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Communication requirements and assumptions
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Benefits of wireless communications

• Material

• Installation & commissioning

• Maintenance

Reduced costs
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Benefits of wireless communications

• Material

• Installation & commissioning

• Maintenance

Reduced costs

• High temperatures

• Large heights

• Mobility & rotating parts

Difficult to deploy scenarios

• Aging

• High potentials in PE applications

Long–term reliability
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Challenges of wireless communications

• Path loss, fading, shadowing, etc.

• Messages may be retransmitted to ensure reliability

• Retransmissions impair latency and determinism

Error–prone channel
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• Nodes that share the same space and frequency band can interfere with each other
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Challenges of wireless communications

• Path loss, fading, shadowing, etc.

• Messages may be retransmitted to ensure reliability

• Retransmissions impair latency and determinism

Error–prone channel

• Nodes that share the same space and frequency band can interfere with each other

• Medium access control (MAC) schemes are needed to coordinate access

• Tradeoff between fairness and determinism

Shared medium

• Shared channel → everyone can hear and talk

• Jammers with high transmission powers can block network operations

Security concerns
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IEEE 802.11 overview

3 High data rates (comparable to Ethernet networks)

5 Random channel access (CSMA/CA + backoff)

Features
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IEEE 802.11n for Industrial Communications

• Multi–antenna architectures (MIMO)

• Channel bonding up to 40 MHz

• Higher order modulations

• More robust channel coding (LDPC)

• QoS–aware MAC enhancements

New features

• MIMO STBC for reliability

• Channel bonding

• LDPC

• No frame aggregation

• No block ACK

Configuration for real–time
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Industrial rate adaptation algorithms

• Feature of IEEE 802.11: multiple data rates available

• Different speed and reliability levels

• No algorithm defined in the standard

Multi–rate support
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Industrial rate adaptation algorithms

• Feature of IEEE 802.11: multiple data rates available

• Different speed and reliability levels

• No algorithm defined in the standard

Multi–rate support

• ARF: increase/decrease rate after a given number of successes/failures

• Minstrel: selects best-throughput rate based on statistics

General–purpose RA algorithms

• SARF: drops to lowest rate once after each failure

• FARF: drops to lowst rate permanently after each failure

Previous industrial RA algorithms
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Rate Selection for Industrial Networks (RSIN)

• Selects both number of transmissions and data rates

• Constrained optimization procedure

arg min
N≤Nmax,r(i)∈R

P
(
L, s,N, r

(1)
, . . . , r

(N)
)

s.t. D
(
L,N, r

(1)
, . . . , r

(N)
)
≤ D

• Based on explicit SNR feedback from the receiver

Features
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Metric Ldata=50 Byte

Average cycle time [ms] 2.93 3.00 3.09 3.19
Standard deviation [µs] 45 130 77 333
RTT [Mbit/s] 2.46 2.41 2.33 2.29

Ldata=500 Byte

Average cycle time [ms] 7.28 11.47 13.34 11.87
Standard deviation [µs] 364 2883 2440 3001
RTT [Mbit/s] 5.46 3.68 3.07 3.55

ECDF cycle time
for 500 B packets
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RSIN with SNR estimation

• No more need for explicit SNR feedback

• Regularized estimation problem:
ŝ = arg min

s∈S
(1− λ)E(s) + λH(s)

• Dynamic tuning of penalty coefficient λ

Features
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Fundamentals of FD wireless

• Typical wireless networks: no simultaneous TX/RX in the same frequency band

• Main issue: self–interference (SI)

• Several SI cancellation methods proposed since 2010

How to overcome the HD constraint

Node

TX path

RX path

TX signal

RX signal

SI
+-

SI cancellation

• Opportune antenna placement

• Analog cancellation (∼ 60 dB)

• Digital cancellation (∼ 50 dB)

SI cancellation methods
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RCFD MAC for FD wireless networks

• Combines FD capabilities with frequency–domain channel access

• Nodes transmitting intentions are advertised (RTS) and confirmed/rejected (CTS) by using
OFDM subcarriers (SCs)

• Fully distributed and randomized (fairness)

• Fixed channel access delay

• Solves hidden–terminal problem

Features
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• Nodes transmitting intentions are advertised (RTS) and confirmed/rejected (CTS) by using
OFDM subcarriers (SCs)

• Fully distributed and randomized (fairness)

• Fixed channel access delay

• Solves hidden–terminal problem

Features

• Ad–hoc wireless network with FD nodes

• Unique maps between nodes and SCs

s1 s2

. . .
sS−1 sS

OFDM subcarriers S

S1 S2
Node n F1(n) F2(n)

n1 s1 sS/2+1
n2 s2 sS/2+2
. . . . . . . . .
nN sS/2 sS

Assumptions
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OFDM subcarriers (SCs)

• Fully distributed and randomized (fairness)

• Fixed channel access delay

• Solves hidden–terminal problem

Features

• Ad–hoc wireless network with FD nodes

• Unique maps between nodes and SCs

s1 s2

. . .
sS−1 sS

OFDM subcarriers S

S1 S2
Node n F1(n) F2(n)

n1 s1 sS/2+1
n2 s2 sS/2+2
. . . . . . . . .
nN sS/2 sS

Assumptions

• Round 1: randomized contention to
elect primary transmitters (PTs)

• Round 2: PTs advertise intentions
(RTS)

• Round 3: designed receivers confirm
or reject transmission (CTS) and
possibly start a simultaneous
transmission thanks to FD capabilities

Channel access scheme
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RCFD vs. other MAC protocols
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Theoretical saturation throughput (R=6 Mbps, L=1000 B, N=10 nodes when fixed)
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Simulations with different number of nodes (R=18 Mbps, L=1000 B)
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High–performance Wireless Networks
for Critical Control Applications

(WirelessHP)
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Critical industrial control applications

Reference scenarios

Building Aut. (BA) Process Aut. (PA) Factory Aut. (FA) Power Sys. Aut. (PSA) PE Control (PEC)
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Critical industrial control applications

Reference scenarios

Building Aut. (BA) Process Aut. (PA) Factory Aut. (FA) Power Sys. Aut. (PSA) PE Control (PEC)

Typical system–level performance

Scenario No. of nodes Cycle time Reliability level

BA 1000 10 s medium

PA 10000 100 ms medium

FA 100 1 ms high

PSA 100 100 µs high

PEC 100 10 µs very high
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Critical industrial control applications

Reference scenarios

Building Aut. (BA) Process Aut. (PA) Factory Aut. (FA) Power Sys. Aut. (PSA) PE Control (PEC)

Typical system–level performance

Scenario No. of nodes Cycle time Reliability level

BA 1000 10 s medium

PA 10000 100 ms medium

FA 100 1 ms high

PSA 100 100 µs high

PEC 100 10 µs very high

Corresponding link–level performance

Scenario Data rate Scheduling unit Link range

Baseline 500 Mbps 1 µs 3 m

Target 2 Gbps 500 ns 10 m
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Performance of current standards
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WirelessHART/ISA100 802.15.4 10 ms
WISA/PNO WSAN 802.15.1 2 ms
TDMA for IWCN 802.15.4 1 ms
RT-WiFi 802.11 200 µs
WIA-FA 802.11 100 µs
OFDMA wireless control 802.11 66.7 µs
WirelessHP Custom <1 µs
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Design directions

Design a low–latency PHY layer aimed at reducing as much as possible the
packet transmission time when transmitting short amount of data

Goal
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Design directions

Design a low–latency PHY layer aimed at reducing as much as possible the
packet transmission time when transmitting short amount of data

Goal

1. Start from the IEEE 802.11 OFDM PHY layer

2. Optimize it for short–packet transmission

• Preamble reduced to 1 OFDM symbol
• OFDM parameters tuned to minimize packet transmission time

Strategy
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Design directions

Design a low–latency PHY layer aimed at reducing as much as possible the
packet transmission time when transmitting short amount of data

Goal

1. Start from the IEEE 802.11 OFDM PHY layer

2. Optimize it for short–packet transmission

• Preamble reduced to 1 OFDM symbol
• OFDM parameters tuned to minimize packet transmission time

Strategy

Test the reliability of the proposed PHY on SDR platforms

Validation
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Current results
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IIoT overview

• IoT: network of networks with massive number of connected devices

• IoT paradigm applied to the productive sector (industrial IoT):

• Increased efficiency and new concepts (e.g., outcome economy)
• Impact on 2/3 of global GDP

IoT and Industrial IoT
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Focus on LoRaWAN

• Proprietary modulation (LoRa) by Semtech

• Based on CSS modulation

• Different spreading factors (SFs) available

• Deployed in the ISM 900 MHz band (power
and duty–cycle limited)

PHY layer
SF Req. SNR Data rate

7 -7.5 dB 5.47 Kbps
8 -10 dB 3.13 Kbps
9 -12.5 dB 1.76 Kbps
10 -15 dB 0.98 Kbps
11 -17.5 dB 0.44 Kbps
12 -20 dB 0.25 Kbps

• End Devices (EDs) ↔ Gateways (GWs) ↔ Network Server (NS)

• Different class of EDs (A, B, C)

• Class A devices access the channel according to ALOHA and open receive
windows at fixed intervals after transmission → lowest energy consumption

MAC layer and topology
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LoRaWAN for indoor industrial monitoring

• Uplink communications only: end nodes to sink (unconfirmed)

• Technologies: LoRaWAN vs. IEEE 802.15.4

• Metrics: probability of success, interpacket time, energy consumption

• Methodology: ns3 simulations with realistic industrial channel model

Scenario
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Scenario

r

L, T
Central
server

Cloud

Sink

End node

Wireless link

Backhaul link

Parameter Description Value

N Number of nodes {10, . . . , 1000}
r Coverage radius 200 m
L Message length 50 Bytes
T Transmission period {60, . . . , 1800} s
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Simulation results
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Conclusions

• Wireless technologies can have a great impact on industrial applications

• Requirements and assumptions of industrial networks are quite different from
those of general–purpose communications

• Currently available standards/solutions do not meet all the requirements

Background

• RT performance of WLANs can be greatly improved through opportune
configuration (e.g., MIMO, rate adaption)

• Full–duplex wireless can help significantly if equipped with proper MAC schemes

• Customized PHY layer is needed for extremely demanding applications
(WirelessHP)

• Innovative IoT technologies (e.g. LPWANs) can be used in industrial applications
bringing several advantages

Research findings
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Thanks for your attention

For any comment or question:

michele.luvisotto@dei.unipd.it
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