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‘a physical world that is richly and invisibly
interwoven with sensors, actuators, displays,

and computational elements, embedded
seamlessly in the everyday objects of our lives,
and connected through a continuous network’

(Weiser, Gold and Brown, 1999)

‘a small world where different kinds of
smart devices are continuously working

to make inhabitants lives more comfortable’
(Cook and Das, 2004)
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set of autonomous entities
that interact among them

to solve problems that are beyond
the capacities and knowledge of

each individual agent
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state parameters:
position
p ∈ Rd

d ∈ {2, 3}
global inertial frame
undirected G = (V, E)

state parameters :
position + attitude
(p,R) ∈ Rd × SO(d)

d ∈ {2, 3}
body frame w.r.t. world frame

un/directed G = (V, E)
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WSNs - Wireless Sensor Networks

large number of
compact and cheap devices

deployed in an area of interest
system state: {pi ∈Rd}n

i=1

local sensing data
from environment

measurements: {mi ∈R}n
i=1

measurements exchange
according to

communication capabilities
G = (V,E)

applications:
global monitoring tasks ranging

from factory automation to ambient assisted living
(event and fault detection)



Clustering Task

network decomposition + data clustering

C1. connectivity
C2. measurement similarity
C3. maximality

A. Cenedese, M. Luvisotto, G. Michieletto. Distributed Clustering Strategies in Industrial Wireless Sensor Networks. IEEE Transactions on Industrial
Informatics, 13(1):228–237, 2017.
G. Bianchin, A. Cenedese, M. Luvisotto, G. Michieletto. Distributed Fault Detection in Sensor Networks via Clustering and Consensus. IEEE 54th
Annual Conference on Decision and Control (CDC), pages 3828–3833, 2015.
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I complexity O(n3)
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Application to Industrial Scenario

• environmental sensing
(temperature monitoring in a structured indoor area)

• factory process monitoring
(measurement fault, timing mismatch, communication fault)

A. Cenedese, M. Luvisotto, G. Michieletto. Distributed Clustering Strategies in Industrial Wireless Sensor Networks. IEEE Transactions on
Industrial Informatics, 13(1): 228–237, 2017.
G. Bianchin, A. Cenedese, M. Luvisotto, G. Michieletto. Distributed Fault Detection in Sensor Networks via Clustering and Consensus. IEEE
54th Annual Conference on Decision and Control (CDC), pages 3828–3833, 2015.
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VSNs - Visual Sensor Networks

collection of spatially distributed
smart camera-devices

system state: {pi,Ri ∈ R3×SO(3)}n
i=1

image acquisition
varying the orientation

variable attitude: {Ri}n
i=1

scene data exchange
if overlapping FoVs

G = (V,E)

applications:
industrial or civil areas surveillance,

perimeter patrolling and control,
intrusion detection and tracking
→ prerequisite: calibrated systems



Attitude Estimation

G. Michieletto, S. Milani, A. Cenedese, G. Baggio. Distributed Camera Calibration for Ad-Hoc Camera Networks via Edge Pruning and Graph
Trasversal Initialization. IEEE 43th International Conference on Acoustic, Speech, and Signal Processing (ICASSP), accepted.
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non-convex

Graph-Based Ad-Hoc Initialization Methods

Single Spanning Tree (SST) +
Multi Paths (MP)

averaged Single Spanning Tree (aSST)
averaged Multi Paths (aMP)



Application Scenario

G. Michieletto, S. Milani, A. Cenedese, G. Baggio. Distributed Camera Calibration for Ad-Hoc Camera Networks via Edge Pruning and
Graph Trasversal Initialization. IEEE 43th International Conference on Acoustic, Speech, and Signal Processing (ICASSP), accepted.
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VSNs - Visual Sensor Networks
Pan-Only cameras

collection of spatially distributed
smart (pan-only) camera-devices

system state: {pi,Ri ∈ R2×SO(2)}n
i=1

∼= {pi,ψi ∈ R2×S1}n
i=1

image acquisition through
rotation around a single axis
variable pan angle: {ψi}n

i=1

scene data exchange
if overlapping FoVs

G = (V,E)

applications:
industrial or civil

perimeter surveillance
→ prerequisite: calibrated systems
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I convergence dependence on control
parameter η : self-loops introduction

I η tuning for optimal performance



Application to Ring Camera Network

M. Fabris, G. Michieletto and A. Cenedese. Distributed Rotation Synchronization in SO(2) for a Camera Network. IEEE 57th Conference on
Decision and Control (CDC), submitted.

6 cameras
(bipartite graph)

7 cameras
(non-bipartite graph)



Perimeter Patrolling

G. Belgioioso, A. Cenedese, G. Michieletto. Distributed partitioning strategies with visual optimization for camera network perimeter patrolling.
IEEE 55th Conference on Decision and Control (CDC), pp. 5912-5917, 2016.
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{A∗i }n
i=1 = minmaxi{T∗lag(Ai)}

s.t. Ai ⊆ Di

∪n
i Ai = L
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• enhancement of visual quality via introduction of centering criterion
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applications:
exploration and mapping, grasping and transportation,

monitoring and surveillance,
cooperative manipulation and human and environment interaction

(real-world deployment)
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static hovering realizability with unidirectional propeller spin

fly at a constant reference position with constant attitude under the constraint u≥ 0

� rank(M) = 3

� ∃u > 0 s.t. Mu = 0

� ∃u≥ 0 s.t. Mu = 0 and Fu 6= 0



Fail-Safe Robustness Analysis

G. Michieletto, M. Ryll and A. Franchi. Control of statically hoverable multi-rotor aerial vehicles and application to rotor-failure robustness for
hexarotors. IEEE International Conference on Robotics and Automation (ICRA), pp. 2747-2752, 2017.
G. Michieletto, M. Ryll and A. Franchi. Fundamental Actuation Properties of Multi-rotors: Force-Moment Decoupling and Fail-safe Robustness.
IEEE Transaction on Robotics, accepted.

fully robustness =
capability of realizing static hover after a propeller loss



Fail-Safe Robustness Analysis

G. Michieletto, M. Ryll and A. Franchi. Control of statically hoverable multi-rotor aerial vehicles and application to rotor-failure robustness for
hexarotors. IEEE International Conference on Robotics and Automation (ICRA), pp. 2747-2752, 2017.
G. Michieletto, M. Ryll and A. Franchi. Fundamental Actuation Properties of Multi-rotors: Force-Moment Decoupling and Fail-safe Robustness.
IEEE Transaction on Robotics, accepted.

fully robustness =
capability of realizing static hover after a propeller loss

23

4

5 6

1

23

4

5 6

1

1
23

4

5
6

collinear star-shaped hexarotor

tilted star-shaped hexarotor

collinear Y-shaped hexarotor



Fail-Safe Robustness Analysis

G. Michieletto, M. Ryll and A. Franchi. Control of statically hoverable multi-rotor aerial vehicles and application to rotor-failure robustness for
hexarotors. IEEE International Conference on Robotics and Automation (ICRA), pp. 2747-2752, 2017.
G. Michieletto, M. Ryll and A. Franchi. Fundamental Actuation Properties of Multi-rotors: Force-Moment Decoupling and Fail-safe Robustness.
IEEE Transaction on Robotics, accepted.

fully robustness =
capability of realizing static hover after a propeller loss

23

4

5 6

1

23

4

5 6

1

1
23

4

5
6

collinear star-shaped hexarotor

tilted star-shaped hexarotor

collinear Y-shaped hexarotor



Static Hover Control

G. Michieletto, M. Ryll and A. Franchi. Control of statically hoverable multi-rotor aerial vehicles and application to rotor-failure robustness for
hexarotors. IEEE International Conference on Robotics and Automation (ICRA), pp. 2747-2752, 2017.
G. Michieletto, A. Cenedese, L. Zaccarian, A. Franchi. Nonlinear Control of Multi-Rotor Aerial Vehicles Based on the Zero-Moment Direction.
IFAC World Congress 2017, pp. 13686–13691, 2017.

UAV stabilization: constant position and attitude, zero linear and angular velocity



Static Hover Control

G. Michieletto, M. Ryll and A. Franchi. Control of statically hoverable multi-rotor aerial vehicles and application to rotor-failure robustness for
hexarotors. IEEE International Conference on Robotics and Automation (ICRA), pp. 2747-2752, 2017.
G. Michieletto, A. Cenedese, L. Zaccarian, A. Franchi. Nonlinear Control of Multi-Rotor Aerial Vehicles Based on the Zero-Moment Direction.
IFAC World Congress 2017, pp. 13686–13691, 2017.

UAV stabilization: constant position and attitude, zero linear and angular velocity

cascaded zero-moment direction based controller

Position

controller

Attitude

controller

Wrench

mapper
GTM
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