Non-Parametric Bayesian Methods for Linear System Identification

Giulia Prando

PhD Advisor: Prof. Alessandro Chiuso PhD Co-Advisor: Prof. Gianluigi Pillonetto

Department of Information Engineering - University of Padova

24 March 2017

System

steering angle

System

slip on a tire steering angle

Outputs

Parametric

- PEM
- Subspace

• $\mathcal{M}(\theta), \ \theta \in \mathcal{R}^d$

E.g.
$$\mathcal{M}(\theta) = \frac{\sum_{i=1}^{n} \theta_i q^{-i}}{1 + \sum_{j=n+1}^{d} \theta_j q^{-j}}$$

- Estimate θ
- How many parameters?
- Complexity Selection Issue

Non-Parametric

This talk

Parametric

- PEM
- Subspace

• $\mathcal{M}(heta)$, $heta \in \mathcal{R}^d$

E.g.
$$\mathcal{M}(\theta) = \frac{\sum_{i=1}^{n} \theta_i q^{-i}}{1 + \sum_{j=n+1}^{d} \theta_j q^{-j}}$$

- Estimate θ
- How many parameters?
- Complexity Selection Issue

Non-Parametric

This talk

Directly estimate impulse response h

Parametric

- PEM
- Subspace

• $\mathcal{M}(heta), \ heta \in \mathcal{R}^d$

E.g.
$$\mathcal{M}(\theta) = \frac{\sum_{i=1}^{n} \theta_i q^{-i}}{1 + \sum_{j=n+1}^{d} \theta_j q^{-j}}$$

- Estimate θ
- How many parameters?
- Complexity Selection Issue

Non-Parametric

This talk

Directly estimate impulse response h

- No complexity selection needed
- Exploit the Bayesian setting to include a-priori information

Non-Parametric Bayesian Methods

Prior

$$h \sim p_{\eta}(h) = \mathcal{N}(0, K_{\eta})$$

Posterior

$$p_\eta(h|\mathbf{y}) = rac{p(\mathbf{y}|h)p_\eta(h)}{p_\eta(\mathbf{y})}$$

$$\hat{h} = \mathbb{E}_{\eta}[h|\mathbf{y}] = \int h \ p_{\eta}(h|\mathbf{y}) dh$$

Prior

$$h \sim p_\eta(h) = \mathcal{N}(0, K_\eta)$$

- Accounts for desired properties of h
- Depends on hyper-parameters η

Posterior

$$p_\eta(h|\mathbf{y}) = rac{p(\mathbf{y}|h)p_\eta(h)}{p_\eta(\mathbf{y})}$$

$$\hat{h} = \mathbb{E}_\eta[h|\mathbf{y}] = \int h \ p_\eta(h|\mathbf{y}) dh$$

Prior

$$h \sim p_\eta(h) = \mathcal{N}(0, K_\eta)$$

- Accounts for desired properties of h
- Depends on hyper-parameters η

Posterior

$$p_\eta(h|\mathbf{y}) = rac{p(\mathbf{y}|h)p_\eta(h)}{p_\eta(\mathbf{y})}$$

 Inference step using the observed data y

$$\hat{h} = \mathbb{E}_{\eta}[h|\mathbf{y}] = \int h \ p_{\eta}(h|\mathbf{y}) dh$$

$$h \sim p_\eta(h) = \mathcal{N}(0, K_\eta)$$

- Accounts for desired properties of h
- Depends on hyper-parameters η

Posterior

$$p_\eta(h|\mathbf{y}) = rac{p(\mathbf{y}|h) p_\eta(h)}{p_\eta(\mathbf{y})}$$

• Inference step using the observed data **y**

$$\hat{h} = \mathbb{E}_{\eta}[h|\mathbf{y}] = \int h \; p_{\eta}(h|\mathbf{y}) dh$$

- Minimum variance estimator
- Analytically intractable
 Approximations required

Prior $h \sim p_{\eta}(h) = \mathcal{N}(0, K_{\eta})$ Posterior $p_{\eta}(h|\mathbf{y}) = \frac{p(\mathbf{y}|h)p_{\eta}(h)}{p_{\eta}(\mathbf{y})}$

Point Estimator

$$\hat{h} = \mathbb{E}_{\eta}[h|\mathbf{y}] = \int h \ p_{\eta}(h|\mathbf{y}) dh$$

Post-Processing

$$\hat{h} \longrightarrow h(heta), \ heta \in \mathbb{R}^d$$

My Research Activity

Prior $h \sim p_{\eta}(h) = \mathcal{N}(0, K_{\eta})$

Posterior

$$p_\eta(h|\mathbf{y}) = rac{p(\mathbf{y}|h)p_\eta(h)}{p_\eta(\mathbf{y})}$$

Point Estimator

$$\hat{h} = \mathbb{E}_{\eta}[h|\mathbf{y}] = \int h \ p_{\eta}(h|\mathbf{y}) dh$$

Post-Processing

$$\hat{h} \longrightarrow h(heta), \ heta \in \mathbb{R}^d$$

Prior accounting for complexity

Prando, Chiuso, and Pillonetto 2017 Prando, Pillonetto, and Chiuso 2015 Prando, Chiuso, and Pillonetto 2014

Prior $h \sim p_\eta(h) = \mathcal{N}(0, K_\eta)$

Posterior

$$p_\eta(h|\mathbf{y}) = rac{p(\mathbf{y}|h) p_\eta(h)}{p_\eta(\mathbf{y})}$$

Assessment of estimator uncertainty

Point Estimator

$$\hat{h} = \mathbb{E}_{\eta}[h|\mathbf{y}] = \int h \ p_{\eta}(h|\mathbf{y}) dh$$

Post-Processing

$$\hat{h} \longrightarrow h(heta), \ heta \in \mathbb{R}^d$$

Prando et al. 2016

${\sf Prior} \ h \sim p_\eta(h) = \mathcal{N}(0, K_\eta)$	
Posterior $p_{\eta}(h \mathbf{y}) = rac{p(\mathbf{y} h)p_{\eta}(h)}{p_{\eta}(\mathbf{y})}$	Prando et al. 2016
Point Estimator $\hat{h} = \mathbb{E}_{\eta}[h \mathbf{y}] = \int h \ p_{\eta}(h \mathbf{y}) dh$	Comparison of 2 approximations: • Empirical Bayes • Full Bayes (using sampling methods)

$$\hat{h} \longrightarrow h(\theta), \ \theta \in \mathbb{R}^d$$

Online Re-formulation:

Update the estimate

as soon as

new data arrive

Post-Processing

 $\hat{h} \longrightarrow h(heta), \ heta \in \mathbb{R}^d$

Prando, Romeres, and Chiuso 2016 Romeres et al. 2016

Prior $h \sim p_{\eta}(h) = \mathcal{N}(0, K_{\eta})$ Posterior $p_{\eta}(h|\mathbf{y}) = \frac{p(\mathbf{y}|h)p_{\eta}(h)}{p_{\eta}(\mathbf{y})}$

Point Estimator

$$\hat{h} = \mathbb{E}_{\eta}[h|\mathbf{y}] = \int h \ p_{\eta}(h|\mathbf{y}) dh$$

Post-Processing

$$\hat{h} \longrightarrow h(\theta)$$

Outline

Smoothing-spline kernel

 $K_\eta(s,t)=K^{SS}_\eta(s,t)$

Smoothness and Stability

Stable-spline kernel

$$K_{\eta}(s,t) = K_{\eta}^{SS}(\beta^s,\beta^t)$$

Remark: Stable spline kernels don't account for model complexity

Aim:	Build Max-Entropy prior $p_\eta(h)$ satisfying constraints on:
	Stability
	Complexity

Build Max-Entropy prior $p_{\eta}(h)$ satisfying constraints on:

Stability

Complexity

Stability Constraint:

Aim:

Stability Constraint: Build Max-Entropy prior $p_{\eta}(h)$ satisfying constraints on:

- Stability
- Complexity

$$\mathbb{E}\left[h^{ op}K_{
ho}^{-1}h
ight]\leq c_{S}$$

Satisfied if K_{ρ} is the stable-spline kernel [Pillonetto and De Nicolao 2010]

Stability Constraint: Build Max-Entropy prior $p_{\eta}(h)$ satisfying constraints on:

- Stability
- Complexity

$$\mathbb{E}\left[h^{ op} K_{
ho}^{-1} h
ight] \leq c_{S}$$

Satisfied if K_{ρ} is the stable-spline kernel [Pillonetto and De Nicolao 2010]

Build Max-Entropy prior $p_{\eta}(h)$ satisfying constraints on:

- Stability
- Complexity

$$\mathbb{E}\left[h^{ op}K_{
ho}^{-1}h
ight]\leq c_{S}$$

Satisfied if K_{ρ} is the stable-spline kernel [Pillonetto and De Nicolao 2010]

Recall:

Aim:

Stability Constraint:

Stability Constraint: Build Max-Entropy prior $p_{\eta}(h)$ satisfying constraints on:

- Stability
- Complexity

$$\mathbb{E} \; \left[h^ op {\mathcal{K}_
ho}^{-1} h
ight] \leq c_S$$

Satisfied if K_{ρ} is the stable-spline kernel [Pillonetto and De Nicolao 2010]

Recall:
$$\mathcal{H}(h) = \begin{bmatrix} h(1) & h(2) & h(3) & \cdots & h(c) \\ h(2) & h(3) & h(4) & \cdots & h(c+1) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ h(r) & h(r+1) & \cdots & \cdots & h(r+c-1) \end{bmatrix}$$

 $rank(\mathcal{H}(h)) = Mc$ Millan degree of the system with impulse response h

Stability Constraint: Build Max-Entropy prior $p_{\eta}(h)$ satisfying constraints on:

- Stability
- Complexity

$$\mathbb{E}\left[h^{ op}K_{
ho}^{-1}h
ight]\leq c_{S}$$

Satisfied if K_{ρ} is the stable-spline kernel [Pillonetto and De Nicolao 2010]

Stability Constraint: Build Max-Entropy prior $p_{\eta}(h)$ satisfying constraints on:

- Stability
- Complexity

Satisfied if K_{ρ} is the stable-spline kernel [Pillonetto and De Nicolao 2010]

Complexity Constraint: $\mathbb{E}\left[\sum_{i} \frac{s_i \{\mathcal{H}(h)\mathcal{H}(h)^{\top}\}}{\alpha_i}\right] \leq c_C$ Build Max-Entropy prior $p_{\eta}(h)$ satisfying constraints on:

- Stability
- Complexity

$$\mathbb{E} \left[h^\top {K_\rho}^{-1} h \right] \le c_S$$

Satisfied if K_{ρ} is the stable-spline kernel [Pillonetto and De Nicolao 2010]

Aim:

Stability Constraint:

$$\mathbb{E} \left[h^\top P^\top (Q_\alpha \otimes I) Ph \right] \leq c_C$$

With a properly designed matrix \mathcal{Q}_{lpha}

Problem:

Problem:
$$p_{\eta}(h) = \arg \max_{\rho} H[p(h)]$$
s.t. $\mathbb{E} \left[h^{\top} K_{\rho}^{-1} h \right] \leq c_{S}$ Stability $\mathbb{E} \left[h^{\top} P^{\top}(Q_{\alpha} \otimes I) P h \right] \leq c_{C}$ Low complexitySolution: $p_{\eta}(h) \propto \exp \left(-\frac{\lambda_{S}}{2} h^{\top} K_{\rho}^{-1} h - \frac{\lambda_{H}}{2} h^{\top} P^{\top}(Q_{\alpha} \otimes I) P h \right)$

Stable-Hankel Kernel: Maximum-Entropy Derivation

Problem:

$$p_{\eta}(h) = \arg \max_{p} H[p(h)]$$
s.t. $\mathbb{E} \left[h^{\top} K_{\rho}^{-1} h \right] \leq c_{S}$
Stability
$$\mathbb{E} \left[h^{\top} P^{\top} (Q_{\alpha} \otimes I) P h \right] \leq c_{C}$$
Low complexity
$$p_{\eta}(h) \propto \exp \left(-\frac{\lambda_{S}}{2} h^{\top} K_{\rho}^{-1} h - \frac{\lambda_{H}}{2} h^{\top} P^{\top} (Q_{\alpha} \otimes I) P h \right)$$

$$p_{\eta}(h) = \mathcal{N}\left(0, \left[\lambda_{S}K_{\rho}^{-1} + \lambda_{H}P^{\top}(Q_{\alpha} \otimes I)P\right]^{-1}\right)$$

Gaussian Prior:

Problem:
$$p_{\eta}(h) = \arg \max_{\rho} H[p(h)]$$
s.t. $\mathbb{E} \left[h^{\top} K_{\rho}^{-1} h \right] \leq c_{S}$ Stability $\mathbb{E} \left[h^{\top} P^{\top}(Q_{\alpha} \otimes I) Ph \right] \leq c_{C}$ Low complexitySolution: $p_{\eta}(h) \propto \exp \left(-\frac{\lambda_{S}}{2} h^{\top} K_{\rho}^{-1} h - \frac{\lambda_{H}}{2} h^{\top} P^{\top}(Q_{\alpha} \otimes I) Ph \right)$

$$p_{\eta}(h) = \mathcal{N}\left(0, \left[\lambda_{S}K_{\rho}^{-1} + \lambda_{H}P^{\top}(Q_{\alpha} \otimes I)P\right]^{-1}\right)$$

Stable-Hankel Kernel K_{η}^{SH}

Gaussian Prior:

Problem:
$$p_{\eta}(h) = \arg \max_{\rho} H[p(h)]$$
s.t. $\mathbb{E} \left[h^{\top} K_{\rho}^{-1} h \right] \leq c_{S}$ Stability $\mathbb{E} \left[h^{\top} P^{\top}(Q_{\alpha} \otimes I) P h \right] \leq c_{C}$ Low complexitySolution: $p_{\eta}(h) \propto \exp \left(-\frac{\lambda_{S}}{2} h^{\top} K_{\rho}^{-1} h - \frac{\lambda_{H}}{2} h^{\top} P^{\top}(Q_{\alpha} \otimes I) P h \right)$

Gaussian
Prior:
$$\mathcal{N}\left(0, \left[\lambda_{S}K_{\rho}^{-1} + \lambda_{H}P^{\top}(Q_{\alpha} \otimes I)P\right]^{-1}\right)$$
Gaussian
Prior:Stable-Hankel Kernel K_{η}^{SH} Hyper-parameters: $\eta = \{\lambda_{S}, \lambda_{H}, \rho, \alpha\}$

Gaussian Prior

 $p_\eta(h) \sim \mathcal{N}(0, \mathcal{K}^{\mathcal{SH}}_\eta)$

• Adopt Marginal Likelihood maximization to find the hyper-parameters

 $\hat{\eta} = rg\max_{\eta} p_{\eta}(\mathbf{y})$

 Adopt Marginal Likelihood maximization to find the hyper-parameters

$$\hat{\eta} = rg\max_{\eta} p_{\eta}(\mathbf{y})$$

• Get \hat{h} in closed-form

$$\hat{h} = \arg\min_{h} \sum_{t=1}^{N} \|y(t) - \hat{y}(t|h)\|_{\Sigma}^{2} + h^{\top} (K_{\hat{\eta}}^{SH})^{-1} h$$

 Adopt Marginal Likelihood maximization to find the hyper-parameters

$$\hat{\eta} = rg\max_{\eta} p_{\eta}(\mathbf{y})$$

• Get \hat{h} in closed-form

$$\hat{h} = \arg\min_{h} \sum_{t=1}^{N} \|y(t) - \varphi^{\top}(t)h\|_{\Sigma}^{2} + h^{\top} \left(K_{\hat{\eta}}^{SH}\right)^{-1} h$$

 Adopt Marginal Likelihood maximization to find the hyper-parameters

$$\hat{\eta} = rg\max_{\eta} p_{\eta}(\mathbf{y})$$

• Get \hat{h} in closed-form

$$\begin{split} \hat{h} &= \arg\min_{h} \sum_{t=1}^{N} \|y(t) - \varphi^{\top}(t)h\|_{\Sigma}^{2} + h^{\top} \left(K_{\hat{\eta}}^{SH}\right)^{-1} h \\ &= \left[\sum_{t=1}^{N} \varphi(t) \Sigma^{-1} \varphi^{\top}(t) + \left(K_{\hat{\eta}}^{SH}\right)^{-1}\right]^{-1} \sum_{t=1}^{N} \varphi(t) \Sigma^{-1} y(t) \end{split}$$

$$\hat{h} = \arg\min_{h} \sum_{t=1}^{N} \|y(t) - \hat{y}(t|h)\|_{\Sigma}^{2} + h^{\top} \left[\lambda_{S} \mathcal{K}_{\rho}^{-1} + \lambda_{H} \mathcal{P}^{\top} (\mathcal{Q}_{\alpha} \otimes \mathcal{I}) \mathcal{P}\right] h$$

$$\hat{h} = \arg\min_{h} \sum_{t=1}^{N} \|y(t) - \hat{y}(t|h)\|_{\Sigma}^{2} + h^{\top} \left[\lambda_{S} K_{\rho}^{-1} + \lambda_{H} P^{\top} (Q_{\alpha} \otimes I) P\right] h$$

• Assume $\lambda_S = 0$

$$\hat{h} = \arg\min_{h} \sum_{t=1}^{N} \|y(t) - \hat{y}(t|h)\|_{\Sigma}^{2} + h^{\top} \left[\lambda_{S} K_{\rho}^{-1} + \lambda_{H} P^{\top} (Q_{\alpha} \otimes I) P\right] h$$

• Assume $\lambda_S = 0 \implies$ No stability constraint

$$\hat{h} = \arg\min_{h} \sum_{t=1}^{N} \|y(t) - \hat{y}(t|h)\|_{\Sigma}^{2} + h^{\top} \left[\lambda_{S} K_{\rho}^{-1} + \lambda_{H} P^{\top} (Q_{\alpha} \otimes I) P\right] h$$

- Assume $\lambda_S = 0 \implies$ No stability constraint
- Recall

$$h^{\top} P(Q_{\alpha} \otimes I) Ph = \sum_{i=1}^{r} \frac{s_{i} \{\mathcal{H}(h) \mathcal{H}(h)^{\top}\}}{\alpha_{i}}$$

$$\hat{h} = \arg\min_{h} \sum_{t=1}^{N} \|y(t) - \hat{y}(t|h)\|_{\Sigma}^{2} + h^{\top} \left[\lambda_{S} K_{\rho}^{-1} + \lambda_{H} P^{\top} (Q_{\alpha} \otimes I) P\right] h$$

- Assume $\lambda_S = 0 \implies$ No stability constraint
- Recall

$$h^{\top} P(Q_{\alpha} \otimes I) Ph = \sum_{i=1}^{r} \frac{s_i \{\mathcal{H}(h)\mathcal{H}(h)^{\top}\}}{\alpha_i}$$

• Assume $\alpha_1 = \cdots = \alpha_r = \alpha$,

$$\hat{h} = \arg\min_{h} \sum_{t=1}^{N} \|y(t) - \hat{y}(t|h)\|_{\Sigma}^{2} + h^{\top} \left[\lambda_{S} K_{\rho}^{-1} + \lambda_{H} P^{\top} (Q_{\alpha} \otimes I) P\right] h$$

- Assume $\lambda_S = 0 \implies$ No stability constraint
- Recall

$$h^{\top} P(Q_{\alpha} \otimes I) Ph = \sum_{i=1}^{r} \frac{s_i \{\mathcal{H}(h)\mathcal{H}(h)^{\top}\}}{\alpha_i}$$

• Assume $\alpha_1 = \cdots = \alpha_r = \alpha$, then

$$\sum_{i=1}^{r} \frac{s_i \{\mathcal{H}(h)\mathcal{H}(h)^{\top}\}}{\alpha_i} = \frac{1}{\alpha} \|\mathcal{H}(h)\mathcal{H}(h)^{\top}\|_*$$

$$\hat{h} = \arg\min_{h} \sum_{t=1}^{N} \|y(t) - \hat{y}(t|h)\|_{\Sigma}^{2} + h^{\top} \left[\lambda_{S} K_{\rho}^{-1} + \lambda_{H} P^{\top} (Q_{\alpha} \otimes I) P\right] h$$

- Assume $\lambda_S = 0 \implies$ No stability constraint
- Recall

$$h^{\top} P(Q_{\alpha} \otimes I) Ph = \sum_{i=1}^{r} \frac{s_{i} \{\mathcal{H}(h) \mathcal{H}(h)^{\top}\}}{\alpha_{i}}$$

• Assume $\alpha_1 = \cdots = \alpha_r = \alpha$, then

$$\sum_{i=1}^{r} \frac{s_i \{\mathcal{H}(h)\mathcal{H}(h)^{\top}\}}{\alpha_i} = \frac{1}{\alpha} \|\mathcal{H}(h)\mathcal{H}(h)^{\top}\|_*$$

Nuclear Norm Regularization: $\hat{h} = \arg \min_{h} \sum_{t=1}^{N} \|y(t) - \hat{y}(t|h)\|_{\Sigma}^{2} + \frac{\lambda_{H}}{\alpha} \|\mathcal{H}(h)\mathcal{H}(h)^{\top}\|_{*}$ Setup: Random MIMO systems, 5 inputs/5 outputs, 200 MC runs, N = 500
Impulse Response Fit: $\mathcal{F}(\hat{h}) = \frac{100}{pm} \sum_{i=1}^{p} \sum_{j=1}^{m} \left(1 - \frac{\|h_{ij} - \hat{h}_{ij}\|}{\|h_{ij}\|}\right)$

Impulse Response Fit:
$$\mathcal{F}(\hat{h}) = \frac{100}{pm} \sum_{i=1}^{p} \sum_{j=1}^{m} \left(1 - \frac{\|h_{ij} - \hat{h}_{ij}\|}{\|h_{ij}\|}\right)$$

Impulse Response Fit:
$$\mathcal{F}(\hat{h}) = \frac{100}{pm} \sum_{i=1}^{p} \sum_{j=1}^{m} \left(1 - \frac{\|h_{ij} - \hat{h}_{ij}\|}{\|h_{ij}\|}\right)$$

Impulse Response Fit:
$$\mathcal{F}(\hat{h}) = \frac{100}{pm} \sum_{i=1}^{p} \sum_{j=1}^{m} \left(1 - \frac{\|h_{ij} - \hat{h}_{ij}\|}{\|h_{ij}\|}\right)$$

Impulse Response Fit:
$$\mathcal{F}(\hat{h}) = \frac{100}{pm} \sum_{i=1}^{p} \sum_{j=1}^{m} \left(1 - \frac{\|h_{ij} - \hat{h}_{ij}\|}{\|h_{ij}\|}\right)$$

Setup:

Impulse Response Fit:
$$\mathcal{F}(\hat{h}) = \frac{100}{pm} \sum_{i=1}^{p} \sum_{j=1}^{m} \left(1 - \frac{\|h_{ij} - \hat{h}_{ij}\|}{\|h_{ij}\|}\right)$$

Impulse Response Fit:
$$\mathcal{F}(\hat{h}) = \frac{100}{\rho m} \sum_{i=1}^{p} \sum_{j=1}^{m} \left(1 - \frac{\|h_{ij} - \hat{h}_{ij}\|}{\|h_{ij}\|}\right)$$

Impulse Response Fit:
$$\mathcal{F}(\hat{h}) = \frac{100}{pm} \sum_{i=1}^{p} \sum_{j=1}^{m} \left(1 - \frac{\|h_{ij} - \hat{h}_{ij}\|}{\|h_{ij}\|}\right)$$

Impulse Response Fit:
$$\mathcal{F}(\hat{h}) = \frac{100}{pm} \sum_{i=1}^{p} \sum_{j=1}^{m} \left(1 - \frac{\|h_{ij} - \hat{h}_{ij}\|}{\|h_{ij}\|}\right)$$

Impulse Response Fit:
$$\mathcal{F}(\hat{h}) = \frac{100}{pm} \sum_{i=1}^{p} \sum_{j=1}^{m} \left(1 - \frac{\|h_{ij} - \hat{h}_{ij}\|}{\|h_{ij}\|}\right)$$

Setup:

Fixed SIMO systems, 1 input/3 output, 200 MC runs, N = 500

Setup:

Fixed SIMO systems, 1 input/3 output, 200 MC runs, N = 500

• We have derived a new Gaussian prior to jointly enforce stability and low-complexity

- We have derived a new Gaussian prior to jointly enforce stability and low-complexity
- We have designed an iterative estimation algorithm

- We have derived a new Gaussian prior to jointly enforce stability and low-complexity
- We have designed an iterative estimation algorithm
- Numerical experiments show that our algorithm outperforms

- We have derived a new Gaussian prior to jointly enforce stability and low-complexity
- We have designed an iterative estimation algorithm
- Numerical experiments show that our algorithm outperforms
 - \bullet Non-parametric Bayesian method using only Stable-Spline prior (on $\ensuremath{\mathsf{MIMO}}$ systems)

- We have derived a new Gaussian prior to jointly enforce stability and low-complexity
- We have designed an iterative estimation algorithm
- Numerical experiments show that our algorithm outperforms
 - Non-parametric Bayesian method using only Stable-Spline prior (on MIMO systems)
 - Classical and state-of-the-art parametric methods (especially in presence of few data)

Thanks for your attention

H. Hjalmarsson, J. S. Welsh, and C. R. Rojas. "entification of Box-Jenkins models using structured ARX models and nuclear norm relaxation". In: *Proc. of SYSID*. 2012, pp. 322–327.

L. Ljung. System Identification - Theory for the User. 2nd. Upper Saddle River, N.J.: Prentice-Hall, 1999.

K. Mohan and M. Fazel. "Reweighted nuclear norm minimization with application to system identification". In: *American Control Conference (ACC), 2010.* IEEE. 2010, pp. 2953–2959.

G. Pillonetto and G. De Nicolao. "A new kernel-based approach for linear system identification". In: *Automatica* 46.1 (2010), pp. 81–93.

Publications

G. Prando and A. Chiuso. "Model reduction for linear Bayesian System Identification". In: *Proc. of IEEE CDC*. 2015.

G. Prando, A. Chiuso, and G. Pillonetto. "Bayesian and regularization approaches to multivariable linear system identification: the role of rank penalties". In: *Proc. of IEEE CDC*. Los Angeles, 2014.

G. Prando, A. Chiuso, and G. Pillonetto. "Maximum Entropy vector kernels for MIMO system identification". In: *Automatica* 79 (2017), pp. 326 –339.

G. Prando, G. Pillonetto, and A. Chiuso. "The role of rank penalties in linear system identification". In: Proc. of 17th IFAC Symposium on System Identification, SYSID, Beijing. 2015.

G. Prando et al. "Classical vs. Bayesian methods for linear system identification: point estimators and confidence sets". In: *Proc. of ECC*. 2016.

5

G. Prando, D. Romeres, and A. Chiuso. "Online Identification of Time-Varying Systems: a Bayesian approach". In: *Proc. of IEEE CDC*. 2016.

D. Romeres et al. "On-line Bayesian System Identification". In: Proc. of ECC. 2016.