior

Examples of considered PIs:

- **1** Polling Time (T_p)
- 2 Minimum Cycle Time (MCT)
- **3** Delivery Time (DT)
- 4 Real Time Throughput (RTT)

Polling Time

19/33

Introduction

Hybrid ICN: a case study

Performance Indicators

Theoretical analysis

Simulative analysis

Experimental results

Conclusion

Polling Time T_p = time necessary to successfully poll a WCN

$$T_p = t_{det} + T_{rand}$$

Polling Time

19/33

Introduction

Hybrid ICNs a case study

Performance Indicators

Theoretica analysis

Simulative analysis

Experimental results

Conclusion

Polling Time T_p = time necessary to successfully poll a WCN $T_p = t_{det} + T_{rand}$

$$t_{det} = t_{data} + t_{ack} + t_{int}$$

 t_{data} = transmissions of data frames

 t_{ack} = transmissions of ack frames

 t_{int} = interframe times

$$T_{rand} = T_{backoff} + T_{re-tx} + T_{devices}$$

 $t_{backoff} = backoff times$

 t_{re-tx} = retransmissions

 $t_{devices}$ = delays introduced by devices (buffer queues, operating

Minimum Cycle Time

20/33

Introduction

Hybrid ICNs a case study

Performance Indicators

Theoretica analysis

Simulative analysis

Experimental results

Conclusion

Cycle time t_{EPL} of an EPL network is defined by the user in the off-line configuration phase and represent the sampling time of the system

Minimum Cycle Time MCT = lower bound of t_{EPL}

$$MCT = \sum_{i=1}^{L} \max\left(T_{p}^{i}\right)$$

L = number of WCNs

Delivery Time

21/3

Introduction

Hybrid ICNs a case study

Performance Indicators

Theoretical analysis

Simulative analysis

Experimenta results

Conclusion

Delivery Time DT = "the time needed to convey an APDU containing data (message payload) that has to be delivered in real-time from one node (source) to another node (destination)"

$$DT = T_{wait} + T_p$$

 T_{wait} = time the data have to wait in the node before the polling starts, depends on T_{EPL} and on the data generation process

Real Time Throughput

22/3

Introduction

Hybrid |CNs a case study

Performance Indicators

Theoretical analysis

Simulative analysis

Experimenta results

Conclusion

Real Time Throughput *RTT* = "number of octets per second transmitted on a specific link (i) exclusively relevant to real-time traffic"

$$RTT^{i} = \frac{b'}{t_{EPL}}$$

- inversely proportional to t_{EPL}, if bⁱ is constant, higher bound: bⁱ/MCT
- decreasing t_{EPL} down to MCT increases failed polling and, consequently, decreases $b^i \rightarrow \text{tradeoff}$

Theoretical analysis

23/3

Introduction

Hybrid ICNs a case study

Performanco Indicators

Theoretical analysis

Simul ative an aly sis

Experimenta results

Conclusion

Hypotesis

Ideal wireless channel

- Semi-ideal interconnection components (introducing only queue delays)
- 3 Semi-ideal EPL devices (introducing only fixed, EPL standard-specified delays)

Example of PIs computation for the bridge-based extension

24/33

 T_p

Introduction Hybrid ICNs a case study

Performanco Indicators

Theoretical analysis

Simulative analysis

Experimenta results

Conclusion

$$= t_{txp Req} + t_{txPRes} + t_{wtxp Req} + t_{wtxPRes} + t_{wtxpRes} + 2t_{Ack} + 2t_{SIFS} + t_{DIFS} + D_{CN} + B =$$
$$= 287.72\mu s + [0 \div 15] \cdot 9\mu s$$

$$MCT = L \cdot t_{const} + (2L - 1) \cdot B$$

 $B = CW_{min} \cdot t_{slot}$ = one backoff time (the first time the bridge does not execute backoff)

Simulation

25/33

- Introduction
- Hybrid ICNs a case study
- Performance Indicators
- Theoretical analysis
- Simulative analysis
- Experimenta results
- Conclusion

Hypotesis

- 1 Non-ideal wireless channel
 - Interference: caused by other communication systems transmitting on the same band
 - Fast fading: caused by the addition/removal of obstacles to signal propagation (e.g. movement of people/machines)
- Semi-ideal interconnection components (introducing only queue delays)
- Semi-ideal EPL devices (introducing only fixed, EPL standard-specified delays)

Wireless channel modeling

26/33

Introduction

- Hybrid ICNs a case study
- Performance Indicators
- Theoretical analysis
- Simulative analysis
- Experimenta results
- Conclusion

1 Interference

- Effects: increased traffic on the wireless channel \rightarrow incorrect/delayed/missed frame receptions
- Modeling: other wireless stations using a certain percentage of the band
- Effects of fading may be reduced using prioritized frames (IEEE 802.11e)!

2 Fast fading

- Effects: temporal signal degradation → incorrect/delayed/missed frames receptions
- Modeling: Gilbert-Elliott model

Example of simulation results

27/33

Introduction

Hybrid ICN a case stud

Performanc Indicators

Theoretical analysis

Simulative analysis

Experimental results

Conclusion

Non-prioritized frame (IEEE 802.11g):

Experimental scenario

28/33

- Introduction
- Hybrid |CNs a case study
- Performance Indicators
- Theoretical analysis
- Simulative analysis
- Experimental results
- Conclusion

Hypotesis

- Semi-ideal wireless channel (no interference, verified with a spectrum analyzer)
- 2 Real interconnection devices:
 - Linksys WAP54G Access Points
 - 3Com Office Connect Access Points
- 3 Real EPL devices
- DAG board timestamping (60 ns resolution)

Example of experimental measurements (1 on 2)

29/33

- Introduction
- Hybrid ICN: a case study
- Performanc Indicators
- Theoretica analysis
- Simulative analysis

Experimental results

Conclusion

 T_p measured with Linksys APs:

 T_p measured with 3Com APs:

- Linksys APs cause periodic peaks in T_p (Idle state of the AP? Problem of AP parameters inaccessibility!)
- T_p values are considerably higher than those obtained from theoretical and simulative analysis (APs introduces consistent delays)

Example of experimental measurements (2 on 2)

30/33

Introduction

Hybrid ICN: a case study

Performance Indicators

Theoretica analysis

Simul ative an aly sis

Experimental results

Conclusion

MCT empirical pdf with 3Com APs:

- Very asymmetric pdfs (presence of high value samples)!
- Delays introduced by the AP are non-negligible and non-predictable!

Example of experimental measurements (2 on 2)

30/33

Introduction

A case stud

Performance Indicators

Theoretica analysis

Simulative analysis

Experimental results

Conclusion

MCT empirical pdf with 3Com APs:

- Very asymmetric pdfs (presence of high value samples)!
- Delays introduced by the AP are non-negligible and non-predictable!

Need to introduce models of real wireless components in the theoretical and simulative analysis!

Conclusion and Future Work

31/33

- Introduction
- Hybrid ICNs a case study
- Performance Indicators
- Theoretical analysis
- Simulative analysis
- Experimenta results

Conclusion

- We analyzed a possible wireless extensions of Ethernet Powerlink by means of the IEEE 802.11 WLAN
- 2 We defined and computed, theoretically, via simulations and experimentally, a set of PIs suitable for polling-based networks
- 3 We shown how the presence of wireless channel non-idealities can negatively affect the system behavior
- 4 We proposed possible solutions
- **5** We experienced significant differences between theoretical analysis and experimental results
- 6 We experienced that IEEE 802.11 devices in some case present undesirable, not-modifiable behaviors
- Future work will concern modeling of real wireless devices and strategies to limit the negative effects their behavior introduces in wireless network reliability

Publications

32/33

- Introduction
- Hybrid |CNs a case study
- Performance Indicators
- Theoretica analysis
- Simulative analysis
- Experimental results

Conclusion

- L. Seno, S. Vitturi, C. Zunino, "Analysis of Ethernet Powerlink Wireless Extensions Based on the IEEE 802.11 WLAN". IEEE Transactions on Industrial Informatics, vol. 5, n. 2, pp. 86-98, May 2009
- L. Seno, S. Vitturi, "Wireless extension of Ethernet Powerlink networks based on the IEEE 802.11 Wireless LAN". Proceedings of the 7th IEEE International Workshop on Factory Communication Systems (WFCS 2008)
- G. Gamba, L. Seno, S. Vitturi, "Performance indicators for wireless industrial communication networks". Proceedings of the 8th IEEE International Workshop on Factory Communication Systems (WFCS 2010)
- G. Gamba, L. Seno, S. Vitturi, "Theoretical and experimental evaluation of polling times for wireless industrial networks using commercially available components". Proceedings of the 15th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2010)

33/33

Introduction

Hybrid |CN a case stud

Performanc Indicators

Theoretical analysis

Simulative analysis

Experimental results

Conclusion

Thank you!