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Framework

I Hypotheses: y = {yk ; k ∈ Z} is a zero mean, Rm−valued,
wide-sense stationary and purely non deterministic process

I Input: {yk}Nk=1 is an available finite data sequence
I Aim: Estimate the spectral density Φ(e jϑ) of y

I If Φ is rational, we can find a finitely-parametrized state-space
model for the process

⇓

smoothing, filtering, prediction. . .

I Thus, our aim is estimating rational spectral densities
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Original contribution

Two novel approaches to multivariate spectral estimation:

1. Relative entropy rate estimation

2. Multivariate circulant rational covariance extension

Spectral estimation as a generalized moment problem, that can be solved
efficiently by means of convex optimization techniques
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Relative entropy rate estimation

THREE-like spectral estimation

I We draw inspiration from THREE-like approaches1:

G(z)
G(z)

Φy

sample data
{yi}Ni=1

filter state x(t)

Moment constraints

Ψ

Prior spectral density

d(Φ,Ψ)

Metric

+

+

= Constrained approximation problem

+ Estimate Σ̂ of
Σ := E[xx>]

1

C. I. Byrnes, T. Georgiou, & A. Lindquist. “A new approach to spectral estimation: A
tunable high-resolution spectral estimator”. In: IEEE Trans. Sig. Proc. 49 (2000).
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Relative entropy rate estimation

Spectrum approximation problem

Let G (z) and Σ = Σ> given. Compute

Φ̂ := argmin d(Φ,Ψ) such that
∫

GΦG∗ = Σ

I Key point: choice of d(Φ,Ψ):
1. Variational analysis should lead to a computable solution
2. The solution should have low complexity

I Let y , z be Gaussian processes with densities Φy and Φz . Then,
consider their relative entropy rate

dRER(Φ‖Ψ) =
1
2

∫ π

−π
log det(Φy

−1Φz) + Tr [Φz
−1(Φy − Φz)]

dϑ
2π

I Set d(Φ,Ψ) = dRER(Φ‖Ψ). Spectral estimation is recast as a
convex optimization problem
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Relative entropy rate estimation

RER Spectrum approximation problem

Φ̂ := argmin dRER(Φ‖Ψ) such that
∫

GΦG∗ = Σ

I The solution of the dual problem, Λ̂, exists and it is unique.
I Then,

Φ̂ =
[
Ψ−1 + G∗Λ̂G

]−1
, deg(Φ̂) ≤ degΨ + 2n

while the best one so far available in the multivariate framework is
degΨ + 4n 2

I Λ̂ can be computed via an efficient matricial Newton-like algorithm

2

A. Ferrante, M. Pavon, & F. Ramponi. “Hellinger vs. Kullback-Leibler multivariable
spectrum approximation”. In: IEEE Trans. Aut. Control 53 (2008), pp. 954–967.
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Relative entropy rate estimation

Simulation results
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Comparison of THREE-like approaches (average estimation error).
Bivariate model; 40th order; G(z) with 4 complex pairs of poles equispaced in
[0, π] with radius 0.7; Prior: PEM(3) model.
RER: estimate order = 11; Hellinger: estimate order = 19.
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Relative entropy rate estimation

Simulation results (cont’d)
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Comparison of RER, PEM and N4SID (average estimation error) for short data
record (N = 100)
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Relative entropy rate estimation

Simulation results (cont’d)
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Relative entropy rate estimation

Conclusions

RER (Relative Entropy Rate) estimator

I Spectral estimation as a convex spectrum approximation problem
I The upper bound on the complexity of the solution improves on the

best one so far available in the multivariate framework

I The estimator is effective, especially in case of short data records

I The estimator exhibits high resolution features

13/26



Multivariate spectral estimation
Multivariate circulant rational covariance extension



Multivariate moment problems with applications to spectral estimation and physical layer security in wireless communications
Multivariate spectral estimation

Multivariate Circualant Rational Covariance Extension

Rational covariance extension

Given the sequence Ck := E[y(t + k)y∗(t)], for k = 0, . . . , n find
Cn+1,Cn+2, . . . up to infinity such that

+∞∑
k=−∞

Cke−jkϑ, C−k = C∗k

converges for all ϑ ∈ T to a positive definite spectral density Φ(e jϑ) that
has the rational form

Φ(e jϑ) = P(e jϑ)Q−1(e jϑ).
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Multivariate Circualant Rational Covariance Extension

Our contribution

Circulant Rational Covariance Extension

I A convex optimization-based approach which provides multivariate
rational covariance extension for periodic processes

I Efficient approximating procedure for regular multivariate rational
covariance extension
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Multivariate Circualant Rational Covariance Extension

Circulant rational covariance extension

I Periodic processes as processes indexed on Z2N :

ỹ(−N + 1) ỹy(N)ỹ(0)· · · · · ·

y(0)

y(1)

y(N)

y(-N+1)

Z2N

Process ỹ defined on Z, with period 2N

Process y defined
on [−N + 1,N]
with mod 2N
arithmetics

...
...

y :=


y(−N + 1)

...
y(0)

...
y(N)



I y is the restriction on [−N + 1,N]
of ỹ if and only if its covariance
matrix Σ := E[yy∗] is
block-circulant

Σ =


C0 C∗1 · · · C1
C1 C0 · · · C2
...

...
. . .

...
C∗1 C∗2 · · · C0


︸ ︷︷ ︸

Circ{C0,C1,...,CN ,C∗
N−1,...,C

∗
1 }
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Multivariate Circualant Rational Covariance Extension

Multivariate circulant rational covariance extension - 1

Problem statement
Given the sequence Ck ’s with values in Cm×m, for k = 0, . . . , n, for
n < N, find a rational spectral density Φ = PQ−1 such that∫ π

π

e jkϑΦ(e jϑ)dν(ϑ) =
1
2N

N∑
h=−N+1

ζh
kΦ(ζh) = Ck , k = 0, 1, . . . , n.

Main results:
1. Parametrization of all the solutions in terms of P(ζ)

2. Simultaneous estimation of P and Q based on the available data

I Assumption: P(ζ) = p(ζ)I
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Multivariate Circualant Rational Covariance Extension

Multivariate circulant rational covariance extension - 2

Main Theorem
I Assume P(ζ) = p(ζ)I is given. There exists a unique Q̂(ζ) such that

Φ̂(ζ) := P(ζ)Q̂(ζ)−1 maximizes the generalized entropy

IP(Φ) =

∫ π

−π
P(e jϑ) log detΦ(e jϑ)dν(ϑ)

and solves the circulant covariance extension problem.
I Q̂(ζ) is the unique minimizer of

JP(Q) := 〈C ,Q〉 −
∫ π

−π
P(e jϑ) log detQ(e jϑ)dν(ϑ)

I P̂(ζ) and Q̂(ζ) can be estimated simultaneously by taking into
account logarithmic moments, too.
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Multivariate Circualant Rational Covariance Extension

Regular covariance extension by means of circulant rational
covariance extension

1. It can be proved that, for N →∞, the solution of circulant rational
covariance extension tends to the solution of regular covariance
extension.

2. Circulant rational extension can be implemented efficiently (FFT)

⇓
Circulant rational extension provides a fast approximating procedure

for solving regular rational covariance extension problem
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Multivariate Circualant Rational Covariance Extension

Numerical examples: multivariate AR case

MVAR model of order 8
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I The approximation gets more accurate as N →∞.
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Multivariate Circualant Rational Covariance Extension

Numerical examples: multivariate ARMA case

Zero poles map
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Comparison between
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and
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I Determining P from logarithmic moments yields better results.
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Multivariate Circualant Rational Covariance Extension

Bilateral ARMA models

I After solving the circulant rational covariance extension problem we
end up with a bilateral ARMA model:

n∑
k=−n

Qky(t − k) =
n∑

k=−n

Pke(t − k), t ∈ Z2N

I Open problem: do bilateral ARMA models generalize standard
models for reciprocal processes3?

Reciprocal process of order n
n∑

k=−n

Qky(t − k) = e(t), t ∈ Z2N

3A.J. Krener et al, B.C. Levy et al, A. Chiuso et al, F.P. Carli et al.
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Multivariate Circualant Rational Covariance Extension

Conclusion

Circulant Rational Covariance Extension

I A first step towards rational covariance extension for multivariate
periodic processes

I Fast approximation of regular multivariate rational covariance
extension
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Future Work

Relative Entropy Rate Estimation

I Application to graphical models

Multivariate Circulant Rational Covariance Extension

I Extension to rational models with general P(ζ)

I Connection with reciprocal models
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Determining P from logarithmic moments

I Aim: estimate P based on data only
I Idea: look for the spectral density Φ which maximizes the entropy

gain ∫ π

−π
log detΦ(e jϑ) dν(ϑ)

while satisfying the moment constraints which stem from the
available covariance lags and the logarithmic moments

γk =

∫ π

−π
e jkϑ log detΦ(e jϑ)dν(ϑ), k = 1, 2, . . . , n

I The problem can be solved by minimizing

J(P,Q) := 〈C ,Q〉 −
∫ π

−π
P(e jϑ) log detQ(e jϑ)dν(ϑ)−

〈Γ,P〉+

∫ π

−π
P(e jϑ) log detP(e jϑ)dν(ϑ)
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Framework

Eve (E)

Bob (B)

hBE

Alice (A)

hAE

hAB

Task
Authenticate the source of a messagge in a wireless communication
scenario
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Why physical layer authentication?

A B

E+ +

+

wAE wBE

wB

hAB D

hBE

g

hAE hEB

b̂
I Its performances are not

undermined in case the
attacker has high
computational capabilities.

I It provides theoretical
bounds which are not
affected by the particular
forgery strategy employed
by the attacker.
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Channel security: a hypothesis testing problem

I H0 : legitimate packet;
H1 : forged packet

I α := false alarm
probability;
β := miss detection
probability;

Aim
Compute theoretical bounds on the region of achievable type I and type
II error probabilities.
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Tightest bound on the error region

I We can prove that worst case performance of the security
mechanism can be evaluated by computing

inf
pxv∈Q

D(pxv‖pxy )

I The optimal attacking strategy corresponds to a Gaussian p.d.f. pxvz
with zero mean and covariance matrix

K[ x
v
z

](Z ,C) =

 Kxx KxzK−1
zz Z∗ Kxz

ZK−1
zz K∗

xz ZK−1
zz Z∗ + CC∗ Z

K∗
xz Z∗ Kzz


I An iterative fixed point algorithm was designed, aiming at solving{

C∗(k + 1) = C∗(k)(Z(k)K−1
zz BK−1

zz Z∗(k) + C(k)C∗(k))−1A
Z∗(k + 1) = KzxK−1

xx Kxy + BK−1
zz Z∗(k)(Z(k)K−1

zz BK−1
zz Z(k)∗ + C(k)C∗(k))−1A

I Extensive simulations suggest that the algorithm always finds a
minimum point for the cost function.
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