> C. Masiero Series XXVI Advisor: Prof. Augusto Ferrante

Ph.D. School in Information Engineering, Department of Information Engineering University of Padova

April 11th, 2014

Introduction

Multivariate spectral estimation

Multivariate moment problems with applications to spectral estimation and physical layer security in wireless communications Multivariate spectral estimation

Framework

- ► Hypotheses: y = {y_k; k ∈ Z} is a zero mean, ℝ^m-valued, wide-sense stationary and purely non deterministic process
- ▶ Input: $\{y_k\}_{k=1}^N$ is an available finite data sequence
- Aim: Estimate the spectral density $\Phi(e^{j\vartheta})$ of y
- If Φ is rational, we can find a finitely-parametrized state-space model for the process

 \downarrow smoothing, filtering, prediction...

Thus, our aim is estimating rational spectral densities

Multivariate moment problems with applications to spectral estimation and physical layer security in wireless communications
Multivariate spectral estimation

Original contribution

Two novel approaches to multivariate spectral estimation:

- 1. Relative entropy rate estimation
- 2. Multivariate circulant rational covariance extension

Spectral estimation as a generalized moment problem, that can be solved efficiently by means of convex optimization techniques

Multivariate spectral estimation Relative entropy rate estimation

- Multivariate spectral estimation

Relative entropy rate estimation

THREE-like spectral estimation

▶ We draw inspiration from THREE-like approaches¹:

1

C. I. Byrnes, T. Georgiou, & A. Lindquist. "A new approach to spectral estimation: A tunable high-resolution spectral estimator". In: IEEE Trans. Sig. Proc. 49 (2000).

Multivariate spectral estimation

Relative entropy rate estimation

Spectrum approximation problem

Let G(z) and $\Sigma = \Sigma^{\top}$ given. Compute

$$\hat{\Phi}:=$$
 argmin $d(\Phi,\Psi)$ such that $\int G\Phi G^*=\Sigma$

- Key point: choice of $d(\Phi, \Psi)$:
 - 1. Variational analysis should lead to a computable solution
 - 2. The solution should have low complexity
- Let y, z be Gaussian processes with densities Φ_y and Φ_z. Then, consider their relative entropy rate

$$d_{RER}(\Phi \| \Psi) = \frac{1}{2} \int_{-\pi}^{\pi} \log \det(\Phi_y^{-1} \Phi_z) + \operatorname{Tr} \left[\Phi_z^{-1} (\Phi_y - \Phi_z)\right] \frac{d\vartheta}{2\pi}$$

Set d(Φ, Ψ) = d_{RER}(Φ||Ψ). Spectral estimation is recast as a convex optimization problem

Multivariate spectral estimation

Relative entropy rate estimation

RER Spectrum approximation problem

$$\hat{\Phi} := \operatorname{argmin} d_{RER}(\Phi \| \Psi) \quad \text{such that } \int G \Phi G^* = \Sigma$$

The solution of the dual problem, Â, exists and it is unique.
 Then,

$$\hat{\Phi} = \left[\Psi^{-1} + G^* \hat{\Lambda} G\right]^{-1}, \quad \deg(\hat{\Phi}) \leq \deg \Psi + 2n$$

while the best one so far available in the multivariate framework is $\deg \Psi + 4n^{\ 2}$

• $\hat{\Lambda}$ can be computed via an efficient matricial Newton-like algorithm

²

A. Ferrante, M. Pavon, & F. Ramponi. "Hellinger vs. Kullback-Leibler multivariable spectrum approximation". In: IEEE Trans. Aut. Control 53 (2008), pp. 954–967.

- Multivariate spectral estimation

Relative entropy rate estimation

Simulation results

Comparison of THREE-like approaches (average estimation error). Bivariate model; 40*th* order; G(z) with 4 complex pairs of poles equispaced in $[0, \pi]$ with radius 0.7; Prior: PEM(3) model. RER: estimate order = 11; Hellinger: estimate order = 19.

Multivariate spectral estimation

Relative entropy rate estimation

Simulation results (cont'd)

Comparison of RER, PEM and N4SID (average estimation error) for short data record (N = 100)

Multivariate spectral estimation

Relative entropy rate estimation

Simulation results (cont'd)

Comparison of THREE and RER in detecting spectral lines. Poles of G(z): 0.95 $\pm j$ 0.42, 0.95 $\pm j$ 0.44, 0.95 $\pm j$ 0.46, 0.95 $\pm j$ 0.48, 0.95 $\pm j$ 0.50

Multivariate spectral estimation

Relative entropy rate estimation

Conclusions

RER (Relative Entropy Rate) estimator

- Spectral estimation as a convex spectrum approximation problem
- The upper bound on the complexity of the solution improves on the best one so far available in the multivariate framework
- ► The estimator is effective, especially in case of short data records
- The estimator exhibits high resolution features

Multivariate spectral estimation Multivariate circulant rational covariance extension

Multivariate spectral estimation

-Multivariate Circualant Rational Covariance Extension

Rational covariance extension

Given the sequence $C_k := \mathbb{E}[y(t+k)y^*(t)]$, for k = 0, ..., n find $C_{n+1}, C_{n+2}, ...$ up to infinity such that

$$\sum_{k=-\infty}^{+\infty} C_k e^{-jk\vartheta}, \quad C_{-k} = C_k^*$$

converges for all $\vartheta \in \mathbb{T}$ to a positive definite spectral density $\Phi(e^{j\vartheta})$ that has the rational form

$$\Phi(e^{j\vartheta}) = P(e^{j\vartheta})Q^{-1}(e^{j\vartheta}).$$

Multivariate spectral estimation

-Multivariate Circualant Rational Covariance Extension

Our contribution

Circulant Rational Covariance Extension

- A convex optimization-based approach which provides multivariate rational covariance extension for periodic processes
- Efficient approximating procedure for regular multivariate rational covariance extension

Multivariate spectral estimation

Multivariate Circualant Rational Covariance Extension

Circulant rational covariance extension

▶ Periodic processes as processes indexed on Z_{2N}:

— Multivariate spectral estimation

Multivariate Circualant Rational Covariance Extension

Multivariate circulant rational covariance extension - 1

Problem statement

Given the sequence C_k 's with values in $\mathbb{C}^{m \times m}$, for k = 0, ..., n, for n < N, find a rational spectral density $\Phi = PQ^{-1}$ such that

$$\int_{\pi}^{\pi} e^{jk\vartheta} \Phi(e^{j\vartheta}) d\nu(\vartheta) = \frac{1}{2N} \sum_{h=-N+1}^{N} \zeta_h^{\ k} \Phi(\zeta_h) = C_k, \quad k = 0, 1, \dots, n.$$

Main results:

- 1. Parametrization of all the solutions in terms of $P(\zeta)$
- 2. Simultaneous estimation of P and Q based on the available data
- Assumption: $P(\zeta) = p(\zeta)I$

— Multivariate spectral estimation

-Multivariate Circualant Rational Covariance Extension

Multivariate circulant rational covariance extension - 2

Main Theorem

• Assume $P(\zeta) = p(\zeta)I$ is given. There exists a unique $\hat{Q}(\zeta)$ such that $\hat{\Phi}(\zeta) := P(\zeta)\hat{Q}(\zeta)^{-1}$ maximizes the generalized entropy

$$\mathbb{I}_P(\Phi) = \int_{-\pi}^{\pi} P(e^{jartheta}) \log \det \Phi(e^{jartheta}) d
u(artheta)$$

and solves the circulant covariance extension problem.

• $\hat{Q}(\zeta)$ is the unique minimizer of

$$\mathbb{J}_{P}(Q) := \langle C, Q \rangle - \int_{-\pi}^{\pi} P(e^{j\vartheta}) \log \det Q(e^{j\vartheta}) d\nu(\vartheta)$$

Multivariate spectral estimation

-Multivariate Circualant Rational Covariance Extension

Regular covariance extension by means of circulant rational covariance extension

- 1. It can be proved that, for $N \to \infty$, the solution of circulant rational covariance extension tends to the solution of regular covariance extension.
- 2. Circulant rational extension can be implemented efficiently (FFT)

Circulant rational extension provides a fast approximating procedure for solving regular rational covariance extension problem

1

Multivariate spectral estimation

— Multivariate Circualant Rational Covariance Extension

Numerical examples: multivariate AR case

Multivariate spectral estimation

Multivariate Circualant Rational Covariance Extension

Numerical examples: multivariate ARMA case

Zero poles map

Comparison between AR (N=64, n=12) and ARMA (N=32,n=6)

Multivariate spectral estimation

-Multivariate Circualant Rational Covariance Extension

Bilateral ARMA models

 After solving the circulant rational covariance extension problem we end up with a bilateral ARMA model:

$$\sum_{k=-n}^n Q_k y(t-k) = \sum_{k=-n}^n P_k e(t-k), \quad t \in \mathbb{Z}_{2N}$$

Open problem: do bilateral ARMA models generalize standard models for reciprocal processes³?

Reciprocal process of order n

$$\sum_{k=-n}^{n} Q_k y(t-k) = e(t), \quad t \in \mathbb{Z}_{2N}$$

³A.J. Krener et al, B.C. Levy et al, A. Chiuso et al, F.P. Carli et al.

Multivariate spectral estimation

-Multivariate Circualant Rational Covariance Extension

Conclusion

Circulant Rational Covariance Extension

- A first step towards rational covariance extension for multivariate periodic processes
- Fast approximation of regular multivariate rational covariance extension

Future Work

Relative Entropy Rate Estimation

Application to graphical models

Multivariate Circulant Rational Covariance Extension

- Extension to rational models with general $P(\zeta)$
- Connection with reciprocal models

Thank you for your attention

- A. Lindquist, C. Masiero, & G. Picci. "On the Multivariate Circulant Rational Covariance Extension Problem". In: *Proc. of 52nd IEEE CDC*. 2013.
- A. Ferrante, C. Masiero, & M. Pavon. "Time and spectral domain relative entropy: A new approach to multivariate spectral estimation". In: *IEEE Trans. Aut. Contr* 57 (2012).
- A. Ferrante, C. Masiero, & M. Pavon. "A New Metric for Multivariate Spectral Estimation Leading to Lowest Complexity Spectra". In: *Proc. of the 50th IEEE CDC - ECC*. 2011.

Multivariate moment problems with applications to spectral estimation and physical layer security in wireless communications
More on multivariate circulant rational covariance extension

Determining P from logarithmic moments

- Aim: estimate P based on data only
- Idea: look for the spectral density Φ which maximizes the entropy gain

$$\int_{-\pi}^{\pi} \log \det \Phi(e^{j\vartheta}) \,\, d\nu(\vartheta)$$

while satisfying the moment constraints which stem from the available covariance lags and the logarithmic moments

$$\gamma_k = \int_{-\pi}^{\pi} e^{jk\vartheta} \log \det \Phi(e^{j\vartheta}) d\nu(\vartheta), k = 1, 2, \dots, n$$

The problem can be solved by minimizing

$$\begin{split} \mathbb{J}(P,Q) &:= \langle C,Q\rangle - \int_{-\pi}^{\pi} P(e^{j\vartheta}) \log \det Q(e^{j\vartheta}) d\nu(\vartheta) - \\ & \langle \Gamma,P\rangle + \int_{-\pi}^{\pi} P(e^{j\vartheta}) \log \det P(e^{j\vartheta}) d\nu(\vartheta) \end{split}$$

Physical layer security in wireless communication

Introduction

Framework

Task

Authenticate the source of a messagge in a wireless communication scenario

Why physical layer authentication?

- Its performances are not undermined in case the attacker has high computational capabilities.
- It provides theoretical bounds which are not affected by the particular forgery strategy employed by the attacker.

Channel security: a hypothesis testing problem

- *H*₀ : legitimate packet;
 *H*₁ : forged packet
- α := false alarm probability;
 β := miss detection probability;

Aim

Compute theoretical bounds on the region of achievable type I and type II error probabilities.

Tightest bound on the error region

<

 We can prove that worst case performance of the security mechanism can be evaluated by computing

$$\inf_{p_{xv}\in\mathcal{Q}}\mathcal{D}(p_{xv}\|p_{xy})$$

► The optimal attacking strategy corresponds to a Gaussian p.d.f. *p*_{xvz} with zero mean and covariance matrix

$$K_{\begin{bmatrix} \mathbf{x}\\ \mathbf{z}\\ \mathbf{z} \end{bmatrix}}(Z,C) = \begin{bmatrix} K_{\mathbf{xx}} & K_{\mathbf{xx}}K_{\mathbf{zz}}^{-1}Z^* & K_{\mathbf{xz}}\\ ZK_{\mathbf{zz}}^{-1}K_{\mathbf{xz}}^* & ZK_{\mathbf{zz}}^{-1}Z^* + CC^* & Z\\ K_{\mathbf{xz}}^* & Z^* & K_{\mathbf{zz}} \end{bmatrix}$$

An iterative fixed point algorithm was designed, aiming at solving

$$\begin{cases} C^*(k+1) = C^*(k)(Z(k)K_{zz}^{-1}BK_{zz}^{-1}Z^*(k) + C(k)C^*(k))^{-1}A \\ Z^*(k+1) = K_{zx}K_{xy}^{-1}K_{xy} + BK_{zz}^{-1}Z^*(k)(Z(k)K_{zz}^{-1}BK_{zz}^{-1}Z(k)^* + C(k)C^*(k))^{-1}A \end{cases}$$

 Extensive simulations suggest that the algorithm always finds a minimum point for the cost function.