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Numerical integration

e Numerical method

Ortolan

Introduction Xk+1 = <I>(Xk; h)

Relevant aspects
o precision of the solution
o computational effort

o preservation of the properties of the exact flow
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Numerical integration

e Numerical method

Ortolan

Introduction Xk+1 = <I>(Xk; h)

Relevant aspects
o precision of the solution
o computational effort

o preservation of the properties of the exact flow

...crucial for long time simulation!
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Geometric integrators

@il Some properties of the continuous systems preserved by the flow are:

Ortolan

o energy
Introduction

o symmetry
o momentum
o reversibility

o symplectic form

o configuration space

Area preservation of the flow of Hamiltonian systems.
Source: Hairer, Lubich, Wanner, Geometric Numeric Integration, Springer.

Geometric integrators are built in order to inherit exactly some
properties of the continuous equation.
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Introduction

o Long-time stability of rigid body integrators

© Numerical integration on homogeneous spaces
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Long-time
stability of rigid
body integrators

@ Long-time stability of rigid body integrators



Dynamics of a Hamiltonian system

Lagrangian L(a,4) = 54714 — V(a).

gzt 6/ L(q,q)dt = 0, null variations at the endpoints

stability of rigid
body integrators

Equations of motion: i% — % — g
K " dtoq Oq 0q’

Legendre transform p = g—é.
. . 1
Hamiltonian H(q,p) = EpTH’lp + V(q).
. OH
p= B—q(q, P)
Equations of motion:
OH

q= —a—p(q,p)
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Symplecticity of Hamiltonian flow

A symplectic form is a non-degenerate skew-symmetric bilinear form
on a manifold.

Canonical symplectic form € is a unique two-form defined on the
AT cotangent bundle T*Q:

stability of rigid
body integrators

n
Q= Z dq’ A dp;
i=1
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Symplecticity of Hamiltonian flow

A symplectic form is a non-degenerate skew-symmetric bilinear form
on a manifold.

Canonical symplectic form € is a unique two-form defined on the
AT cotangent bundle T*Q:

stability of rigid
body integrators

n
Q= Z dq’ A dp;
i=1

The flow y(t) = ¢+(yo) of every Hamiltonian system denotes a
canonical transformation Vt > 0, that is,

Q=0Q, Vt>0.
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Long-time
stability of rigid
body integrators

Energy behavior
A symplectic integrator is

an exact integrator for

a modified Hamiltonian system.

Thus, a symplectic method of order p

0.05 [[— Variational Nswmgark P
nearly preserves the energy . L
.. L] 50 100 150 200 250 300
of the original system Time
. . Nearly energy conservation.
fOI’ eXponentIa”y |0ng tlmeS Source: Marsden and West, Discrete Mechanics

and Variational Integrators, Acta Numerica,
2001.

[Benettin and Giorgilli, 1994]:

H(yn) = H(yo) + O(hP), for nh < e




Variational integrators

Discrete Lagrangian

Long-time
stability of rigid
body integrators

t1
La(qo,q1) = / L(q,q)dt.

to

Discrete Euler-Lagrange equation (DEL)

D; La(qk—1,9%) + D1 La(ak, gr41) =0
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Variational integrators

Discrete Lagrangian

t1
Lg(qo, q1) ~ / L(q,q)dt.

to

Long-time
stability of rigid
body integrators

Discrete Euler-Lagrange equation (DEL)

D; La(qk—1,9%) + D1 La(ak, gr41) =0

Variational integrators yield to:
o symplecticity (iff)
o good energy behavior

o momentum conservation (in presence of symmetry)
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Conjugate symplecticity

Conjugate method

-1
&y =x;, oWVphoxp,
Long-time
stability of rigid

body integrators where xp(x) = x + O(h*).

Even if a method is not symplectic, it can still be conjugate
symplectic, and sharing the same long-time excellent behavior.

In particular, the error on the Hamiltonian again remains bounded
over exponentially long times:

H(ys) = H(yo) + O(H""*#)) for nh < &3 J
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Rigid body dynamics of rotation (trivialized)

Lagrangian formulation

The configuration is described by a couple

Long-time

stability of rigid (R,w) = TSO(3) o~ 50(3) X 50(3),

body integrators

where
o R € SO(3) is the attitude;
o w € R3 is the body angular velocity.
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Rigid body dynamics of rotation (trivialized)

Lagrangian formulation Configuration space SO(3) x s0(3)

E(R,w):%wT]Iw — V(R)

Long-time
stability of rigid
body integrators

I is the inertia matrix (symmetric positive definite).
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Rigid body dynamics of rotation (trivialized)

Lagrangian formulation Configuration space SO(3) x s0(3)

E(R,w):%wT]Iw — V(R)
Long-time N ,

stability of rigid .
body integrators kinetic energy

I is the inertia matrix (symmetric positive definite).
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Rigid body dynamics of rotation (trivialized)

Lagrangian formulation Configuration space SO(3) x s0(3)

E(R,w):%wT]Iw — V(R)

) ~—
Long-time N . )
potential energy

stability of rigid .
body integrators kinetic energy

I is the inertia matrix (symmetric positive definite).
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Rigid body dynamics of rotation (trivialized)

Lagrangian formulation Configuration space SO(3) x s0(3)

E(R,w):%wT]Iw — V(R)

Long-time
stability of rigid
body integrators

R=R&

Equations of motion: .
Iw+w xTw=r7(R).
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Rigid body dynamics of rotation (trivialized)

Lagrangian formulation Configuration space SO(3) x s0(3)

E(R,w):%wT]Iw — V(R)

Long-time
stability of rigid
body integrators

R=R& <— reconstruction equation

Equations of motion: .
Iw+w xTw=r7(R).
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Rigid body dynamics of rotation (trivialized)

Lagrangian formulation Configuration space SO(3) x s0(3)

E(R,w):%wT]Iw — V(R)

stability of rigid = A~
btody \’t:tegratgors R == R w
ITw+ w x [w = 7(R). < Euler-Lagrange

Equations of motion: {
equation
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Rigid body dynamics of rotation (trivialized)

Lagrangian formulation Configuration space SO(3) x s0(3)

E(R,w):%wT]Iw — V(R)

Long-time
stability of rigid
body integrators

R=R&

Equations of motion: .
Iw+w xTw=r7(R).

Legendre transform p = g—‘i € 50%(3).
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Rigid body dynamics of rotation (trivialized)

Lagrangian formulation Configuration space SO(3) x s0(3)
(R, w) = %wT]Iw — V(R)

Long-time
stability of rigid
body integrators

R=R&

Equations of motion: .
Iw+w xTw=r7(R).

Legendre transform p = g—‘i € 50%(3).

Hamiltonian formulation
The configuration is described by a couple

(R, ) € T*SO(3) ~ SO(3) x s50*(3),
where
o R € S0(3) is the attitude;
o p € R3 is the body angular momentum.

9/23



Rigid body dynamics of rotation (trivialized)

Lagrangian formulation Configuration space SO(3) x s0(3)

E(R,w):%wT]Iw — V(R)

Long-time
stability of rigid
body integrators

R=R&

Equations of motion: .
Iw+w xTw=r7(R).

Legendre transform p = ot € 50%(3).

Ow
Hamiltonian formulation Phase space SO(3) x s0*(3).
R=R&
o

Equations of motion: ¢ ¥ = 9w
L, =ad u+ R ot
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Rigid body dynamics of rotation (trivialized)

Lagrangian formulation Configuration space SO(3) x s0(3)
(R, w) = %wT]Iw — V(R)

Long-time

stability of rigid - o~
btody \'t:tegratgors . . R == R w
Equations of motion: .
Iw+w xTw=r7(R).

Legendre transform p = g—‘i € 50%(3).

Hamiltonian formulation Phase space SO(3) x s0*(3).

R=R®

ol

Equations of motion: ¢ # = o
ot < Lie-Poisson

p=ad pu+R—.
OR equation

9/23



Rigid body dynamics of rotation (trivialized)

Lagrangian formulation Configuration space SO(3) x s0(3)

E(R,w):%wT]Iw — V(R)

Long-time
stability of rigid
body integrators

R=R&

Equations of motion: .
Iw+w xTw=r7(R).

Legendre transform p = ot € 50%(3).

ow
Hamiltonian formulation Phase space SO(3) x s0*(3).
R=R&
o
Equations of motion: ¢ ¥ = 9w
fo=ad’ pu+ R%.
“ OR

1
Energy: H(R, 1) = EuT]I_lu + V(R).
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Ortolan

Long-time
stability of rigid
body integrators

Algorithm Year Free rigid body Rigid bodly with generic potential
Symplectic Energy Momentum Symplectic Energy Momentum

Lie-Newmark 1988 ? ?

Algo_1 1991 v ?

AlgoC1 1991 v v ?

Austin et al. 1993 v v ?

Lewis & Simo 1994 v v v

RATTLE 1994 v v v v nearly v

Variational 1998 v nearly v v nearly v

LIEMID(EA) 2005 ? ?

PRK 2007 ? v v ? ? ?

MCG 2007 ? v ? ?

NEW3 2010 ? v ?

Synoptic table of the most relevant rigid body integrators. Their geometric properties are highlighted.
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Numerical experiment

Distance function Define dist : SO(3) x SO(3) — R

diSt(Rl,Rg) = 2tI‘(I— R;—Rl)
Long-time

stab%lity of rigid

body integrators

Potential energy

(07

V.(R) = (dist(R, /) — 1)* — TR R
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Numerical experiment

Distance function Define dist : SO(3) x SO(3) — R

diSt(Rl,Rg) = 2tI‘(I— R;—Rl)
Long-time

stab%lity of rigid

body integrators

Potential energy

(07

V.(R) = (dist(R, /) — 1)* — TR R

bounded potential
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Numerical experiment

Distance function Define dist : SO(3) x SO(3) — R

diSt(Rl,Rg) = 2tI‘(I— R;—Rl)
Long-time

stab%lity of rigid

body integrators

Potential energy

(07

 dist(R,Rp,)
N— ————

Coulomb potential

V. (R) = (dist(R, /) — 1)°
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Minimum values for the potential attained in

S® (R e 50(3) : dist(R, /) = 1}.

bl gt S x {0} is stable in the sense of Lyapunov.

[ N N )

1)

Potential field with o = 0 in the angle/axis representation.
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If « is sufficiently small and R, is sufficiently far, S gets sligthly
perturbated into S,, a set of local minima.

Long-time
stability of rigid

ety e Sa % {0} inherits the same stability properties.

[ N N )

1)

Potential field with o« +# 0 in the angle/axis representation.
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Tested algorithms

Long-time

sabity of rigd Explicit Lie-Newmark method (ELN)
Trapezoidal Lie-Newmark method (TLN)

Krysl's explicit Lie-Midpoint algorithm (LIEMID[EA])

Partitioned Runge-Kutta Munthe-Kaas method (PRK)

Modified Crouch-Grossman method (MCG)

Koziara-Bicanic algorithm (NEW3)

Variational Lie-Verlet algorithm (VLV)

o

o

o

o

o

O

14 /23



Giulia
Ortolan

Long-time
stability of rigid
body integrators

Energy behaviour

velocity.
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Energy behavior with the two algorithms, for different timesteps: h = 0.125 [s] and h = 0.25 [s].
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Conclusions

Long-time
stability of rigid
body integrators

o (conjugate-)symplecticity as a key property for the long-time
behavior of numerical integrators
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Conclusions

Long-time
stability of rigid

pody ntesrators o (conjugate-)symplecticity as a key property for the long-time
behavior of numerical integrators

o easy-to-implement numerical experiment that has proven
effective in detecting the possible energy drift of a rigid body
integrator
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Conclusions

Long-time
stability of rigid
body integrators

o (conjugate-)symplecticity as a key property for the long-time
behavior of numerical integrators

o easy-to-implement numerical experiment that has proven
effective in detecting the possible energy drift of a rigid body
integrator

o necessity test for (conjugate-)symplecticity

16 /23
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Numerical
integration on
homogeneous
spaces

© Numerical integration on homogeneous spaces



Introduction

Unitary sphere S?
§* = {a € R*[||ql| = 1}.

Many classical and interesting mechanical systems evolve on the
Numerical 2-sphere or on a product of 2-spheres.
integration on

homogeneous Examples Double spherical pendulum, interconnection of spherical
spaces .
pendulums, elastic rod.

The configuration of the system on (S?)" is usually described using
2n angles or n unitary constraints; these representations should be
however avoided, since they yield additional complexity in the
computation.
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Geometric approach

Homogeneous space Be G a group.
A homogeneous space for G is a non-empty topological space X on
which G acts in a transitive way.

S? is a homogeneous space under the action of SO(3). J

Numerical
integration on
homogeneous
spaces

Since SO(3) acts transitively on S?, we can lift the problem from the
configuration space to the action space, that is, we can solve for a
trajectory R(t) C SO(3) which generates the actual flow:
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Problems arising

The action of SO(3) on S? is not free.

Isotropy group

Numerical Hq = {R S SO(3)|Rq = q}

integration on
homogeneous

spaces Hq depends on the current configuration q € S2. Therefore a given
flow on S? corresponds to continuous families of flows on SO(3).

To our knowledge, in literature there exist no methods to describe in
a unique way the flow on the quotient space SO(3)/H,q.

19/23



Variational approach

Lagrangian
The configuration is described by (q;,4q;), i =1,...,n, where
o q €S%
o q; € Tq,S?, d; La;.
Numerical

homogeneous
spaces

The unit sphere 52 with the tangent space TqS2.
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Variational approach

n

Lagrangian Configuration space T (S?)

n
. . 1.4,
L(qla"'aqmql,"'aqn): E EqIT]IqI_ V(ql,"'aqn)
i=1

Numerical
integration on
homogeneous
spaces
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Variational approach

n

Lagrangian Configuration space T (S?)

n
. . 1.4,
L(qla"'uqmql,"'aqn): E EqIT]IqI_ V(ql,"'aqn)
i=1

Numerical
homgeneous Equations of motion (Lee et al., 2009) on T (S?)":
: % : 2 oV
Ligo; =) (]I,-jq,- x (g x wj) + Ljllw;l"ai x qj) X G
i
q; =w; Xq;
where
0=gqi w;
0=q; w;
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Adapting Lie methods

Giulia Basic idea:

Giuliz
Ortolan

= wj X q,-(t)
= w; X R;(t)q;(0)

Numerical
integration on
homogeneous
spaces

Dynamics on SO(3):

R; = w; X R;

Liwoi = ) (I;Riai(0) x (Rya;(0) x wj)+
j=1
=

ov
1yl Riai(0)  Riy(0)) ~ Riay(0) x -

I
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Adapting Lie methods

Basic idea:

= wj X q,-(t)
=w; X R;(t)q,-(O)

Numerical
integration on
homogeneous
spaces

Dynamics on SO(3):
: w;j is the spatial

R; = w; X R; -
angular velocity!
Liwoi = ) (I;Riai(0) x (Rya;(0) x wj)+
j=1
i#i

ov
1yl Riai(0)  Riy(0)) ~ Riay(0) x -

I
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Gl Double spherical pendulum

Total energy
21 o
NMS 10
——— RKMK4
211 ——— RKMKGL4.
——RATTLE ,
10

Numerical 2
integration on
homogeneous 20.9
spaces U -

208 B e |

g feNns
207 -7 | O RKMK4
e I+ RKMKGL4
206 ~|-©O-RATTLE
---0(?)
20.
o 50 100 150 200 107 10°
Timestep [s]

Numerical results obtained for the double spherical pendulum: energy and the accuracy precision diagram.
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Conclusions

o geometric method which preserves the configuration space of the
system

Numerical
integration on
homogeneous
spaces
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Conclusions

o geometric method which preserves the configuration space of the
system

Numerical o off-the-shelf Lie methods can be used for the integration of

integration on

homogeneous Hamiltonian systems on unitary spheres, obtaining arbitrarily
s high order methods
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Conclusions

o geometric method which preserves the configuration space of the
system

Numerical o off-the-shelf Lie methods can be used for the integration of

integration on

homogeneous Hamiltonian systems on unitary spheres, obtaining arbitrarily
s high order methods

Future work

o under what conditions are the properties of the Lie methods
preserved also by the flow on S??
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