Topics on geometric integration

Giulia Ortolan

PhD Candidate

Department of Information Engineering, University of Padova

April 18, 2011

Numerical integration

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces

Numerical method

$$x_{k+1} = \Phi(x_k; h)$$

Relevant aspects

- precision of the solution
- computational effort
- o preservation of the properties of the exact flow

Numerical integration

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces

Numerical method

$$x_{k+1} = \Phi(x_k; h)$$

Relevant aspects

- precision of the solution
- computational effort
- $\circ\,$ preservation of the properties of the exact flow

...crucial for long time simulation!

Geometric integrators

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces Some properties of the continuous systems preserved by the flow are:

- o energy
- symmetry
- momentum
- reversibility
- symplectic form
- configuration space

Area preservation of the flow of Hamiltonian systems. Source: Hairer, Lubich, Wanner, *Geometric Numeric Integration*, Springer.

Geometric integrators are built in order to inherit exactly some properties of the continuous equation.

Introduction

Long-time stability of rigid body integrators

2 Numerical integration on homogeneous spaces

Long-time stability of rigid body integrators

Long-time stability of rigid body integrators

Dynamics of a Hamiltonian system

Long-time stability of rigid body integrators

Lagrangian $L(\mathbf{q}, \dot{\mathbf{q}}) = \frac{1}{2} \dot{\mathbf{q}}^T \mathbb{I} \dot{\mathbf{q}} - V(\mathbf{q}).$ $\delta \int L(\mathbf{q},\dot{\mathbf{q}})dt = 0$, null variations at the endpoints Equations of motion: $\frac{d}{dt}\frac{\partial L}{\partial \dot{\mathbf{a}}} - \frac{\partial L}{\partial \mathbf{a}} = \frac{\partial V}{\partial \mathbf{a}}$. Legendre transform $\mathbf{p} = \frac{\partial L}{\partial \dot{\mathbf{q}}}$.

Hamiltonian $H(\mathbf{q}, \mathbf{p}) = \frac{1}{2}\mathbf{p}^T \mathbb{I}^{-1}\mathbf{p} + V(\mathbf{q}).$ Equations of motion: $\begin{cases} \dot{\mathbf{p}} = \frac{\partial H}{\partial \mathbf{q}}(\mathbf{q}, \mathbf{p}) \\ \vdots \qquad \partial H \end{cases}$

$$\dot{\mathbf{q}} = -rac{\partial H}{\partial \mathbf{p}}(\mathbf{q},\mathbf{p})$$

Symplecticity of Hamiltonian flow

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces A *symplectic form* is a non-degenerate skew-symmetric bilinear form on a manifold.

Canonical symplectic form Ω is a unique two-form defined on the cotangent bundle T^*Q :

$$\Omega = \sum_{i=1}^n d\mathbf{q}^i \wedge d\mathbf{p}_i$$

Symplecticity of Hamiltonian flow

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces A *symplectic form* is a non-degenerate skew-symmetric bilinear form on a manifold.

Canonical symplectic form Ω is a unique two-form defined on the cotangent bundle T^*Q :

$$\Omega = \sum_{i=1}^n d\mathbf{q}^i \wedge d\mathbf{p}_i$$

The flow $\mathbf{y}(t) = \phi_t(\mathbf{y}_0)$ of every Hamiltonian system denotes a canonical transformation $\forall t > 0$, that is,

$$\phi_t^*\Omega = \Omega, \ \forall t > 0.$$

Symplectic integrator

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces

Energy behavior

A symplectic integrator is an exact integrator for a modified Hamiltonian system.

Thus, a symplectic method of order *p* nearly preserves the energy of the original system for exponentially long times **[Benettin and Giorgilli, 1994]**:

Nearly energy conservation. Source: Marsden and West, *Discrete Mechanics* and Variational Integrators, Acta Numerica, 2001.

$$\mathcal{H}(\mathbf{y}_n) = \mathcal{H}(\mathbf{y}_0) + \mathcal{O}(h^p), ext{ for } nh \leq e^{rac{h_0}{2h}}$$

Variational integrators

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces

Discrete Lagrangian

$$\mathcal{L}_d(\mathbf{q}_0,\mathbf{q}_1) \approx \int_{t_0}^{t_1} \mathcal{L}(\mathbf{q},\dot{\mathbf{q}}) dt.$$

Discrete Euler-Lagrange equation (DEL)

$$\mathbf{D}_2 L_d(\mathbf{q}_{k-1},\mathbf{q}_k) + \mathbf{D}_1 L_d(\mathbf{q}_k,\mathbf{q}_{k+1}) = 0$$

Long-time stability of rigid body integrators

Variational integrators

Discrete Lagrangian

$$L_d(\mathbf{q}_0,\mathbf{q}_1) \approx \int_{t_0}^{t_1} L(\mathbf{q},\dot{\mathbf{q}}) dt.$$

Discrete Euler-Lagrange equation (DEL)

$$\mathbf{D}_2 L_d(\mathbf{q}_{k-1},\mathbf{q}_k) + \mathbf{D}_1 L_d(\mathbf{q}_k,\mathbf{q}_{k+1}) = 0$$

Variational integrators yield to:

- symplecticity (iff)
- good energy behavior
- momentum conservation (in presence of symmetry)

Conjugate symplecticity

Conjugate method

$$\Phi_h = \chi_h^{-1} \circ \Psi_h \circ \chi_h,$$

where $\chi_h(x) = x + \mathcal{O}(h^s)$.

Even if a method is not symplectic, it can still be conjugate symplectic, and sharing the same long-time excellent behavior.

In particular, the error on the Hamiltonian again remains bounded over exponentially long times:

$$H(\mathbf{y}_n) = H(\mathbf{y}_0) + \mathcal{O}(h^{\min\{s,p\}}) \text{ for } nh \leq e^{\frac{h_0}{2h}}.$$

Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces

Lagrangian formulation

The configuration is described by a couple

$$(\mathbf{R}, \boldsymbol{\omega}) \in TSO(3) \simeq SO(3) imes \mathfrak{so}(3),$$

where

- $\mathbf{R} \in SO(3)$ is the attitude;
- $\circ \ oldsymbol{\omega} \in \mathbb{R}^3$ is the body angular velocity.

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces **Lagrangian formulation** Configuration space SO(3) × $\mathfrak{so}(3)$ $\ell(\mathbf{R}, \omega) = \frac{1}{2} \omega^T \mathbb{I} \omega - V(\mathbf{R})$

 ${\mathbb I}$ is the inertia matrix (symmetric positive definite).

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces Lagrangian formulation Configuration space $SO(3) \times \mathfrak{so}(3)$

$$\ell(\mathsf{R},\omega) = \underbrace{\frac{1}{2}\omega^{T}\mathbb{I}\omega}_{} - V(\mathsf{R})$$

kinetic energy

 \mathbb{I} is the inertia matrix (symmetric positive definite).

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces **Lagrangian formulation** Configuration space $SO(3) \times \mathfrak{so}(3)$

$$\ell(\mathbf{R}, \omega) = \underbrace{\frac{1}{2} \omega^T \mathbb{I} \omega}_{\text{kinetic energy}} - \underbrace{V(\mathbf{R})}_{\text{potential energy}}$$

 ${\mathbb I}$ is the inertia matrix (symmetric positive definite).

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces **Lagrangian formulation** Configuration space $SO(3) \times \mathfrak{so}(3)$

$$\ell(\mathbf{R}, \boldsymbol{\omega}) = \frac{1}{2} \boldsymbol{\omega}^T \mathbb{I} \boldsymbol{\omega} - V(\mathbf{R})$$

Equations of motion:
$$\begin{cases} \dot{\mathbf{R}} = \mathbf{R} \, \hat{\boldsymbol{\omega}} \\ \mathbb{I} \, \dot{\boldsymbol{\omega}} + \boldsymbol{\omega} \times \mathbb{I} \, \boldsymbol{\omega} = \tau(\mathbf{R}). \end{cases}$$

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces **Lagrangian formulation** Configuration space SO(3) × so(3) $\ell(\mathbf{R}, \omega) = \frac{1}{2}\omega^{T}\mathbb{I}\omega - V(\mathbf{R})$ Equations of motion: $\begin{cases} \dot{\mathbf{R}} = \mathbf{R}\widehat{\omega} &\leftarrow \text{reconstruction equation} \\ \mathbb{I}\widehat{\omega} + \omega \times \mathbb{I}\omega = \tau(\mathbf{R}). \end{cases}$

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces **Lagrangian formulation** Configuration space SO(3) × so(3) $\ell(\mathbf{R}, \omega) = \frac{1}{2} \omega^T \mathbb{I} \omega - V(\mathbf{R})$ Equations of motion: $\begin{cases} \dot{\mathbf{R}} = \mathbf{R} \, \hat{\omega} \\ \mathbb{I} \, \dot{\omega} + \omega \times \mathbb{I} \, \omega = \tau(\mathbf{R}). \leftarrow \text{Euler-Lagrange} \\ \text{equation} \end{cases}$

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces **Lagrangian formulation** Configuration space SO(3) × so(3) $\ell(\mathbf{R}, \omega) = \frac{1}{2} \omega^T \mathbb{I} \omega - V(\mathbf{R})$ Equations of motion: $\begin{cases} \dot{\mathbf{R}} = \mathbf{R} \, \widehat{\omega} \\ \mathbb{I} \, \dot{\omega} + \omega \times \mathbb{I} \, \omega = \tau(\mathbf{R}). \end{cases}$ **Legendre transform** $\mu = \frac{\partial \ell}{\partial \omega} \in \mathfrak{so}^*(3).$

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces **Lagrangian formulation** Configuration space $SO(3) \times \mathfrak{so}(3)$

$$\ell(\mathbf{R}, \boldsymbol{\omega}) = rac{1}{2} \boldsymbol{\omega}^{\mathsf{T}} \mathbb{I} \, \boldsymbol{\omega} \ - \ V(\mathbf{R})$$

Equations of motion: $\begin{cases} \dot{\mathbf{R}} = \mathbf{R} \, \hat{\boldsymbol{\omega}} \\ \pi &= \mathbf{R} \, \hat{\boldsymbol{\omega}} \end{cases}$

$$\left(\mathbb{I}\,\omega + \omega \times \mathbb{I}\,\omega = \tau(\mathbf{R})\right)$$

Legendre transform $\mu = \frac{\sigma}{\partial \omega} \in \mathfrak{so}^*(3).$

Hamiltonian formulation

The configuration is described by a couple

$$(\mathbf{R}, oldsymbol{\mu}) \in \mathcal{T}^* \mathsf{SO}(3) \simeq \mathsf{SO}(3) imes \mathfrak{so}^*(3),$$

where

- $\mathbf{R} \in SO(3)$ is the attitude;
- $\circ \ oldsymbol{\mu} \in \mathbb{R}^3$ is the body angular momentum.

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces

Lagrangian formulation Configuration space $SO(3) \times \mathfrak{so}(3)$ $\ell(\mathbf{R},\omega) = rac{1}{2}\omega^T \mathbb{I}\omega - V(\mathbf{R})$ Equations of motion: $\begin{cases} \dot{\mathbf{R}} = \mathbf{R}\,\hat{\boldsymbol{\omega}} \\ \mathbb{I}\,\dot{\boldsymbol{\omega}} + \boldsymbol{\omega} \times \mathbb{I}\,\boldsymbol{\omega} = \tau(\mathbf{R}). \end{cases}$ Legendre transform $\mu = \frac{\partial \ell}{\partial \omega} \in \mathfrak{so}^*(3).$ **Hamiltonian formulation** Phase space $SO(3) \times \mathfrak{so}^*(3)$. Equations of motion: $\begin{cases} \mathbf{R} = \mathbf{R} \, \dot{\boldsymbol{\omega}} \\ \boldsymbol{\mu} = \frac{\partial \ell}{\partial \boldsymbol{\omega}} \\ \dot{\boldsymbol{\mu}} = \operatorname{ad}_{\boldsymbol{\omega}}^* \boldsymbol{\mu} + \mathbf{R} \frac{\partial \ell}{\partial \mathbf{R}}. \end{cases}$

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces

Lagrangian formulation Configuration space $SO(3) \times \mathfrak{so}(3)$ $\ell(\mathbf{R},\omega) = rac{1}{2}\omega^T \mathbb{I}\omega - V(\mathbf{R})$ Equations of motion: $\begin{cases} \dot{\mathbf{R}} = \mathbf{R}\,\hat{\boldsymbol{\omega}} \\ \mathbb{I}\,\dot{\boldsymbol{\omega}} + \boldsymbol{\omega} \times \mathbb{I}\,\boldsymbol{\omega} = \tau(\mathbf{R}). \end{cases}$ Legendre transform $\mu = \frac{\partial \ell}{\partial \omega} \in \mathfrak{so}^*(3).$ **Hamiltonian formulation** Phase space $SO(3) \times \mathfrak{so}^*(3)$. Equations of motion: $\begin{cases} \mathbf{R} = \mathbf{R} \, \hat{\omega} \\ \mu = \frac{\partial \ell}{\partial \omega} \\ \dot{\mu} = \operatorname{ad}_{\omega}^* \mu + \mathbf{R} \frac{\partial \ell}{\partial \mathbf{R}}. \leftarrow \begin{array}{l} \text{Lie-Poisson} \\ \text{equation} \end{cases}$

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces

Lagrangian formulation Configuration space $SO(3) \times \mathfrak{so}(3)$ $\ell(\mathbf{R},\omega) = \frac{1}{2}\omega^T \mathbb{I}\omega - V(\mathbf{R})$ Equations of motion: $\begin{cases} \dot{\mathbf{R}} = \mathbf{R}\,\hat{\boldsymbol{\omega}} \\ \mathbb{I}\,\dot{\boldsymbol{\omega}} + \boldsymbol{\omega} \times \mathbb{I}\,\boldsymbol{\omega} = \tau(\mathbf{R}). \end{cases}$ Legendre transform $\mu = \frac{\partial \ell}{\partial \omega} \in \mathfrak{so}^*(3).$ **Hamiltonian formulation** Phase space $SO(3) \times \mathfrak{so}^*(3)$. Equations of motion: $\begin{cases} \dot{\mathbf{R}} = \mathbf{R} \, \hat{\omega} \\ \mu = \frac{\partial \ell}{\partial \omega} \\ \dot{\mu} = \operatorname{ad}_{\omega}^{*} \mu + \mathbf{R} \frac{\partial \ell}{\partial \mathbf{R}}. \end{cases}$ Energy: $H(\mathbf{R}, \mu) = \frac{1}{2} \mu^{T} \mathbb{I}^{-1} \mu + V(\mathbf{R}).$

Survey: rigid body integrators

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces

Algorithm	Year	Free rigid body			Rigid body with generic potential		
		Symplectic	Energy	Momentum	Symplectic	Energy	Momentum
Lie-Newmark	1988	?			?		
Algo_1	1991		√			?	
Algo_C1	1991		1	√		?	?
Austin et al.	1993		1	1		?	?
Lewis & Simo	1994	✓	1	✓			
RATTLE	1994	✓	√	✓	✓	nearly	√
Variational	1998	✓	nearly	✓	✓	nearly	✓
LIEMID(EA)	2005	?			?		
PRK	2007	?	√	✓	?	?	?
MCG	2007	?	1		?	?	
NEW3	2010	?		✓	?		

Synoptic table of the most relevant rigid body integrators. Their geometric properties are highlighted.

Numerical experiment

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces

Distance function $\mathsf{Define}\ \mathrm{dist}:\mathsf{SO}(3)\times\mathsf{SO}(3)\to\mathbb{R}$

$$\operatorname{dist}(\mathbf{R}_1, \mathbf{R}_2) = \sqrt{2\operatorname{tr}(I - \mathbf{R}_2^T \mathbf{R}_1)}$$

Potential energy

$$V_{\alpha}(\mathbf{R}) = (\operatorname{dist}(\mathbf{R}, I) - 1)^2 - \frac{lpha}{\operatorname{dist}(\mathbf{R}, \mathbf{R}_m)}.$$

Numerical experiment

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces

Distance function $\mathsf{Define}\ \mathrm{dist}:\mathsf{SO}(3)\times\mathsf{SO}(3)\to\mathbb{R}$

$$\operatorname{dist}(\mathbf{R}_1, \mathbf{R}_2) = \sqrt{2\operatorname{tr}(I - \mathbf{R}_2^T \mathbf{R}_1)}$$

Potential energy

$$V_{\alpha}(\mathbf{R}) = \underbrace{\left(\operatorname{dist}(\mathbf{R}, I) - 1\right)^{2}}_{\text{bounded potential}} - \frac{\alpha}{\operatorname{dist}(\mathbf{R}, \mathbf{R}_{m})}.$$

Numerical experiment

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces

Distance function $\mathsf{Define}\ \mathrm{dist}:\mathsf{SO}(3)\times\mathsf{SO}(3)\to\mathbb{R}$

$$\operatorname{dist}(\mathbf{R}_1, \mathbf{R}_2) = \sqrt{2\operatorname{tr}(I - \mathbf{R}_2^T \mathbf{R}_1)}$$

Potential energy

$$V_{\alpha}(\mathbf{R}) = (\operatorname{dist}(\mathbf{R}, l) - 1)^{2} - \underbrace{\frac{\alpha}{\operatorname{dist}(\mathbf{R}, \mathbf{R}_{m})}}_{Coulomb \text{ potential}}$$

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces Minimum values for the potential attained in

```
S \stackrel{\mathsf{def}}{=} \{ \mathbf{R} \in \mathsf{SO}(3) : \operatorname{dist}(\mathbf{R}, I) = 1 \}.
```

 $S \times \{0\}$ is stable in the sense of Lyapunov.

Potential field with $\alpha = 0$ in the angle/axis representation.

$\alpha \neq \mathbf{0}$

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces If α is sufficiently small and \mathbf{R}_m is sufficiently far, S gets sligthly perturbated into S_{α} , a set of local minima.

 $S_{\alpha} \times \{0\}$ inherits the same stability properties.

Potential field with $\alpha \neq 0$ in the angle/axis representation.

Tested algorithms

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces

- Explicit Lie-Newmark method (ELN)
- Trapezoidal Lie-Newmark method (TLN)
- Krysl's explicit Lie-Midpoint algorithm (LIEMID[EA])
- Partitioned Runge-Kutta Munthe-Kaas method (PRK)
- Modified Crouch-Grossman method (MCG)
- Koziara-Bicanic algorithm (NEW3)
- Variational Lie-Verlet algorithm (VLV)

Energy behaviour

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces

Energy behavior with the two algorithms, for different timesteps: h = 0.125 [s] and h = 0.25 [s].

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces • (conjugate-)symplecticity as a key property for the long-time behavior of numerical integrators

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces

- (conjugate-)symplecticity as a key property for the long-time behavior of numerical integrators
- easy-to-implement numerical experiment that has proven effective in detecting the possible energy drift of a rigid body integrator

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces

- (conjugate-)symplecticity as a key property for the long-time behavior of numerical integrators
- easy-to-implement numerical experiment that has proven effective in detecting the possible energy drift of a rigid body integrator
- o necessity test for (conjugate-)symplecticity

Numerical integration on homogeneous spaces

2 Numerical integration on homogeneous spaces

Introduction

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces

Unitary sphere \mathbb{S}^2

$$\mathbb{S}^2 = \{ \mathbf{q} \in \mathbb{R}^3 | \| \mathbf{q} \| = 1 \}.$$

Many classical and interesting mechanical systems evolve on the 2-sphere or on a product of 2-spheres.

Examples Double spherical pendulum, interconnection of spherical pendulums, elastic rod.

The configuration of the system on $(\mathbb{S}^2)^n$ is usually described using 2n angles or n unitary constraints; these representations should be however avoided, since they yield additional complexity in the computation.

Geometric approach

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces

Homogeneous space Be G a group.

A homogeneous space for G is a non-empty topological space X on which G acts in a transitive way.

 \mathbb{S}^2 is a homogeneous space under the action of SO(3).

Since SO(3) acts transitively on \mathbb{S}^2 , we can lift the problem from the configuration space to the action space, that is, we can solve for a trajectory $\mathbf{R}(t) \subset SO(3)$ which generates the actual flow:

 $\mathbf{q}(t) = \mathbf{R}(t)\mathbf{q}(0)$

Problems arising

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces The action of SO(3) on \mathbb{S}^2 is **not free**.

Isotropy group

$$\mathcal{H}_{\mathbf{q}} = \{\mathbf{R} \in \mathsf{SO}(3) | \mathbf{R}\mathbf{q} = \mathbf{q}\}$$

 \mathcal{H}_q depends on the current configuration $q \in \mathbb{S}^2$. Therefore a given flow on \mathbb{S}^2 corresponds to continuous families of flows on SO(3).

To our knowledge, in literature there exist no methods to describe in a unique way the flow on the quotient space SO(3)/ \mathcal{H}_q .

Variational approach

Giulia)rtolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces

Lagrangian

The configuration is described by $(\mathbf{q}_i, \dot{\mathbf{q}}_i), i = 1, ..., n$, where

$$ullet$$
 $\mathbf{q}_i\in\mathbb{S}^2;$
 $ullet$ $\dot{\mathbf{q}}_i\in\mathcal{T}_{\mathbf{q}_i}\mathbb{S}^2,~\dot{\mathbf{q}}_i\perp\mathbf{q}_i.$

Variational approach

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces **Lagrangian** Configuration space $T(\mathbb{S}^2)^n$.

$$\mathcal{L}(\mathbf{q}_1,\ldots,\mathbf{q}_n,\dot{\mathbf{q}}_1,\ldots,\dot{\mathbf{q}}_n) = \sum_{i=1}^n \frac{1}{2} \dot{\mathbf{q}}_i^T \mathbb{I} \dot{\mathbf{q}}_i - V(\mathbf{q}_1,\ldots,\mathbf{q}_n)$$

Variational approach

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces **Lagrangian** Configuration space $T(\mathbb{S}^2)^n$.

$$\mathcal{L}(\mathbf{q}_1,\ldots,\mathbf{q}_n,\dot{\mathbf{q}}_1,\ldots,\dot{\mathbf{q}}_n) = \sum_{i=1}^n \frac{1}{2} \dot{\mathbf{q}}_i^T \mathbb{I} \dot{\mathbf{q}}_i - V(\mathbf{q}_1,\ldots,\mathbf{q}_n)$$

Equations of motion (Lee *et al.*, 2009) on $T(\mathbb{S}^2)^n$:

$$\begin{cases} \mathbb{I}_{ii}\dot{\boldsymbol{\omega}}_{i} &= \sum_{j=1 \atop j \neq i}^{n} \left(\mathbb{I}_{ij} \mathbf{q}_{i} \times (\mathbf{q}_{j} \times \dot{\boldsymbol{\omega}}_{j}) + \mathbb{I}_{ij} \|\boldsymbol{\omega}_{j}\|^{2} \mathbf{q}_{i} \times \mathbf{q}_{j} \right) - \mathbf{q}_{i} \times \frac{\partial V}{\partial \mathbf{q}_{i}} \\ \dot{\mathbf{q}}_{i} &= \boldsymbol{\omega}_{i} \times \mathbf{q}_{i} \end{cases}$$

where

$$0 = \mathbf{q}_i \cdot \boldsymbol{\omega}_i$$
$$0 = \mathbf{q}_i \cdot \dot{\boldsymbol{\omega}}_i$$

Adapting Lie methods

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces Basic idea:

$$egin{aligned} \dot{\mathbf{q}}_i(t) &= \dot{\mathbf{R}}_i(t) \mathbf{q}_i(0) \ &= oldsymbol{\omega}_i imes \mathbf{q}_i(t) \ &= oldsymbol{\omega}_i imes \mathbf{R}_i(t) \mathbf{q}_i(0) \end{aligned}$$

Dynamics on SO(3):

$$\dot{\mathbf{R}}_{i} = \boldsymbol{\omega}_{i} \times \mathbf{R}_{i}$$

$$\mathbb{I}_{ii} \dot{\boldsymbol{\omega}}_{i} = \sum_{\substack{j=1\\j \neq i}}^{n} (\mathbb{I}_{ij} \mathbf{R}_{i} \mathbf{q}_{i}(0) \times (\mathbf{R}_{j} \mathbf{q}_{j}(0) \times \dot{\boldsymbol{\omega}}_{j}) + \mathbb{I}_{ij} \|\boldsymbol{\omega}_{j}\|^{2} \mathbf{R}_{i} \mathbf{q}_{i}(0) \times \mathbf{R}_{j} \mathbf{q}_{j}(0) - \mathbf{R}_{i} \mathbf{q}_{i}(0) \times \frac{\partial V}{\partial \mathbf{q}_{i}}$$

Adapting Lie methods

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces Basic idea:

$$egin{aligned} \dot{\mathbf{q}}_i(t) &= \dot{\mathbf{R}}_i(t) \mathbf{q}_i(0) \ &= oldsymbol{\omega}_i imes \mathbf{q}_i(t) \ &= oldsymbol{\omega}_i imes \mathbf{R}_i(t) \mathbf{q}_i(0) \end{aligned}$$

Dynamics on SO(3):

$$\dot{\mathbf{R}}_i = \omega_i \times \mathbf{R}_i$$
 ω_i is the spatial
angular velocity!
 $\mathbb{I}_{ii}\dot{\omega}_i = \sum_{\substack{j=1 \ j\neq i}}^n (\mathbb{I}_{ij}\mathbf{R}_i\mathbf{q}_i(0) \times (\mathbf{R}_j\mathbf{q}_j(0) \times \dot{\omega}_j) +$
 $+\mathbb{I}_{ij}||\omega_j||^2\mathbf{R}_i\mathbf{q}_i(0) \times \mathbf{R}_j\mathbf{q}_j(0)) - \mathbf{R}_i\mathbf{q}_i(0) \times \frac{\partial V}{\partial \mathbf{q}_i}$

Numerical example

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces

Double spherical pendulum

Numerical results obtained for the double spherical pendulum: energy and the accuracy precision diagram.

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces • geometric method which preserves the configuration space of the system

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces

- $\circ\,$ geometric method which preserves the configuration space of the system
- off-the-shelf Lie methods can be used for the integration of Hamiltonian systems on unitary spheres, obtaining arbitrarily high order methods

Giulia Ortolan

Introduction

Long-time stability of rigid body integrators

Numerical integration on homogeneous spaces

- geometric method which preserves the configuration space of the system
- off-the-shelf Lie methods can be used for the integration of Hamiltonian systems on unitary spheres, obtaining arbitrarily high order methods

Future work

 $\circ\,$ under what conditions are the properties of the Lie methods preserved also by the flow on $\mathbb{S}^2?$