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Introduction

System Identification:

Methodology: GP regression

Targets: • Methodological aspects
• Applicability to real systems

Applications:
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PhD Overview

I Enhance Methodology: Gaussian Process Regression

Comparison of Classical methods GP regression.

G. Prando, D. Romeres, G. Pillonetto and A. Chiuso. Classical vs. Bayesian methods for linear

system identification: point estimators and confidence sets. 15th European Control Conference,
ECC 2016.

Enforce stability in nonparametric prediction error identification methods

D. Romeres, G. Pillonetto and A. Chiuso. Identification of stable models via nonparametric

prediction error methods. 14th European Control Conference, ECC 2015.

Online GP regression

D. Romeres, G. Prando, G. Pillonetto and A. Chiuso. On-line Bayesian System Identification. 15th

European Control Conference, ECC 2016.

G. Prando, D. Romeres and A. Chiuso. Online Identification of Time-Varying Systems: a Bayesian

approach. 55th IEEE Conference on Decision and Control, CDC 2016.

II Application: Robotic Inverse Dynamic Learning

Learning the Inertia Parameters of a Robotic Dynamical Model

Online semiparametric learning for inverse dynamics modeling

D. Romeres, M. Zorzi, R. Camoriano and A. Chiuso. Online semiparametric learning for inverse dynamics

modeling. 55th IEEE Conference on Decision and Control, CDC 2016.
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Motivations

Physics-based models (Parametric models)

© Global approximation

§ Subject to assumptions (it is not possible to model everything!)

Data-Driven models (Nonparametric models)

© Flexibility

§ Local approximation (poor generalization to different data)

Semiparametric models

© Combine the strengths of Parametric & Nonparametric models

Why Online Setting?

Real-time update

Large scale datasets

Time variant systems
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Outline

1 Set-up

2 Semiparametric Models

3 Experiments

4 Differentiation Free Method
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Set-up

Set-up

Problem statement

Inverse Dynamics g : q>t q̇>t q̈>t︸ ︷︷ ︸
joint pos vel acc

−→ yt︸︷︷︸
joint torques & forces

Data: Output {yt}t=1,..,N ,

Input {xt}t=1,..,N , xt = [q>t q̇>t q̈>t ]> ∈ R3ndof

Model: yt = g(xt) + et et ∼ N (0,σ2Indof
)

Goal: Estimate the inverse dynamics g

How to model g?

How to update the estimate of g online?
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Set-up

iCub

iCub is a full-body humanoid robot.
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Semiparametric Models
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Semiparametric Models

Parametric Model

Rigid Body Dynamics (RBD)

yt = M(qt)q̈t + C(qt, q̇t)q̇t + G(qt)

M inertia matrix

C Coriolis and centripetal forces

G gravity forces

Linear Inverse Dynamics Model

yt = ψ
>(xt)π, xt = [q>t q̇>t q̈>t ]> ∈ R3ndof

π are the Inertial Parameters

Problem: need of assumptions (e.g. links rigidity, simple friction models,...).

How to account for the non linear dynamical effects?
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Semiparametric Models

Nonparametric Gaussian Model

Prior Distribution

p(g|η) ∼ N (0,Kη )

Kη : covariance matrix Kη (xs,xt) = cov(g(xs),g(xt)) = λ exp
(
−0.5 ‖xs−xt‖2

τ

)
η : set of hyper-parameters

Marginal likelihood maximization ( ML )
Cross Validation ( CV )

Minimum Variance Estimate

With η fixed and with Gaussian innovation, the posterior distribution

p(g|Y,X) =
p(Y,X|g)p(g|η)

p(Y,X)

is Gaussian. Hence, the minimum variance estimator is known in closed form:

ĝ(·) := E[g|Y,X,η] = Kη̂ (·,X)
(

Kη̂ (X,X) + σ
2IN

)−1
Y

How to overcome the local properties of this model?
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Semiparametric Models

Semiparametric Models

yt = Ψ>(xt)π + f (xt)︸ ︷︷ ︸
g(xt)

+et, et ∼ N (0,σ2Indof
)

P NP SP SPK

π deterministic deterministic N (0,γI)
f N (0,KG) N (0,KG) N (0,KG)

General Model

All the models can be written as Nonparametric Gaussian Model e.g.

SP: g(xt) ∼ N (Ψ>(xt)π , KG(xt, ·))

SPK: g(xt) ∼ N (0 , γΨ>(xt)Ψ(·) + KG(xt, ·))

Predictor when a new point x∗ arrives:

ĝ(x∗) = µ(x∗) + K(x∗,X)
(

K(X,X) + σ
2IN

)−1
(Y−µ(X))
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Semiparametric Models

Online Setting

Kernel Approximation by Random Features:

KG(xt,xs) =
∫
Rm

p(ω)ei ω>(xt−xs)
τ dω, p(ω) =

1
(
√

2π)m
e−
‖ω‖2

2 .

≈ 1
d

d

∑
k=1

ei
ω>k (xt−xs)

τ = φτ (xt)
>

φτ (xs), ωk ∼ p(ω), φτ (xs) ∈ R2d

A. Rahimi and B. Recht. Random Features for Large-Scale Kernel Machines. Advances in neural

information processing systems, 2007.

Problem approximation e.g. in NP (SP and SPK handled similarly):

ĝT = argmin
g∈H

1
σ2

T

∑
t=1
‖yt−g(xt)‖2 + λ‖g‖2

H

θ̂T = argmin
θ∈R2d

1
σ2

T

∑
t=1
‖yt−φ

>
τ (xt)θ‖2 +‖θ‖2

Σ−1
0

Online Update

Recursive Regularized Least Squares
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Semiparametric Models

...putting all together

P, NP, SP, SPK −→ Nonparametric Gaussian model

Kernel approximation −→ Random features

Nonparametric Gaussian model −→ approximated to a linear model

Online updates −→ Recursive least squares
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Experiments
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Experiments

iCub’s Left Arm

iCub - Left arm components

3 shoulder joints

1 elbow joint

Force-Torque (FT) sensor

Data type:

Input: xt = [q1
t , q̇1

t , q̈1
t , . . . , q4

t , q̇4
t , q̈4

t ]>

Output: yt = [ f x
t , f y

t , f z
t , τx

t , τ
y
t , τ

z
t ]>
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Experiments

Online Learning Scenario

Recordings

Dataset 1: XY-plane circles, radius = 10cm, speed = 6m/s,
8 minutes of recordings, Fs = 20Hz, 10000 points.

Dataset 2: XZ-plane circles, radius = 10cm, speed = 6m/s,
8 minutes of recordings, Fs = 20Hz, 10000 points.

Experiment

︸ ︷︷ ︸
Initialization

︸ ︷︷ ︸
Online update RLS

︸ ︷︷ ︸
Online update RLS

Dataset XY︷ ︸︸ ︷ {θ̂10

Dataset XZ︷ ︸︸ ︷

η̂ θ̂1

θ̂1

θ̂1

θ̂1

θ̂21

θ̂2i

θ̂25
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Experiments

Performance

Prediction Error: εt =
∑

25
s=1(yt+s− ŷt+s|t)

2

∑
25
s=1(yt+s)2

, ε
F
t ,ε

τ
t average over Forces & Torques
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Experiments

Performance in steady state

Steady state (t ≥ 30 s) for εF
t , ετ

t
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Differentiation Free Method

Outline
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Differentiation Free Method

Differentiation Free Method

Input locations suggested by the physics

xt = [qi
t, q̇i

t, q̈i
t]
>i = 1, . . . ,4

Issue

In practise usually joint velocities and accelerations are not measured

→ numerical differentiation from the measured joint positions

→ necessity of low pass filter, smoothing filter

Input locations with Features Structure Free (FSF)

Replace xt =

qt
q̇t
q̈t

 , with xt =

1 0 . . .
ρ>1
ρ>2




qt
qt−1

...
qt−K


︸ ︷︷ ︸

q

Hyperparameters to estimate: ρ>1 ,ρ>2 ∈ RK+1
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Differentiation Free Method

Performance

Relative Prediction Error at 25 steps ahead: ε
F
t ,ε

τ
t average over forces & torques
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Differentiation Free Method

Conclusion

Conclusion

Semiparametric combines the strengths of Physical & Data-Driven models

Formalization of Online estimation with semiparametric models

ML criterion outperforms CV to tune the hyperparameters

Differentiation free method is a promising research direction

Future Work

Enforce physical meaning to parameters estimated in Semiparametric models

Apply different Online techniques

Extend differentiation free methods to semiparametric models
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Differentiation Free Method

Thank you for your attention!
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Differentiation Free Method
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Differentiation Free Method
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