Real–time Wireless Networks for Industrial Control Applications

Michele Luvisotto

PhD Defense

University of Padova, Department of Information Engineering (DEI) Email: michele.luvisotto@dei.unipd.it

February 22nd, 2018

Introduction and background

Networked control systems

Controller

Networked control systems

Communication requirements and assumptions

Communication requirements and assumptions

Benefits of wireless communications

Reduced costs

- Material
- \bullet Installation $&$ commissioning
- Maintenance

Benefits of wireless communications

Reduced costs

- Material
- \bullet Installation $&$ commissioning
- Maintenance

Difficult to deploy scenarios

- High temperatures
- Large heights
- Mobility & rotating parts

Benefits of wireless communications

Reduced costs

- Material
- **•** Installation & commissioning
- Maintenance

Difficult to deploy scenarios

- High temperatures
- Large heights
- Mobility & rotating parts

Long–term reliability

- Aging
- High potentials in PE applications

Challenges of wireless communications

Error–prone channel

- Path loss, fading, shadowing, etc.
- Messages may be retransmitted to ensure reliability
- Retransmissions impair latency and determinism

Challenges of wireless communications

Error–prone channel

- Path loss, fading, shadowing, etc.
- Messages may be retransmitted to ensure reliability
- Retransmissions impair latency and determinism

Shared medium

- Nodes that share the same space and frequency band can interfere with each other
- Medium access control (MAC) schemes are needed to coordinate access
- **•** Tradeoff between fairness and determinism

Challenges of wireless communications

Error–prone channel

- Path loss, fading, shadowing, etc.
- Messages may be retransmitted to ensure reliability
- Retransmissions impair latency and determinism

Shared medium

- Nodes that share the same space and frequency band can interfere with each other
- Medium access control (MAC) schemes are needed to coordinate access
- **•** Tradeoff between fairness and determinism

Security concerns

- Shared channel \rightarrow everyone can hear and talk
- Jammers with high transmission powers can block network operations

Research topics

Research topics

Research topics

Wireless

Real–time WLANs

IEEE 802.11 overview

Features

- ✓ High data rates (comparable to Ethernet networks)
- \times Random channel access (CSMA/CA + backoff)

IEEE 802.11 overview

Features

- ✓ High data rates (comparable to Ethernet networks)
- \times Random channel access (CSMA/CA + backoff)

IEEE 802.11n for Industrial Communications

New features

- Multi–antenna architectures (MIMO)
- Channel bonding up to 40 MHz
- Higher order modulations
- More robust channel coding (LDPC)
- QoS–aware MAC enhancements

Configuration for real–time

- MIMO STBC for reliability
- Channel bonding
- LDPC
- No frame aggregation
- No block ACK

IEEE 802.11n for Industrial Communications

New features

- Multi–antenna architectures (MIMO)
- Channel bonding up to 40 MHz
- Higher order modulations
- More robust channel coding (LDPC)
- QoS–aware MAC enhancements

Configuration for real–time

- MIMO STBC for reliability
- Channel bonding
- LDPC
- No frame aggregation
- No block ACK

Industrial rate adaptation algorithms

Multi–rate support

- Feature of IEEE 802.11: multiple data rates available
- Different speed and reliability levels
- No algorithm defined in the standard

Industrial rate adaptation algorithms

Multi–rate support

- Feature of IEEE 802.11: multiple data rates available
- Different speed and reliability levels
- No algorithm defined in the standard

General–purpose RA algorithms

- ARF: increase/decrease rate after a given number of successes/failures
- Minstrel: selects best-throughput rate based on statistics

Industrial rate adaptation algorithms

Multi–rate support

- Feature of IEEE 802.11: multiple data rates available
- Different speed and reliability levels
- No algorithm defined in the standard

General–purpose RA algorithms

- ARF: increase/decrease rate after a given number of successes/failures
- Minstrel: selects best-throughput rate based on statistics

Previous industrial RA algorithms

- SARF: drops to lowest rate once after each failure
- FARF: drops to lowst rate permanently after each failure

Rate Selection for Industrial Networks (RSIN)

Features

- Selects both number of transmissions and data rates
- Constrained optimization procedure

$$
\underset{N \le N_{max}, r^{(i)} \in \mathcal{R}}{\arg \min} \mathcal{P}\left(L, s, N, r^{(1)}, \dots, r^{(N)}\right) \text{ s.t. } \mathcal{D}\left(L, N, r^{(1)}, \dots, r^{(N)}\right) \le D
$$

• Based on explicit SNR feedback from the receiver

Rate Selection for Industrial Networks (RSIN)

Features

- Selects both number of transmissions and data rates
- Constrained optimization procedure

$$
\underset{N \le N_{max}, r^{(i)} \in \mathcal{R}}{\arg \min} \mathcal{P}\left(L, s, N, r^{(1)}, \dots, r^{(N)}\right) \text{ s.t. } \mathcal{D}\left(L, N, r^{(1)}, \dots, r^{(N)}\right) \le D
$$

• Based on explicit SNR feedback from the receiver

RSIN with SNR estimation

Features

- No more need for explicit SNR feedback
- Regularized estimation problem:

```
\hat{s} = \arg \min(1 - \lambda) \mathcal{E}(s) + \lambda \mathcal{H}(s)s∈S
```
• Dynamic tuning of penalty coefficient λ

00000

RSIN with SNR estimation

Features

- No more need for explicit SNR feedback
- Regularized estimation problem:

$$
\hat{s} = \underset{s \in \mathcal{S}}{\arg \min} (1 - \lambda) \mathcal{E}(s) + \lambda \mathcal{H}(s)
$$

• Dynamic tuning of penalty coefficient λ

 000000

[Introduction](#page-1-0) **[Real–time WLANs](#page-17-0)** [FD Wireless Networks](#page-30-0) [WirelessHP](#page-37-0) [Industrial IoT](#page-48-0) [Conclusions](#page-56-0) 00000

 000000

 00000

 000

Selected publications

F. Tramarin, S. Vitturi, M. Luvisotto, and A. Zanella, "On the Use of IEEE 802.11n for Industrial Communications," IEEE Transactions on Industrial Informatics, vol. 12, pp. 1877–1886, Oct 2016

F. Tramarin, S. Vitturi, and M. Luvisotto, "Improved Rate Adaptation strategies for real-time industrial IEEE 802.11n WLANs," in 2015 IEEE 20th Conference on Emerging Technologies Factory Automation (ETFA), Sept 2015

F. Tramarin, S. Vitturi, and M. Luvisotto, "A Dynamic Rate Selection Algorithm for IEEE 802.11 Industrial Wireless LAN," IEEE Transactions on Industrial Informatics, vol. 13, pp. 846–855, April 2017

F. Tramarin, S. Vitturi, and M. Luvisotto, "Performance analysis of IEEE 802.11 Rate Selection for Industrial Networks," in IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, Oct 2016

M. Luvisotto, F. Tramarin, and S. Vitturi, "A learning algorithm for rate selection in real-time wireless LANs," Computer Networks, vol. 126, pp. 114 – 124, 2017

Full–duplex wireless networks

Fundamentals of FD wireless

How to overcome the HD constraint

- Typical wireless networks: no simultaneous TX/RX in the same frequency band
- Main issue: self–interference (SI)
- Several SI cancellation methods proposed since 2010

SI cancellation methods

- Opportune antenna placement
- Analog cancellation (\sim 60 dB)
- Digital cancellation (\sim 50 dB)

RCFD MAC for FD wireless networks

Features

- Combines FD capabilities with frequency–domain channel access
- Nodes transmitting intentions are advertised (RTS) and confirmed/rejected (CTS) by using OFDM subcarriers (SCs)
- Fully distributed and randomized (fairness)
- Fixed channel access delay
- Solves hidden–terminal problem

RCFD MAC for FD wireless networks

Features

- Combines FD capabilities with frequency–domain channel access
- Nodes transmitting intentions are advertised (RTS) and confirmed/rejected (CTS) by using OFDM subcarriers (SCs)
- Fully distributed and randomized (fairness)
- Fixed channel access delay
- Solves hidden–terminal problem

Assumptions

- Ad–hoc wireless network with FD nodes
- Unique maps between nodes and SCs

RCFD MAC for FD wireless networks

Features

- Combines FD capabilities with frequency–domain channel access
- Nodes transmitting intentions are advertised (RTS) and confirmed/rejected (CTS) by using OFDM subcarriers (SCs)
- Fully distributed and randomized (fairness)
- Fixed channel access delay
- Solves hidden-terminal problem

Assumptions

- Ad–hoc wireless network with FD nodes
- Unique maps between nodes and SCs

Channel access scheme

- Round 1: randomized contention to elect primary transmitters (PTs)
- Round 2: PTs advertise intentions (RTS)
- Round 3: designed receivers confirm or reject transmission (CTS) and possibly start a simultaneous transmission thanks to FD capabilities

RCFD vs. other MAC protocols

Theoretical saturation throughput ($R=6$ Mbps, $L=1000$ B, $N=10$ nodes when fixed)

Simulations with different number of nodes ($R=18$ Mbps, $L=1000$ B)

M. Luvisotto (DEI@UniPD) [Real–time Wireless Networks for Industrial Control Applications](#page-0-0) 22/02/2018 (17/32)

Selected publications

M. Luvisotto, A. Sadeghi, F. Lahouti, S. Vitturi, and M. Zorzi, "RCFD: A frequency-based channel access scheme for full-duplex wireless networks," in 2016 IEEE International Conference on Communications (ICC), May 2016

M. Luvisotto, A. Sadeghi, F. Lahouti, S. Vitturi, and M. Zorzi, "RCFD: A Novel Channel Access Scheme for Full-Duplex Wireless Networks Based on Contention in Time and Frequency Domains," IEEE Transactions on Mobile Computing (submitted for publication)

A. Sadeghi, M. Luvisotto, F. Lahouti, S. Vitturi, and M. Zorzi, "Statistical QoS analysis of full duplex and half duplex heterogeneous cellular networks," in 2016 IEEE International Conference on Communications (ICC), May 2016

A. Sadeghi, M. Luvisotto, F. Lahouti, and M. Zorzi, "Analysis of Statistical QoS in Half Duplex and Full Duplex Dense Heterogeneous Cellular Networks," IEEE Transactions on Wireless Communications (submitted for publication)

High–performance Wireless Networks for Critical Control Applications (WirelessHP)

Critical industrial control applications

Reference scenarios

Building Aut. (BA) Process Aut. (PA) Factory Aut. (FA) Power Sys. Aut. (PSA) PE Control (PEC)

M. Luvisotto (DEI@UniPD) [Real–time Wireless Networks for Industrial Control Applications](#page-0-0) 22/02/2018 (20/32)

Critical industrial control applications

Reference scenarios

Building Aut. (BA) Process Aut. (PA) Factory Aut. (FA) Power Sys. Aut. (PSA) PE Control (PEC)

Typical system-level performance								
Scenario	No. of nodes	Cycle time	Reliability level					
BA	1000	10 _s	medium					
PA	10000	100 ms	medium					
FA	100	1 _{ms}	high					
PSA	100	100 μ s	high					
PEC	100	$10 \mu s$	high very					

Critical industrial control applications

Reference scenarios

Building Aut. (BA) Process Aut. (PA) Factory Aut. (FA) Power Sys. Aut. (PSA) PE Control (PEC)

			Sys. Aut. (PSA) PE C	
--	--	--	----------------------	--

Performance of current standards

Design directions

Goal

Design a low–latency PHY layer aimed at reducing as much as possible the packet transmission time when transmitting short amount of data

Design directions

Goal

Design a low–latency PHY layer aimed at reducing as much as possible the packet transmission time when transmitting short amount of data

Strategy

- 1. Start from the IEEE 802.11 OFDM PHY layer
- 2. Optimize it for short–packet transmission
	- Preamble reduced to 1 OFDM symbol
	- OFDM parameters tuned to minimize packet transmission time

Design directions

Goal

Design a low–latency PHY layer aimed at reducing as much as possible the packet transmission time when transmitting short amount of data

Strategy

- 1. Start from the IEEE 802.11 OFDM PHY layer
- 2. Optimize it for short–packet transmission
	- Preamble reduced to 1 OFDM symbol
	- OFDM parameters tuned to minimize packet transmission time

Validation

Test the reliability of the proposed PHY on SDR platforms

M. Luvisotto (DEI@UniPD) [Real–time Wireless Networks for Industrial Control Applications](#page-0-0) 22/02/2018 (22/32)

Theoretical TX time for 100 bits packet

Theoretical TX time for 100 bits packet

Preamble

(b) 802.11 BPSK

 $= 128 \text{ }\mu\text{s}$

5 10 20 40 80 160 320 480

 $B \cdot \log_2 M$ (bits/s)

 $10⁰$ 10¹

Preamble

 $T_{\text{obs}} = 47.6 \,\mu s$

Payload

Digital Party

(a) WirelessHP BPSK

M. Luvisotto (DEI@UniPD) [Real–time Wireless Networks for Industrial Control Applications](#page-0-0) 22/02/2018 (23/32)

Experimental results with USRP N210

Payload

State Chapter College

20 40 60 80 100 120 140 160

 $-$ BPSK —
— QPSK 8-PSK

 $< 10^{-6}$ $\overline{0}$ $\overline{5}$ $\overline{10}$ $\overline{15}$ $\overline{20}$ $\overline{25}$ $\overline{30}$ $\overline{35}$ $\overline{40}$

 15 20 25
Distance (m)

Bandwidth (MHz)

 $\overline{0}$ 10 20

 $10^{-5}\,$ 10[−]⁴ $\frac{\mathfrak{m}}{\mathfrak{m}}$ 10^{−3} | 10[−]² 10[−]¹

Selected publications

M. Luvisotto, Z. Pang, and D. Dzung, "Ultra High Performance Wireless Control for Critical Applications: Challenges and Directions," IEEE Transactions on Industrial Informatics, vol. 13, pp. 1448–1459, June 2017

M. Luvisotto, Z. Pang, D. Dzung, M. Zhan, and X. Jiang, "Physical Layer Design of High Performance Wireless Transmission for Critical Control Applications," IEEE Transactions on Industrial Informatics (accepted for publication), 2017

Z. Pang, M. Luvisotto, and D. Dzung, "High Performance Wireless Communications for Critical Control Applications," Industrial Electronics Magazine (accepted for publication), 2017

LoRaWAN for Industrial IoT

IIoT overview

IoT and Industrial IoT

 OC

- IoT: network of networks with massive number of connected devices
- IoT paradigm applied to the productive sector (industrial IoT):
	- Increased efficiency and new concepts (e.g., outcome economy)
	- Impact on 2/3 of global GDP

IIoT overview

IoT and Industrial IoT

oc

- IoT: network of networks with massive number of connected devices
- IoT paradigm applied to the productive sector (industrial IoT):
	- Increased efficiency and new concepts (e.g., outcome economy)
	- Impact on 2/3 of global GDP

Communication technologies for IIoT

- Short–range: NFC, Bluetooth, etc.
- Long-range: WiMAX, mobile networks (2G/3G/4G), etc.
- WLANs: IEEE $802.11g/n/ac/ad$, etc.
- WPANs: IEEE 802.15.4–based (ZigBee, Thread, 6LoWPAN, etc.)

IIoT overview

IoT and Industrial IoT

oc

- IoT: network of networks with massive number of connected devices
- IoT paradigm applied to the productive sector (industrial IoT):
	- Increased efficiency and new concepts (e.g., outcome economy)
	- Impact on 2/3 of global GDP

Communication technologies for IIoT

- Short–range: NFC, Bluetooth, etc.
- Long-range: WiMAX, mobile networks (2G/3G/4G), etc.
- WLANs: IEEE $802.11g/n/ac/ad$, etc.
- WPANs: IEEE 802.15.4–based (ZigBee, Thread, 6LoWPAN, etc.)
- LPWANs: LoRaWAN, SigFox, Ingenu, Weightless, etc.

Focus on LoRaWAN

- Proprietary modulation (LoRa) by Semtech
- Based on CSS modulation
- Different spreading factors (SFs) available
- Deployed in the ISM 900 MHz band (power and duty–cycle limited)

MAC layer and topology

- End Devices (EDs) \leftrightarrow Gateways (GWs) \leftrightarrow Network Server (NS)
- Different class of EDs (A, B, C)
- Class A devices access the channel according to ALOHA and open receive windows at fixed intervals after transmission \rightarrow lowest energy consumption

 000

LoRaWAN for indoor industrial monitoring

Scenario

- Uplink communications only: end nodes to sink (unconfirmed)
- Technologies: LoRaWAN vs. IEEE 802.15.4
- Metrics: probability of success, interpacket time, energy consumption
- Methodology: ns3 simulations with realistic industrial channel model

LoRaWAN for indoor industrial monitoring

Scenario

- Uplink communications only: end nodes to sink (unconfirmed)
- Technologies: LoRaWAN vs. IEEE 802.15.4
- Metrics: probability of success, interpacket time, energy consumption
- Methodology: ns3 simulations with realistic industrial channel model

Simulation results

PoS for different LoRaWAN SF allocation strategies: constant, random, optimal ($T = 600$ s)

LoRaWAN vs. IEEE 802.15.4 (T =600 s, N =500 when fixed)

M. Luvisotto (DEI@UniPD) [Real–time Wireless Networks for Industrial Control Applications](#page-0-0) 22/02/2018 (29/32)

Conclusions

Conclusions

Background

- Wireless technologies can have a great impact on industrial applications
- Requirements and assumptions of industrial networks are quite different from those of general–purpose communications
- Currently available standards/solutions do not meet all the requirements

Research findings

- RT performance of WLANs can be greatly improved through opportune configuration (e.g., MIMO, rate adaption)
- Full–duplex wireless can help significantly if equipped with proper MAC schemes
- Customized PHY layer is needed for extremely demanding applications (WirelessHP)
- Innovative IoT technologies (e.g. LPWANs) can be used in industrial applications bringing several advantages

Thanks for your attention

For any comment or question: michele.luvisotto@dei.unipd.it