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Summary
The main topic of this thesis is the study of the interaction of agents interconnected

in a large-scale network. This type of systems received great attention in the last decade

due to the disposal of actual networks composed of a large number of small devices.

In the thesis, three complementary problems have been afforded: Analysis of Con-

sensus Networks, Synthesis of Higher Order Consensus Networks, and Application of

Synchronization algorithms.

Analysis of Consensus Networks

One of the most studied problems in multi-agents networks is the so called consensus

problem. Consider a number of agents, each having at disposal an initial guess of some

quantity. Each agent is allowed to communicate with a possibly restricted subset of

agents, its neighborhood. It is common to abstract this making use of the so called

communication graph, in which the nodes are the agents of the network and there is an

edge among a pair of agents if they can exchange information.

The problem is to design a rule to update the variable of the single node using

information coming from its neighbors, in order to reach, possibly in finite time, an

agreement, or consensus, on the quantity of interest. In case the agreement is on the

average of the initial conditions we say that we achieve average consensus.

In the dissertation the simplest and most studied update rule is considered, which

consists, iteratively, in a simple linear combination of the value at one agent and the

values at its neighbors. Conditions on this linear iteration for consensus to be achieved

are well-known. The goal is to measure the performance of a consensus algorithm through

two metrics, namely the rate of convergence, which tells how fast consensus is achieved,

and the `2 norm of the difference among state trajectory and asymptotic consensus value,

related to the energy spent to achieve the agreement.

The first chapter of the thesis gives tools to estimate how these metrics are related to

the geometry of the communication graph. In particular, a new result allows to estimate

the `2 cost in terms of the average effective resistance of a suitable electrical network,

which in many cases essentially depends on the communication graph only.

It is considered, due to its interest in sensor networks, the class of graphs known

as geometric graphs, which can be seen as perturbed grids deployed in the Euclidean

space Rd. The above result and other techniques are used to prove that both the rate of

convergence and the `2 cost essentially depend on the number of agents and the dimension

d only in which the graph is embedded. This extends and unifies known results on Cayley

k-regular graphs.
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Synthesis of Higher Order Consensus Networks

It is well known that in the consensus algorithm each agent behaves as a simple integrator

whose control is computed as a linear combination of the outputs of the neighbors. In

the last years the researchers’ attention moved to more complex cases, among which one

of the most important is when we model the agents as generic dynamical operators. The

second chapter of this thesis deals with heterogeneous higher order consensus networks,

namely networks in which each agent is the perturbation of a common nominal linear

time invariant operator.

A general framework is presented to study this type of systems when the goal is to

achieve output-synchronization, namely reach, and maintain, an agreement on the outputs.

This agreement can possibly be time-varying, differently from the classical consensus

case. Various particular cases are considered, such as LTI perturbations, memoryless

slope-restricted perturbations, and memoryless slope-restricted interconnection operators.

Making use of the input/output technique known as Integral Quadratic Constraints,

a general theorem and several corollaries are proposed to design the control law, given

certain bound on the perturbations of the single agents. When possible, simple and

scalable graphical criteria are proposed, resembling the Nyquist and the Popov criteria.

Applications of Synchronization algorithms

The third and last chapter of this thesis is devoted to the application of the results in

the first chapters to two important applicative problems, namely clock synchronization

and cameras calibration.

We consider a well-known model for clocks, consisting in a double integrator with a

zero dependent on the local skew of the clock, and we apply the previous results in order

to achieve robust synchronization. Moreover, the case of quasi-saturation of the inputs

is considered and solved using a Popov criterion. To conclude, some considerations in

the case of randomized algorithms yield an existence result for a simple linear control to

achieve mean-square synchronization.

Concerning cameras calibration, we consider the problem of computing a common

reference frame making use only of relative orientations of pairs of cameras. The problem

is recast into an optimization procedure on the manifold S1, which cannot be solved in

the classical way due to the existence of local minima. In order to overcome this problem,

we propose a general procedure, based on the cycles of the communication graph, which

aims to rectify the manifold S1 into a suitable segment. Theoretical results give bound

on the noises in order to achieve good performance.
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Sommario
Questa tesi di dottorato è incentrata sullo studio dell’interazione di agenti interconnessi

in rete. Sitemi di questo tipo sono stati oggetto di attenzione crescente negli ultimi

dieci anni, data l’effettiva disponibilità di reti composte da un numero molto elevato

di dispositivi. In questa tesi vengono affrontati tre problemi complementari l’un l’altro:

Analisi di reti di consenso, Sintesi di reti di consenso di ordine superiore, e Applicazione

di algoritmi di sincronizzazione.

Analisi di reti di consenso

Uno dei problemi più studiati nell’ambito delle reti multi-agente è il problema di consenso.

Sia dato un certo numero di agenti, ciascuno in possesso di un valore stimato di una

qualche quantità di interesse; il singolo agente può comunicare solo con un sottoinsieme

di altri agenti, i suoi vicini. Ciò viene modellato attraverso un grafo di comunicazione, in

cui i nodi rappresentano gli agenti: si ha un edge fra due nodi se i corrispondenti agenti

sono in grado di comunicare tra loro.

Il problema è quello di progettare un algoritmo che aggiorni iterativamente il dato di

ogni singolo nodo usando solo l’informazione proveniente dai nodi vicini, allo scopo di

ottenere, possibilmente in tempo finito, lo stesso valore ad ogni agente, cioè il consenso.

Nel caso tale valore sia la media delle condizioni iniziali, si parla di consenso in media.

In questa tesi ci concentreremo sul modo più semplice per risolvere il problema di

consenso, che prevede l’iterazione di un algoritmo lineare da parte di ciascun agente. È

noto sotto quali condizioni tale algoritmo permette il raggiungimento del consenso. Si

è qui interessati a studiare le prestazioni di un dato algoritmo tramite due metriche, il

rate di convergenza, relativo alla velocità con cui si raggiunge il consenso, e la norma `2

della differenza fra la traiettoria degli stati e il valore asintotico di consenso, che misura

l’energia spesa.

Il primo capitolo della tesi offre metodi per stimare tali metriche in base alla geometria

del grafo di comunicazione. In particolare, un primo risultato esprime il costo `2 in

termini della resistenza effettiva media di una opportuna rete di resistori, che in molti

casi di interesse dipende essenzialmente solo dalla geometria del grafo di comunicazione.

Sono stati presi in esame i grafi detti geometrici, che rapresentano griglie regolari

perturbate disposte nello spazio euclideo Rd e sono dunque buoni modelli per reti di sensori.

Utilizzando il risultato appena descritto e altre tecniche è stato possibile dimostrare che

per grafi geometrici l’andamento sia del rate di convergenza, sia del costo `2, è dato

essenzialmente solo dal numero di nodi e dalla dimensione d dello spazio in cui sono

disposti. Ciò estende ed unifica noti risultati su grafi k-regolari di tipo Cayley.
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Sintesi di reti di consenso di ordine superiore

È noto che una rete che implementi un algoritmo di consenso è una rete di integratori, il

cui controllo è una combinazione lineare dell’uscita dei vicini. Una generalizzazione del

consenso è quella in cui il singolo agente non si comporta come un semplice integratore,

bens̀ı è caratterizzato da dinamiche di ordine superiore.

Il secondo capitolo di questa tesi è incentrato sullo studio di reti di consensus di ordine

superiore eterogenee, cioè reti in cui ciascun agente è rappresentato da un sistema che

può essere visto come la perturbazione di un sistema nominale lineare tempo-invariante.

Viene proposto uno schema generale per lo studio di questi sistemi quando l’obiettivo

è la sincronizzazione dell’uscita, cioè il controllo ad uno stato in cui le uscite di tutti

gli agenti sono e rimangono coincidenti, eventualmente tempo-varianti. Numerosi casi

particolari sono considerati, fra cui il caso di perturbazioni LTI, pertubazioni con vincoli

di pendenza, operatori di interconnessione non lineari con vincoli di pendenza.

Viene dimostrato un criterio generale basato sulla teoria degli Integral Quadratic

Constraints per lo studio della relazione ingresso/uscita, da cui derivano numerosi corollari

che risolvono il problema nei casi succitati. Quando possibile, vengono proposti semplici

criteri grafici equivalenti a tali corollari, ispirati ai criteri di Nyquist e di Popov.

Applicazione di algoritmi di sincronizzazione

Il terzo e ultimo capitolo della tesi è dedicato a due importanti problemi di natura

applicativa, la sincronizzazione di orologi e la calibrazione di telecamere.

É stato considearato un noto modello per un orologio, che è visto come un doppio

integratore con uno zero dipendente dai parametri dell’orologio. I risultati presentati in

precedenza sono stati applicati in modo da ottenere un algoritmo per la sincronizzazione

robusta di tali orologi. Inoltre, viene consideato il caso in cui il controllo quasi-satura.

Per testare la robustezza viene usato in questo caso un criterio di Popov. In conclusione,

viene considerato un protocollo randomizzato e viene dimostrata l’esistenza di un semplice

controllo lineare per ottenere la sincronizzazione in media quadratica.

Per quanto riguarda la calibrazione di telecamere, viene considerato il problema di

accordarsi su un sistema di riferimento comune usando solo le orientazioni relative di

coppie di telecamere. Il problema può essere riscritto come un problema di ottimizzazione

sulla varietà S1, il cerchio, ma non è risolvibile con tecniche standard, data la presenza

di minimi locali. Per superare tale ostacolo, viene proposta una procedura basata su cicli

del grafo, che permette di interpretare S1 come un opportuno segmento. L’analisi teorica

dà vincoli sui rumori di misura in modo da garantire buone prestazioni.
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1
Introduction

This thesis is concerned with the study of synchronization algorithm for Networked

Controlled Systems. This topic, which dates back to the ’80s with pioneering works on

agreement [1], has seen in the last decade a huge interest by several scientific communities,

motivated by the availability of networks of cheap sensors and/or robots, and a renewed

interest in modeling biological systems such as swarms of animals or social networks

[2, 3, 4].

Despite the fact that groups of robots, networks of sensors, networks of computers,

swarms of animals etc. all have obvious distinctive features, it is often the case that four

aspects characterize such complex systems

1. The networks has a global goal, which can be formation control, estimation of

quantities, processing of a large amount of data, optimization of global functions,

and so on. Often, this global goal can be though as minimization of a certain cost

function which depends on the variables of the whole network;

2. The global goal cannot be computed at one point, namely it is impossible for a single

unit, or a single super-agent, to acquire all the information from the network and

then spread the answer, or the control, to the others. This can be due to several

reasons, for example the fact that the network is physically too large to carry all

the information at one point (due to communication capabilities), or the fact that
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the network is dynamically changing and the process of centralized decision making

would be too slow;

3. Each single agent possesses limited memory and computation capability, so even

if it could receive all the information required to achieve the global goal, the

computation load would be too high;

4. Each single agent can communicate only locally, namely with a possibly very

restricted subset of the network, called its neighborhood.

Despite the fact that such characteristics and constraints pose clear limits on the

control of these systems, fundamental motivation for scientific community comes from the

fact that simple laws applied by simple agents in a large network let arise global behaviors

which are sometimes unpredictable when looking at the single agent. Famous examples

of this behavior can be found in biology, where swarms of animals behave in such a

way that the entire group assumes a formation which discourages predators to attack.

Another celebrated example comes from physics, and is related to ferromagnetic materials,

which behave in different ways according to the “temperature” of the environment. This

behavior has been studied making use of variations of the well-known spin glass model,

in which interesting phase transitions arise from interaction of a very large number of

simply behaving agents [5].

In this thesis we particularize our analysis to one of the simplest global goals possible,

namely synchronization. Intuitively, a network is synchronized if all the agents “behave

in the same manner”, this meaning that each agent is characterized by some type of

output, and the actual values of these outputs are the same for all the agents. To give a

concrete example, we say that a network of clocks is synchronized if they all beat the

same time.

The simplest and most studied synchronization problem is the consensus problem. In

this case, each agent stores in memory a real number, and the grand goal of the network is

to steer the agents to an agreement (or consensus) on such initial values. In particular, if

the required agreement concerns the average value, then we talk about average consensus.

In this thesis we will concentrate on one of the most studied algorithms to achieve

consensus, namely the linear consensus algorithm, in which each agent updates its value

as a linear combination of the values received by its neighbors. Despite the simplicity of

this procedure, there are many important applications in the fields of formation control,

load balancing, modeling and filtering.

It is known that linear consensus algorithm corresponds to a network of simple

integrators. In a more general scenario, each agent is modeled as a system of higher order



3

with single input and single output. In this case, the synchronization problem is often

called higher order consensus problem. This topic is relatively younger than classical

consensus algorithm, but it has already found several interesting applications, for example

in clock synchronization, in which the agents are modeled as double integrators, and in

synchronization of oscillators, in which agents are second order systems with complex

conjugate poles. In general, synchronization of higher order systems is more difficult to

be achieved than consensus due to the more complex interaction of the internal dynamics

of the agents with the information exchange along the network.

Notice that we will always assume that the network adopts cooperative strategies in

order to compute the global task, this meaning that all the nodes in the network behave

in such a way that the global goal is achieved, that they actively and positively use the

information coming from the neighbors, and that they send faithfully their information

to the neighbors. This optimistic scenario does not necessarily hold, since in the network

there could be malicious nodes that, voluntarily or not, deviate from the designed update

law and avoid the global task to be computed or, worse, indirectly control the network.

This problem is the topic of the growing part of literature dealing with security in sensor

network, in which tools are given to check whether malicious nodes exist in the network

and how to let the other sensors ignore them [6, 7, 8].

Overview and Contributions

The dissertation is divided in three parts, which treat topics complementary one to each

other: Analysis of graph topologies to estimate the performance of a consensus protocol,

Synthesis of the interaction protocol to synchronize a network of dynamic agents, and

Application of these results to two important problems of real networks of agents, namely

clock synchronization of sensor networks and calibration of cameras networks.

In Chapter 3, Analysis of Consensus Networks, we study two performance costs for

the linear consensus algorithm, namely the rate of convergence to agreement and the `2

norm of the difference among the trajectory of the states and the asymptotic consensus

value. These metrics are classical in System Theory, with the only difference being that

the asymptotic value to be reached is not zero but rather the consensus value.

Our interest is on the relation among these performance metrics and the geometric

characteristics of the communication graph, namely the graph formed by agents and the

allowed communication links. It is in fact known that given a certain structure of the

graph (for example, it being a ring, or a regular grid, and so on), the performance of

a consensus algorithm degrades as the number of nodes in the network increases. This

is due to the fact that while the network becomes larger, it takes longer and longer for



4 Introduction

information to be spread along the network.

One may however expect that since the structure of the network remains similar, it

is possible to study analytically such a degradation trend. In fact, in case of the highly

structured graphs known as k-regular Cayley graphs it is known how the performance

metrics are related to the number of agents in the network.

Our goal is to extend these results by means of the analysis of the class of graphs

known as geometric graphs. We give a formal definition of them in Chapter 3, but

intuitively they are graphs in which the nodes are deployed in an Euclidean space, for

example on the plane R2, and whose structure resembles a perturbed grid.

The main contributions of Chapter 3 can be summarized as follows:

• to show that in a geometric graph convergence to consensus happens with the same

rate as in a regular grid of similar dimension;

• to rewrite the `2 cost in terms of a purely geometric parameter, the average effective

resistance of a suitable electrical network. This yields important consequences due

to the useful monotonicity properties of the effective resistances;

• to show that in a geometric graph the `2 performance cost is essentially the same

as in a regular grid of similar dimension.

To give a tool to estimate the `2 cost in terms of the an average effective resistance

is important since it allows to analyze the performance of the communication graph,

instead of the particular consensus algorithm built on such a graph. Moreover, to prove

that geometric graphs and regular grids “behave” in the same manner, with respect to

the two metrics considered, is important since it shows that what really matters is not

the highly symmetric structure of the former, but rather the dimension of the space in

which the nodes are deployed. In particular, any fixed network of agents deployed in a

“reasonable way” in an Euclidean space will perform qualitatively in the same manner,

thus providing an important tool, for example to design a network of sensors.

Chapter 4 of this thesis deals with synchronization of networks of heterogeneous agents.

In particular, each agent is modeled as a nominal SISO linear time invariant (LTI) system

perturbed by a possibly nonlinear operator. The goal is to design an interconnection

law to let each agent compute its input in such a way that the outputs asymptotically

agree and remain synchronized. This is the already mentioned higher order consensus

problem, and consensus is a particular case in which the common linear part is a simple

integrator. Input/output techniques based on Integral Quadratic Constraints are used to

propose a general theorem which ensures synchronization of the network. This result

also ensures robustness, since it does not analyze a single perturbation case, but instead
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offers a characterization for the perturbation operators to be satisfied in order for the

synchronization to happen.

This basic result is particularized to many different cases of interest, such as

• interaction via a normal matrix: in this scenario the input at each agent is computed

as a linear combination of the outputs of the neighbors, as in the linear consensus

algorithm. If the matrix realizing such a combination is normal, it is shown that

the general result can be reduced to a criterion involving its eigenvalues only;

• interaction via a normal matrix and linear perturbations: in many cases of in-

terest, uncertainties in the internal dynamics of the agents can be modeled as

LTI perturbations of the nominal system. If the interconnection matrix is normal,

the system can be fully represented using frequency response, and we are able to

propose a powerful Nyquist-like graphical criterion to check whether the network

can synchronize or not.

• interaction via a normal matrix and quasi-saturation of the input: in case of

formation control, the ideal input computed by an agent as a linear combination

of the outputs of the neighbors might be too large to be directly applied, so it is

quasi–saturated, namely underestimated, to a certain value. We show that this

non–ideality can be modeled in our framework, and we prove that synchronization

can be checked making use of a Popov graphical criterion;

• leader-following networks: this scenario arises in cases in which the nodes interact

according to the aforementioned algorithm, but communication is not bidirectional.

In particular, it can be that agents are divided in two groups, and that the agents of

the first group, the leaders, are allowed to send information to those of the second

group, the followers, while the reverse cannot happen. Under some conditions, the

followers progressively forget their initial conditions and just align along the output

synchronization trajectory of the leaders. This is well known in the consensus

framework, and we analyze the more involving problem for higher order networks.

The consensus-like algorithms studied in the first two chapters are not only math-

ematical curiosities. In chapter 5 we concentrate on two important applications, clock

synchronization and cameras calibration.

Clock synchronization is a fundamental goal in multi-agent networks since most

algorithms require a common time reference in order to properly work. This is particularly

important for energy consumption reasons in sensor networks, since they could be required

to wake up and perform their operations in narrow temporal windows in order to save
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energy and last longer. De–synchronization of such devices would be clearly fatal for the

network since connection among the agents would be lost and impossible to be recovered.

We study a simplified version of a known model for clocks [9], in which each agent is

modeled as a double integrator. If autonomous, the output of such a “clock” is a ramp

shaped function whose initial value is the initial guess of the time, while the slope is

related to a parameter of which is known only a nominal value. As we show, this is a

typical case in which this uncertainty can be modeled as a LTI perturbation of a nominal

system. We assume that clocks which are neighbors in the communication graph can

exchange their time readings and make use of this information to produce an input which

modifies both their time readings and an internal variable of them. In particular, the

input to the k-th clock is produced as a linear combination of the time readings received,

as in consensus.

We apply to this network of clocks the results of Chapter 4, and we provide a bound

on how different the slopes of the clocks can be in order to still achieve synchronization.

We also consider a network of equal clocks and we study how to ensure synchronization

in case of quasi–saturation of the input.

As a last case for clock synchronization, we analyze what happens when the inter-

connection protocol is not deterministic but randomized, and we provide a criterion for

synchronization in mean square.

The second important application we consider is cameras calibration. Pretty much

similarly to clock synchronization, in a network of cameras a main problem is to ensure

that all the cameras are aware of their pose, namely orientation and position, with respect

to an external common reference frame. The information used by the agents in order

to calibrate their orientation is the relative distance and the relative orientation among

couples of cameras, which can be recovered offline by known algorithms. Of particular

interest is calibration of the orientations, which very interestingly can be seen as an

optimization problem in the manifold SO(3) [10, 11, 12, 13]. In particular, such an

optimization problem consists in minimizing a cost function defined on SO(3) which

shows multiple local minima, so that the gradient descent procedure usually proposed in

literature must be initialized correctly in order to avoid to get stuck.

We study this problem in the simplified case of calibration on a plane, so that the

manifold is the simpler SO(2). Moreover, we consider a less ideal scenario in which the

measurements of the relative orientations are corrupted by additive noise. We propose a

novel two-step algorithm based on the cycles of the communication graph which aims

to “cut” the manifold SO(2) and transform it into a suitable segment. As we will see,

this allows to rewrite the cost as a quadratic cost on the Euclidean space, which has a



7

unique minimum that is always reached by a gradient descent procedure. In case the

measurements are noiseless, such a minimum is attained at the point which correctly

calibrates the network. To handle the noisy case, we provide theoretical bounds on the

noise in order to achieve the best possible performance.
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2
Mathematical Tools

Throughout the dissertation we make use of several known notions on Graph Theory

and Operators on Hilbert Spaces. We group in this Chapter the needed definitions and

results without any claim of exhaustiveness, and we refer for a comprehensive treatment

to the specialized books [14, 15, 16] for Graph Theory and [17, 18] for Operators.

2.1 Graph Theory

A graph is a quadruple G = (V, E , s, t) where V is called the set of nodes, E is called the

set of edges, and t and h are two functions t : E → V and h : E → V . If t(e) = u we say

that the edge e starts in u, or that u is the tail of e. If h(e) = v we say that the edge

e ends in v, or that v is the head of e. In this thesis we will always consider graphs in

which there exist no parallel edges, namely edges e′ and e′′ such that t(e′) = t(e′′) and

h(e′) = h(e′′), or in words which start and end at the same nodes. For this reason, we

often denote a graph simply as the pair G = (V, E), where E ⊆ V ×V , and where an edge

e ∈ E is simply denoted as e = (u, v), where u is the tail and v is the head of e.

Given a graph G = (V, E), a subset of nodes V ′ ⊆ V and the subset of edges E ′ ⊆ E
such that for any edge e = (u, v) ∈ E ′, both u ∈ V ′ and v ∈ V ′, namely E ′ ⊆ (V ′×V ′)∩E ,

we say that G′ = (V ′, E ′) is a subgraph of G. In particular, we say that G′ is the subgraph

induced by V ′ if E ′ = (V ′ × V ′) ∩ E .
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We say that a graph is undirected if (u, v) ∈ E ⇐⇒ (v, u) ∈ E , and in this case we

use the simplified notation {u, v}. If a graph is not undirected, then it is called a directed

graph, or digraph.

Given a node u ∈ V , we denote by N in
u = {v 6= u : e = (v, u), ∃ e ∈ E} the in-neighbor

set of u, namely the set of nodes such that there exists an edge starting in such nodes and

ending in u, apart from u itself in case of existence of self-loop. Analogously, we denote

by N out
u = {v 6= u : e = (u, v), ∃ e ∈ E} the out-neighbor set of u, namely the set of node

such that there exists an edge ending in such nodes and starting from u, again excluding

u. Clearly, for an undirected graph the two notions coincide, so we generically talk about

the neighbor set, or neighborhood, Nu of u. For undirected graphs, the symbol δu = |Nu|
will denote the cardinality of the neighborhood of u.

A path γ = {(ui, vi)}i=1,...,l in the graph G from a node u to a node v is a set of edges

(ui, vi) ∈ E , i = 1, . . . , l, such that u1 = u, vl = v and vi = ui+1 for all i = 1, . . . , l − 1.

The integer1 l := |γ| is called the length of the path. A path in which u1 = vl is said to

be a cycle.

A digraph is said to be strongly connected if there exists such a path from u to v

for any pair (u, v) ∈ V × V. A digraph is said to be weakly connected if, instead, there

exists a path in the induced undirected graph in which any directed edge is replaced

by an undirected one. Clearly, in undirected graphs, as it will often be the case in this

dissertation, the notion of strongly and weakly connected coincide, so we generically say

that an undirected graph is connected, or disconnected, which is, not connected.

Given a graph G = (V, E), the graphical distance between u and v, denoted by the

symbol dG(u, v) is defined as follows

dG(u, v) =





0, u = v

min {|γuv| : γuv is a path from u to v}, if a path exists from u to v

+∞, otherwise

(2.1)

namely dG(u, v) is the minimum length of the paths from u to v or, if no path exists

among them, then dG(u, v) = +∞. This can happen in disconnected undirected graphs or

in digraphs which are only weakly connected. Notice, instead, that in strongly connected

digraphs the graphical distance of any pair of nodes is always a finite integer.

Given a graph G = (V, E), we denote by N := |V| and M := |E| respectively the

number of nodes and edges, and often we label the set of nodes as V = {1, 2, . . . , N}, and

the same for the edges.

1The symbol |X| denotes the cardinality of the set X.
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It is often useful and elegant to describe a graph making use of its incidence matrix

and of its adjacency matrix. Both fully describe graphs with no parallel edges, as in our

case.

Definition 2.1.1 (Incidence matrix for directed graphs). Let be given the digraph

G = (V, E), and label the nodes as V = {1, . . . , N} and the edges as E = {1, . . . ,M}. We

define the incidence matrix B ∈ {0,±1}M×N as follows

Beu =





−1 if u = h(e)

1 if u = t(e)

0 otherwise

, (2.2)

so the e-th row, related to directed edge e, has a −1 in correspondence with its head,

and a 1 in correspondence with its tail.

Remark 2.1.2. We will often assume that nodes and edges are labeled as in the previous

definition in order to use the incidence matrix and the forecoming adjacency matrix. This

labeling is arbitrary, and is only instrumental to write in matrix form the algorithms we

propose.

The previous definition holds for digraphs. However, we often need to use incidence

matrices in case of undirected graphs. In this case, the standard way to define the

incidence matrix is by choosing, for each (undirected) edge e = {u, v}, an orientation,

namely to decide which, among u and v, is the tail and which is the head. In other terms,

given the undirected graph Gu, we define a directed oriented graph Go as follows: for

each edge e = {u, v} of Gu, we choose either (u, v) or (v, u) and we form a set of oriented

edges Ed. Then Go = (V, Ed). We define the incidence matrix of Gu as follows.

Definition 2.1.3 (Incidence matrix for undirected graphs). Let be given the undirected

graph G = (V, E). Choose arbitrarily an orientation for it, namely choose Go. The

incidence matrix of G is the incidence matrix of Go.

Clearly, this procedure leaves several degrees of freedom, since orientations (and

labeling) are arbitrary. However, notice that the structure of the corresponding incidence

matrices is essentially the same. A different definition of incidence matrix is sometimes

given for undirected graphs [14]. However, the one given here is particularly useful for

our scopes since incidence matrices give a naturally tool to describe flows of current

in electrical networks, whose orientation is analogously arbitrary. We will see this in

Chapter 3, Section 3.6.
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Denote by 1 a vector of suitable dimension whose entries are all equal to 1. By

definition, it is clear that B1 = 0 if B is the incidence matrix of a graph. The following

lemma, which descends from the more general statement Theorem 8.3.1, [16], will be

used, often implicitly, throughout the dissertation.

Lemma 2.1.4. Let G = (V, E) be a connected undirected graph. Then if B is an incidence

matrix of G
kerB = span {1} .

The second important matrix related to a graph is its adjacency matrix, defined as

follows.

Definition 2.1.5. Let be given the graph G = (V, E). The adjacency matrix of G is the

matrix A ∈ {0, 1}N×N in which

Auv =





1 (v, u) ∈ E , u 6= v

0 otherwise
. (2.3)

Notice that a graph is undirected if and only if its adjacency matrix is symmetric.

The following lemma gives the relation among adjacency and incidence matrix for

undirected graphs. Notice that it holds for any incidence matrix of the undirected graph.

Lemma 2.1.6. Let G = (V, E) be an undirected graph, and let A and B be respectively

its adjacency matrix and its incidence matrix, given an arbitrary orientation. Let

∆ ∈ R|V|×|V| a diagonal matrix whose (u, u)-th entry is the degree of u. Then

BTB = ∆−A (2.4)

Proof. On the diagonal [BTB]uu =
∑

eB
2
eu =

∑
e:u=h(e) 1 +

∑
e:u=t(e) 1 = δu since

an edge in the incidence matrix is either entering or exiting from u. Off diagonal

[BTB]uv =
∑

eBeuBev = 0 if {u, v} 6∈ E , while [BTB]uv = B(u,v)uB(u,v),v = −1 if (u, v)

is the chosen orientation of {u, v} ∈ E , and analogously if the orientation is (v, u).

Remark 2.1.7. Due to its importance in spectral graph theory, the matrix ∆−A is often

called the Laplacian of the graph. In this dissertation the name Laplacian will be however

used for a slightly different object, so we will usually avoid to talk about Laplacians of

graphs. The unique exception is Section 4.4.

We often consider weighted graphs, namely couples (G, w) in which G is a graph and

w : E → R is a function which associates to each (directed) edge its weight, a positive
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real number. Given a matrix P ∈ RN×N , we define the graph associated with P , and

we denote it by GP , to be a graph with set of nodes V = {1, 2, . . . , N} and edge set

EP := {(u, v) ∈ V ×V : Pvu 6= 0}. We say, on the converse, that a graph G is consistent

with P if GP is a subgraph of G. Notice that this means that Puv 6= 0⇒ (v, u) ∈ E .

2.2 Operator Theory

An Hilbert space H is a complete normed vector space over a field F with norm induced

by an inner product. In this dissertation we are mainly interested in the cases in which

H is either the continuous time signal space L2[0,∞) or the discrete time signal space

l2(0,∞). Vector valued versions are denoted Hn, where n denotes the spatial dimension

of the signals.

The truncation operator PT : Hn → Hn is defined as

(PT v)(t) =




v(t), t ≤ T
0, t > T

It is easy to see that PT is linear, so we write for simplicity PT (v) = PT v.

Given Hn, the corresponding extended space consists of signals for which PT v ∈ Hn,

∀T ≥ 0.

An operator H on Hne is causal, or non-anticipative, if PTH(v) = PTH(PT v) for all

T ≥ 0 and all v ∈ Hne .

We define the gain of the operator H : Hne → Hn
e to be

γ(H) = sup
v∈Hn
v 6=0

{‖H(v)‖
‖v‖

}
,

where ‖ · ‖ is a norm on Hn. An operator is said to be bounded if its gain is bounded.

An operator is said to be linear if it holds

H(α1v1 + α2v2) = α1H(v1) + α2H(v2), ∀v1, v2 ∈ H, α1, α2 ∈ F

A causal linear–time invariant operator has a convolution representation in the sense



14 Mathematical Tools

that it acts as

(Hv)(t) =

∫ t

0
hc(t− τ)v(τ)dτ + h0v(t) (2.5)

(Hv)(t) =

n∑

k=0

h(t− k)v(k) (2.6)

in continuous and discrete time, respectively. The signal h is called impulse response

function.

If the operator is bounded then we have the equivalent frequency domain representation

Ĥv(jω) = Ĥ(jω)v̂(jω)

in continuous time, and

Ĥv(ejω) = Ĥ(ejω)v̂(ejω)

in discrete time, where Ĥ and v̂ are the frequency response and Fourier transform of

v ∈ Hn, respectively. Ĥ(s) and Ĥ(z−1) will denote respectively the Laplace transform

and the Z transform of h in continuous and discrete time.

We denote by Ω the instability domain and ∂Ω its boundary. In the case of continuous

time systems we have Ω = {s : Res ≥ 0} and ∂Ω = jR. In the case of discrete time

systems we have Ω = {z : |z| ≥ 1} and ∂Ω = ej[0, 2π].

We denote by Hnd the space of signals on the doubly infinite time–axis Ln2 (−∞,∞),

or ln2 (−∞,∞), with corresponding frequency domain space Ĥd being either L2(jR) or

L2[0, 2π].

Given a bounded operator Ψ : Hnd → Hnd , its adjoint Ψ∗ is defined by the relation

〈w,Ψv〉 = 〈Ψ∗w, v〉 , ∀w, v ∈ Hnd

where 〈·, ·〉 denotes the inner product. We say that Ψ is self-adjoint if Ψ = Ψ∗.

A self–adjoint bounded linear time–invariant operator Ψ : Hnd → Hnd defines in a

natural way a quadratic form defined as

σΨ(v) = 〈v,Ψv〉

We say that Ψ is positive definite, and we denote this by Ψ > 0, if there exists a real

ε > 0 such that

〈v,Ψv〉 ≥ ε‖v‖2,∀v ∈ Hnd
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A necessary and sufficient condition for Ψ to be positive definite is that

Ψ̂(jω) = Ψ̂(jω)∗ > 0, ∀ω ∈ R ∪ {∞}

in continuous time, and

Ψ̂(ejω) = Ψ̂(ejω)∗ > 0,∀ω ∈ [0, 2π]

in discrete time.

In this dissertation we use the algebra Ac consisting of LTI operators with impulse

responses functions of type

h(t) = hc(t)θ(t) + h0δ(t)

where hc ∈ Lm×m1 [0,∞), h0 ∈ Rm×m, θ(·) and δ(·) denote the unit step function and the

dirac delta function, respectively. Under these assumptions, h can be seen as the impulse

response of a bounded LTI operator via the convolution in Eq. 2.5.

We let Sn×nAc be the set of bounded LTI operators on Ln2 (−∞,∞) defined by impulse

response functions of the form

h(t) = hc(t) + h0δ(t)

where hc(t) = hc(−t)T ∈ Lm×m1 (−∞,∞) and h0 = hT0 ∈ Rm×m. The transfer function

Ψ̂(s) of Ψ ∈ Sm×mA satisfies Ψ̂(s) = Ψ̂(−s)T in its domain of definition, which includes

the imaginary axis. It is thus self-adjoint and will be used to define quadratic forms

under the framework of the Integral Quadratic Constraints theory.

Similarly, Ad denotes the bounded LTI operators on l2(0,∞) defined by the convolu-

tion in Eq. 2.6 with an impulse response function satisfying
∑∞

k=0 |hk| <∞. Similarly,

Sn×nAd denotes the LTI bounded operators on ln2 (−∞,∞) defined by impulse response

functions with hk = hT−k and
∑∞

k=−∞ |hk| <∞. Any transfer function Ψ̂(z) of Ψ ∈ Sm×mAd
satisfies Ψ̂(z) = Ψ̂(−z)T and is thus self-adjoint.

We often use the short–hand notation A and Sn×nA to denote an LTI operator that

could be either continuous or discrete time.
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3
Analysis of Consensus Networks

3.1 Introduction

As mentioned in the Introduction, one of the most important, interesting and challenging

research topics of the last two decades is Network Control Theory. This topic arose from

the disposal of large scale networks of sensors and robots, and from the necessity to unify

the different approaches to control, estimation, data fusion.

Among the possible distributed tasks a multi-agent network is required to carry on,

one of the most important is agreement, and in particular averaging. By agreement,

we mean a procedure, or algorithm, such that a group of agents having different initial

guesses of some quantity of interest share them and update them. The update rule must

be designed to ensure that all the agents finally share the same estimate of the quantity

of interest, possibly in finite time. This problem is commonly called consensus problem.

In the particular case in which a notion of “average” exists, and if the agreement on

the quantity of interest is required to be the average of the initial guesses, we speak of

average consensus problem.

Due to its appealing simplicity, one of the most important and studied consensus

algorithms is the linear consensus algorithm, which we introduce in Section 3.2. Intuitively,

it is a linear iteration rule in which the local variable of each node u is updated as a

convex combination the variables of the neighbors of u.
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Among the applications proposed in the literature for the linear consensus algorithm

there are

• formation control [19, 20, 21, 22]: given a network of robots moving in a plane, one

of the most basic control formation problems is rendez-vous, namely the ability for

the robots to gather at one point. This can be done using consensus, being the

“quantity of interest” the position of the robot in the plane.

• distributed estimation [23, 24, 25, 26, 27, 28, 29]: in this scenario each agent

possesses an initial measurement of some quantity of interest, for example the

temperature in a room. The averaging procedure is then used in order to average

out the measurement noise and refine the measurements when a way to collect all

of them must be avoided. Moreover, with some refinement consensus algorithm is

also used in estimation and filtering of dynamical systems as a tool to design an

effective distributed Kalman-like filters;

• load balancing [30, 31]: consider a network of parallel computers. In this case the

quantity of interest is the computational load each agent has to process, and the

averaging procedure consists in exchanging duties in order the computational load

to be more or less the same for all the agents;

• sensor calibration for sensor networks [32, 33, 34, 35, 36]: when a sensor network is

deployed in a space, is is often of major interest that each agent knows its position

in an external, common reference frame. It is known that sometimes the problem of

estimating the distance among the sensors can be recast into a consensus problem

with noise. In Chapter X5 we consider a variation of this problem in which each

agent wants to estimate its orientation with respect to an external reference frame;

• distributed optimization [37, 38, 39, 40, 41, 42, 43]: it is often the case that a global

function to be computed can be decomposed as the sum of local contributions,

which are local minimization problems. In this framework, consensus is often used

as an effective tool for data fusion and information merging;

• distributed demodulation [44, 45]: as in the previous cases, consensus can be

effectively used as a tool in order to average out noise and provide data fusion

when a group or sensors receive a low SNR signal from multi-antennas and what to

improve their ability to demodulate the message.

In this dissertation we consider the simplest case of linear consensus, in which

the update law is deterministic and time-invariant, and we always assume that the
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minimal assumptions for agreement are satisfied. Our main interest is in measuring the

performance of consensus algorithm. Given in fact the weights of the convex combination

which represents the update law, we study two well-known metrics that give a measure

of how “good” the linear consensus algorithm is. More precisely, we study the rate of

convergence to consensus, which is related on how fast consensus is reached, and a linear

quadratic (LQ) cost, also called `2 cost, which has an interpretation as the norm of the

difference among the trajectory of the states and the asymptotic consensus value. In

particular, two aspects are of great interest

• how the metric is influenced by geometric characteristics of the communication

graph: this is of great importance when it is possible to choose among different

graph topologies for the communication graphs, so it is necessary to give tools to

compare them;

• how the metric scales with the dimension of the network, namely with the number

of agents: it is known that in many cases the performance of a consensus algorithm

degrades if the number of agents increases. Understanding how fast this degradation

happens for a certain graph gives a qualitative threshold on the maximum number

of agents in order to maintain prescribed performance.

Notice that, concerning the first point, one can wonder whether the metrics are

coherent in comparing different graph structures or not, namely if the fact that a certain

graph G1 is better than another graph G2 if compared through a certain performance

metric implies that the same happens for any other metric. Recent papers gave some

partial answers to this question, suggesting that the geometric structure of a graph does

play a fundamental role, which should be a primal guidance in the design process.

The contributions of this Chapter to the literature can be summarized as follows:

• we consider a large class of undirected graphs, called geometric graphs, which well

model actual fixed sensor networks deployed in the Euclidean space Rd. We prove

that for symmetric consensus protocols built on such graphs, the rate of convergence

to consensus essentially depends on the dimension d and on the number of agents

in the network only. This extends and unifies known results for highly symmetric

graphs. These results are published in the papers [46, 47]

• for the `2 cost, we present an estimate which only depends on a geometric parameter

of the communication graph, its average effective resistance. Despite the fact that

this result does not hold for any linear consensus protocol, we provide important

applicative examples in which this happens. These results are published in the

papers [48, 49, 50]
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• for geometric graphs, we show that the `2 cost again essentially depends on the

dimension d and on the number of agents in the network only. This result extends

and unifies known results in literature. These results are published in the papers

[48, 49, 50]

We want to remark that the notion of geometric graph is not new, since it dates

back at least to the outstanding book [51], in which the authors draw a deep and useful

parallel among Markov Chains and electrical resistive networks, and use this parallel to

prove the well known Polya’s theorem in an elegant and simple way. This parallel is also

the starting point for our theorem, since Markov Chains and consensus algorithms are

essentially the same objects, as we will point out. We also underline that the notion we

give of geometric graph can be seen as a deterministic counterpart of the well-known

random geometric graph (see [52, 53]).

3.2 The linear consensus algorithm

Consider a network of interconnected agents, and assume that the agents are labeled

as V = {1, . . . , N}. Let G = (V, E) be the communication graph, in which E ⊆ V × V
describes which communication links between the agents are allowed. In other terms, as

already mentioned, we say that (u, v) ∈ E if and only if the agent u can send information

to v. In the linear consensus algorithm, at each iteration the agents send their current

state to their neighbors, and then update it as a suitable convex combination of the

received messages. More precisely, if xu(t) denotes the state of the agent u ∈ V at time

t ∈ N, then

xu(t+ 1) =
∑

v∈V
Puvxv(t) , (3.1)

where Puv are the entries of a matrix P . It is common to say that Puv is the weight the

agent u gives to the information coming from its neighbor v.

In order for Eq. 3.1 to describe a convex update, the matrix P must be stochastic,

namely fulfill the following definition.

Definition 3.2.1. A matrix P ∈ RN×N is said to be stochastic if Puv ≥ 0 for all

u, v ∈ V = {1, . . . , N} and
∑

v∈V Puv = 1 for all u ∈ V.

In a compact matrix form, we can rewrite the update law in Eq. 3.1 as

x(t+ 1) = Px(t) (3.2)

where x(t) ∈ RN denotes the vector collecting all agents’ states. The constraint imposed
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by the communication graph G is enforced by requiring that GP is a subgraph of G, where

GP = (V, EP ) is the graph associated with the matrix P defined assuming that (v, u) ∈ EP
if and only if Puv 6= 0 (see Section 2.1). In other terms, given a directed edge (v, u) in the

communication graph, node u can decide whether to use information coming from v, and

in this case Puv > 0, or not, and in this case Puv = 0. There are cases in which it is more

convenient to design the consensus algorithm avoiding to use some of the edges — even

if they’re at disposal — due to particular geometries of the communication graph, as in

De Bruijn’s graphs proposed in Section 3.4 and in relation to the rate of convergence to

consensus.

In this framework, the theory of positive matrices can be profitably used in order to

study consensus algorithms.

A stochastic matrix P is said to be irreducible if the associated graph is strongly

connected, namely, for all u, v ∈ V , there exists a path in GP connecting u to v, and it is

said to be aperiodic if the greatest common divisor of the lengths of all cycles in GP is

one. Notice that the presence of a self-loop, namely a Puu > 0 for some u ∈ V, ensures

aperiodicity.

Remark 3.2.2. Irreducibility and aperiodicity are independent properties. For example

the matrix

P =

[
0 1

1 0

]

corresponds to a ring with two agents exchanging each time their value. Such matrix is

irreducible but not aperiodic.

On the converse, the matrix

P =

[
1 0

1 0

]

which corresponds to a tree with two nodes, is aperiodic, but not irreducible.

An irreducible aperiodic matrix is called primitive. As it is well known from Frobenius-

Perron theory [54], if P is primitive, then P has the eigenvalue 1 with algebraic multiplicity

1, and all other eigenvalues have absolute value strictly smaller than 1 and so we have

that

P t
t→∞−→ 1πT

where the vector π is the invariant measure of the matrix P , namely the left eigenvector

of P corresponding to the eigenvalue 1, properly scaled so as to have
∑

u πu = 1. The

same theorem also ensures that all the entries π are strictly positive, namely that πi > 0,

∀i.
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Remark 3.2.3. Aperiodicity is needed in order to ensure that the eigenvalue 1 has multi-

plicity 1, and thus the states align to the vector 1, thus reaching consensus. Irreducibility

is also needed to ensure that πi > 0, ∀i, which means that the agreement value makes

some use of all the initial conditions. In fact, dropping irreducibility property we obtain a

network in which the agents of a first subset (the strongly connected component, in which

there is a path from any node to any other node) act as leaders, while a second subset

of agents (which is only able to receive information from the leaders) act as followers,

progressively forgetting their initial conditions and aligning to the consensus value decided

by the leaders. After all, analysis can be reduced to analysis of the subgraph of the

leaders. This fact becomes more interesting in Higher Order Consensus Networks, which

we treat in Chapter 4, Section 4.4.

Under the assumption P to be primitive, the states of the consensus algorithm (namely,

the states that evolve according to Eq. 3.1) converge to the same value xu(t)
t→∞−→ α,

where α = πTx(0). Thus, the agents reach consensus on the value of their states xu(t),

since they all converge to the same number α, called the consensus value. Notice that, if

P is doubly stochastic, namely if both P and P T are stochastic, then π = 1
N 1 and so

the consensus value α is equal to the average of the initial states. In this case we achieve

average consensus.

Clearly, one wonders under which conditions the matrix P is primitive and thus is

allows to achieve consensus. The following Proposition, adapted from [55], proposes an

example of mild sufficient conditions on the communication graph. Basically, the strongly

connectivity condition imposes that “information coming from one node is received from

any other”, while the self–loop conditions ensures aperidicity of the graph.

Proposition 3.2.4 ([55]). Consider a stochastic matrix P associated to a directed graph

GP . Assume that Puu > 0, ∀u ∈ V, and that G is strongly connected. Then the matrix P

is primitive.

Popular consensus strategies

We briefly present in this Section three popular and simple strategies to design a consensus

protocol.

Let G = (V, E) be a connected undirected communication graph. A first very popular

and simple way to achieve consensus is to let the state x(t) evolve according to the rule

xu(t+ 1) = xu(t) + ε
∑

v∈Nu
(xv(t)− xu(t))
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where ε is a suitable positive real scalar. In fact, if B is the incidence matrix of the graph,

it is easy to see that this evolution can be expressed in matrix form as

x(t+ 1) = (I − εBTB)x(t) = Px(t)

thus ε must be sufficiently small so that all the entries of P = I − εBTB are positive. In

particular, it must hold ε ∈
(

0, 1
maxu{δu}+1

)
, where δu is, recall, the degree of node u.

The choice of ε is therefore a global task, and can be sometimes difficult to be done.

Another possibility is to choose the Metropolis-Hastings weights, for which

Puv =





1
max{δu,δv}+1 , (v, u) ∈ E , u 6= v

1−∑t∈Nu Put, u = v

0, otherwise

As it is easy to see, the resulting matrix P is still symmetric and allows to achieve

consensus. The good point is that it can be built using only very local properties, namely

the number of the neighbors of the neighbors.

A third very popular way is to use uniform weights, namely to set

Puv =
1

δu + 1

if (u, v) ∈ E or u = v, and Puv = 0 otherwise. It is trivial to see that if A is the adjacency

matrix of the graph, then

P = diag ((A+ I)1)−1 (A+ I)

This strategy is the easiest to implement, since it requires only to know how from how

many neighbors an agent receives information, however it does not allow, in general,

average consensus, not even in case of undirected graphs.

Brief review of the literature

While the pioneering work [1] proposed and studied the linear consensus algorithm for

applications to distributed estimation and load balancing, much work has been done in the

last decade motivated by the formation control problem [19, 20]. Moving on with respect

to the case in which the weights are fixed and the evolution is purely deterministic, many

papers included in the model more realistic scenarios, such as packet-drop communication

and delays [56, 57, 58, 59, 60, 61], and some others have been devoted to the study of
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randomized consensus algorithms, namely consensus algorithms in which P (t) is itself a

matrix valued stochastic process [62, 63, 53, 64, 65].

As the classical theory suggests, the typical trajectory which the states draw while

approaching the consensus value is exponential in time, and many papers have been

devoted to the study of the exponential rate of convergence, both for structured graphs

[66, 67, 68, 69, 70, 71, 72, 73], and in terms of optimization problems [74, 75, 76, 77, 78, 79].

We will consider this issue in Section 3.5. To conclude, since consensus is often considered

an algorithm which has a direct application to many sensor network problems, much

effort has been spent trying to understand how consensus behaves under some typical

constraints in communications, such as quantization of information and noisy channels

[80, 81, 82, 83, 84, 85, 60, 61].

Linear Consensus in Continuous Time, Laplacians, and Consensus as

an Optimization Problem

In the previous Section we have recalled what is meant by linear consensus algorithm in

discrete time. The analogous state update in continuous time takes the form

ẋ(t) = −νLx(t) (3.3)

where L ∈ RN×N has a 1-dimension kernel spanned by the vector 1, namely L1 = 0, its

off-diagonal entries are non-positive, and is consistent with the communication graph

G = (V, E), in the sense that Luv < 0⇒ (v, u) ∈ E . The value ν ∈ R is a parameter which

can be tuned, even if in real applications is cannot be raised above a certain threshold.

The most typical choice is to set L to be the Laplacian of a primitive stochastic

matrix P consistent with the communication graph, namely

L := I − P (3.4)

where I is the N ×N identity. Notice that the properties of L are trivially satisfied due

to the properties of P .

Is is also worth to notice that discrete-time consensus can be rewritten as

x(t+ 1) = (I − L)x(t)

thus Laplacian can be directly used in order to design a consensus algorithm. For example,

the first protocol proposed above has L = εBTB.

Remark 3.2.5. An alternative way to introduce consensus is to consider the problem of
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studying the evolution of the simple system

x(t+ 1) = x(t) + u(t)

and to give a rule to compute u(t) in order for the system to reach consensus. This type

of system was studied for the formation control case, in which the quantity xu(t) is not

directly at disposal of node u, since it is an absolute position. Nonetheless, each robot is

able to compute its control uu(t) according to the relative distance of u and its neighbors.

The simplest way to produce the control is thus taking

uu(t) = ν
∑

v∈Nu
Luv(xv(t)− xu(t))

where Luv are positive weights which penalize the distance among u and its neighbor v.

As is clear, the matrix L = [Luv] is the Laplacian of a stochastic matrix P .

This way of interpreting consensus as agreement by penalization of the distance

among neighbors turns out to be very interesting in many cases in which only relative

information is at disposal of the single agents, see for example [86].

To conclude this section, we briefly recall that given the Laplacian L and the “cost

function”

JL(x) =
1

2
xTLx

then consensus algorithm for example in continuous-time is simply a gradient descend

optimization procedure for the cost, namely

ẋ(t) = −εgradJL(x(t)) = −εLx(t)

This way to interpret a consensus algorithm will be used in Chapter 5, where we

consider the natural generalization of this type of cost in the case of consensus in the

manifold S1.

Linear Consensus and Markov Chains

As mentioned in the previous Section, a linear consensus protocol consists in a linear

update of the type

x(t+ 1) = Px(t)
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where P is a stochastic matrix. Called π the invariant measure of P , namely the (positive

by Frobenius-Perron theorem) vector such as πT1 = 1 and πTP = πT , we have that

x(t)
t→∞−→ πTx(0)1

thus achieving consensus.

Markov Chains are stochastic finite-state systems in which a probabilistic law is given

to jump from the generic state u to the generic state v. In other terms, if V = {1, . . . , N}
are the states of the chain, for every u there are N non-negative values, pu1, pu2, . . . , puN ,

which represent the probability to jump from u to the state 1, . . . , N . Clearly, in order

to avoid meaningless scenarios, it must hold true

N∑

v=1

puv = 1,∀ i.

Once we gather these values in a matrix P such that [P ]uv = puv, it is manifest that

we obtain a stochastic matrix, exactly of the same type as those used in consensus. The

matrix P is called the matrix of transition probabilities of the chain. In case the matrix

is primitive, the left invariant measure π has a straightforward interpretation as the

asymptotic probability of the states in the chain. In other terms, starting from any state

and waiting for “enough” time, the value πu gives the probability that the chain is in the

state u.

3.3 Reversible consensus matrices

Among all the stochastic matrices, a particularly important subclass is that of reversible

consensus matrices, a name coming from the definition of reversible Markov Chains (see

for example [87]).

Definition 3.3.1. Let P ∈ RN×N be the transition probability matrix of a Markov

Chain, and assume that π is the invariant measure of P . The chain is said to be reversible

if

πuPuv = πvPvu,∀u, v ∈ V (3.5)

Somehow conversely, if Eq. 3.5 holds true for a set of nonnegative scalars π1, . . . , πN ,

then πT =
[
π1 . . . πN

]
is the invariant measure of the chain, which of course is

reversible.

It can be easily shown that if the chain is reversible and we are at steady state, namely

we wait for enough time so that the probability of the chain to be in state u is given by
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πu, then if we observe a sequence of states

x1x2 . . . xn

we cannot recognize whether it was walked forward or backward in time. Hence the name

reversible.

On the basis of this definition, we clarify what we mean by reversible matrix.

Definition 3.3.2. Given a stochastic matrix P , we say that it is reversible if there exists

a diagonal semi-positive definite matrix Π such that

ΠP = P TΠ (3.6)

One can easily see that this is the matrix form of Definition 3.3.1 once we normalize

Π in such a way that
∑N

u=1 Πuu = 1. Clearly, this implies that Π = diag (π) where π is

the invariant measure of P .

Remark 3.3.3. The graph associated with a stochastic matrix P in general is a directed

graph. However, if it happens that πu > 0, ∀u, then reversibility of the matrix implies

that the graph is undirected. This is clear by definition, since πuPuv = πvPvu and

πu > 0, πv > 0 imply that Puv > 0 ⇐⇒ Pvu > 0, and thus in the associated graph

(v, u) ∈ E ⇐⇒ (u, v) ∈ E .

Example 3.3.4. The most important case of reversible matrices is the symmetric case.

In fact, in case P stochastic primitive is symmetric, we have π = 1
N 1, thus πi = 1

N , ∀i,
and Eq. 3.6 is trivially satisfied.

Since we are interested in primitive matrices, we also have that πu > 0, ∀u ∈ V. For

this case, some important properties of reversible stochastic matrices are summarized in

the following lemma, of which we give the simple proof for completeness.

Lemma 3.3.5. Let P ∈ RN×N be a primitive reversible stochastic matrix with invariant

measure π, and let Π = diag (π). Then

• P is self-adjoint with respect to the inner product 〈·, P ·〉Π

• P̃ = Π1/2PΠ−1/2 is symmetric.

• all the eigenvalues of P are real;

• P has N independent eigenvectors, which are orthogonal w.r.t. the inner product

〈·, ·〉Π.
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Proof. From Eq. 3.6 we have

〈x, Py〉Π = xTΠPy = xTP TΠy = 〈Px,y〉Π

Notice that this holds true also in the general case πu ≥ 0, ∀u.

The second property is immediate from Eq. 3.6 multiplying on the left and on the

right by Π−1/2, which exists, and obtaining P̃ = P̃ T . By definition, P̃ and P are similar,

thus share the same set of eigenvalue, which are real since P̃ is symmetric.

Putting P̃ in Jordan form, we get P̃ = UJUT , where the columns of U are N

orthogonal eigenvectors of P̃ . This implies P = Π−1/2UJUTΠ1/2 = V JV −1, where the

columns of V form a set of independent eigevectors of P . The fourth propery now follows

since

〈V, V 〉Π = V TΠV = UTΠ−1/2ΠΠ−1/2U = I

where I is the N ×N identity.

3.4 Graph architectures

Multi-agents systems of the type we are interested in usually consist in swarms of robots,

networks of sensors, and so on. In this section we propose some graphs structures, or

graph topologies, which are commonly found in literature as skeleton architectures for

networks of such intelligent devices.

Cayley graphs

Cayley matrices and tori are highly structured matrices and graphs which present a

number of symmetries, and that are defined through groups. They can be seen as idealized

architectures, so that in actual communication graphs which are similar to tori we can

expect similar behaviors in terms of algorithm performance.

Definition 3.4.1. Let G be an finite Abelian group of order N = |G|. A matrix

P ∈ RG×G is said to be a Cayley matrix over the group G if

Pi, j = Pi+h, j+h, ∀ i, j, h ∈ G. (3.7)

Notice that in the previous definition the elements of P are indexed not with the

usual integer numbers, but rather with the elements of the group, so that the + symbol

in Eq. 3.7 denotes the operation of the group. Clearly, in order to consider P as a matrix

we need, as usual, to label these elements with integers {1, . . . , N}.
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Figure 3.1: Two examples of d-dimensional tori.

It is easy to see [88] that there exists a function g : G→ R, called generator, such that

Pij = g(i− j). Note that g can be read from any row of P . A graph G is a d-dimensional

torus if its adjacency matrix is a Cayley matrix. With this definition it is obvious that

the graph associated with a Cayley matrix is automatically a torus, or more precisely

a dg-regular lattice on a d-dimensional torus, where dg is the number of neighbors of

each node. A d-dimensional torus is completely determined by giving the group G and

a set S ⊆ G. Indeed, the set of edges E of a torus is such that (i, j) ∈ E if and only if

j − i ∈ S.

In Fig. 3.1 two tori are presented. On the left, G = Z8 and S = {±1, 0} generate the

circle with N = 8 nodes, in which each agent communicates with the node on the left

and on the right. On the right, G = Z20 × Z10 and S = {(−1, 0), (1, 0), (0, 1), (0,−1)}
generates the torus with N1 = 20 circles of N2 = 10 nodes each, where each agent

communicates with the nodes on the left, on the right, above and below.

Notice that any finite Abelian group G is isomorphic to the group Zn1 × · · · × Znd ,
for some n1, . . . , nd ∈ N. In order to simplify the notation, in this paper we will restrict

to d-dimensional tori with respect to groups of the type Zdn. Moreover we will always

assume that there is a positive constant η (small enough compared with n) such that1

(u, v) ∈ E only if ||v − u|| ≤ η. This constraint describes the assumption that a node can

not communicate with nodes that are too “far” away from it. Another parameter will play

an important role in the sequel. If we assume that the d-dimensional torus is connected,

its connectivity implies that there exists a path from the node 0 = (0, . . . , 0) ∈ Zdn to

the node ei ∈ Zdn, which is the vector with all entries equal to zero except the entry in

1Here we are assuming that the entries of i, j in Zn are represented by the integers −n/2 +
1, . . . ,−1, 0, 1, . . . , n/2 in case n is even or by the integers −(n − 1)/2, . . . ,−1, 0, 1, . . . , (n − 1)/2 in
case n is odd
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Figure 3.2: A de Bruijn graph with N = 8 nodes.

position i which is equal to 1. Let li be the graphical distance between 0 and ei and let

l := maxi{li}. In many practical cases we have that l = 1. This parameter will play an

important role when we will need to bound the graphical distance between nodes in tori.

De Bruijn’s graphs

De Bruijn’s graphs constitute a very particular family of graphs which allow convergence

to consensus in finite time. Thanks to this nice behavior, which implies fast information

spreading properties, de Bruijn’s graphs have been proposed as the optimal architecture

for multi-processor networks, inspiring scientific papers [89] as well as patents [90]. As

a matter of fact, instead, in ad-hoc networks the De Bruijn is hardly implemented due

to the long-range communication and high connectivity it requires. We choose it as an

example to illustrate extreme behaviors of the performance costs we want to analyze. The

paper [67] uses de Bruijn’s graphs to solve linear consensus, gives detailed and general

results on these graphs and provides several useful properties and characterizations. We

will restrict here to a particular case. Let k and n be two positive integers, and consider

the graph G = (V, E) whose adjacency matrix is the following

A = 1⊗ I ⊗ 1T (3.8)

where the column vector 1 is k dimensional, the identity I is kn−1 dimensional and the

symbol ⊗ denotes Kronecker product. The graph G is called de Bruijn’s graph [91], and

it is displayed in Figure 3.2 in the case k = 2, n = 3.

Remark 3.4.2. De Bruijn’s graphs fall under the large class of expander graphs, which

constitute an interesting research topic in graph theory. Intuitively, the main characteristic

of an expander graph is the fact that it is sparse, namely, its number of edges is “small”



3.4 Graph architectures 31

in the number of nodes, but yet has high connectivity, namely, the number of paths from

any node to any other node is “high” in the number of nodes. We refer to the inspiring

survey [92] for a formal treatment of the topic and many examples of Expanders.

Geometric graphs

Cayley graphs and d-dimensional tori are often a good model for sensor networks, but

their structure is too ideal to be actually implemented in reality. We need a model which

requires less symmetry, or, even better, a model which consists in a family of graphs that

share some common characteristics. In this Section we introduce geometric graphs as a

solution to this problem.

Roughly speaking, a geometric graph is a perturbation of a regular grid or torus

in d dimension, for instance by removing or adding edges, or moving nodes. There

exist several different mathematical models for networks deployed in a real environment.

One of the most important model is the random geometric graph, which consists in

taking an hypercube Q ⊂ Rd, deploying N nodes uniformly in it, and putting an edge

among two nodes if their Euclidean distance is less then some threshold r. Other models

instead just give rules to choose the edges connecting nodes deployed in an environment

[93, 94, 95]. All these models fall in the general class of the so called ad-hoc networks, or

proximity–induced graphs. Here we have chosen the one proposed in [51, 96], which we

describe in a while, because it is, in our opinion, simpler, rather general and, compared

to the definition of random geometric graph model, it requires no probabilistic rule.

γ

ρ

s

r

Figure 3.3: An example of geometric graph deployed in R2. In the figure it the parameters
s, γ and r are shown. Concerning the parameter ρ, the two nodes for which the minimum in

Eq. 3.13 is attained are shown.
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Consider an hypercube Q ⊂ Rd with edge of length `, namely Q = [0, `]d ⊆ Rd.
We consider an undirected graph G = (V, E), |V| = N , in which each node u possesses

a geometric coordinate and u ∈ Q, namely all the nodes of the graph are deployed

inside the hypercube Q. We will often abuse the notation denoting by the same symbol

V = {1, . . . , N}, the set of labels, and V ⊆ Q, the set of coordinates of the nodes. We

denote by dE(u, v) the Euclidean distance among any couple of nodes (u, v) ∈ V × V,

which is defined to be

dE(u, v) =

√√√√
d∑

k=1

(uk − vk)2. (3.9)

Following [96, 97, 98], the following parameters can be defined:

• the minimum Euclidean distance between any two nodes

s = min
u, v∈V, u 6=v

{dE(u, v)} ; (3.10)

• the maximum Euclidean distance between any two connected nodes

r = max
(u, v)∈E

{dE(u, v)} ; (3.11)

• the radius γ of the largest ball centered in Q containing no nodes of the graph

γ = sup {r|B(x, r) ∩ V = ∅, ∃x ∈ Q} ; (3.12)

• the minimum ratio between the Euclidean distance of two nodes and their graphical

distance

ρ = min

{
dE(u, v)

dG(u, v)
| (u, v) ∈ V × V

}
. (3.13)

Notice that, if G is connected, then ρ is well defined and positive. By convention, if

the graph is not connected then one sets ρ = 0. Such a graph is called a geometric graph

with parameters (N, d, `, s, r, γ, ρ).

To give some conclusive intuitions, a geometric graph is a graph deployed in Rd in

which the density of the nodes is approximatively uniform, in the sense that there are

no regions where the nodes are “too close” (parameter s) and no large regions without

nodes (parameter γ). Moreover, communication range is limited (parameter r) and two

nodes which are geometrically close cannot be graphically far (parameter ρ).



3.5 Rate of convergence 33

3.5 Rate of convergence

The most classical performance index for the evaluation of the convergence of an iterative

algorithm is the speed of convergence of the algorithm output towards its asymptotic

value. It is well known from classical system theory that the rate of convergence of the

state x(t) to its asymptotic value is exponential. The exponential rate of convergence is

then defined as

R := lim
t→∞

(||x(t)− x(∞)||)1/t

where || · || denotes the 2-norm of a vector. Assume we are given a primitive stochastic

matrix P . By standard linear algebra it can be seen that R = ρ(P ) where ρ(P ) is the

essential spectral radius of P

ρ(P ) := max{|λ| : λ ∈ Λ(P ) \ {1}}, (3.14)

where Λ(P ) is the set of all the eigenvalues of P .

Notice that we can say that the vector 1 give the “consensus direction” in the sense

that the state x tends to align with 1. Thus, the rate of convergence gives basically a

worst-case performance cost on the velocity at which consensus is reached. In fact, if v is

the eigenvector of P associated with the eigenvalue λ such that ρ(P ) = |λ|, it is clear that

v gives the direction, not parallel to 1, along which the decaying to zero is slower. For

this reason, the more ρ(P ) is distant from 1, the faster the network achieves consensus.

The relation between the essential spectral radius of P and the topology of the graph

GP associated with P is a problem which has been widely studied both in the Markov

chains community and in the community studying the theory of graphs. In Markov chain

theory ρ(P ) is related to the so called mixing time of the Markov chain having P as the

transition matrix [54]. Spectral graph theory instead studies the geometric properties of

graphs using the Laplacian L of the matrix, which, recall, is defined to be L = I − P , so

that Λ(P ) = 1−Λ(L) and the spectral properties of the two matrices essentially coincide.

Once we sort in increasing order the eigenvalues of L

0 = µ1 < µ2 ≤ µ3 ≤ · · · ≤ µN−1

the value µ2 is known as the Fiedler eigenvalue [99], or second smallest eigenvalue of L,

or algebraic connectivity of L. Its characteristics are closely related to those of ρ(P ). For

example, the more the smallest eigenvalue µ2 is distant from 0, the more ρ(P ) is distant

from 1, and thus the faster consensus is achieved. An extensive treatment of these and

many other graph–theoretic topics can be found in the book [15].
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Bounds on the convergence rate for general graphs

One of the major issues in research on consensus algorithms and Markov chains is

to understand how to bound the essential spectral radius of P in terms of geometric

parameters of the network.

In the sequel we will briefly recall some classical results (see [87, 100, 101, 102, 103]).

For simplicity we will restrict our attention to symmetric stochastic matrices. Similar

results hold for reversible matrices, with some slight modifications.

If P is symmetric, then its eigenvalues are real, and in the sequel we will assume that

they are ordered in such a way that 1 = λ0 > λ1 ≥ λ2 ≥ · · · ≥ λN−1. Notice that in this

case we have that

ρ(P ) = max{λ1,−λN−1}

Therefore the second largest eigenvalue λ1 will play an important role in determining

bounds on ρ(P ). Indeed, if we find bounds on λ1 and on −λN−1 we can get an upper

bound on ρ(P ) too. Applying Gershgorin circle theorem we can argue that

−λN−1 ≤ 1− 2 max
i
{Pii}.

Therefore, the difficulty in finding bounds on ρ(P ) essentially stands in finding bounds

on λ1. This eigenvalue will be denoted with the symbol λ1(P ).

The well-known Rayleigh-Ritz theorem (see [104]) proves to be a helpful tool in

bounding λ1(P ). Rayleigh-Ritz theorem, in our case of P symmetric, coincides with the

following variational characterization

1− λ1(P ) = min

{
xT (I − P )x

xTΩx
,x 6= α1

}
, (3.15)

where Ω = I − 1
N 11T is the projector over span {1}⊥.

This characterization is the basis of several results relating geometric parameters of

the graph associated with the stochastic matrix P to its second largest eigenvalue. We

will briefly review two among the most important ones, namely the Poincaré and the

Cheeger inequalities. For the general statements and the proofs of both of them, we refer

to [87].

Poicaré inequality

Let P be a symmetric stochastic matrix and let GP = (V, E) be the undirected graph

associated with P . For any couple (u, v) ∈ V × V, u 6= v, let γuv be a path from u to v.
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Namely, γuv is a set of edges γuv = {e0, . . . , el} such that e0 = (u, u1), ei = (ui, ui+1)

∀ i = 1, . . . , l−1 and el = (ul, v). We will assume that in a path a vertex can be touched

many times, while an edge may appear at most once. We define the following weighted

length of the path γuv

|γuv|P =
∑

e∈γuv
P (e)−1

where e are the edges forming γuv and P (e) = pzw if e = (w, z).

Let Γ be a collection of such paths, one for each pair (u, v). We associate to Γ the

following quantity

κ = κ(Γ) = max
e∈E
{
∑

γuv3e
|γuv|P } (3.16)

namely κ is the maximum, as e varies over E , of the sum of |γuv|P for all the paths γuv

in which e appears as an edge.

This value has an immediate, intuitive, interpretation. We take, for any path, the

measure of the resistance to the flow of information through that path. Then, we

maximize it over the edges of the graph, obtaining thus a measure of the bottleneck

in the network. This bottleneck influences the rate of convergence to the asymptotic

distribution of the states as stated in the following theorem.

Theorem 3.5.1 ([87]). The second largest eigenvalue of P satisfies

λ1(P ) ≤ 1− N

κ
, (3.17)

with κ defined in (3.16).

This inequality is fundamentally an edge-perspective bound. It links geometric

properties of paths along the network with the rate of convergence. Intuitively, less

information can flow along the paths considered, the slowest is the convergence.

Cheeger inequality

In this section the interest is switched from paths to “surfaces”, giving the definition

of Cheeger ratio, as well as the relation between such quantity and the second largest

eigenvalue. Unfortunately, even if the computation of the bound is someway simpler, this

approach has been proved to offer less effective results over large families of graphs if

compared with the Poincaré inequality [102].

Let P be a symmetric stochastic matrix and let GP = (V, E) be the undirected graph

associated with P . Take a proper subset S ⊆ V of the nodes. It is rather intuitive that

the flow of information from the set S to its complement SC = V \ S is linked to the
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transition probability from S to SC . We can thus consider the conditional expectation

of crossing the boundary of S given that we started from S, and minimize it over any

possible set S. We obtain in this way the so called Cheeger ratio

h(P ) = min
S:|S|≤N

2

{
P (S × SC)

|S|

}
, (3.18)

where S ⊆ V and P (S × SC) =
∑

(x, y)∈S×SC Pxy.

This quantity can be used in order to derive both an upper and a lower bound on the

second largest eigenvalue, as stated in the following result.

Theorem 3.5.2 ([87]). The second largest eigenvalue of P satisfies the following inequal-

ities

1− 2h(P ) ≤ λ1(P ) ≤ 1− h(P )2, (3.19)

with h(P ) defined in (3.18).

Rate of convergence in Cayley graphs

In this section we will present the results about the rate of convergence for the class of

Cayley matrices and d-dimensional tori. Details and proofs can be found for example in

[66, 101, 53]. Consider the class of Cayley matrices and d-dimensional tori with respect

to the group Zdn with given d and n. Notice that N = nd. Assume that the graphs

belonging to this class have the self loops and that they are connected. Recall from

section Sect. 3.4 the definition of l and η.

The following theorem provides an upper bound on λ1(P ). We don’t give the proof

of this result because it follows the same lines of the proof of Theorem 3.5.9 which treats

a more general case.

Theorem 3.5.3. Let P be a symmetric stochastic Cayley matrix with respect to the group

Zdn whose associate graph GP is in the previous class of d-dimensional tori characterized

by the parameter h as described above. Assume that all the nonzero entries of P lie in

an interval [pmin, pmax]. Then

λ1(P ) ≤ 1− C 1

n2

where C is a strictly positive constant depending on d, l and pmin.

The following theorem instead provides a lower bound on λ1(P ). We give the proof

of this result because this theorem will be instrumental in the proof of the more general

result given in Theorem 3.5.8.
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Theorem 3.5.4. Let P be a symmetric stochastic Cayley matrix with respect to the group

Zdn whose associate graph GP is in the previous class of d-dimensional tori characterized

by the parameter η as described above. Then

1− C 1

n2
≤ ρ(P )

where C is a strictly positive constant depending on d and η.

Proof. First observe that, since ρ(P ) = max{λ1,−λN−1}, it is enough to prove that

λ1 ≥ 1− C ′ 1

n2

From the properties of the Cayley matrices [105] we can argue that the eigenvalues of P

are given, for any h = (h1, . . . , hd) ∈ Zdn by the formula

λh =
∑

k∈Zdn

Pk,0 cos

(
2π

n
kTh

)

Take h = ei, where ei is the canonical vector defined in Section 3.4. Then, using the fact

that cosx ≥ 1− x2/2 and the definition of the generator g of the matrix, we have

λei =
∑

k∈Zdn

g(k) cos

(
2π

n
ki

)
≥
∑

k∈Zdn

g(k)

(
1− 2π2

n2
k2
i

)
= 1−


∑

k∈Zdn

g(k)k2
i


 2π2

n2

This in turn implies the thesis as follows

ρ(P ) ≥ 1− min
i=1,...,d


∑

k∈Zdn

g(k)k2
i


 2π2

n2

≥ 1− 1

d

d∑

i=1


∑

k∈Zdn

g(k)k2
i


 2π2

n2

= 1− 1

d


∑

k∈Zdn

g(k)||k||2

 2π2

n2

≥ 1− 2π2η2

d

1

n2

It is possible to obtain a similar result if we consider instead of Cayley matrices,
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more general matrices which are consistent with d-dimensional tori. We start from the

following theorem providing an upper bound on λ1(P ). We don’t give the proof of this

result because it follows the same lines of the proof of Theorem 3.5.9 which treats a more

general case.

Theorem 3.5.5. Let P be a symmetric stochastic matrix whose associate graph GP is

in the previous class of d-dimensional tori characterized by the parameter η as described

above. Assume that all the nonzero entries of P lie in an interval [pmin, pmax]. Then

λ1(P ) ≤ 1− C 1

n2

where C is a strictly positive constant depending on d, l and pmin.

We give finally a lower bound on ρ(P ). For this result we consider the case in which

the stochastic matrices are not restricted, as in the rest of the paper, to be symmetric,

but we give the result for the more general class of reversible matrices, since it will

turn out to be instrumental in proving Theorem 3.5.8. Recall that we order the (real)

eigenvalues of P in such a way that

1 = λ0 > λ1 ≥ λ2 ≥ · · · ≥ λN−1

Theorem 3.5.6. Let P be a stochastic matrix which is consistent with a graph G which

belongs to the previous class of d-dimensional tori characterized by the parameter η as

described above. Assume moreover that P is reversible with respect to a diagonal matrix

Π = diag (π1, . . . , πN ). Then

1− C 1

n2
≤ ρ(P )

where C is a strictly positive constant depending on d, δ and πmin/πmax, where πmin :=

minu{πu} and πmax := maxu{πu}.

Proof. First observe that, since ρ(P ) = max{λ1,−λN−1}, it is enough to prove that

λ1(P ) ≥ 1− C ′ 1

n2

Observe moreover that (3.15) can be adapted to reversible stochastic matrices as follows

µ1 = min

{
xTΠLx

xT (Π− ππT )x
, x 6= α1

}

where L := I−P and µ1 is its second largest eigenvalue. Consider now for any h ∈ G := Zdn
the operator σh over the matrices in RG×G defined by letting σh(P )i,j := Pi+h,j+h. Notice
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that

P̄ :=
∑

h∈G
σh(ΠP )

is still compatible with the graph G and moreover it is a symmetric Cayley matrix with

respect to the group G. Let 1 = λ̄0 > λ̄1 ≥ λ̄2 ≥ · · · ≥ λ̄N−1 be the eigenvalues of P̄ . Let

moreover L̄ := I − P̄ and µ̄1 be its second largest eigenvalue. Then we have that

µ̄1 = min

{
xT L̄x

xTΩx
, x 6= α1

}
= min

{
1

xTΩx
xT

(∑

h∈G
σh(ΠL)

)
x, x 6= α1

}

≥
∑

h∈G
min

{
1

xTΩx
xTσh(ΠL)x, x 6= α1

}
=
∑

h∈G
min

{
xTΠLx

xTΩx
, x 6= α1

}

= N min

{
xTΠLx

xTΩx
, x 6= α1

}
≥ N2π2

min min

{
xTΠLx

xT (Π− ππT )x
, x 6= α1

}

≥
(
πmin

πmax

)2

µ1

The last inequalities are motivated by the fact that

xT (Π− ππT )x =
1

2

∑

uv

(xu − xv)2πuπv ≥ π2
min

1

2

∑

uv

(xu − xv)2

= Nπ2
minx

TΩx

and that πmax ≥ 1
N .

Considering that, by Theorem 3.5.4 we have that µ̄ ≤ C/n2 for some constant C, we

get that the previous inequality implies that

λ1 = 1− µ1 ≥ 1−
(
πmax

πmin

)2

µ̄1 ≥ 1−
(
πmax

πmin

)2 C

n2

Rate of convergence in De Bruijn’s graphs

In this short Section it is shown why the de Bruijn’s graphs are so appealing to be

used to build a consensus network. Consider the de Bruijn’s graph with N = kn we

defined previously, and assume that each node uniformly weights all its neighbors, namely

consider the stochastic matrix

P =
1

k
1⊗ I ⊗ 1T (3.20)
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where the column vector 1 is k dimensional and the identity I is kn−1 dimensional. Notice

that P defined in this way is not symmetric but it is doubly stochastic and that the

number of neighbors of each agent is exactly k.

A simple computation [67] shows that

P h =
1

N
11T , ∀h ≥ k

where here the column vector 1 is N dimensional. This means that with this matrix the

state converges to consensus in at most n = logkN steps. It is possible to show [67] that

there exists no kn × kn stochastic matrix for which we have faster, namely in less steps,

convergence. Notice finally that P has the minimum possible essential spectral radius

since ρ(P ) = 0.

Remark 3.5.7. De Bruijn’s graphs provide a simple example of the fact that it is not

always true that given a communication graph G = (V, E) we attain best performance

making use of all the edges at disposal. In fact, if one takes a de Bruijn’s graph and

adds a small number of other edges, the best rate of convergence is still obtained with

the construction in Eq. 3.20. On the contrary, forcing to use the added edges yields to

a critical degradation of the performance, since the second eigenvalue would become

strictly positive.

Rate of convergence in Geometric graphs

In this section we will analyze the rate of convergence of a generic symmetric stochastic

matrix whose associated graph is a geometric graph. Our aim is to obtain a lower and an

upper bound for such a quantity, and the tools used will be a Poincaré inequality-type for

the upper bound, and the state–aggregation approach for Markov Chains for the lower

bound. The procedure is similar to the one proposed in [53], where the authors study the

random geometric graphs [52] in dimension d and show that the rate of convergence in

such graphs is with high probability the same as the rate of convergence of a d-dimensional

grid. Here we obtain a similar result for our deterministic model of geometric graphs.

We start from the lower bound. The proof is postponed to Section 3.5.

Theorem 3.5.8. Let P be a symmetric stochastic matrix whose associate graph GP is a

geometric graph with parameters (N, d, `, s, r, γ, ρ), where we assume that ` ≥ 4γ. Then

1− C

N2/d
≤ ρ(P ) (3.21)

where C is a strictly positive constant depending on the parameters d, s, r, γ and ρ but
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not on `, N .

We will give now an upper bound on the second largest eigenvalue of a symmetric

stochastic P whose associated graph is a geometric graph and whose entries lie in an

interval [pmin, pmax]. The proof of this theorem, given in the Section 3.5, makes use of

the Poincaré inequality given in Eq. 3.17.

Theorem 3.5.9. Let P be a symmetric stochastic matrix whose associate graph GP is a

geometric graph with parameters (N, d, `, s, r, γ, ρ), where we assume that ` ≥ 4γ. We

assume moreover that all the nonzero entries of P belongs to [pmin, pmax]. Then

λ1(P ) ≤ 1− C

N2/d
(3.22)

where C is a strictly positive constant depending on the parameters pmin, d, s, r, γ and

ρ but not on `, N .

Applications

As a first example of application of the previous theorem we can consider the regular grid

of N = n2 nodes on the plane. In this case the nodes are deployed in a square of edge

length equal to ` = n − 1 and have coordinates i, j with i, j ∈ {0, . . . , n − 1}. In this

scenario, it is clear that the distance among any pair of nodes is 1 and so we have that

s = 1. Moreover the communication range is r = 1 and the disks which do not contain

any node have radius which is at most γ =
√

2/2. Moreover, given a pair of nodes, it

can be seen that the minimum of the ratio between the nodes Euclidean distance and

graphical distance is ρ =
√

2/2. The regular grid it thus a geometric graph with these

parameters, and so, if P is a symmetric stochastic matrix having the regular grid as its

associated graph, then we can apply Theorem 3.5.9 which yields the well known result

λ1 ≤ 1− Cr
1

N
,

where Cr is a strictly positive constant depending only on the minimum value of the

entries of P associated with the edges of the grid.

Consider now a perturbation of such a grid. We take the same set of nodes, in the

same positions, and we modify the communication topology as illustrated in Fig. 3.4. It

is clear that in this case r, s and γ remain the same as in the previous example. Only the

parameter ρ changes. It can be seen that ρ is determined by any two nodes at Euclidean

distance 1 which are not neighbours in the perturbed grid. The application of Theorem
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Figure 3.4: Perturbation of the regular grid.

3.5.9 yields

ρ(P ) ≤ 1− Cp
1

N
.

where Cp is a strictly positive constant depending only on the minimum value of the

entries of P associated with the edges of the grid. Notice that in both the grid and in

the perturbed grid the number of node is N = n2. On the other hand in the regular

grid we have 2n(n− 1) edges, while in the perturbed grid we have 3
2n(n− 1) edges. As

shown in the proof of Theorem 3.5.9, the constants Cr and Cp are proportional to ρ and

so Cp = 1√
2
Cr. This means that, in this case, even dropping one fourth of the edges we

still obtain a rate of convergence which shows the same behavior in N .

Proofs of Theorem 3.5.8

In order to prove the theorem we need to introduce some notation and some lemmas.

Given a connected graph G let

ρ(G) := min{ρ(P ) : P primitive symmetric stochastic matrix consistent with G}

namely ρ(G) denotes the minimum ρ(P ) when P varies in the set of symmetric, stochastic,

primitive matrices consistent with G. Notice that the matrix attaining such minimum

might be not unique. It is clear that lower bound in the thesis of the theorem is proved

if we prove that

ρ(G) ≥ 1− C

N2/d
. (3.23)

First of all we give a lemma which will be useful in the proof of the theorem.

Lemma 3.5.10. Let P,M ∈ RN×N be symmetric stochastic matrices and assume that
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P is primitive. Then

ρ(MPM) ≤ ρ(P )

Proof. Notice first that

ρ(MPM) = max

{ |yTMPMy|
yT y

, y ⊥ 1, y 6= 0

}

ρ(P ) = max

{ |xTPx|
xTx

, x ⊥ 1, x 6= 0

}

To prove that ρ(MPM) ≤ ρ(P ) it is sufficient to prove that for any y 6= 0 such that

1T y = 0, there exists x 6= 0 such that 1Tx = 0 such that

|yTMPMy|
yT y

≤ |x
TPx|
xTx

.

In finding x we distinguish two cases:

1. In case My 6= 0, we let x := My. Notice that in this case we have that x 6= 0 and

that 1Tx = 1TMy = 1T y = 0. Notice finally that, since all the eigenvalues of M

are in [−1, 1], then yTMMy ≤ yT y and so

|yTMPMy|
yT y

≤ |y
TMPMy|
yTM2y

=
|xTPx|
xTx

.

2. In case My = 0, we let x to be any nonzero vector such that 1Tx = 0.

Proof of Theorem 3.5.8

Let h := b`/2γc and tessellate the hypercube Q into H := hd identical hypercubes

with edge of length ¯̀ := `/h. Notice that, since `/h ≥ 2γ then each of such hypercubes

contains at least one node of G. This implies that hd ≤ N . Notice moreover that, from

the assumption that ` ≥ 4γ, we can argue that

¯̀=
`

b`/2γc ≤
`

`/2γ − 1
≤ 4γ

We can define now a graph GL = (Q,L) having all hypercubes as nodes and having

as edges all the pairs (q′, q′′) of hypercubes such that, either q′ = q′′ (self-loops), or

there exists (u, v) ∈ E with u ∈ q′ and v ∈ q′′. Notice that GL is a subgraph of a

d-dimensional torus over the group Zdn. Notice moreover that if two nodes x, y ∈ Zdn
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are connected, then there exists (u, v) ∈ E with u ∈ qx and v ∈ qy, with qx and qy the

hypercubes correspondent to x and y respectively. Identify now x ∈ Zdn with the center

of its hypercube qx, and the same for y. We can argue that

||x− y||¯̀= dE(x, y) ≤ dE(x, u) + dE(u, v) + dE(v, y) ≤ r + ¯̀
√
d

From this we can argue that x, y ∈ Zdn are connected only if ||x − y|| ≤ η where

η = r/2γ +
√
d.

Build now a new graph, G̃ = (V, Ẽ), which has the same set of nodes as G, and has an

edge connecting any couple of nodes u, v if and only if one of the following two conditions

hold:

1. u, v lie in the same hypercube,

2. u ∈ q′ and v ∈ q′′ and (q′, q′′) ∈ L.

Notice that, by construction, we have that E ⊆ Ẽ , namely G is embedded in G̃ so that

ρ(G̃) ≤ ρ(G)

since minimization in G̃ is subjected to a smaller set of constraints. Our aim is now to

lower bound ρ(G̃), since this will yield in turn a lower bound for ρ(G) as well.

Let ni ≥ 1, i = 1, 2, . . . ,H, be the number of nodes inside the i-th hypercube so that∑H
i=1 ni = N . Assume that the nodes of G̃ are ordered in such a way that the nodes

ni−1 + 1, ni−1 + 2, . . . , ni end in the i-th hypercube. Introduce the following matrices,

D := diag (n1, . . . , nH) and

S :=




1n1 0 . . . 0 0

0 1n2 . . . 0 0
...

...

0 0 . . . 0 1nH



∈ {0, 1}N×H

Notice that M := SD−1ST is stochastic. Assume now that P G̃ be a symmetric, stochastic,

primitive matrix consistent with G̃ such that ρ(P G̃) = ρ(G̃). By the definition of M it is

easy to see that

MP G̃M =




p111n11
T
n1

p121n11
T
n2

. . . p1H1n11
T
nH

p121n21
T
n1

p221n21
T
n2

. . . p2H1n21
T
nH

...
...

p1H1nH1Tn1
p2H1nH1Tn2

. . . pHH1nH1TnH



.
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where pij are the elements of the matrix P̃ = D−1STP G̃SD−1. By definition of G̃ we

have that MP G̃M is compatible with G̃ and so ρ(MP G̃M) ≥ ρ(G̃) = ρ(P G̃). On the

other hand, by lemma 3.5.10 we have that ρ(MP G̃M) ≤ ρ(P G̃), proving in this way that

ρ(MP G̃M) = ρ(G̃).

Let P̄ := D−1STP G̃S = P̃D. This is a stochastic matrix. It can be shown that

Λ(MP G̃M) \ {0} ⊆ Λ(P̄ ) ⊆ Λ(MP G̃M) (3.24)

To prove (3.24) first observe that, if µ ∈ Λ(P̄ ) then there exists a nonzero vector v such

that P̄ v = µv. If we let ṽ := Sv 6= 0, then

MP G̃Mṽ = SD−1STP G̃SD−1STSv = SP̄v = Sµv = µṽ,

and so µ ∈ Λ(MP G̃M). Assume conversely that µ ∈ Λ(MP G̃M) \{0}. Then MP G̃Mṽ =

µṽ for some nonzero vector ṽ. Let v := ST ṽ. Observe that v is nonzero because otherwise

we would have that µ = 0. Observe finally that

µv = µST ṽ = STMP G̃Mṽ = STSD−1STP G̃SD−1ST ṽ = P̄ v

This implies that µ ∈ Λ(P̄ ).

Notice that (3.24) implies that ρ(P̄ ) ≤ ρ(G̃) ≤ ρ(G) ≤ ρ(P ). It remains to find a

lower bound of ρ(P̄ ). Notice first that, if we define Π := N−1D, then we have that

P̄ TΠ = ΠP̄

This means that P̄ is a reversible stochastic matrix with respect to Π. Notice moreover

that P̄ is compatible with the graph GL which is a subgraph of a d-dimensional torus with

respect to the group Zdh in which two nodes x, y ∈ Zdn are connected only if ||x− y|| ≤ η,

where η = r/2γ +
√
d. Therefore we can apply Theorem 3.5.6 to obtain

ρ(P̄ ) ≥ 1−
(
πmax

πmin

)2 C

h2
.

where C depends on d, γ and r.

Recall finally that, since each hypercube contains at least a node, then hd ≥ N . Notice

moreover that πmax/πmin ≤ maxi{ni}. Observe that the volume of the d-dimensional

sphere of radius s/2 is Ad
(
s
2

)d
, where Ad = πd/2

Γ(d/2+1) . Then, by definition of s, we have

that

niAd

(s
2

)d
≤ ¯̀d
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and so

ni ≤
1

Ad

(
2¯̀

s

)d
≤ 1

Ad

(
8γ

s

)d

where we used the fact that ¯̀≤ 4γ. We can conclude that

ρ(G) = ρ(G̃) = ρ(P̄ ) ≥ 1− 1

Ad

(
8γ

s

)d C

N2/d
.

Proofs of Theorem 3.5.9

For simplicity we will develop the proof only for d = 2, showing at the end how it is

possible to generalize the result to any dimension.

For any pair of nodes x, y we build a path γxy connecting x and y as follows (see

Fig. 3.5). We first tessellate the square Q as we did in the previous proof, namely by

letting h := b`/2γc and by tessellating Q into h2 identical squares with edge of length
¯̀ := `/h. Notice that, since `/h ≥ 2γ then each of such squares contains at least one

node of GP . As in the previous proof, we have that h2 ≤ N and that ¯̀≤ 4γ.

Assume that, for any square q, we choose one of its nodes, denoted by uq, as its

representative node in such a square. Moreover, for any node v let uv be the representative

of the square x belongs to.

¯̀

D D

S1(x)

x

ux

y

uy

x

ux

y

uy

Figure 3.5: Building γxy. For each square, we choose a representative, which is marked by
a cross. We proceed from representative to representative upwards and then leftwards (or

rightwards). We can exit from the squares, but not from stripes of width 2D.

Take the two nodes x, y we want to connect. Assume that x is below with respect

to y. Link, via the shortest path, x to ux, the representative of the square qx. Then,
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≈ `

≈ N

z

Figure 3.6: Maximum usage of a node. Given z, we can use it if we start from a node in
the dark grey below it, which is a subset of S1(z). The number of nodes in this region is
proportional to ` ≈ N1/d. Once we used z, we can possibly reach any node in the soft grey
region. The number of nodes in this region is, in the worst case, proportional to the number

of nodes in the network, N .

start proceeding upward, linking via the shortest path the representatives of each of

the neighbor squares till we reach a square which is at the same height of the square qy

containing y. Then, proceed left or right with in a similar way. At a certain point, we

will reach the representative uy of qy, and then we will link uy with y via the shortest

path.

Let Γ be the collection of these paths, one for each pair x, y. We want to give an

estimate of κ(Γ), where κ(Γ) is defined (3.16). By definition of |γxy|P , given (3.12), we

have that

|γxy|P =
∑

e∈γxy

1

Pe
≤ 1

pmin
|γxy|,

where |γxy| is the length of the path γxy. We want to upper bound |γxy|. We will start

by bounding the graphical distance between two representatives u and v of neighbor

squares. Observe that dE(u, v) ≤
√

5¯̀≤ 4
√

5γ, and so

dG(u, v) ≤ dE(u, v)

ρ
≤ 4
√

5
γ

ρ

Through similar arguments it can be proved that

dG(x, ux) ≤ dE(x, ux)

ρ
≤ 4
√

2
γ

ρ
, dG(y, uy) ≤

dE(y, uy)

ρ
≤ 4
√

2
γ

ρ
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Now, observe that a path in Γ touches at most 2h squares, so including the starting and

the ending points, we have that

|γxy| ≤ 8
√

5
γ

ρ
h+ 8

√
2
γ

ρ
≤ 8(
√

5 +
√

2)
γ

ρ
h (3.25)

Now, given an edge e, we have that

∑

γxy3e
|γxy|P ≤ 8(

√
5 +
√

2)
γ

pminρ
h|{γxy|γxy 3 e}|. (3.26)

Hence, it remains to bound the maximum number of paths which cross a certain edge.

To do this we will bound the number of paths which cross a certain node (see Fig. 3.6).

Assume that a node z belongs to γxy. We want to understand where z has to be with

respect to x, y. Let

D := 4
√

5
rγ

ρ
+ 4γ ≥

√
5
r ¯̀

ρ
+ ¯̀

which is a constant depending only on γ, ρ and r. We show now that

z ∈ S1(x) ∪ S2(y) (3.27)

where for any point w ∈ Q we define

S1(w) := {w′ ∈ Q : |w1 − w′1| ≤ D}, S2(w) := {w′ ∈ Q : |w2 − w′2| ≤ D}

and where w1 and w2 denote the two coordinates of the point w ∈ Q. Namely, S1(w) is

a “vertical stripe” centered in w and of width 2D, S2(w) is the horizontal analogous.

We distinguish various cases:

1. If z belongs to the shortest path between x and the representative ux of the

square x belongs to, then since the path from x to ux is the shortest possible,

dG(x, z) ≤ dG(x, ux) ≤
√

2¯̀/ρ. This implies

dE(x, z) ≤ rdG(x, z) ≤
√

2
r ¯̀

ρ
≤ D

and hence |x1 − z1| ≤ dE(x, z) ≤ D.

2. In an analogous way it can be shown that, in case z belongs to the shortest path

between y and uy, then |y2 − z2| ≤ D.

3. If z belongs to the shortest path between u and v, which are representatives of
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neighbor squares in the vertical portion of the path from x, then |x1 − u1| ≤ ¯̀ and

moreover, since dG(u, z) ≤ dG(u, v) ≤
√

5¯̀/ρ, we can argue that

dE(u, z) ≤ rdG(u, z) ≤
√

5
r ¯̀

ρ

and so |x1 − z1| ≤ |x1 − u1|+ |u1 − z1| ≤ ¯̀+ dE(u, z) ≤ D.

4. In an analogous way it can be shown that, in case z belongs to the shortest path

between u and v, which are representatives of neighbor squares in the horizontal

portion of the path to y, we have that |y2 − z2| ≤ D.

Now we are able to bound the number of paths γxy which cross z. Indeed, if γxy crosses

z then (3.27) holds and so we can distinguish to cases:

(i) Assume that z ∈ S1(x). This holds if and only if x ∈ S1(z). Then the number of

γxy such that x ∈ S1(z) is upper bounded by

8

π

D`

s2
N.

In fact, such value is less than or equal to the number of nodes in the stripe

S1(z) multiplied by the total number of nodes N . The first quantity can be upper

bounded as before by the area of the stripe, 2D`, over the area of a sphere of radius
s
2 .

(ii) Assume in this case that z 6∈ S1(x). Then the number of γxy such that x 6∈ S1(z)

can be bounded as follows. Indeed observe from (3.27) that, if x 6∈ S1(z), then

y ∈ S2(z), and so the number of γxy such that x 6∈ S1(z) is less than or equal to

the number of nodes in S2(z) multiplied by the total number of nodes N . This

value is upper bounded by the same number above.

Putting together the two cases, the number of paths γxy which cross z is upper

bounded by
8

π

D`

s2
N

Finally, by considering this last bound, with the bounds (3.26) and (3.25) we obtain that

κ(Γ) ≤ 8(
√

5 +
√

2)
γ

pminρ
h

8

π

D`

s2
N ≤ 64(

√
5 +
√

2)γD

πpminρs2
4γN2.

where we used the fact that ` = ¯̀h ≤ 4γh and the fact that h2 ≤ N .
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To conclude, by exploiting the Poicaré inequality, we have

λ1 ≤ 1− N

κ(Γ)
≤ 1− C 1

N
,

where C is a constant depending on the geometric parameters s, γ, r and ρ and on pmin.

In the general case, the whole reasoning still holds. What differs is the value of many

numerical constants, since for example the Euclidean distance among the representatives

of two neighbor hypercubes is in general dE(u, v) ≤
√

3 + d. The most important

difference lies however in the fact that now hd ≤ N , whence ` ≤ 4γN1/d. This yields

κ(Γ) ≤ C ′h`N ≤ CN1+2/d,

and thus Poincaré inequality implies

λ1 ≤ 1− C N

N1+2/d
= 1− C 1

N2/d
.

3.6 The linear quadratic cost

As presented in the previous Section, the convergence to the consensus value is exponential

with exponent equal to the second largest eigenvalue of the matrix P

ρ(P ) = sup{|λ| : λ ∈ σ(P ), λ 6= 1}

where σ(P ) is the spectrum of P . For this reason, the value ρ(P ) is a classical performance

cost for the algorithm. However, as recent papers have pointed out [106, 107], this

performance index on P is not the only possible choice for evaluating the performance of

the algorithm. Different costs arise from different specific problems where the consensus

algorithm is used. Moreover, it can be shown [108, 109] that, by considering different

performance indices, it is possible to obtain different optimal graph topologies.

In this Section we propose thus a second way to measure the performance of a

consensus algorithm, namely a Linear Quadratic (LQ) cost which is an index widely used

in the control community. To evaluate the convergence of P t towards its limit value 1πT

we propose the index

J(P ) :=
1

N

∑

t≥0

||P t − 1πT ||2F =
1

N
Tr


∑

t≥0

(I − π1T )(P T )tP t(I − 1πT )


 (3.28)
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where ‖M‖F :=
√

Tr(MMT ) is the Frobenius norm of a matrix and where we added the

normalizing factor 1/N for reasons which will be clarified in the following.

This cost appears in at leas two different contexts. Assume first that we want to

evaluate the speed of convergence of the consensus algorithm by the `2 norm of the

transient, namely
1

N

∑

t≥0

[
‖x(t)− x(∞)‖2

]
.

Notice that this `2 norm will depend on the initial condition x(0). For this reason, we

assume that the initial condition is a random variable with zero-mean and covariance

matrix E
[
x(0)x(0)T

]
= I. We can now consider the expected value of the `2 norm of

the transient which is now a function only of the matrix P . Indeed, by some simple

computations [108] it can be shown that

E


 1

N

∑

t≥0

‖x(t)− x(∞)‖2

 = J(P ) .

so J(P ) can be interpreted as the `2 norm of the difference among the trajectory of the

states and the asymptotic consensus value.

The cost J(P ) appears also in the context of noisy consensus [106, 108, 76]. Consider

a network of agents implementing the consensus algorithm, in which update is affected

by additive noise, so that the actual update of the state is the following

x(t+ 1) = Px(t) + n(t) ,

where n(t) is a random white process. Assume that E[n(t)] = 0 and E[n(t)n(t)T ] = I

for all t ∈ N. Assume that the initial condition is random and that it is uncorrelated

from the noise process. We are interested in the dispersion of x(t). If we measure it by

evaluating the displacement of x(t) from the weighted average
∑

i πixi(t), namely by

introducing the vector

e(t) = (I − 1πT )x(t),

then it can be shown that

lim
t→∞

E
[
‖e(t)‖2

]
= J(P ),

Thus, the proposed LQ cost also characterizes the spreading of the asymptotic value of

the state vector around its weighted average in a noisy network.

It is possible to consider the problem of determining the matrix P satisfying a

constraint and minimizing the index J(P ). On the same spirit of the previous Section
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on rate of convergence, we try instead to provide estimates of J(P ) which allow to

understand how this index depends on the structure of P and more precisely on the

topological properties of the graph GP . In fact we are able to prove that J(P ) is related

to the effective resistance of a suitable electrical network. This geometric parameter

depends on the topology only, and not on the particular entries of P . Since the electrical

analogy holds only if P is reversible [51], we restrict our attention to this class of matrices

also in this Section.

Using these results we show that, analogously to what happens for convergence rate,

under some assumptions, geometric graphs exhibit a particular behavior of the cost J(P )

as a function of the number of nodes which depends on the geometric dimension of the

graph, and on the number of agents, only. In particular, if the graph has geometric

dimension one, namely it is a geometric graph on a segment, then J(P ) grows linearly in

the number of nodes, while, if the graph has geometric dimension two, namely it is a

geometric graph on a square, then J(P ) grows logarithmically in the number of nodes.

Finally, if the graph has geometric dimension three (or more), namely it is a geometric

graph on a cube, then J(P ) is bounded from above by a constant independent on the

number of nodes. This result is based on (and extends) an analogous result [106] which

holds for d-dimensional tori. In this way we show that the spatial invariance of tori is

not a necessary requirement for having this kind of behavior of J(P ).

LQ norm: preliminaries

In this section we analyze the cost function J(P ) when P is a primitive stochastic matrix,

so that J(P ) is finite. This is an immediate consequence of the fact that convergence

of P t toward its limit 1πT , where π denotes as usual the invariant measure of P , is

exponential.

In fact, aperiodicity is consequence of a stronger technical assumption on P which we

impose in this Section only. In particular, we impose that the diagonal elements of P are

all positive. Observe that this condition is not restrictive for the consensus algorithm as

it assumes only that in the state-update (see 3.1) each agent gives to its own current

state a positive weight and this does not requires additional communication. For this

reason, throughout this Section we use the following short-hand definition.

Definition 3.6.1. We say that a matrix P is a consensus matrix if it stochastic and

irreducible, and it satisfies Puu > 0 for all u.

Remark 3.6.2. A self-loop is a cycle of length 1, so the definition of aperiodicity is trivially

satisfied.
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Recall that a reversible matrix is such that ΠP = P TΠ where Π = diag (π) and π is

the invariant measure of P . Recall moreover that the graph associated with primitive

reversible matrices is necessarily undirected. For this reason, in the following we will

always assume that the communication graph G is undirected.

Also, despite the fact that each node has its self-loop, recall that the neighborhood of

a node u ∈ V is the set of its neighbors, except u itself

Nu := {v ∈ V : v 6= u, (u, v) ∈ E} (3.29)

Now we briefly recall the notion of Green matrix of a consensus matrix P , which is

also known as fundamental matrix in the Markov chains literature. Here we concentrate

only on the results that we need. A more complete list of the properties and treatment

of the fundamental matrix can be found in [110], Chapter 2.

Definition 3.6.3. Let P be a consensus matrix, with invariant measure π. The Green

matrix G of P is defined as

G :=
∑

t≥0

(P t − 1πT ) . (3.30)

The Green matrix plays a fundamental role in this Section due to its property of

being almost an inverse of the Laplacian L = I − P , as the following lemma states. The

proof follows from direct computation using the fact that if all the eigenvalues of a square

matrix M are inside the unitary circle then

(I −M)−1 =
∞∑

j=0

M j .

Lemma 3.6.4. Let P be a consensus matrix, with invariant measure π, and let G be its

Green matrix. Then G is the unique solution to the system




GL = I − 1πT

G1 = 0

and satisfies

G+ 1πT = (L+ 1πT )−1.
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Moreover, the matrix L̃ =

[
L 1

πT 0

]
is invertible and its inverse is the matrix

L̃ =

[
G 1

πT 0

]
. (3.31)

The expression in Eq. 3.31 implies in particular the following equation, which will be

useful later on [
G 1

] [ L
πT

]
= I, (3.32)

where I is the N ×N identity matrix.

The electrical analogy

In this Section we present electrical networks, their relation with consensus matrices, and

the well-known notion of effective resistance. Making use of these notions, we state our

main results, Theorem 3.6.5 and Theorem 3.6.7, which give useful bounds of the cost

J(P ) of a reversible consensus matrix P .

The analogy between consensus matrices, or Markov chains, and resistive electrical

networks dates back to the work of Doyle and Snell [51]. It is a powerful tool which gives

strong intuitions on the behavior of the chain on the basis of the physics of electrical

networks, as well as permitting simple and clear proofs for many results. Our interest,

as already mentioned, is mainly related to the possibility to rewrite the LQ cost we are

interested in in terms of a geometric parameter, the average effective resistance. To

this respect we are strongly indebted in terms of inspiration to the papers by Barooah

and Hespanha [97, 96, 98], from which we took many results we state here without a

proof. Effective resistances also arise as a performance metric for clock synchronization

algorithms in [111, 112], and methods for its minimization are proposed in [113].

Electrical networks

A resistive electrical network is a weighted graph in which pairs of nodes are connected by

resistors. A resistive electrical network is therefore determined by a symmetric matrix C

with non-negative entries which tells for each pair of nodes u, v which is the conductance

of the resistor connecting those two nodes. A resistive electrical network is said to be

connected if the graph GC associated with C is connected.

In order to describe the current flowing in the electrical network and to write Kirchoff’s

and Ohm’s laws, we choose (arbitrarily) a conventional orientation for each edge of the
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undirected graph G, so that current will be denoted as positive when flowing consistently

with the direction of the edge and negative otherwise. To this aim, for any pair of nodes

u, v, such that u 6= v and Cuv = Cvu 6= 0, we choose either (u, v) or (v, u) in V × V. Let

E ⊆ V×V be the set of directed edges built in this way and let M be the number of edges.

Let moreover B be the incidence matrix of the graph making use of this orientation.

We define the diagonal matrix C ∈ RM×M having the conductance of the edge e as

the entry in position (e, e). The relation between C and C is easily obtained as

BTCB = diag (C1)− C , (3.33)

namely

[BTCB]uv =





Cu if u = v,

−Cuv if (u, v) ∈ E ,
0 if (u, v) /∈ E ,

where Cu :=
∑

v∈V Cuv. Notice that this relation is the generalization of Lemma 2.1.6

to weighted graph with positive weights. The lemma is a particular case in which all the

conductances are set to 1.

Let i ∈ RN be given such that iT1 = 0, and interpret the k-th entry of i as the

current which is injected (or extracted if negative in sign) into the k-th node of the

network from an external source. We denote by j ∈ RM and v ∈ RN , respectively, the

current flows on the edges and the potentials at the nodes which are produced in the

network by injecting the current i, with the convention that je, e ∈ E , is positive when

the current flows in the direction of e. The previously defined matrices B and C allow us

to compactly write Kirchhoff’s node law and Ohm’s law as the system as follows




BT j = i ,

CBv = j ,
(3.34)

where the first equation states that the total current flow entering into each node equals the

total flow exiting from it (Kirchhoff’s current law), while the second equation represents

Ohm’s law, Cuu′(vu − vu′) = je for all e = (u, u′) ∈ E .

Solving the electrical network means finding the solutions j and v of Eq. (3.34), in

particular finding the solution v of the following electrical equation

BTCBv = i . (3.35)

It is well known (see, e.g., [51]) that a solution exists and, for a connected network, is
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unique up to a constant additive term for v, i.e., the differences vu − vu′ are uniquely

defined. In the next subsection, we will give an explicit expression for the solutions v,

involving the Green matrix of the associated reversible consensus matrix.

Given a connected electrical network with conductance matrix C, the effective resis-

tance between two nodes u, u′ is defined to be

Ruu′(C) := vu − vu′

where we impose i = eu − eu′ and v is any solution of the corresponding electrical

equation (3.35)namely, v is the potential at each node of the network in the case when a

unit current is injected at node u and extracted ad node u′. Finally the average effective

resistance of the electrical network is defined as

R̄(C) :=
1

2N2

∑

u, u′∈V
Ruu′(C). (3.36)

Given a connected undirected graph G, in the following we will use the notations Ruu′(G)

and R̄(G) to mean respectively Ruu′(A) and R̄(A), where A is the adjacency matrix

of the graph G. These are the effective resistance and the average effective resistance

associated with the electrical network having conductance equal to 1 for all the edges

of G and conductance equal to 0 otherwise. We prefer to use the symbols Ruu′(G) and

R̄(G) in order to stress the role of the graph.

Electrical network associated with a consensus matrix

There is a way to obtain a one to one relation between reversible consensus matrices and

connected resistive electrical networks with some fixed total conductance (i.e., sum of

the conductances of all edges). Let P be a reversible consensus matrix and let

Φ(P ) := NΠP

where Π = diag (π) and π is the invariant measure of P . It is clear that Φ(P ) is the

conductance matrix of a connected resistive network. It can be shown that the map Φ is

injective. Indeed, if P1, P2 are reversible consensus matrices and if Φ(P1) = Φ(P2), then

diag (π1)P1 = diag (π2)P2. Multiplying on the right both members by 1 we obtain that

π1 = π2 and consequently P1 = P2. We show now that Range (Φ) = S, where

S := {C ∈ RN×N+ : C = CT , Cuu > 0 ∀ u ∈ V , GC is connected, and 1TC1 = N}
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Clearly Range (Φ) ⊆ S. To prove the equality, for any given C ∈ S we consider

P = (diag (C1))−1C (3.37)

and we show that P is a reversible consensus matrix such that Φ(P ) = C. It is

straightforward to see that P1 = 1, Puu > 0, ∀ u ∈ V , and that GP is connected.

To prove that P is reversible and that Φ(P ) = P , the key remark is that

π =
1

N
C1

is the invariant measure of P , and thus Π = 1
N diag (C1). This immediately implies

that Φ(P ) = C. The reversibility of P is then proved by using the symmetry of C:

ΠP = 1
NC = 1

NC
T = P TΠ. In this way, we have proved not only that Φ is bijective on

S, but also that (3.37) provides the inverse of Φ over S.

Consider now a reversible consensus matrix P and its associated conductance matrix

C := Φ(P ). Let moreover B and C be the matrices associated with the resistive electrical

network with conductance C, as defined above. Notice that the Laplacian matrix

L := I − P = 1
NΠ−1BTCB and so the electrical equation 3.35 is equivalent to

Lv = 1
NΠ−1i. (3.38)

The network being connected, kerL = {α1 : α ∈ R}, and thus, for any i such that

iT1 = 0, Eq. (3.38) has infinitely many solutions, of the form v + α1 for some real

constant α, where v is a particular solution. In our setting it is convenient to find v

which satisfies the following constraint

πTv = 0,

which means that we need to solve the equation

[
L

πT

]
v =

[
1
NΠ−1i

0

]
.

Thanks to Eq. (3.32), the solution can be explicitly written by using the Green matrix G

associated with P , as follows

v =
[
G 1

] [ 1
NΠ−1i

0

]
= 1

NGΠ−1i . (3.39)
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Consequently, we can obtain the effective resistance as follows

Ruu′(C) = 1
N (eu − eu′)TGΠ−1(eu − eu′) . (3.40)

LQ cost and effective resistance

This section is devoted to our main results on the relation between the LQ cost J(P ) for

a reversible consensus matrix P and the average effective resistance of a suitable electrical

network. The results are then formulated in the special case of symmetric consensus

matrices, since for this case they turn out to be clearer and more readable. The proofs

are postponed to Section 3.6.

Consider a reversible consensus matrix P and let π be its invariant measure. Build

the electrical network associated with the matrix P 2 as suggested in Sec. 3.6, namely

build the matrix of conductances

C := Φ(P 2) = NΠP 2. (3.41)

In the particular case in which P is symmetric we have that C = P 2. The following

theorem allows us to estimate the cost in terms of the average effective resistance of this

electrical network, and of quantities depending on the elements of the invariant measure

of P .

Theorem 3.6.5. Let P ∈ RN×N be a reversible consensus matrix and π its invariant

measure, and C the matrix of conductances defined in Eq. (3.41). Then it holds

π3
minN

2

πmax
R̄(C) ≤ J(P ) ≤ π3

maxN
2

πmin
R̄(C) , (3.42)

where πmin and πmax are respectively the minimum and maximum entries of π.

In the particular case of symmetric matrix we have the following corollary which is a

straightforward consequence of the previous theorem.

Corollary 3.6.6. Let P ∈ RN×N be a symmetric consensus matrix, and C the matrix

of conductances defined in Eq. (3.41). Then it holds

J(P ) = R̄(C).

The previous results catch the dependance of the cost on the electrical network built

from P 2. The following theorem allows us to write the cost J(P ) in terms of the effective
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resistance of the graph associated with P only, regardless of the particular entries of the

matrix.

Theorem 3.6.7. Let P be a reversible consensus matrix with invariant measure π and

let G be the graph associated with P . Assume that all the non-zero entries of P belong to

the interval [pmin, pmax], and that the degree of any node is bounded from above by an

integer δ. Then,
π3

minN

8p2
maxδ

2π2
max

R̄(G) ≤ J(P ) ≤ π3
maxN

p2
minπ

2
min

R̄(G) . (3.43)

A simpler result can be obtained for symmetric matrices as a straightforward conse-

quence of the previous theorem.

Corollary 3.6.8. Let P be a symmetric consensus matrix associated with a graph G.

Assume that all the non-zero entries of P belong to the interval [pmin, pmax], and that the

degree of any node is bounded from above by an integer δ. Then,

1

8p2
maxδ

2
R̄(G) ≤ J(P ) ≤ 1

p2
min

R̄(G) .

These last two results can be used to estimate the proposed LQ cost in terms of the

effective resistance of graphs only, as we will show in Section 3.6.

LQ cost and network dimension

One of the most important problems in the design of a sensor network is to dimension it,

namely to decide how many sensors we need to deploy for obtaining a given performance.

From this point of view, it is very important to understand how our cost function scales

in terms of the number N of nodes in a sequence of graphs of growing size, belonging to

a given family. The results in the previous sections can be used to achieve this goal.

Consider in fact a sequence of graphs {GN}N≥2, and assume that f(N) = R̄(GN ) is

a known function of N . Assume that the degree of any node of each GN is uniformly

bounded from above by a positive integer δ. At first, assume to build a sequence of

symmetric matrices PN , each one consistent with the corresponding GN , and such that

if [PN ]ij 6= 0, then pmin ≤ [PN ]ij ≤ pmax, for all N . Then we immediately obtain by

Corollary 3.6.8 that the asymptotic scaling of J(PN ) for N →∞ is given by f(N), up to

some multiplicative constant.

Notice that the above-mentioned assumptions on the family PN are satisfied, for

example, by both the consensus protocols proposed in Section 3.2 which lead to symmetric
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matrices. For example, if the update law for GN is2

xNu (t+ 1) = xNu (t) + ε
∑

v∈Nu
(xNv (t)− xNu (t))

where ε is small enough, then clearly [PN ]uv ∈ [ε, εδ], for any GN .

If we relax the assumption that all PN ’s are symmetric, and we consider a family

of reversible matrices PN , each one consistent with the corresponding GN , the uniform

bound from above and from below on the non-zero entries [PN ]ij is not enough to ensure

that the asymptotic behavior of J(PN ) is given by f(N). In fact, once we denote by

πN the invariant measure of PN , and by πN,min and πN,max respectively the minimum

and maximum value of the entries of πN , we need the further assumption that the

sequences NπN,min and NπN,max are uniformly bounded from above and below by

constants independent of N . Under this assumption, Theorem 3.6.7 clearly ensures that

the asymptotic behavior of J(PN ) is given by f(N). Although the assumption requiring

that NπN,min and NπN,max are uniformly bounded can be rather difficult to check for

the general reversible consensus matrices, we can easily see that it holds true in case we

choose uniform weights, or simple random walk, for which

PN = diag ((AN + I)1)−1 (AN + I)

where AN is the adjacency matrix of the graph GN . If we set

πN =
1

1(AN + I)1
(AN + I)1

it is trivial to see that πN is a stochastic vector, and moreover since (notice that AN = ATN
since the graph is undirected)

πTNPN =
1

1(AN + I)1
1T (AN + I)diag ((AN + I)1)−1 (AN + I)

=
1

1(AN + I)1
1T (AN + I)

= πTN

we conclude that πN is the left invariant measure of PN . Under the assumption that for

any graph of the family GN and for any node u of it, its degree, δNu , is bounded from

above by a value δ, it is clear that the entries of the consensus matrix belong to the

interval [ 1
δ+1 ,

1
2 ]. One can also check that each entry of the invariant measure lies in the

2Here xNu (t) mean the state of node u at time t in case we consider the graph GN .
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interval [ 2
(δ+1)N ,

δ+1
2N ], and hence the assumptions are satisfied.

We conclude this remark noticing that the assumption requiring that NπN,min and

NπN,max are uniformly bounded is not implied by the other assumptions that PN are

reversible consensus matrices whose entries belong to a fixed interval [pmin, pmax] and

are consistent with graphs with degrees uniformly bounded by δ. This is proved in the

example showed in figure 3.7. One can check that the corresponding consensus matrix

is reversible and that the invariant measure π is such that πk = α(a/b)k−1, where α

is a suitable normalizing factor. If we assume that a > b, then πN,min = π1 = α and

πN,max = πN = α(a/b)N−1. In this case NπN,min and NπN,max cannot be uniformly

bounded from below and above, because if this were the case, then also the ratio

NπN,max/NπN,min would be uniformly bounded from below and above, but this is not

possible, as NπN,max/NπN,min = πN,max/πN,min = (a/b)N−1.

b

a
1− a

1− a− b 1− a− b 1− a− b

a a a

b b b

1− b

1 2 N. . . . . .

Figure 3.7: Example: a family of growing lines. We assume that a > 0, b > 0 and a+ b < 1.

The relation between the LQ cost and effective resistance: proofs of

Theorem 3.6.5 and Theorem 3.6.7

This section is devoted to the proof of the theorems relating the LQ cost with the average

effective resistance. We recall some useful facts from the literature, and then use these

notions to prove the results.

Electrical networks: properties of the effective resistances

This section is devoted to briefly recall without proofs some well-known results on the

behavior of the effective resistances in case of perturbation of the electrical network. These

are of fundamental importance, since effective resistances show monotonicity properties

which are not trivial to prove for consensus matrices without the electrical analogy.

A first important property is the fact if we consider the map dR : V × V → R+ in

which we set dR(u, v) = Ruv, then dR is a distance, as stated in the following Lemma

(see e.g. [114, Thm. B] for a proof).

Lemma 3.6.9. If the electrical network is connected, then the effective resistance is a

distance, namely it satisfies the following properties
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• Ruv ≥ 0 for all u, v ∈ V, and Ruv = 0 if and only if u = v;

• Ruv = Rvu, for all u, v ∈ V;

• Ruw ≤ Ruv +Rvw for all u, v, w ∈ V.

A second result, known as Rayleigh’s monotonicity law, says that increasing (resp.,

decreasing) the conductance in any edge of the network implies that the effective resistance

between any other couple of nodes respectively cannot increase (resp., decrease). The

statement is essentially taken from [96, 115], where the authors were considering a more

general case.

Lemma 3.6.10 (Rayleigh’s monotonicity law). Let C and C ′ be the conductance

matrices of two electrical networks such that

Cuu′ ≤ C ′uu′ , ∀ (u, u′) ∈ V × V .

Then, the effective resistances between any two nodes v, v′ in the network are such that

Rvv′(C) ≥ Rvv′(C ′).

The following lemma [115, Lemma 4.6.1] says that, if we take two resistive networks

with the conductance matrices scaled by a constant α, then the effective resistances will

be scaled by the constant 1/α.

Lemma 3.6.11.

Ruu′(αC) =
1

α
Ruu′(C), ∀ (u, u′) ∈ V × V.

Remark 3.6.12. Lemma 3.6.11 and Rayleigh’s monotonicity law imply that the effective

resistance in an electrical network is essentially due to the graph topology. In fact, if we

have an electrical network with conductance matrix C whose non-zero entries belong to

the interval [cmin, cmax] and if C ′ is a conductance matrix having entries equal to 1 in

the positions in which C has non-zero entries and to 0 elsewhere, then

1

cmax
Ruu′(C ′) ≤ Ruu′(C) ≤ 1

cmin
Ruu′(C ′), ∀ (u, u′) ∈ V × V.

The last technical lemma deals with h-fuzzing in electrical networks with unitary

conductances. Given an integer h ≥ 1 and a graph G, we call h-fuzz of G, denoted by the

symbol G(h) = (V(h), E(h)), a graph with the same set of nodes, V(h) = V, and with an

edge connecting two nodes u and v if and only if the graphical distance dG(u, v) between
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e

(δ − 1)K
′

(δ − 1)K−K
′−1

at most δ − 1
edges

Figure 3.8: Illustration of the proof of Lemma 3.6.14: upper bound on the number of paths
of length K in which e is the (K′ + 1)-th edge, in a graph with node degree at most δ = 4.

u and v in G is at most h, namely

E(h) = {(u, v) ∈ V × V : dG(u, v) ≤ h}.

Notice that, if h = 1, then G(1) = G. If D is the diameter of the graph, namely the

maximum graphical distance between a couple of nodes, then G(D) is the complete graph.

It is easy to see that, if P is a stochastic matrix with positive diagonal entries, then the

graph GPh associated with a P h is the h-fuzz of the graph GP associated with P .

The lemma, which is stated with proof in [115, Lemma 5.5.1], suggests that the

effective resistance of G and of its h-fuzz G(h) have effective resistances with a similar

asymptotic behavior.

Lemma 3.6.13. Let h ∈ Z, h ≥ 1, and let G = (V, E) be a graph and G(h) = (V, E(h)) be

its h-fuzz. For any edge e ∈ E, define µh(e) to be the number of paths of length at most h

passing through e in G (without any self-loop in the path), and define µh = maxe∈E µh(e).

The following bounds hold true

1

hµh
Ruv(G) ≤ Ruv(G(h)) ≤ Ruv(G).

The value of µh in the previous result clearly depends on the particular graph under

consideration. The following lemma gives a conservative bound for µh which depends

only on the maximum degree of the nodes in the graph.

We will use this bound later, in the particular case of h = 2.

Lemma 3.6.14. Let µh be defined as in Lemma 3.6.13. If in G all nodes have degree at

most δ, then

µh ≤ h2(δ − 1)h−1. (3.44)
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Proof. For any K = 1, . . . , h, we want to find an upper bound on the number of paths

of length K passing through the edge e. We let K ′ be an integer 0 ≤ K ′ ≤ K − 1, and

we consider the number of paths in which edge e is the (K ′ + 1)-th edge in the path,

namely there are K ′ edges before e and K −K ′ − 1 edges after e. As it can be easily

seen in Figure 3.8, there are at most (δ − 1)K
′

choices for portion of path preceding e,

and at most (δ − 1)K−K
′−1 choices for the portion following e, so that there are at most

(δ − 1)K−1 paths having e in (K ′ + 1)-th position. Summing upon all K ′ = 0, . . . ,K − 1,

and then summing also upon all path lengths K = 1, . . . , h, we obtain that, for any e ∈ E ,

µh(e) ≤
h∑

K=1

K−1∑

K′=0

(δ − 1)K−1 =

h∑

K=1

K(δ − 1)K−1 ≤
h∑

K=1

h(δ − 1)h−1 = h2(δ − 1)h−1 .

Finally notice that this upper bound for µh(e) is the same for all edges e ∈ E , and thus

it is also an upper bound for the maximum, µe.

Proof of Theorem 3.6.5 and Theorem 3.6.7

The previous definitions and properties are used in this section to prove the main results

Theorem 3.6.5 and Theorem 3.6.7 for reversible consensus matrices. Then Corollary 3.6.6

and Corollary 3.6.8 are immediate for symmetric matrices, since in for them πu = 1
N for

all u = 1, . . . , N . In order to prove the results, we need to introduce two more technical

objects which will help us to develop the theory.

Consider a reversible consensus matrix P with invariant measure π. We call weighted

cost the following function of P

Jw(P ) := Tr


∑

t≥0

(I − π1T )(P T )tΠP t(I − 1πT )


 (3.45)

where Π = diag (π). Notice that in the case of symmetric matrices J(P ) = Jw(P ). Now,

let C := Φ(P 2) = NΠP 2. The second object we need is the weighted average effective

resistance, which is defined as

R̄w(C) :=
1

2
πTR(C)π =

1

2

∑

(u, v)∈V×V
Ruv(C)πuπv . (3.46)

Again, notice that in the symmetric case the weighted definition coincides with the

un-weighted one, namely R̄(C) = R̄w(C). We present now a lemma which clarifie

the relation between the costs J(P ) and Jw(P ), and between the weighted and the

un-weighted average effective resistances, respectively. The proof is immediate from the
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fact that πu > 0 for all u.

Lemma 3.6.15. Let P be a consensus matrix with invariant measure π and let C :=

Φ(P 2) = NΠP 2. Then

1

Nπmin
Jw(P ) ≤ J(P ) ≤ 1

Nπmax
Jw(P )π2

minN
2R̄(C) ≤ R̄w(C) ≤ π2

maxN
2R̄(C) .

After the inequalities of the above lemma, which concern separately the LQ cost

and the average effective resistance, our goal is to find the relation between the cost of

the consensus matrix P and the average effective resistance of the connected electrical

network associated with P 2. Before doing so, we need the following technical lemma.

Lemma 3.6.16. If P is a consensus matrix, then the diagonal entries of its Green matrix

G are positive.

Proof. For ease of notation, we prove that G11 > 0; the proof for the other diagonal

entries of G can be obtained by the same arguments.

We fix the following notation: we let gT = [G11, g̃
T ] be the first row of G, and we

define the following partitions

L =

[
l11 rT1
c1 L̃

]
, P =

[
p11 r′1

T

c′1 P̃

]
, gT =

[
G11, g̃

T
]
, πT =

[
π1, π̃

T
]
.

Because GL = I − P , we have gTL = eT1 − πT , where e1 denotes the first vector

of the canonical basis of RN . Notice that G1 = 0 implies that gT1 = 0 and thus, in

particular, G11 = −g̃T1N−1. Similarly, πTL = 0T gives l11 = − 1
π1
π̃Tc1. Hence, we can

write the equality gTL = eT1 − πT in the following equivalent way

g̃T1

[
−1N−1 IN−1

] [− 1
π1
π̃T

IN−1

]
L̃
[
−1N−1 IN−1

]
= eT1 − πT .

By right-multiplying both sides of the above equality with a factor

[
0TN−1

L̃−1

]
1N−1, we

obtain that g̃T1 1N−1 = −π̃T L̃−11N−1, and thus

G11 = π̃T L̃−11N−1 .

Now notice that since by definition of Laplacian L = I − P , it follows L̃ = I − P̃ .

Moreover, our definition of consensus matrix implies that P is primitive, and thus it is

well-known that P̃ has all eigenvalues inside the unit circle (see e.g. [6, Lemma III.1] for



66 Analysis of Consensus Networks

a proof). This implies that L̃ is invertible, and that the series
∑

t≥0 P̃
t is convergent and

is equal to (I − P̃ )−1 = L̃−1. This allows to obtain

G11 = π̃T
∑

t≥0

P̃ t1N−1 .

Recalling that the entries of π̃ are all positive, and that P̃ has non-negative entries with

at least some positive element, this proves that G11 > 0.

Now we have the tools to prove the following lemma, which shows the relation between

the weighted cost and the weighted average effective resistance.

Lemma 3.6.17. Let P be a reversible consensus matrix with invariant measure π and

let C := Φ(P 2) = NΠP 2. Then

πminNR̄w(C) ≤ Jw(P ) ≤ πmaxNR̄w(C).

Proof. To prove this lemma, we will prove the following two equalities involving the

Green matrix associated with P 2, which we will denote by G(P 2)

1. Jw(P ) = Tr ΠG(P 2);

2. R̄w(C) = 1
N TrG(P 2).

From such equalities, the statement follows, because Π is diagonal and positive definite,

and G(P 2) has positive diagonal entries (see Lemma 3.6.16).

As far as the first equality is concerned, observe that

Jw(P ) = Tr


∑

t≥0

(P t − 1πT )TΠ(P t − 1πT )




= Tr


∑

t≥0

(
(P t)TΠP t − ππT

)



= Tr


∑

t≥0

Π
(
P 2t − 1πT

)

 = Tr

(
ΠG(P 2)

)
.

As far as the second equality is concerned, observe that, by substituting the expression

for Ruv(C) given in Eq. (3.40) inside the definition of R̄w(C), we get

R̄w(C) =
1

2

∑

u,v

1
N (eu − ev)TG(P 2)Π−1(eu − ev)πuπv,
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from which we can compute

R̄w(C) =
1

2

∑

u,v

1
N (eu − ev)TG(P 2)Π−1(eu − ev)πuπv

=
1

N

1

2

∑

u,v

(eTu − eTv )G(P 2)(πveu − πuev)

=
1

N

(1

2

∑

u,v

(πve
T
uG(P 2)eu + πue

T
vG(P 2)ev)

− 1

2

∑

u,v

(πve
T
vG(P 2)eu + πue

T
uG(P 2)ev)

)

=
1

N

(
Tr(G(P 2))− πTG(P 2)1

)
,

which yields the proof of the equality since πTG(P 2)1 = 0.

These lemmas can be easily used to infer the first main result, since Theorem 3.6.5’s

proof follows immediately from the inequalities in Lemma 3.6.15 together with those in

Lemma 3.6.17.

In order to prove the second main result, we need a last technical lemma, which

allows us to reduce the computation of the average effective resistances on the 2-fuzz of

G to those on G only.

Lemma 3.6.18. Let P be a reversible consensus matrix with invariant measure π and

with associated graph G. Let C := Φ(P 2). Then

1

8Nπmaxδ2p2
max

R̄(G) ≤ R̄(C) ≤ 1

Nπminp2
min

R̄(G) ,

where δ denotes the largest degree of the graph nodes in G and pmin and pmax are,

respectively, the minimum and the maximum of the non-zero elements of P .

Proof. First of all notice that, for all u, v such that Cuv 6= 0 we have that

Cuv = Nπu[P 2]uv = Nπu
∑

w PuwPwv.

By definition of pmin and pmax, and because there are at most δ + 1 non-zero terms Puw

for any fixed u, this yields

∀Cuv 6= 0, Nπminp
2
min ≤ Cuv ≤ Nπmax(δ + 1)p2

max. (3.47)

By Remark 3.6.12, 1
cmax
R̄(G(2)) ≤ R̄(C) ≤ 1

cmin
R̄(G(2)), where cmin and cmax are the
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minimum and maximum non-zero entries of C, respectively. This, together with Eq. 3.47,

gives
1

Nπmax(δ + 1)p2
max

R̄(G(2)) ≤ R̄(C) ≤ 1

Nπminp2
min

R̄(G(2)) .

Then we apply Lemmas 3.6.13 and 3.6.14, both with h = 2, and we obtain

1

8(δ − 1)Nπmax(δ + 1)p2
max

R̄(G) ≤ R̄(C) ≤ 1

Nπminp2
min

R̄(G) ,

which yields the claim, because (δ + 1)(δ − 1) < δ2.

Now we can prove the second main result: Theorem 3.6.7 immediately follows from

Theorem 3.6.5 and Lemma 3.6.18.

LQ cost in Geometric graphs

In this Section we apply the previous results to the class of geometric graphs, which

we have already studied in relation to the rate of convergence. This is important since,

as already mentioned, geometric graphs can be used to model actual sensor networks

deployed in an Euclidean space.

The following theorem provides an estimate of the LQ cost for a generic geometric

graph.

Theorem 3.6.19. Let P ∈ RN×N be a reversible consensus matrix with invariant

measure π, associated with a graph G = (V, E). Assume that all the non-zero entries of

P belong to the interval [pmin, pmax] and that G is a geometric graph with parameters

(s, r, γ, ρ) and nodes lying in Q = [0, `]d in which γ < `/4. Then

k1 + q1fd(N) ≤ J(P ) ≤ k2 + q2fd(N) , (3.48)

where

fd(N) =





N if d = 1,

logN if d = 2,

1 if d ≥ 3,

(3.49)

and where k1, k2, q1 and q2 depend on pmax, pmin, δ, d, on πminN and πmaxN and on

the parameters s, r, γ, ρ of the geometric graph.

One of the most important consequences of this result is the fact that a d-dimensional

regular grid has the same behavior of the LQ cost as a function of N of a irregular

geometric graph. This implies that the behavior of the LQ cost as a function of N is
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essentially captured by the dimensionality, rather than by the symmetry, exactly as it

happens for the rate of convergence towards consensus.

In order to prove Theorem 3.6.19, we need two preliminary results. The first one

is an immediate corollary of a theorem taken from [106], which states that the claimed

asymptotic behavior of geometric graphs holds true at least in the case of regular grids.

Recall that, by regular grid, we mean a d-dimensional geometric graph with N = nd

nodes lying on the points (i1, . . . , id), where i1, . . . , id ∈ {0, . . . , n − 1} and in which

there is an edge connecting two nodes u, v if and only if their distance is dE(u, v) ≤ 1.

Lemma 3.6.20. Let BL be the incidence matrix of a regular grid in dimension d with

N = nd nodes. Let P ∈ RN×N be the consensus matrix defined as follows

P = I − 1

2d+ 1
BT
LBL

whose associated graph is the regular grid. Then

clfd(N) ≤ R̄(L) ≤ cufd(N)

where cl and cu depend on d only, and where fd(N) is defined in Eq. (3.49).

Proof. With the same assumptions, from [106], Proposition 1, we known that

c′lfd(N) ≤ J(P ) ≤ c′ufd(N) ,

where c′l and c′u depend on δ only. The result immediately follows from Corollary 3.6.8.

The second result allows us to reduce the problem of computing the average effective

resistance in the geometric graph to the simpler case of two suitable grids. First of all,

we state the following three technical results.

Lemma 3.6.21. In an hypercube H ⊆ Q with side length less than s√
d

, there is at most

one node u ∈ V. In an hypercube H ′ ⊆ Q with side length greater than 2γ, there is at

least one node u′ ∈ V.

Proof. If the side length of an hypercube is s√
d
, then its diagonal has length s. If we

had two nodes in the hypercube, their distance would be less than s, in contradiction

with the definition of s. The second claim is proved noticing that an hypercube of side

length 2γ includes a sphere of radius γ. If it did not contain any node, then we could

find a sphere of radius larger than γ not containing any node, in contradiction with the

definition of γ.



70 Analysis of Consensus Networks

As a corollary of the previous lemma we have the following result.

Lemma 3.6.22. Let H be a hypercube in Q with edge length `H and let NH be the

number of nodes in it. Then

⌊
`H
2γ

⌋
< d
√
NH <

⌈√
d`H
s

⌉
.

Proof. The result follows from Lemma 3.6.21 simply counting how many disjoint hyper-

cubes of side length s√
d

and 2γ we can find in an hypercube of side length `H .

In particular for the whole graph we have the following corollary.

Corollary 3.6.23. The number of nodes N of the graph is such that

`
1− 2γ

`

2γ
<

d
√
N < `

√
d− s

`

s
.

Notice that, in the case where ` is big with respect to γ and s, the previous corollary

essentially implies that N is proportional to `d. The following lemma concerns geometric

graphs and their embeddings in lattices.

Lemma 3.6.24. Let G = (V, E) be a geometric graph with parameters (s, r, γ, ρ) and

with nodes in an hypercube Q = [0, `]d in which γ < `
4 . Then there exist two lattices, L1

and L2 such that

k1 + q1R̄(L1) ≤ R̄(G) ≤ k2 + q2R̄(L2), (3.50)

where q1, q2, k1 and k2 depend on s, r, γ, ρ, and on d. Moreover, there exist four

constants, c′1, c′′1, c′2, and c′′2, depending on the same set of parameters, such that, if N1

and N2 are respectively the number of nodes of L1 and L2, then

c′1N1 ≤ N ≤ c′′1N1 c′2N2 ≤ N ≤ c′′2N2. (3.51)

Proof. The idea is to tessellate the hypercube Q in order to obtain a rough approximation

of G, and then compute the bound for the effective resistance. Let us consider the upper

bound first. Define n1 :=
⌈

`
2γ

⌉
− 1 and λ := `

n1
and (exactly) tessellate the hypercube

Q with N1 := nd1 hypercubes of side length λ as in Fig. 3.9. Notice that the technical

assumption γ < `
4 also implies γ < `

2 , which in turn avoids the pathological case in which

n1 = 0. Using the properties of d·e, it can be seen that

2γ < λ < 4γ.
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Notice that the assumption ` > 4γ ensures that N1 ≥ 2d.

Notice that, by Lemma 3.6.21, in each of these hypercubes there is at least one node of

the graph G. On the other hand, by Lemma 3.6.22, we can argue that in each hypercube

there are at most
⌈ √

dλ
s

⌉d
nodes. Since 2γ < λ, then

1
⌈

2
√
dγ
s

⌉dN ≤ N1 ≤ N.

This proves the first of the two bounds in Eq. 3.51. Another consequence of the fact that

in each of these hypercubes there is at least one node of G is that for each hypercube

we can select one “representative” node in V belonging to it. Let VL1 ⊆ V be the set of

these representatives. Consider now the regular lattice L1 = (VL1 , EL1) having as the

set of nodes the set of representatives VL1 and in which there exists an edge connecting

two nodes in VL1 if the two corresponding hypercubes touch each other (not diagonally).

Define the function η : V → VL1 such that η(u) = u′ if u belongs to the hypercube

associated with u′.

γ

ρ

s

r

Figure 3.9: On the left, an example of geometric graph in R2 with parameters s, r, γ and ρ
(for ρ, the two nodes for which the minimum in the definition is attained). On the right, the
lattice L1 built for the upper bound. The box-marked nodes are the representatives of the
hypercubes, in thick solid line the edges of the lattice L1. Small nodes and dotted lines are

the other nodes and edge of the original graph G.

The next step is to prove that there exists an integer h ≥ 1 such that the h-fuzz G(h)

of G embeds L1, namely that all the nodes and edges of L1 are also nodes and edges of

G(h). Take thus u′, v′ ∈ VL1 such that (u′, v′) ∈ EL1 . Their Euclidean distance is bounded

as follows

dE(u′, v′) ≤ λ
√
d+ 3
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as a simple geometric argument shows. By definition of ρ, we obtain

dG(u′, v′) ≤ λ
√
d+ 3

ρ
≤ 4γ

√
d+ 3

ρ
.

Take thus h = b 4γ
√
d+3
ρ c and build G(h). By the previous discussion, it is manifest that

G(h) embeds L1.

Now, we claim that in G(h) all the nodes lying in the same hypercube have graphical

distance 1, namely they are all connected each other. In fact, if u and v lie in one

hypercube, and thus dE(u, v) ≤ λ
√
d, then we have

dG(v, u) ≤ 1

ρ
dE(v, u) ≤ λ

√
d

ρ
≤ 4γ

√
d

ρ
≤ 4γ

√
d+ 3

ρ
,

and thus dG(v, u) ≤ h. This clearly yields

dG(h)(u, η(u)) ≤ 1. (3.52)

We can now prove the claim. Since G(h) embeds L1, by the properties of the effective

resistances, for each u′, v′ ∈ VL1 we have that

Ru′v′(G(h)) ≤ Ru′v′(L1).

This is still limited to the set of representatives VL1 . If u and v are two generic nodes of

G(h), using Eq. (3.52) and the fact that the effective resistance is a distance (Lemma 3.6.9),

we can obtain that

Ru, v(G(h)) ≤ Ru, η(u)(G(h)) +Rη(u), η(v)(G(h)) +Rη(v), v(G(h))

≤ 2 +Rη(u), η(v)(G(h)).

Thus, we have

R̄(G(h)) =
1

2N2

∑

u,v∈V
Ru, v(G(h)) ≤ 1 +

1

2N2

∑

u,v∈V
Rη(u), η(v)(G(h))

≤ 1 +
1

2N2

∑

u,v∈V
Rη(u), η(v)(L1) = 1 +

1

2N2

∑

u′,v′∈VL1

∑

u∈η−1(u′)
v∈η−1(v′)

Ru′,v′(L1)

≤ 1 +
M2

2N2

∑

u′,v′∈VL1

Ru′,v′(L1) = 1 +M2N
2
1

N2
R̄(L1)
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where, as already pointed out, M , the maximum number of nodes of G in each hypercube

of length λ, can be bounded as M ≤
⌈ √

dλ
s

⌉d
. By previous arguments, M N1

N can

be bounded from above by a constant dependent on the geometric parameters of the

geometric graph and on d. Thus, the claim of the Lemma immediately descends from

Lemma 3.6.13.

The proof for the lower bound follows basically the same steps once a good regular

lattice candidate is selected. We tessellate again Q by means of hypercubes of side length

λ :=
`

b `
√
d
s c+ 1

as in Fig. 3.10. Observe that λ < s/
√
d so that by Lemma 3.6.21 in each of them there

can be at most one node. The candidate lattice is L2 = (VL2 , EL2), where VL2 is the set

of hypercubes and the edges connect again two nodes in VL2 if the two corresponding

hypercubes touch each other (not diagonally).

γ

ρ

s

r

Figure 3.10: On the left, the geometric graph already used for the upper bound. On the
right, the lattice L2 built for the lower bound. The centers of the hypercubes in which there
are no nodes of G are marked by a cross, while the bullet nodes are the nodes of G. In solid

lines are all the edges of L2, in dotted lines the other edges of the original graph G.

It can be proved that, if we take u, v ∈ V such that (u, v) ∈ E , then dL2(u, v) ≤ d d r/λe.
We define now the map η : VL2 → V so that η(u′) is the node in V which is closest

to u′ in the Euclidean distance. It can be proved that, for all u′ ∈ VL2 we have that

dE(u′, η(u′)) ≤ γ and so for any pair of nodes u′ and v′ such that η(u′) = η(v′) we have

that dE(u′, v′) ≤ 2γ and consequently dL2(u′, v′) ≤ d d 2γ/λe.
Analogously to the upper bound case, we write V ⊆ VL2 identifying a node of

the graph with the hypercube it belongs to. Once this is done, and taking h :=

max {d d r/λe , d d 2γ/λe} we can argue that L(h′)
2 embeds G and that, given u ∈ V, for
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any pair of nodes u′ and v′ in η−1(u) we have

dL(h)2
(u′, v′) ≤ 1.

The last part of the proof, including the second bound in Eq. 3.51, is totally analogous

to the upper bound case.

We can now prove our theorem on geometric graphs.

of Theorem 3.6.19. We know by Theorem 3.6.7 that

clR̄(G) ≤ J(P ) ≤ cuR̄(G)

with cl and cu dependent on pmin, pmax, δ and the products πminN and πmaxN . By

Lemma 3.6.24, we can argue that

k′1 + q′1R̄(L1) ≤ J(P ) ≤ k′2 + q′1R̄(L2) (3.53)

where L1 and L2 are two lattices such that c′1N1 ≤ N ≤ c′′1N1, c′2N2 ≤ N ≤ c′′2N2

and where k′1, q′1, k′2 and q′2 is a set of constants dependent on pmin, pmax, δ, the products

πminN and πmaxN , d and the parameters of the geometric graph.

Take now the grid L1, let BL1 be its adjacency matrix, and build the consensus matrix

P1 = I − 1

2d+ 1
BT
L1BL1 .

By Lemma 3.6.20, we know that

α1fd(N1) ≤ R̄(L1) ≤ α′2fd(N1),

where α1 and α2 depend on the parameter δ only.

Notice now that Lemma 3.6.24 also states that c′1N1 ≤ N ≤ c′′1N1, where c′1 and c′′1
depend on the parameters of the geometric graph only. Simple computations using the

definition of fd(·) in Eq. (3.49) yield to

k′1 + q′1fd(N) ≤ R̄(L1) ≤ k′′1 + q′′1fd(N),

where k′1, q′1, k′′1 and q′′1 depend on the geometric parameters and on d.

Analogously, there exists a symmetric consensus matrix P2 associated with L2 for

which

k′2 + q′2fd(N) ≤ R̄(L1) ≤ k′′2 + q′′2fd(N),
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where k′2, q′2, k′′2 and q′′2 depend on the geometric parameters and on d.

By substituting in Eq. (3.53), it is now clear that

k1 + q1fd(N) ≤ J(P ) ≤ k2 + q2fd(N)

with k1, q1, k2 and q2 as in the statement of the theorem.

Growing families of geometric graphs

Theorems 3.5.8 and 3.5.8 for rate of convergence and Theorem 3.6.19 for the `2 cost

hold for each given geometric graph with parameters s, r, γ and ρ. However, very much

similarly to what is done in Section 3.6, we want to use these result in order to capture

the asymptotic behavior in term of the dimension of the network.

Consider a growing family of geometric graphs GN with GN = (VN , EN ) and |VN | = N .

Let each GN be a geometric graph with parameters sN , rN , γN and ρN . Assume that

there exist parameters s, r, γ and ρ, which we call the geometric parameters of the family,

such that

sN ≥ s, rN ≤ r, γN ≤ γ, ρN ≥ ρ, ∀N . (3.54)

Let PN be the reversible consensus matrix associated with GN and with invariant measure

πN . First of all, we need that all the non-zero entries of PN belong to the interval

[pmin, pmax], for all N . Moreover, called πN,min an πN,max respectively the minimum and

maximum entries of πN , we need to assume that there exist two constants cl and cu such

that NπN,min ≥ cl and NπN,max ≤ cu. Notice now that

• by definition of sN and rN ,

sN = min
u, v∈V, u6=v

{dE(u, v)} ≤ min
(u, v)∈E

{dE(u, v)} ≤ rN

and thus

s ≤ sN ≤ rN ≤ r;

• given a graph GN , if ū and v̄ are two nodes connected by an edge, we have

ρN = min

{
dE(u, v)

dG(u, v)
| (u, v) ∈ V × V

}
≤ dE(ū, v̄) ≤ rN

and thus

ρ ≤ ρN ≤ r;
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• by definition of γN , it is immediate to see that we must have 2γN ≥ sN , and thus

s

2
≤ γN ≤ γ.

Hence, given the geometric parameters of the family, we have a lower and an upper bound

for the actual parameters in any graph. Notice moreover that the degree of each node is

bounded by the ratio of the volume of the sphere of radius rN and the volume of the

sphere of radius sN . Therefore the maximum degree δN of the nodes of GN is uniformly

bounded as follows

δN ≤
rdN
sdN
≤ rd

sd
.

On the other side, clearly for all N we have δN ≥ 1, because GN is connected.

Therefore, similarly to Section 3.6, this discussion allows us to conclude that for the

family of symmetric consensus matrices PN constructed as above, it holds for rate of

convergence

1− C

N2/d
≤ ρ(PN ) ≤ 1− C ′

N2/d

where C and C ′ are strictly positive constant depending on d, and on the parameters of the

family s, r, γ, ρ. Instead, for the family of reversible consensus matrices PN constructed

as above, it holds for the `2 cost

k1 + q1fd(N) ≤ J(PN ) ≤ k2 + q2fd(N)

where k1, q1, k2 and q2 depend on d, pmax, pmin, cl and cu and the geometric parameters

of the family.
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Synchronization in Higher Order Consensus

Network

4.1 Introduction

The previous Chapter was devoted to the study of consensus algorithms. We have shown

that despite the fact that the decision laws are local, namely, each agent makes use of the

information coming from its neighbors only, the network is able to accomplish a global

goal, which is agreement on the consensus value.

Another typical example of global task is the decentralized stabilization of large–scale

systems, which finds applications for example in the case of Internet congestion controls

[116]. In the simplest scenario for this problem, we model each agent as the same

input/output operator N0, so that at the k-th agent the output yk is produced according

to

yk = N0(uk)

where uk is the k-th input. In this case the network is homogeneous, namely all the

agents are equal. In the more involving case in which the agents are different one each

other, we talk instead about heterogeneous networks.

The agents are interconnected via the communication graph G = (V, E), where the
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existence of the edge e = (j, k) means that agent k is allowed to sense the output of

agent j. The information received allows agent k to compute its input according to an

interconnection operator Γk(·), namely

uk(t) = Γk(y(t))

where Γk(y(t)) explicitly depends on the outputs yj(t) of the neighbors of j only. The

goal is to design Γk(·), for all the agents, such that the network is stable, namely

|yk(t)| t→∞−→ 0,∀k ∈ V

In other terms, the goal is to provide tools to check the stability of the interconnected

system 


y = N0u

u = Γ(y)

where Γ(·) is just the stacked version of the Γk(·)’s.
For this problem, the direct application of the classical methods is inefficient, due

to the extremely high computational load caused by the large number of agents usually

involved in the system. The typical issue which is addressed is how to exploit any type of

structure in the problem (be it physical, logical, spatial, etc.) in order to provide scalable

criteria, namely criteria which can be checked locally, by the single agent, possibly given

some information on the network. A second issue is to provide robust results, namely

conditions which, rather than depending on a particular structure, are satisfied by entire

families of networks which respect some characteristics. The typical example is when the

operator Γ(y) = −νLy just consists in a matrix multiplication, analogously to consensus

algorithm, so that often the check is reduced to a constraint on the spectral properties of

L.

In this dissertation the main goal is not stabilization, but (output –)synchronization.

In the next Sections we give a more formal definition of synchronization, but the most

important case can be simply defined as follows: we say that the network (asymptotically)

synchronize if

|yk(t)− yj(t)| t→∞−→ 0,∀k, j ∈ V

namely y
t→∞−→ span {1}.

As already mentioned in the Introduction, notice that this definition of synchronization

just requires all the outputs to converge to the same value, which is not required to be zero

or a fixed value like in consensus. In fact, in many cases of interest, the synchronization
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value is naturally time–varying, for example in the interesting applications of clock

synchronization [32, 9] and power network control [117].

The goal of this Chapter is to provide an first step for an unified framework to study

synchronization problems in large–scale networks of the type




y = N0(I + ∆)u

u(t) = Γ(y)

in which N0 is a linear time–invariant operator called the nominal system, ∆ is a diagonal

operator which represents a perturbation of the nominal system, and Γ is called the

interconnection operator. As for decentralized stabilization, if ∆ = 0 we say that the

network is homogeneous, since all the agents behave in the same manner. On the contrary,

if ∆ 6= 0 we say that the network is heterogeneous. In both cases, we will refer to this

type of system as Higher Order Consensus Network, since if N0(z−1) = z−1

1−z−1 , a retarded

integrator, ∆ = 0 and Γ(y) = −νLy, the system becomes




y = z−1

1−z−1u

u(t) = −Ly

which is another way to rewrite the consensus algorithm (see also Section 3.2)

x(t+ 1) = Px(t)

if P = I − L. The name Higher Order Consensus thus clearly expresses the fact that

while in the classical consensus the agreement among the agents is on a constant scalar

value, because the agents are simple integrators, in general the agreement can be on a

time–varying value because the agents are systems of order greater than one.

The contributions of this Chapter to the literature are manifold

• we propose a rather general framework which is rich enough to catch many syn-

chronization scenarios proposed in the literature;

• we present a synchronization result based on input/output techniques which is robust

in the sense that it gives conditions which must by satisfied be the perturbation

operator ∆ and the interconnection operator Γ, instead of studying particular

instances of them;

• we particularize this general result to many cases of interest, such that
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– the case in which ∆ is a diagonal matrix of transfer functions, which models

uncertainties in the parameters of the nominal system;

– the case in which ∆ is a slope–restricted memoryless nonideality;

– the case in which Γ is non–linear and slope restricted.

• we study the conditions for which leader following can take place in a Higher Order

Consensus Netowork.

As for decentralized stabilization, it is important to provide also tools to check in

a simple and scalable way the proposed theorems. We answer this problem proposing,

when possible, graphical criteria equivalent to our results. In particular, in the case of

linear time invariant ∆ we propose a Nyquist–like graphical criterion, while in case of

slope–restricted ∆ synchronization can be checked making use of a Popov criterion. The

research yielding to these results partially appeared in [118, 119].

Review of literature

The problem of network stabilizing, despite not being the topic of this dissertation,

is interesting as a fundamental step toward synchronization. For example, in [120]

the authors analyze the stability of the systems in the case of homogeneous networks

and suggest how to ensure given specifics in terms of damping ratio, convergence rate

and overshoot degree. Moreover, they provide a small–gain analysis of the system for

heterogeneous networks for some families of LTI perturbations. The papers [121, 122]

provide a basic step for the research leading to this thesis since IQC techniques are

used in order to provide graphical criteria for the stability of heterogeneous networks.

Moreover, in[122], such results are used in order to provide a perturbed consensus result.

We make use and generalize the tools proposed there in Section 4.5.

Concerning synchronization, the paper [22] can be considered a milestone since its

topic is synchronization for formation control purposes of homogeneous systems of the

type 


y = N0u

u = −Ly

where y and u are, as already said, the stacked versions of the outputs and of the inputs

of the agents. The main idea is to assume L to be diagonalizable and study the system

along the directions different from 1, as stated in Lemma 4.4.2, which is a particular case

of a result in [22].
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In [123] the authors consider an homogeneous network in which each agent is described

by a state space realization (A,B,C) so that




ẋk(t) = Axk(t) +Buk(t)

yk(t) = Cxk(t)

and again u(t) = Ly(t). The authors prove that if L is chosen in a clever way, then not

only output synchronization is possible, but, more, the states of the agents synchronize,

entry–wise.

It is important, as recalled before, to be able to check the proposed criteria for

synchronization in an easy way, for example using graphic criteria. In [122] the authors

address the perturbed consensus case, in which each agent is modeled as an integrator

multiplied by a stable transfer function (the network is thus heterogeneous), providing

a graphical criterion for asymptotic consensus. The papers [124, 125, 126] address a

more general case in which the nominal system has a zero in the origin, and the feedback

operator is a generic dynamical LTI system, not just a matrix multiplication. Also in

this case, a graphical criterion which is based on the notion of S–hull is proposed.

More specifically related to consensus in finite–time, the paper [127] offers an exhaus-

tive theorem to check whether a network is able to achieve agreement in case the nominal

system is an integrator (classic consensus) but the interconnection operator also models

delays, in the sense that

ui(t) = −
∑

j∈Ni
Pij(yi(t− Tji)− yj(t− τji)

thus considering all the possible cases of self-delay and delay in information transmission

from the neighbors.

In [128] the authors propose a general model of interacting network inspired by

biology. Such a network can be thought to be made of compartments, namely equal

subsystems, each composed of the same type of species, namely agents. Interaction can

take place among the species of the same compartments (equal for all the compartments)

and among species of different compartments. Here synchronization means that the

outputs of the species in different compartments try to reach the same value, for each

type of species. Making use of input/output tools the authors provide conditions such

that the “discrepancy” to the synchronization is bounded.

Finally, the paper [129] presents an LMI-based tool for the synchronization of systems

around a given autonomous trajectory of the nominal, possibly nonlinear, system.
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4.2 A general framework for synchronization of

heterogeneous multi-agent systems

The purpose of this Section is to present a framework for the study of heterogeneous

networks of agents. Our model aims to include enough generality to be used for a variety

of different applications that recover many cases already present in the literature. In this

Chapter an agent will be modeled by a linear time–invariant operator characterized by

an output, call it yk for k-th agent, an interconnection input uk, an internal input wk

and an external input rk

yk = huyuk + hryrk + hwywk,

where huy, hry, hwy are linear time–invariant convolutional operators on He. If we stack

all the outputs and the three inputs respectively in the signals y ∈ HN , u ∈ HNe , r ∈ HNe
and w ∈ HNe , so that at each time instant we have vectors in RN , we have the compact

matrix form

y = Huyu+Hryr +Hwyw

where Huy = huyIN , Hry = hryIN , Hwy = hwyIN are diagonal LTI operators. We need to

impose some assumptions on the characteristics of such LTI operators. They are satisfied

in many cases of interest. Notice that the last condition is a technical assumption which

is immediately satisfied, for example, in the case hry = hwy.

Assumption 4.2.1. The transfer functions representing the operators huy, hry and hwy

are such that

ĥ∗y =
b∗y
a
f̂∗y, ∗ ∈ {u, r, w},

where f̂∗y is the transfer function corresponding to f∗y ∈ A, b∗y is a stable polynomial

and

a(s) =
m∏

k=1

(s− sk)ρk

where sk ∈ Ω such that deg(b∗y) < deg(a). We finally assume that f̂∗y has no zeros in Ω.

This means that the systems are strictly proper, has no unstable zeros, and share the

same unstable poles.

What has been described so far is the so called nominal part of the agents. The
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heterogeneity of the network is modeled by making use of the internal input wk and

another signal we call internal output, vk. We assume that the couple (vk, wk) evolves

according to




vk = huvuk + hwvwk,

wk = ∆k(vk),

where huv, hwv ∈ A and ∆k is a bounded causal operator on the Hilbert space He. Such

∆k represents the perturbation of k-th agent. It models differences in dynamics among

the agents, non–linearities and uncertainties in the system. If we stack all the internal

outputs in the signal v ∈ HN , the previous relations can be expressed according to




v = Huvu+Hwvw,

w = ∆(v),

where Huv = huvI and Hwv = hwvI and ∆ = diag (∆1, . . . , ∆N ).

So far we have given details on the agents, and it remains to explain how such (by

now) isolated elements interact. The interaction is modeled by the interconnection input

uk, which, for agent k and at time t, is produced according to

uk(t) = Γk(t, y(t))

where Γk is a bounded memoryless operator HNe → He. Notice that Γ is not “diagonal”.

Its structure, as in the consensus algorithm, is in fact determined according to the

communication graph G = (V, E) in which as usual the set of nodes coincides with the set

of agents, and in which the edge (j, k) ∈ E if j is allowed to send its information to agent

k, or, equivalently, if Γk(y) depends explicitly on yj . In vector form, interconnection

inputs and outputs are related according to

u(t) = Γ(t, y(t)).

We have thus obtained the complete set of equations describing our model of an
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heterogeneous network of interconnected agents






y
v


 =


Huy Hry Hwy

Huv 0 Hwv







u

r

w


 = H




u

r

w


 ,

w = ∆(v),

u = Γ(y),

(4.1)

which is illustrated in Fig. 4.1. Notice that due to the diagonal structure, the block–entries

of H can be rewritten using the Kronecker product

H =

[
huv hry hwy

huv 0 hwv

]
⊗ IN .

Huy Hry Hwy

Huv 0 Hwv

y

v w

r

u

Γ

∆

Figure 4.1: The system under consideration.

Example 4.2.2. The most important case of an heterogeneous network is what we call

an Higher Order Consensus Network. In this particular case, huv = hry = hwy = N0 ∈ A,

huv = 1 and hwv = 0, so that the model can be rewritten as






y
v


 =


N0 N0 N0

I 0 0







u

r

w


 ,

w = ∆(v),

u = Γ(y).

(4.2)
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and a slight manipulation allows us to rewrite this system as




y = N0(I + ∆)(u) +N0r

u = Γ(y)

which is depicted in Fig. 4.2. Notice that here, and below, (I + ∆)(u) means u+ ∆(u).

N0(I + ∆)

Γ

y

N0r

u

Figure 4.2: A particular and important case of heterogeneous network.

In the particular case ∆ = 0 and Γ(y) = Γ0y with Γ01 = 0, we have




y = N0u+N0r

u = Γ0y

which, apart from the signal r, is our model for an homogeneous network with linear

interconnection, and if, for example in discrete–time, N0(z−1) = z−1

1−z−1 , we have a network

implementing a consensus algorithm.

As for the operator ∆, it is allowed to represent any possible perturbation of the

nominal system. One of the most important case is when it represents uncertainties on the

non-nominal dynamics of the agents, as we will show for the case of clock synchronization

(see Chapter 5).

We notice that our model is written in such a way that ∆ represents a multiplicative

perturbation. The somehow more usual additive perturbation can be recovered as

N0 +Nk = N0(1 + ∆k)

where ∆k = Nk/N0.

4.3 Synchronization over heterogeneous networks

In the previous section we have described the system we want to study. In this section

we will provide the basic tool to prove the synchronization of the network in the sense of
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the following definition.

Definition 4.3.1. Consider the system in Eq. 4.1 and a subspace Z ⊂ RN . Let

y⊥ = PZ⊥y be the pointwise projection of y onto the orthogonal complement of Z,

in the sense that y⊥(t) = PZ⊥y(t), ∀t. Let M : HNe → HNe denote the causal map

representing the closed loop system y⊥ =M(r). We say that the system synchronizes

to Z if ||M||HNe →HNe <∞.

Synchronization will under weak assumptions on the nominal dynamics imply for

r ∈ H, that y asymptotically converges to Z, which is why we call it synchronization

subspace. The typical case is Z = span {1} in which the term synchronization recovers

its usual meaning that the differences among the components of y to converge to zero, as

mentioned in the Introduction to this Chapter.

We will take the following steps toward our main synchronization result. First we

reduce the dimension of the system by projecting down to the orthogonal complement

of Z. Then we perform a loop transformation to stabilize the linear part of the system.

The main result will then follow by an application of the IQC theorem in [130].

Projection onto Z⊥

In order to perform the first step of our argument we impose the following assumptions

on the operator Γ.

Assumption 4.3.2. The synchronization subspace Z is the right and left kernel of

the static operator Γ in the following sense: if z ∈ Z and v ∈ RN is generic, then

Γ(t, z + v) = Γ(t, v) and z∗Γ(t,v) = 0, ∀ t ≥ 0. Moreover, Γ(t, 0) = 0.

The conditions stated in Assumption 4.3.2 can be written in the following manner.

Let Z be a matrix whose columns form an orthonormal basis for Z, and V be any

orthonormal complement to it, i.e.

Z∗Z = Ip, V
∗V = IN−p, V ∗Z = 0, V V ∗ + ZZ∗ = IN

where p = dimZ, and where V V ∗ and ZZ∗ are two projectors respectively onto Z⊥ and

Z. The two conditions can be thus expressed by the constraint

Γ(t, y) = Γ(t, V V ∗y)

for the right kernel, and

Γ(t, y) = V V ∗Γ(t, y)
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for the left kernel.

These two assumptions imply that

u = Γ(t, y) = V V ∗Γ(t, V V ∗y) = V Γ⊥(y⊥)

where we defined y⊥ := V ∗y and Γ⊥(t, y⊥) := V ∗Γ(t, V y⊥). We let r⊥ = V ∗r in

order to rewrite the system as follows






y⊥
v


 =


 Huy Hry HwyV

∗

HuvV 0 Hwv







u⊥

r⊥

w


 ,

w = ∆(v),

u⊥ = Γ⊥(t, y⊥),

Remark 4.3.3. For sake of simplicity, we assume from now on that Hwv = 0, namely we

suppress the dependence of the internal output from the internal input. This can be done

defining the feedback of ∆ and Hwv as the operator

∆̃ := ∆ ◦ (I −Hwv ◦∆)−1

and making the assumption that ∆̃ is well–defined and bounded. Both these properties

are satisfied under some mild conditions, and in particular boundedness can be checked

using the small–gain theorem applied to the gains of ∆ (which is diagonal) and of hwv,

since Hwv = hwvI.

Then the system can be easily rewritten as






y⊥
v


 =


 Huy Hry HwyV

∗

HuvV 0 0







u⊥

r⊥

w̃


 ,

w̃ = ∆̃(v),

u⊥ = Γ⊥(t, y⊥),

which is in the form we want.

If Hwv = 0 and defining v⊥ = V ∗v, w⊥ = V ∗w and ∆⊥(v⊥) = V ∗∆(V v⊥), easy
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manipulations of the previous equations yield to the following reduced–dimension model






y⊥
v⊥


 = H




u⊥

r⊥

w⊥




w⊥ = ∆⊥(v⊥)

u⊥ = Γ⊥(y⊥)

(4.3)

It is worth to notice that the diagonal structure of the linear part H has been

maintained after the dimension reduction at the price that the diagonal structure of

the perturbation is lost. As we will see, this loss of structure is negligible since the

input/output characteristics of ∆ are the same as those of ∆⊥.

Loop transformation

The system H still contains the original possibly unstable or marginally stable poles, and

is not in a good shape for input/output techniques to be applied. The second step of our

approach is thus to perform a loop transformation in order to stabilize it. This can be

done by means of a suitable matrix

Q =

[
0 Q12

Q21 Q22

]

and by defining the operator ΓQ
1 via the upper linear fractional transformation of Γ⊥,

Γ⊥ = Fu(Q, ΓQ). Namely, we transform the equation

u⊥ = Γ⊥(y⊥)

into the system 



uQ = ΓQyQ
yQ
u⊥


 = Q


uQ
y⊥


 .

This operation is depicted in Fig. 4.3, in which Fu(Q,ΓQ) is substituted for Γ⊥. Once

this is done, we consider the interconnection of the linear part H and the matrix Q,

1We will often suppress the arguments of Γ(t, y) for sake of notation.
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ΓQ

0 Q12

Q21 Q22
y⊥ u⊥

r⊥

uQ yQ

w⊥v⊥

Γ⊥

G

∆⊥

Huy Hry Hwy

Huv 0 0

Figure 4.3: Loop transformation of the system. The upper linear fractional system Fu(Q, ΓQ)
has been substituted for Γ⊥. The Redheffer star product of Q and the linear and unstable

part, H, is employed in order to obtain a matrix of stable transfer functions G.

obtaining the matrix of transfer functions

G = Q ? H =

[
Guy Gry Gwy

Guv Grv Gwv

]
(4.4)

where the star product defines

Guy = huyQ12(I −Q22huy)
−1Q21[

Gry Gwy

]
= Q12(I −Q22huy)

−1
[
hry hwy

]

Guv = huv(I −Q22huy)
−1Q21[

Grv Gwv

]
= huvQ22(I −Q22huy)

−1
[
hry hwy

]

This operation is depicted in Fig. 4.4. If G is stable, we have thus achieved the goal of

this section, and this will be an assumption from now on.

Assumption 4.3.4. The matrix Q ∈ R2N×2N is chosen in such a way that all the entries

of the matrix of transfer functions G in Eq. 4.4 are stable.
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Guy Gry Gwy

Guv Grv Gwv

ΓQ

uQ

r⊥

w⊥

yQ

v⊥

∆⊥

Figure 4.4: System obtained after the loop transformation. All the elements of the matrix
G are stable transfer functions, and in place of Γ⊥ it remains the operator ΓQ.

On the interpretation of Q and a simple example

As it will be further clarified by the applications, the blocks of the matrix Q have a

simple and intuitive meaning.

As it easy to see, after projecting via the matrix V and performing the loop transfor-

mation via the matrix Q, we obtain

Γ(t, y) = V Q22V
∗y + V Q21ΓQ(t, Q12V

∗y)

so that

Γ⊥(t,y⊥) = Q22y⊥ +Q21ΓQ(t, Q12y⊥)

This relation implies that the more we know about the structure of Γ⊥, the better we can

approximate it using the matrix Q22. The better this approximation, the less conservative

will turn out to be the synchronization criterion, as we will see.

As extreme cases, if Γ⊥(t,y⊥) = Q22y⊥ we have ΓQ(t, Q12y⊥) = 0, namely no

approximation is needed. In this case that the projection step and the loop transformation

step are enough to obtain a stable system, represented by G, in feedback with the

perturbation ∆⊥. A more detailed analysis of this case is given in Section 4.4.

On the other extreme case, sometimes only a very rough knowledge of Γ⊥(t, ·) is

available, apart from Assumption 4.3.2. In this case, a reasonable choice (see Section 4.5)

is

Q =

[
0 1

1 −η

]
⊗ IN−1, (4.5)
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for which it is easy to see that

ΓQ = Γ⊥ + ηIN−1.

In other terms, this choice approximates the interconnection operator Γ with the matrix

−ηV V ∗ and Γ⊥ with −ηIN−1. Clearly, this is often a too rough approximation. However,

this choice is simple and yields

G =

[
huy

1+ηhuy
1

1+ηhuy
[hry, hwy]

huw
1+ηhuy

− huwη
1+ηhuy

[hry, hwy]

]
⊗ IN−1,

namely we aim to stabilize the system using a simple proportional controller η, so the

resulting matrix of transfer functions G has a simple repeated structure.

Example 4.3.5. Let us return to Example 4.2.2 and consider the consensus problem in

discrete–time case, in which N0(z−1) = z−1

1−z−1 . Using the simple Q presented in Eq. 4.5

we obtain the system

G =
1

1− z−1(1− η)

[
z−1 z−1 z−1

1− z−1 −ηz−1 −ηz−1

]
⊗ IN−1,

and in this case Assumption 4.3.4 is satisfied for any η ∈ (0, 2).

A synchronization criterion

In this section we will derive our basic synchronization criterion that will serve as a

foundation for the subsequent analysis. In the previous subsections we have simplified

the original system in Eq. 4.1 by first projecting the dynamics onto the orthogonal

complement of the synchronization subspace and then stabilizing the linear dynamics

using a loop transformation. We employ the IQC theorem from [130] on the transformed

system to obtain our first result below. We use following definitions of stability and

Integral Quadratic Constraint.

Definition 4.3.6. The interconnection [G, diag (ΓQ,∆⊥)] in Fig. 4.5 is called stable if

there exists c > 0 such that

‖yQ‖2 + ‖v⊥‖2 ≤ c‖r⊥‖2

for all r⊥ ∈ Hn−1.
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ΓQ

∆⊥

Gr

[
yQ

v⊥

]
[

0
r⊥

]

Figure 4.5: Feedback system on which we apply the IQC theorem. In this system Gr is a
matrix of stable transfer functions and in order to prove stability we have to provide IQC

characterizations for both the operators ΓQ and ∆.

Definition 4.3.7 (IQC). Let Π ∈ S2m×2m
A . Then a bounded causal operator ∆ : Hme →

Hme is said to satisfy the IQC defined by Π (∆ ∈ IQC(Π)) if

〈[
∆(w)

w

]
,Π

[
∆(w)

w

]〉
≤ 0, ∀w ∈ H.

We say that ∆ satisfies the strict IQC (∆ ∈ SIQC(Π)) if the inequality is strict, namely

if there exists ε > 0 such that

〈[
∆(w)

w

]
,Π

[
∆(w)

w

]〉
≤ −ε||w||2, ∀w ∈ H.

The IQC theorem can be formulated as follows.

Theorem 4.3.8 ([130]). Consider the continuous–time system




y = Gu

u = ∆(y) + r
(4.6)

where G : H → H is a linear causal bounded LTI operator and ∆ : H → H is a generic

bounded causal operator. The feedback system is stable in the sense of Definition 4.3.6 if

i) there exists a continuous (in the norm topology) parametrization ∆(τ) such that

for every τ ∈ [0, 1], the feedback of G and ∆(τ) is well posed;

ii) for every τ ∈ [0, 1], ∆(τ) ∈ IQC(Π), where Π ∈ S2m×2m
Ac ;

iii) it holds true [
I

G(jω)

]∗
Π

[
I

G(jω)

]
> εI, ∀ω ∈ R
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Note that our definition of IQC in Definition 4.3.7 has the opposite sign compared

to [130]. The parametrization of the perturbation diag (ΓQ, ∆⊥) is also slightly different

but the proof and its consequences are anyway completely analogous. Notice moreover

that the theorem holds for the discrete–time case with the obvious modifications.

Now we are ready to state and prove our result.

Theorem 4.3.9. Assume that the operator Γ respects Assumption 4.3.2 and that there

exists a matrix Q ∈ R2N×2N which respects Assumption 4.3.4. Assume moreover that

i) there exists continuous (in the norm topology) parametrizations ΓQ(τ) and ∆⊥(τ)

such that ΓQ(1) = ΓQ, ∆⊥(1) = ∆⊥ and such that the nominal interconnection

[G,diag (ΓQ(0),∆⊥(0))] is stable,

ii) there exists bounded self–adjoint linear operators ΠΓQ and Π∆⊥ such that

(a) ΓQ(τ) ∈ IQC(ΠΓQ), τ ∈ [0, 1],

(b) ∆⊥(τ) ∈ IQC(Π∆⊥), τ ∈ [0, 1],

iii) [
I

Gr

]∗
daug

(
ΠΓQ ,Π∆⊥

)
[
I

Gr

]
> 0 (4.7)

where

Gr =

[
Guy Gwy

Guv Gwv

]
, (4.8)

iv) huv, h
−1
uv ∈ A, Q12, Q

−1
12 ∈ RN×N .

Then the network in Eq. 4.1 synchronizes to the subspace Z in the sense of Definition 4.3.1

Remark 4.3.10. In order to prove that the vector y converges to Z it is sufficient to

prove that y⊥ converges to zero. Under the assumptions of the theorem we have shown

that y⊥ belongs to HN−p, where we recall that p is the dimension of the synchronizing

subspace Z. In the two cases of interest, namely if the system is continuous time or

discrete time, we then have

• He = L2e[0; ∞): if the elements Guy, Gry and Gwy are strictly proper, then

y⊥
t→∞−→ 0.

• He = `2e[0; ∞): what has been shown is sufficient to conclude y⊥
t→∞−→ 0.
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Proof. The first step is to prove stability of the feedback system [Gr, diag (ΓQ[τ ], ∆⊥[τ ]),

which is depicted in Fig. 4.5. This is a direct consequence of the IQC theorem in this

particular case, since Gr is a matrix of stable transfer functions and the conditions i), ii)

and iii) imply that all hypotheses of Theorem 4.3.8 are satisfied.

Stability of the system in Fig. 4.5 implies that for any r ∈ HN we have ‖yQ‖2 +

‖v⊥‖2 ≤ c‖r⊥‖2. In turn, recalling the projection step and the loop transformation step,

we have the following relations

yQ = Q12y⊥

v⊥ = Huvu⊥

so that assumption iv) implies that

‖y⊥‖2 + ‖u⊥|2 ≤ cmax(‖Q−1
12 ‖, ‖H−1

uv ‖)‖r⊥‖2,

which implies that the condition in Definition 4.3.1 holds.

We will next state and prove a technical lemma which will prove to be useful several

times in what follows. It shows that if the perturbation operators are sufficiently

structured then the same multiplier can be used for the modified operator ∆⊥ as for the

individual ∆k.

Lemma 4.3.11. Let

∆⊥(·) = V ∗∆(V ·) = V ∗diag (∆1(V1·), . . . , ∆N (Vn·))

where Vk denotes the kth row of V and V is as above. Suppose that π∆ is a multiplier such

that ∆k ∈ IQC(π∆), for any k. Let moreover π∆, 11 ≥ 0. Then ∆⊥ ∈ IQC(π∆ ⊗ IN−1).

Proof. We want to show that, for any v⊥ ∈ HN−1, we have

〈[
∆⊥(v⊥)

v⊥

]
, π∆ ⊗ IN−1

[
∆⊥(v⊥)

v⊥

]〉
≤ 0.
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And in fact, recalling that V ∗V = IN−1 and that 〈v,Aw〉 = 〈A∗v, w〉, we obtain

〈[
∆⊥(v⊥)

v⊥

]
, π∆ ⊗ IN−1

[
∆⊥(v⊥)

v⊥

]〉

=

〈[
V ∗∆(V v⊥)

v⊥

]
, π∆ ⊗ IN−1

[
V ∗∆(V v⊥)

v⊥

]〉

=

〈[
∆(ṽ)

ṽ

]
, π∆ ⊗ IN

[
∆(ṽ)

ṽ

]〉

+ 〈∆(ṽ), π∆, 11(V V ∗ − IN )∆(ṽ)〉

where we defined ṽ := V v⊥. The result now follows since the second term is non positive

because V V ∗ − IN ≤ 0 and π∆, 11 ≥ 0, and the first term is non positive because

〈[
∆(ṽ)

ṽ

]
, π∆ ⊗ IN

[
∆(ṽ)

ṽ

]〉

=
N∑

k=1

〈[
∆k(ṽk)

ṽk

]
, π∆

[
∆k(ṽk)

ṽk

]〉
≤ 0.

Interpretation of the condition in the original variables

It is of interest to rewrite Theorem 4.3.9 in terms of the original interconnection operators.

We start by observing that the relation Γ⊥ = Fu(Q, ΓQ) is easily rewritten as

[
ΓQ(yQ)

yQ

]
=

[
Q−1

21 −Q−1
21 Q22

0 Q12

]

︸ ︷︷ ︸
FQ

[
Γ⊥(y⊥)

y⊥

]
(4.9)

provided that Q21 is invertible. The condition ΓQ ∈ IQC(ΠΓQ) can be rewritten, in

terms of the original operator, as Γ⊥ ∈ IQC(ΠΓ⊥), where ΠΓ⊥ = F ∗QΠΓQFQ.

We may use this to formulate Theorem 4.3.9 in the original variables.

Theorem 4.3.12. Assume that

i) there exists continuous (in the norm topology) parametrizations Γ⊥[τ ] and ∆k[τ ]

such that Γ⊥[1] = Γ⊥, ∆k[1] = ∆k,

ii) there exists bounded self–adjoint linear operators ΠΓ⊥ and π∆ such that
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(a) Γ⊥[τ ] ∈ IQC(ΠΓ⊥), τ ∈ [0, 1],

(b) ∆k[τ ] ∈ IQC(π∆), τ ∈ [0, 1],

iiia) for all s ∈ ∂Ω \ {sk} where {sk} denotes the set of singular points at the imaginary

axis [
I

Ĥr

]
daug

(
Π̂Γ⊥ , π̂∆ ⊗ IN−1

)[ I
Ĥr

]
(s) > 0 (4.10)

where

Hr =

[
huyI hwyI

huvI 0

]
,

iiib) there exists a matrix Q ∈ R2N×2N with Q21 = q21IN−1 which respects Assump-

tion 4.3.4, i.e. Gr = Q ? Hr is stable.

iiic) for each pole sk ∈ ∂Ω and for the matrix Q

T ∗k daug
(

Π̂Γ⊥(sk), π̂∆(sk)⊗ IN−1

)
Tk > 0

where

Tk =




0 Q22ĥ
′
wy

0 Q22ĥ
′
uy

q21ĥ
′
uyIN−1 ĥ′wyIN−1

0 Q22ĥuvĥ
′
wy




(sk)

and

h′uy(sk) = lim
s→sk

(s− sk)ρkhuy(s)

h′wy(sk) = lim
s→sk

(s− sk)ρkhwy(s)

ρk being the order of the pole.

iv) huv, h
−1
uv ∈ A,

v) Q12, Q
−1
12 ∈ RN×N , q21, q

−1
21 ∈ R,

then the network in Eq. 4.1 synchronizes to the subspace Z.

Proof. The proof follows by transforming the system using the Redheffer star product so

that Theorem 4.3.9 applies. It follows from Eq. 4.9 above that we may use the multipliers
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ΠΓQ = (F ∗Q)−1ΠΓ⊥F
−1
Q . Hence, by Lemma 4.3.11 we have

diag (ΓQ[τ ],∆[τ ])] ∈ IQC(daug
(
ΠΓQ , π∆ ⊗ I

)
)

for τ ∈ [0, 1].

By defining

TQ := daug (FQ, IN−1) =




Q−1
21 0 −Q−1

21 Q22 0

0 I 0 0

0 0 Q12 0

0 0 0 I



.

we have the relation

daug
(
ΠΓQ , π∆ ⊗ IN−1

)
= (T ∗Q)−1daug (ΠΓ⊥ , π∆ ⊗ IN−1)T−1

Q .

One can moreover show that

TQ

[
I

Hr

]
=

[
I

Gr

]
M

where Gr is defined in Eq. 4.8 and

M :=

[
Q−1

21 (I −Q22huy) −Q−1
21 Q22hwy

0 I

]
,

so that

M−1 =

[
(I −Q22huy)

−1Q21 (I −Q22huy)
−1Q22hwy

0 I

]
.

Hence, using these relationships, iiia) implies that on any compact subset of ∂Ω∪ {∞} \
{sk}, there exists ε > 0 such that

([
I

Ĝr

]∗
daug

(
Π̂ΓQ , π̂∆ ⊗ I

)[ I
Ĝr

])
(s)

=

(
(M̂−1)∗

[
I

Ĥr

]∗
daug

(
Π̂Γ⊥ , π̂∆ ⊗ I

)[ I
Ĥr

]
M̂−1

)
(s)

≥ εI.

Here we have used that that the multipliers and the transfer functions are continuous on
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∂Ω ∪ {∞} \ {sk}.
We have now to explore what happens in a neighborhood of the singular points. It is

a matter of computation to show that, since Q21 = q21IN−1, we have

[
I

Ĥr

]
M̂−1

=




q21(s− sk)ρkIN−1 Q22(s− sk)ρk ĥwy
0 (I −Q22ĥuy)(s− sk)ρk

q21(s− sk)ρk ĥuyIN−1 (s− sk)ρk ĥwyIN−1

q21(s− sk)ρk ĥuvIN−1 Q22(s− sk)ρk ĥuyĥuv



×

(I −Q22ĥuy)
−1(s− sk)−ρk

→ −TkQ−1
22

1

ĥ′uy(sk)
as s→ sk.

Assumption iiic) implies thus that in any sufficiently small compact neighborhood of the

singular point sk, Nk ⊂ ∂Ω, there exists ν > 0 such that

[
I

Ĝr

]∗
daug

(
Π̂ΓQ , π̂∆ ⊗ I

)[ I
Ĝr

]
(s)

≥ T ∗k daug
(

Π̂Γ⊥(sk), π̂∆(sk)⊗ I
)
Tk − νI ≥ εI

for all s ∈ Nk and all k. It follows that iii) in Theorem 4.3.9 holds.

4.4 Synchronization in case of static interconnection

The results given in the previous sections provide general tools to study the synchroniza-

tion properties of a network of heterogeneous agents. One however wonders whether it is

possible to particularize the result in cases in which the structure of the operators Γ and

∆k are such that a natural choice for the matrices V and Q of the projection and loop

transformation steps, as well as IQC characterizations, arise. In this and the following

Sections we will analyze in some detail several special cases.

We start by considering the simplest and usual choice for the interconnection operator

Γ(t, y), namely the multiplication by a constant matrix

Γ(t, t) = Γ0y.
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We will restrict attention to the class of matrices Γ0 which respect the following

Assumption.

Assumption 4.4.1. The matrix Γ0

i) respects Assumption 4.3.2

iia) is normal, namely such that Γ0Γ∗0 = Γ∗0Γ0

iib) is able to synchronize the nominal system to the subspace Z = ker Γ0. In other

words, the nominal interconnection (with ∆ = 0)




y = huyu+ hryr

u = Γ0y
(4.11)

synchronizes to Z.

For the most usual situation, namely synchronization to 1, a natural choice is, as

we already known for consensus, Γ0 = −νL where L is the Laplacian of a primitive

stochastic matrix P associated with the communication graph.

Normal matrices are orthogonally diagonalizable, and this allows us to characterize

the synchronization properties by making use only of its spectral properties. Indeed, let

U ∈ RN×N be an unitary matrix such that

Γ0 = U

[
0p 0

0 Γ0⊥

]
U∗

where the upper–left block 0p is a p × p block of zeros, while Γ0⊥ ∈ RN−p×N−p is a

diagonal matrix whose (i, i)-th entry is the i-th non-zero eigenvalue of Γ0:

Γ0⊥ =




µp+1

. . .

µN


 .

Correspondingly, the matrix U can be partitioned as U =
[
Z V

]
, where the columns of

Z are an orthonormal basis for the kernel of Γ0, namely for Z, while the columns of V

span its orthogonal complement Z⊥. Clearly Γ0⊥ = V ∗Γ0V .

To perform the loop transformation we need a matrix Q respecting Assumption 4.3.4.

A simple choice is

Q12 = IN−1, Q21 = IN−1, Q22 = Γ0⊥.
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To prove this, we need to show that all the matrices in G in Eq. 4.8 are stable, and this is

a consequence of Assumption 4.4.1 iib). In fact if we consider the nominal interconnection

in Eq. 4.11 and perform the projection using V , we obtain

y⊥ = (IN−p − Γ0⊥huy)
−1hryr⊥ = Gryr⊥.

Notice that Gry is a diagonal matrix of transfer functions, so it is stable if and only if

all its entries on the diagonal are stable transfer functions. This argument proves the

following Lemma, which gives an equivalent condition for Assumption iib) (a slightly

different version appeared in [22]).

Lemma 4.4.2 ([22]). A sufficient and necessary condition for the synchronization of the

nominal interconnection to Z = ker Γ0 is that the transfer functions
hry

1−µihuy are stable,

for any nonzero eigenvalue µi, i = 1, . . . , N − p, of Γ0.

On this discussion is based the proof of the following result.

Corollary 4.4.3. Consider the system in Eq. 4.1 in which Γ(t, y) = Γ0y, where Γ0

respects Assumption 4.4.1.

Assume there exists a multiplier π∆ in

Π∆ = {π = π∗ ∈ S2×2
Ad : ∆k ∈ IQC(π), π11 ≥ 0, π22 ≤ 0} (4.12)

such that [
I

µihry
1−µihuy

]∗
π∆

[
I

µihry
1−µihuy

]
> 0,

for any nonzero eigenvalue µi, i = 1, . . . , N−p of Γ0. Assume moreover that huv, h
−1
uv ∈ A.

Then the system synchronizes to the subspace Z.

Proof. The proof of this corollary consists in showing that it is possible to choose the

matrix V ∈ RN×N−p for the projection and the matrix Q for the loop transformation in

such a way that the conditions of Theorem 4.3.9 are satisfied.

First of all, since Γ0 is normal we know that it is orthogonally diagonalizable. By

arranging the eigenvalues in such a way that the first p are the zero eigenvalues, correspond-

ing to the normalized matrix of eigenvectors Z, we obtain the eigenvalue decomposition

Γ0 =
[
Z V

]∗
[

0 0

0 Γ0⊥

] [
Z V

]
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Notice that Γ⊥(t, y) = Γ0⊥y⊥ so V , whose columns are an orthonormal basis for Z⊥,

is a natural choice to perform the projection.

The second step is to choose Q, and we can simply set

Q =

[
0 I

I Γ0⊥

]
,

which trivially yields ΓQ(t, gy) = 0. The resulting system is thus






y⊥
v⊥


 =


Gry Gwy

Grv Gwv




r⊥
w⊥




w⊥ = ∆⊥v⊥

since yQ = y⊥ and uQ(t) = 0, ∀ t, so its contribution is dropped.

Set now ΠΓQ =

[
νIN−p 0

0 0

]
, where ν is a real value. Using the fictitious parametriza-

tion ΓQ(t, yQ)[τ ] = τΓQ(t, yQ) ≡ 0, it is immediate to see that

〈[
ΓQ(t, yQ)

yQ

]
,ΠΓQ

[
ΓQ(t, yQ)

yQ

]〉
= 0

so that ΓQ ∈ IQC(ΠΓQ). The parametrization ∆k[τ ] = τ∆k, together with π∆,11 ≥ 0

and π∆,22 ≤ 0, implies ∆k[τ ] ∈ IQC(π∆) and thus, by Lemma 4.3.11, also ∆⊥ ∈
IQC(π∆ ⊗ IN−1). Moreover, the nominal interconnection, which is given by ΓQ[0] = 0

and ∆⊥[0] = 0, is

[G,diag (ΓQ[0],∆⊥[0])] =

[
Gry Gwy

Grv Gwv

]

since the signal uQ = 0 so it has no influence. Assumption 4.4.1 implies now that

[G,diag (ΓQ[0],∆⊥[0])] is stable. This holds since Gry is stable by assumption and

stability of Gwy follows from Assumption 4.2.1. This reasoning implies conditions i) and

ii) in Theorem 4.3.9 are satisfied. Concerning iii), instead, notice that the multiplier for

the linear part is

daug
(
ΠΓQ , π∆ ⊗ IN−p

)
=




νI 0 0 0

0 π∆, 11IN−p 0 π∆, 12IN−p
0 0 0 0

0 π∗∆, 12IN−p 0 π∆, 22IN−p




=

[
νI 0

0 Π̃∆

]
.
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Denote for simplicity




I 0

0 I

Gry Gwy

Grv Gwv




=

[
I 0

Υ1 Υ2

]
.

It turns out that

[
I 0

Υ1 Υ2

]∗ [
νI 0

0 Π̃∆

][
I 0

Υ1 Υ2

]
=

[
νI + Υ∗1Π̃∆Υ1 Υ∗1Π̃∆Υ2

Υ∗2Π̃∆Υ1 Υ∗2Π̃∆Υ2

]
(4.13)

where an easy computation yields

Υ∗2Π̃∆Υ2 =

[
I

Gwv

]∗
Π∆

[
I

Gwv

]
> 0

by assumption. Regardless the actual values of the other components of the matrix in

Eq. 4.13, by choosing now ν “big enough”, we can be sure that it is positive definite,

since it is well known that

det

[
µI − a −b
−c µI −D

]
= det {µI −D} det {µI − a− b(µI −D)−1c}

and in this expression a can be raised to any positive value, while the roots of the first

term are positive by assumption. These proves also condition iii) in Theorem 4.3.9, so

we can apply our result and conclude for the synchronization of the given system.

Quasi–saturation in the interconnection inputs

The aim of this section is to prove the synchronization of Higher Order Consensus Network

in which the operators ∆k are used to express an example of non–ideality affecting the

system. Setting huy = hry = hwy = N0 and huv = I, the system under analysis can be

reduced to 


y = N0(1 + ∆)u+N0r

u = Γ0u
(4.14)

We assume that the agents can use directly the input they produce by sensing their

neighbors only if such input is, in absolute value, less then a certain threshold uth. If,

instead, the input does not respect this inequality, then the value is modified. We model
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this setting as

(1 + ∆k)(u) =




u, |u| ≤ uth
u− φ(t, u− sgn(u)uth), |u| ≥ uth

so that

∆k(u) =





0, |u| ≤ uth
−φ(t, u− sgn(u)uth), |u| > uth

where φk(t, v) is an odd memoryless nonlinearity such that φk(t, 0) = 0, ∀ t ≥ 0. We

assume that φk(t, v) is sufficiently regular so that the feedback system is well posed, and

moreover that it satisfies a sector condition

(φk(t, v)− αminv)φk(t, v) ≤ 0

where αmin > 0. The assumption αmin > 0 does not allow to express the pure

saturation of input, since, as it is easy to prove, it is always possible to find initial

conditions (e.g. using the external input r), such that if the input is saturated then

synchronization (according to Definition 4.3.1) cannot take place. The sector condition

implies moreover that the input is always “underestimated”. An example of this is

depicted in Fig. 4.6.

v

αminv

(1 + ∆k)(v)

Figure 4.6: An example of quasi–saturation.

An immediate consequence of the sector condition for φ is that the following sector

condition is satisfied by each ∆k too

(∆k(t, v) + αminv)∆k(t, v) ≤ 0

and this inequality immediately implies that ∆k ∈ IQC(π∆, C) where π∆, C is the constant
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multiplier

π∆, C =

[
2 αmin

αmin 0

]
.

This multiplier can be useful, but often the derived criterion is too conservative. A

major improvement can be obtained if the nonlinearity is time-invariant and such that

the following slope condition is imposed on the ∆k’s

−αmin ≤
∆k(x1)−∆k(x2)

x1 − x2
≤ 0. (4.15)

It can be proven, see e.g. [131], that this condition is enough to conclude that ∆k ∈
IQC(π∆, ZF ), which is called Zames-Falb multiplier and is defined as

π∆, ZF =

[
2Re(m0 −M) αmin(m0 −M)

αmin(m0 −M) 0

]

where M(s) is the Laplace transform of an L1 function m(t), namely

M(s) =

∫ ∞

−∞
m(t)e−stdt

and ‖m‖1 =
∫∞
−∞ |m(t)|dt < ∞, while m0 is a positive constant such that ‖m‖1 ≤ m0.

Analogous results hold in the discrete time case.

Our choice is M(s) = −τ
s−τ for which m(t) = −τetτθ(−t), θ being the Heaviside step.

Since ‖m‖1 = 1, we set m0 = 1, and it turns out that 1−M(s) = −s/τ
1−s/τ , so, premultipling

by the positive value τ , the obtained multiplier is

π∆, ZF (jω) =

[
2Re( −jω

1−jω/τ ) αmin
−jω

1−jω/τ
αmin

jω
1+jω/τ 0

]
.

If we choose τ large enough, this bounded multiplier approximate can be approximated,

at sufficiently low frequency, as π∆, ZF (jω) ≈ αminπ∆,P , where the latter is the Popov

multiplier

π∆, P (jω) =

[
0 −jω
jω 0

]
.

Hence, at low frequencies the Zames–Falb multiplier recovers the Popov one.

Our choice for the multiplier to be used is a linear combination of the two

π∆, C + λαminπ∆, P =

[
2 αmin(1− jλω)

αmin(1 + jλω) 0

]
. (4.16)
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We can invoke Corollary 4.4.3 to immediately prove the following result.

Corollary 4.4.4. Consider the system in Eq. 4.14 where ∆k satisfies Eq. 4.15 and Γ0

satisfies Assumption 4.4.1. Then the system synchronizes if there exists λ ∈ R such that

[
1

µiN0

1−µiN0

]∗
(π∆, C + λπ∆, P )

[
1

µiN0

1−µiN0

]
> 0, (4.17)

where π∆, C and π∆, P are defined above and µi, i = 1, . . . , N − p are the nonzero eigen-

values of Γ0.

This inequality can be easily checked graphically using a Popov plot. Define Gr,i =
µiN0

1−µiN0
and

Pi := {z : z = ReGr,i(jω)− jωImGr,i(jω)}.

The system synchronizes if each Pi entirely lies on the right to the line with slope 1
λ and

crossing the x–axis in the point − 1
αmin

. Is is worth to notice that if αmin → 0, namely if

∆k → 0, then the Popov criterion is always satisfied, and this is clear since the nominal

interconnection is stable.

Remark 4.4.5. Corollary 4.4.4 and the graphical criterion are stated and verified using

the Popov multiplier instead of the Zames–Falb multiplier. As we have noticed above,

the former is a good approximation of the latter at low frequencies, so in this range the

two criteria essentially coincide. One has then to be sure that at high frequencies in

which the correct multiplier is π∆, ZF , the inequality in Eq. 4.17 is satisfied. This holds if

τ is large enough since N0(s) is a strictly proper transfer function.

A non–normal Γ0 example

In the previous section we have shown how it is possible to provide an IQC characterization

to ensure the synchronization of a network of heterogeneous agents given that the constant

matrix Γ0 is normal. A step toward the direction of the full generality, but maintaining

a certain degree of structure, can be made considering reversible Laplacians, which we

introduced in the Analysis chapter (Section 3.3).

Recall that the matrices we are interested in are of the form Γ0 = −νL, where

L = I − P is the Laplacian associated a primitive stochastic matrix P associated with

the communication graph G = (V, E), and ν > 0 is a real, tuning, number.

With a slight abuse of language, we will call also Γ0 to be reversible if the corresponding

P is reversible, which, recall from Definition 3.3.2, means that if π is the invariant measure

of P and if Π = diag (π), then

ΠP = P TΠ.
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It is immediate to see, writing Γ0 = −ν(I − P ), that Γ0 is reversible as well since

ΠΓ0 = ΓT0 Π. (4.18)

In this case normality is in general lost. Assume however that the graph is strongly

connected and P primitive, so that πk > 0, ∀k. We can thus consider the matrix

R0 = Π1/2Γ0Π−1/2, which is symmetric due to Eq. 4.18, hence its eigenvalues are real,

and has as left kernel span
{

Π1/21
}

.

Consider the Higher Order Consensus Network




y = N0(I + ∆)u+N0r

u = Γ0y
, (4.19)

and perform a multiplier transformation defining ȳ = Π1/2y, ū = Π1/2u, r̄ = Π1/2r and

∆̄(ū) = Π1/2∆(Π−1/2ū). In the new variables, the Higher Order Consensus Network

obeys to 


ȳ = N0(I + ∆̄)ū+N0r̄

ū = R0ȳ
(4.20)

where now R0 respects the normality assumptions, and we can apply the previous

theorems. We can now state the following simple result.

Proposition 4.4.6. Consider the system in Eq. 4.19 where Γ0 = −ν(I − P ) and P is

a primitive, stochastic, reversible matrix with invariant measure πT . Assume moreover

that the transfer functions N0
1−µiN0

are stable for any nonzero eigenvalue µi of Γ0. Assume

there exists a multiplier π∆ in

Π∆ = {π = π∗ ∈ S2×2
A : ∆k ∈ IQC(π), π11 ≥ 0, π22 ≤ 0}.

such that [
I

µihry
1−µihuy

]∗
π∆

[
I

µihry
1−µihuy

]
> 0,

for any nonzero eigenvalue µi, i = 1, . . . , N − p of Γ0. Then the system synchronizes to

the subspace Z = span {1}.

Proof. From the above discussion it is clear that R0 satisfies Assumption 4.4.1. Since the

eigenvalues of Γ0 are also eigenvalues of R0, we can immediately apply Corollary 4.4.3

and conclude that the system in Eq. 4.20 synchronizes to span
{

Π−1/21
}

. Since Π−1/2 is

an invertible constant matrix, and since ȳ = Π1/2y and r̄ = Π1/2r, it is immediate to
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conclude that the system in Eq. 4.19 synchronizes to span {1}.

Leader-following for Higher Order Consensus Networks

In the previous Section the assumption was that all the entries of π had to be strictly

positive, as a consequence of the fact that the graph was strongly connected. In this

Section we want to analyze what happens if, instead, some of them are zero.

For sake of simplicity, we will consider the homogeneous case, in which ∆k = 0, k =

1, . . . , N . We can assume w.l.o.g. (possibly after relabeling the agents) that V = S1 ∪S2

where S1 = {1, . . . , q} and S2 = {q + 1, . . . , N}, and πi > 0 if i ∈ S1 and πj = 0 if

j ∈ S2. By reversibility, from Eq. 4.18 we can conclude that Γ0 has the structure

Γ0 =

[
ΓS1 0

ΓS12 ΓS2

]

so that, suitably partitioning the outputs, the interconnection inputs and the external

inputs, we can rewrite the system Eq. 4.19 as






yS1

yS2


 =


N0IS1 0

0 N0IS2




uS1

uS2


+N0


rS1

rS2


 ,


uS1

uS2


 =


ΓS1 0

ΓS12 ΓS2


 ,

(4.21)

so that the dynamics for the set S1 is described by the system




yS1

= N0IS1uS1 +N0rS1 ,

uS1 = ΓS1yS1
,

(4.22)

while the dynamics for the set S2 is described by




yS2

= N0IS2uS2 +N0rS2 ,

uS2 = ΓS12yS1
+ ΓS2yS2

,
, (4.23)

which yields, after some manipulation, the simplified expression

yS2
= (I − ΓS2N0)−1N0(ΓS12yS1

+ rS2). (4.24)

Notice now that because of the block–lower–triangular structure of Γ0, its eigenvalues

are distributed among ΓS1 and ΓS2 . As an immediate consequence, since it is clear that
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ΓS11S1 = 0, the matrix ΓS2 is Hurwitz and, by previous arguments, (I − ΓS2N0)−1N0

is a matrix of stable transfer functions. Since ΓS12 is a constant matrix and rS2 is a

bounded signal, we can conclude that, asymptotically, yS2
will simply be driven by yS1

,

or, more intuitively, that the set S1 will be the leader of the network, and that the set S2

will follow it, progressively forgetting initial conditions and external inputs.

A numerical example

In this section we are going to present a case of leader following for a homogeneous

network of N = 8 interconnected oscillators. Each agent is represented by the nominal

transfer function

N0(s) =
1 + s

s2 + ω2
0

where ω0 = 1. The network is divided in two subsets, a first set S1 in which the agents

are interconnected in a circle and communicate using the matrix

ΓS1 = −I4 + +0.5C4 + 0.5C−1
4 ,

and a second set S2 in which the agents are interconnected in a circle via a matrix ΓS2

and, moreover, can receive information from one of the agents of the set S1 via a matrix

ΓS12 . The two ΓS2 and ΓS12 , apart from the structure, are chosen randomly with the

only constraint that [
ΓS12 ΓS2

]
1 = 0.

This is depicted in Fig. 4.7.

S1

S2

Figure 4.7: Leader following for a network of perturbed oscillators. The graph of communi-
cation, in which S1 is the set of leaders, while S2 is the set of followers. Notice that the agents

in S2 receive information from S1 without replying.

Once we run the simulation, taking randomly the initial conditions, we obtain as

typical trajectory what is depicted in Fig. 4.8. As it can be seen, the agents in S1 agree

on a sinusoid of angular frequency ω0 = 1rad/sec, which corresponds to the “nominal

behavior”, followed by the agents in S2 which forget their initial conditions and slowly
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converge to the behavior of the leader agents.

0 20 40 60 80 100
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Outputs of the subsystems

Figure 4.8: Leader following for a network of perturbed oscillators. In thick the trajectory
of the leaders, which reach asymptotically the agreement on a sinusoid of angular frequency
ω0 = 1rad/sec. In thin the followers, which progressively forget their initial conditions and

simply follow the leaders.

A nonlinear interconnection: An example

In this section we are going to analyze in some detail a particular type of non-linear

interconnection operator Γ for which we can find a powerful IQC characterization.

Let G = (V, E) be an undirected graph with vertices V = {1, . . . , N} and edge set E ,

a let A = [ajk]
N
j,k=1 be its adjacency matrix, which, recall, is defined as

akj =





1, (j, k) ∈ E , j 6= k

0, otherwise

We use in this Section the notion of Laplacian of the graph G, which is defined as

LG = ∆−A

where ∆ is the diagonal matrix of the degrees of the nodes.

We assume that the graph is connected, which implies, analogously to Laplacians of

primitive matrices, that the eigenvalues of LG are distributed as 0 = µ1 < µ2 ≤ . . . ≤ µN .
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We use the Rayleigh-Ritz ratio (see Eq. 3.15) in the form

µ2 = min
1Ty=0,y 6=0

yTLGy

|y|2 . (4.25)

We consider the following algorithm in order to produce the control at k-th agent

Γk(y) =
1

δu

N∑

j=k

aijφ[η,β]( yj − yi),

where φ[η,β] is an odd, namely such that φ[η,β](−v) = −φ[η,β](v), memoryless nonlinearity

satisfying the slope restriction condition

η ≤
φ[η,β](y1)− φ[η,β](y2)

y1 − y2
≤ β, ∀y1 6= y2

for some 0 < η < β < ∞. Namely, agent k receives the outputs from its neighbors,

computes the relative difference with its own output and maps each difference through

a memoryless nonlinearity φ[η,β]. Then it just sums the results up and divides by the

number of neighbors in the network. Notice that, if φ[η,β](v) = v, this way to produce

the control u corresponds to choosing uniform weights for a primitive consensus matrix

P as described in Section 3.6.

A simpler formulation is obtained by using the incidence matrix B, which allows use

to write LG = BTB. With this notation, network operator can be formulated as

Γ(y) = BTΦ[η,β](By) (4.26)

where

Φ[η,β](y) =




φ[η,β](B1y)
...

φ[η,β](Bny)


 , (4.27)

and where Bk denotes the kth row of B.

In order to apply our results we need to introduce the transformation and parametriza-

tion of Γ. With

Q =

[
0 1

1 −η

]
⊗ IN−1



4.4 Synchronization in case of static interconnection 111

we have

ΓQ(yQ) = −V ∗BTΦ[0,α][τ ](BV yQ), (4.28)

where Φ[0,α][τ ] is defined as in Eq. 4.27 above but with the transformed nonlinearity

φ[τ ](y) = (1− τ)βy + τφ[0,β−η](y)− ηy,

which is odd and slope restricted in the sense that

0 ≤ (y1 − y2)(φ[τ ](y1)− φ[τ ](y2)) ≤ α(y1 − y2)2,

for all y,∀τ ∈ [0, 1], where α = β − η > 0.

The following IQC characterization of Eq. 4.28, in which we consider the continuous

time case for simplicity, offers a multiplier which can be used with Theorem 4.3.9.

Lemma 4.4.7. We have ΓQ ∈ IQC(π ⊗ IN−1) where

π(jω) =

[
− 2
κ(1 + ReM(jω)) 1 +M(jω)

1 +M(jω) 0

]

where κ = α/µ2, µ2 is defined in Eq. 4.25 and

M(jω) =

∫ ∞

−∞
m(t)ejωtdt (4.29)

for some real valued function satisfying
∫∞
−∞ |m(t)|dt ≤ 1.

Proof. We have

〈
ΓQ(yQ), (1 +M(jω)(yQ −

1

κ
ΓQ(yQ)

〉

≤ −
〈

Φ[0,α][τ ](ỹ), (1 +M(jω))(ỹ − 1

α
Φ[0,α][τ ](ỹ)

〉

= −
∑〈

φ(ỹk), (1 +M(jω))(ỹk −
1

α
φ(ỹk)

〉
≤ 0

where ỹ = BV yQ and ỹk = BkV yQ. In the second inequality we used that

−|BV Φ[0,α][τ ](ỹ)|2 = −(Φ(ỹ)TV ∗LGV Φ(ỹ) ≤ −µ2|Φ[0,α][τ ](ỹ)|2,

where we used Eq. 4.25 and that V ⊥ 1. Finally, the last inequality follows since the
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slope restricted nonlinearity satisfies the Zames-Falb IQC, see e.g. [131].

Time–invariant topology

So far we have consider an extreme case in which we had no information a priori

information on the graph used at each time. Consider the much easier case in which,

instead, the graph topology does not change over time, so that each aij is a constant

value. In this case, the same argument still holds considering as Q22 the constant matrix

Γ0⊥ = −V ∗LGV instead of the simpler Q22 = −IN−1. This, if the columns of V are the

normalized eigenvectors of LG, yields the bounds

(1− β)µ2|y⊥|2 ≤ yT⊥ΓQ(t,y⊥) ≤ (1− α)µN |y⊥|2.

This bound offers two advantages over the previous one

• The values µ2 and µN are exactly the second and least eigenvalues of LG;

• The other two terms, 1 − β and 1 − α, only depend on the map φ, thus the

communication topology does not pose constraints on them.

Clearly, a similar argument to reduce conservativeness of the bound can be carried on

again if the topology is a slight perturbation of a “nominal” topology, for example if the

elements of the adjacency matrix are a perturbed version of the elements of the nominal

one.

It should be noticed, to conclude, that the steady assumption in this Section is that

each element on the diagonal of Γ0⊥ is able to stabilize the nominal system N0. Otherwise,

the linear part H ? Q is not stable, and we cannot apply our argument.

4.5 Synchronization in case of LTI perturbations

In this section we address the problem of guaranteeing synchronization in case the

perturbation operators ∆k’s can be modeled as single input single output linear time-

invariant operators, thus admitting a representation in terms of transfer function.

We particularize our attention to the Higher Order Consensus Network with N agents




y = Hu

u = Γ0y + r
(4.30)
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where the (k, k)-th entry of H, which models the k-th agent, is of the form (in continuous

time for example)

Hk(s) = N0(s)(I + ∆k(s))

The matrix Γ0 is, as in the previous Sections, the rescaled Laplacian of a primitive

stochastic matrix P (apart from the sign), and is normal by Assumption 4.3.2. It is thus

diagonalizable via a unitary matrix

U =
[
1 V

]

and U∗Γ0U = Γ0⊥ = diag (0, µ2, . . . , µN ). The matrix V will serve, as before, in order

to perform the projection out from span {1}.
Let us define two sets which will be used in the main result. We denote by

N [H1, . . . ,Hm] (ω) the 3d-Nyquist polytope of the set of subsystems H1, . . . ,Hm

N [H1, . . . ,Hm] (ω) := co{
(
ReHk(jω), ImHk(jω), |Hk(jω)|2

)
: k = 1, . . . ,m}, (4.31)

and the instability region defined by the spectrum of Γ0 as

Ωe := (0, 0, R+) + co

{(
Re

1

µi
, Im

1

µi
,

1

|µi|2
)

: i = 2, . . . , N

}
. (4.32)

We are now ready to state and prove our main result.

Theorem 4.5.1. Consider the continuous time system




y = Hu

u = Γ0y + r
(4.33)

where H(s) = ⊕Nk=1Hk(s) := diag (Hk(s) : k = 1, . . . , N). Assume moreover that Hk(s)

can be decomposed as

Hk(s) = N0(s)(1 + ∆k(s)).

Set for convenience H0(s) = N0(s), and call P ⊂ R the set of poles of N0(s) on the

imaginary axis.

Assume that

i) for every nonzero eigenvalue µi of Γ0 we have that W0(s) = N0(s)
1−N0(s)µi

is a stable

system and such that 1−N0(s)µi is nonsingular on the imaginary axis;

ii) the transfer functions ∆k(s)’s are stable;
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iii) for any ωm ∈ P pole of N0(s) with multiplicity νm, it holds

N∑

k=1

1

1 + τ∆k(jωm)
6= 0,∀τ ∈ [0, 1]

iii) it holds

N [H0, . . . ,HN ] (ω) ∩ Ωe = ∅, ∀ω ∈ R ∪ {∞} \ P.

Then y(t) synchronizes to span {1} as t→∞ for any input r which satisfies r(t), ṙ(t) ∈
L2[0, ∞).

Proof. See the Section 4.5.

Note that the input r represents disturbances and the effect of initial conditions. If

we assume that H has a state space realization Σ = (A,B,C,D), namely

y = Hu⇔




ẋ = Ax+Bu

y = Cx+Du

then provided that the pair (A,B) is controllable we can generate arbitrary initial

conditions using r. Indeed, for any x0, there exists an input signal, u0, defined over

−T0 ≤ t ≤ 0 such that the solution to ẋ = Ax+ Bu, x(−T0) = 0 is x(0) = x0. Then

the choice r(t) = u0(t) − Γ(Cx0(t) + Du0(t)), for −T0 ≤ t ≤ 0 and r(t) = 0 for t > 0

gives the desired initial condition, i.e. the system (4.33) could then be interpreted as the

state space system

ẋ = (A+B(I − Γ0D)−1ΓC)x, x(0) = x0.

The result in Theorem 4.5.1 has a discrete time counterpart. For example, if we for

the sake of simplicity use a unitary sample period, the discrete time formulation follows

by using the Tustin transform (see e.g. [132]), so that the Nyquist plots of Hk(s) and of

Hk(z
−1) are the same and one system is stable if, and only if, the other one is stable.

We thus have the following corollary.

Corollary 4.5.2. Consider the discrete time system




y = Hu

u = Γy + r
(4.34)
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where H(z−1) = diag
(
Hk(z

−1) : k = 1, . . . , N
)
. Assume moreover that Hk(z

−1) can be

decomposed as

Hk(z
−1) = N0(z−1)(1 + ∆k(z

−1))

where N0(z−1) is a “nominal plant”. Set for convenience H0(z−1) = N0(z−1), and call

P ⊂ [0, 2π] the set of values ωm for which ejωm is a pole of N0(z−1) on the unitary circle.

Assume that

i) for every nonzero eigenvalue µi of Γ0 we have that W0(z−1) = N0(z−1)
1−N0(z−1)µi

is a

stable system and such that 1−N0(z−1)µi is nonsingular on the unit circle.

ii) the transfer functions ∆k(z
−1) are stable;

iii) for any ωm ∈ P such that ejωm is a pole of N0(z−1) with multiplicity νm, it holds

N∑

k=1

1

1 + τ∆k(ejωm)
6= 0,∀τ ∈ [0, 1]

iv) it holds

N [H0, . . . ,HN ] (ejω) ∩ Ωe = ∅,∀ω ∈ [0, 2π] \ P.

Then the signals y(t) synchronize to span {1} as t→∞ for any input r which satisfies

r(t) ∈ l2[0, ∞).

The interpretation of Corollary 4.5.2) in state space domain is analogous to the

continuous time case.

Derived simplified criteria

The roles of the Hk’s and of the spectrum of Γ0 in condition iv) in Theorem 4.5.1 can be

somehow switched. In fact, once we define the so called Inverse Nyquist polytope

Ň [H0, . . . ,HN ] (ω) = co
{(

Re
1

Hk(jω)
, Im

1

Hk(jω)
,

1

|Hk(jω)|2|

)
: k = 0, 1, . . . , N

}

(4.35)

and the corresponding instability region

Ω̌e := co
{(

Reµi, Imµi, |µi|2
)

: i = 2, . . . , N
}
. (4.36)

it is possible to shown, as explained in [122] and making use of the fact that µ1 = 0, that

iii) in Theorem 4.5.1 is equivalent to
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iv’) it holds

Ň [H0, . . . ,HN ] (ω) ∩ Ω̌e = ∅, ∀ω ∈ R ∪ {∞} \ P.

These criteria can sometimes be hard to visualize since they involve three dimensions.

A way to simplify the drawing of the Nyquist polytope and of the instability region, it

is possible to consider the projection of these sets to the complex plane. Clearly, the

obtained “2−D” conditions are in general more conservative then conditions iv) or iv′)

above.

Concerning the first criterion, instead of condition iv) we have to impose that the sets

N2d [H0, . . . ,HN ] (ω) := co{H0(jω), . . . ,HN (jω)} (4.37)

and

Ω2de := co

{
1

µ2
, . . . ,

1

µN

}
(4.38)

do not intersect.

For the Inverse criterion, the corresponding sets are

Ň2d [H0, . . . ,HN ] (ω) := co

{
1

H0(jω)
, . . . ,

1

HN (jω)

}
(4.39)

and

Ω̌2de := co{µ2, . . . , µN}. (4.40)

Examples

In this section we are going to apply Theorem 4.5.1 to the cases of unstable systems

synchronization and synchronization of oscillators. A more detailed example is given in

Chapter 5 and concerns clocks synchronization.

Synchronization of unstable subsystems

In this example we show that if the interconnection network is well designed, synchroniza-

tion can take place even if the subsystems are not stable. Consider in fact the situation

in which

Hk(s) =
1 + ∆k(s)

s− τ
where τ > 0 and ∆k(s) are stable filters. Assume reµi < −η for every nonzero eigenvalue

µi of Γ0. It is easy to see that if τ < η then assumption i) is satisfied. If we consider

stable and “small” ∆k(s), such that ii), iii) and iv) in Theorem 4.5.1 are satisfied, then
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we have the synchronization to the unstable mode eτt.

To give a numerical example, assume we have N = 11 agents, τ = 0.3, N0(s) = 1
s−τ

and Nk(s) = s+εk
(s+2νk)(s−τ) , where εk, νk ∈ U [0, 1], where U [l, u] means uniformly taken in

[l, u]. The matrix Γ0 is Γ0 = −IN + 0.2 ∗ (CN + C−1
N ) + 0.35 ∗ C5

N + 0.25 ∗ C6
N , where CN is

the Cayley matrix generated by the row g =
[
0 1 0 . . . 0

]
. In Fig. 4.9, respectively

on the left and on the right panel, are shown a possible trajectory of the subsystems

(initial conditions are uniformly taken in [0, 100]) and the 2−D Nyquist criterion (see

Eq. 4.37 and Eq. 4.38).

0 2 4 6 8 10
0

1000

2000
Outputs of the subsystems

0 2 4 6 8 10
0

100

200
Trajectories on the orthogonal space

Figure 4.9: Unstable synchronization. Left panel: trajectories of the output of the systems
for the given network. Right panel: Direct 2d Nyquist criterion for the system. The light
shaded region is the convex hull of the inverse of the eigenvalues of Γ0, the dark shaded region

is the Nyquist polytope.

A counterexample: the synchronization of different linear oscillators

In this example we will show that assumption ii) of the theorems is necessary. Assume

our subsystems to be composed by a nominal plant of some type, N0(s), to which is

added a perturbation with two complex conjugate purely imaginary poles:

Hk(s) = N0(s) +
Pk(s)

s2 + ω2
k

.

In this case, if N0(s) and the Hk(s) are suitably chosen, it is not difficult to satisfy

assumptions i) and iv). The problem here is that assumption ii) surely cannot be satisfied,

since

∆k(s) =
Pk(s)

(s2 + ω2
k)N0(s)

is never stable having the two neutrally stable poles ±jω2
k. Hence, the theorem cannot
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be applied and in fact, in general we do not have synchronization.

95 96 97 98 99 100

−0.2

−0.1

0

0.1

0.2

0.3
Outputs of the subsystems (particular)

Figure 4.10: Synchronization of oscillators: bad case. Left panel: Zoom showing the “weak”
synchronization. The low frequency carrier corresponds to the sinusoid at frequency 0.1 Hz.
Right panel: Inverse 2d Nyquist criterion for the system. The light shaded region is the convex
hull of the eigenvalues of Γ0, the dark shaded region is the inverse Nyquist polytope. Zoom

showing that the nonzero eigenvectors of Γ0 respect the assumptions.

To give a numerical example, let us consider the case in which N = 9 and

N0(s) =
s+ 1

s2 + (2π0.1)2

and

Nk(s) = −1

5

(s− 1)((2 + εk)s+ 1 + νk)

s2 + ω2
k

where εk, νk ∈ U [0, 1] and ωk ∈ 10π + 2πU [0, 1]. The interconnection matrix is Γ0 =

−IN + 0.2(CN + C−1
N ) + 0.3(C4

N + C5
N ) (CN as before).

Because the subsystems do not satisfy the assumptions, the system does not syn-

chronize. Nonetheless, as we can see in the left panel of Fig. 4.10, some sort of “weak”

synchronization is approached. This is related to the fact that the subsystems actually

satisfy the Nyquist Criterion, as can be seen in the right panel of Fig. 4.10.

As a second example, consider the case in which

Hk(s) = −1

5

(s− 1)(2s+ 1)

s2 + ω2
0

− 1

5

(s− 1)(εks+ νk)

s2 + ω2
0

where εk, νk ∈ U [0, 1] and ω0 = 2π, thus the nominal plant is in this case N0(s) = 1
s2+ω2

0
.

The interconnection matrix is the same as in the previous example. The assumptions are

all satisfied, and in fact, as we can see in Fig. 4.11, the subsystems synchronize.
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Figure 4.11: Synchronization of oscillators: good case. Zoom showing the synchronization.

Proof of Theorem 4.5.1

In order to prove the Theorem we need the following two results, taken from [122].

Assume Π ∈ S2×2
C , the set of 2× 2 complex valued hermitian matrices: this set is a

Hilbert space if we endow it with the scalar product 〈Π1,Π2〉 = Tr(Π1Π2). Consider now

a convex polytope Λ ⊂ C, and define the convex cone ΠΛ as

ΠΛ := {Π ∈ S2×2
C : Π22 ≤ 0;

|λ|2Π11 + 2ReλΠ∗12 + Π22 ≤ 0, ∀λ ∈ Λ}. (4.41)

Finally, the polar cone of C in the Hilbert space H is defined as

C	 := {y ∈ H : 〈y, x〉 ≤ 0, ∀x ∈ H} (4.42)

we obtain the following characterization for the polar cone Π	Λ of ΠΛ.

Lemma 4.5.3. Consider ΠΛ as defined in Eq. 4.41 and suppose Λ = co {µ1, . . . , µn}.
Then the polar cone of ΠΛ is characterized as follows

Π	Λ = cone {Wk : k = 1, . . . , n+ 1}

where Wk = vkv
∗
k for k = 1, . . . , n+ 1 and

vk =

[
µk

1

]
, k = 1, . . . , n, vn+1 =

[
0

1

]
.
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The next proposition deals with both these multipliers Π and the structure of our

system. Let Hk be the transfer function of the k-th subsystem, and assume Hk ∈ A
for k = 1, . . . , n, with A be the set of Laplace transforms of functions of the type

h(t) = hc(t)θ(t) + h0δ(t), θ(t) be the step function, hc(t) ∈ L1[0, ∞) and h0 ∈ R.

Proposition 4.5.4. Let Hk ∈ A for k = 1, . . . , n, and ΠΛ ⊂ S2×2
C be a closed (in the

topology defined by the Frobenius norm) convex cone. The either of the following two

statements holds

a) for all ω ∈ R ∪ {∞} there exists Π ∈ ΠΛ such that

Π11 + 2Re Π12Hk(jω) + Π22|Hk(jω)|2 > 0,

for all k = 1, . . . , n,

b) There exists an ω ∈ R ∪ {∞} and a nonzero tuple Z = (z1, . . . , zn) ∈ Cn with

zk ≤ 0 such that
n∑

k=1

zk

[
1

Hk(jω)

][
1

Hk(jω)

]∗
∈ Π	Λ .

We can now prove Theorem 4.5.1

Proof of Theorem 4.5.1. The idea of the proof is, as it is known, to project the trajectory

to the space orthogonal to span {1}, and to prove that the obtained system is L2-stable.

First of all, we define

y⊥(t) = V ∗y(t)

It can be checked that the system in the new variables obeys the following equation

y⊥ = V ∗H(V diag (µ2, . . . , µN )y⊥ + r)

= H⊥Γ0⊥y⊥ + V ∗Hr (4.43)

once we define

H⊥(s) = V ∗H(s)V

Γ0⊥ = diag (µ2, . . . , µN ) .

We will prove that the closed loop transfer function is stable. This in turn implies that

y⊥ = (I − H⊥Γ0⊥)−1V ∗Hr ∈ L2[0, ∞) and hence y⊥ converges continuously by the

assumption on r. This in turn implies that y(t)→ kerV ∗ = span {1}
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Next we follow the proof in [122] to prove the claimed stability. The condition iv)

implies that, for any ω ∈ R ∪∞ and for any nonzero (z0, . . . , zn) with zk ≥ 0, we have

n∑

k=0

zk

[
1

Hk

][
1

Hk

]∗
6∈ Π	Λ, e (4.44)

where Π	Λ, e = cone{viv∗i : i = 2, . . . , N}, where

vi =

[
µi

1

]
, i = 2, . . . , N, and vN+1 =

[
0

1

]
.

Let ω ∈ R ∪∞ \ P be arbitrary. It follows from lemma 4.5.3 and proposition 4.5.4 that

Eq. 4.44 implies the existence of multipliers Π ∈ S2×2
C such that Π22 ≤ 0 such that the

following two conditions hold:

1: For i = 2, . . . , N ,

|µi|2Π11 + µiΠ12 + µiΠ
∗
12 + Π22 ≤ 0 (4.45)

which immediately yields the matrix form constraint

Γ∗0⊥Π11Γ0⊥ + Γ∗0⊥Π12 + Π∗12Γ0⊥ + Π22In−1 ≤ 0. (4.46)

2. For k = 1, . . . , N , (from now we supress the dependence on ω, i.e. Hk = Hk(jω))

H∗kΠ11Hk +H∗kΠ12 + Π∗12Hk + Π22 > 0. (4.47)

We also want to find a matrix form for this second constraint. Define the parametrized

dynamics, for τ ∈ [0, 1],

H̃[τ ] = Nα0

(
In−1 + τ ⊕Nk=1 ∆k

)

Notice that if τ = 0 we have the nominal system, if τ = 1 we obtain the perturbed ones.

Since Π22 ≤ 0, the left-hand side of Eq. 4.47 is a concave function of the Hk, k = 1, . . . , N .

This implies that, for τ ∈ [0, 1],

Π11IN−1 + Π12H̃[τ ] + H̃∗[τ ]Π
∗
12 + H̃∗[τ ]Π22H̃[τ ] > 0 (4.48)

Let us now define H[τ ]⊥(s) = V ∗H̃[τ ]V : if τ = 1, this is exactly the H⊥(s) which appears
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in the system whose stability we want to prove. By definition, we have

Π11IN−1 + Π12H[τ ]⊥ +H∗[τ ]⊥Π∗12 +H∗[τ ]⊥Π22H[τ ]⊥

= V ∗(Π11In−1 + Π12H̃[τ ] + H̃∗[τ ]Π
∗
12 + H̃∗[τ ]Π22H̃[τ ])V − V H̃∗[τ ]1Π221

T H̃[τ ]V

where we used the fact that V V ∗ = IN−1 − 1
N 11T . Using Eq. 4.48 and Π22 ≤ 0, we

conclude that the previous expression is positive definite. So, we have

Π11IN−1 + Π12H[τ ]⊥ +H∗[τ ]⊥Π∗12 +H∗[τ ]⊥Π22H[τ ]⊥ > 0 (4.49)

The quadratic constraints Eq. 4.46 and Eq. 4.49 can then be used to show that there

exists ε > 0 such that, for τ ∈ [0, 1],

σmin(I −H[τ ]⊥(jω)Γ0⊥) ≥ ε, ∀ω ∈ R ∪∞ \ P. (4.50)

Let us now define the following matrix transfer function:

GV (s) = (H0(s)−1IN−1 − Γ0⊥)−1

= H0(s)(IN−1 −H0(s)Γ0⊥)−1 (4.51)

which is a diagonal matrix whose (i− 1, i− 1) element is H0(s)
1−H0(s)µi

for i = 2, . . . , N . By

assumption i), GV (s) is stable.

Once we define ∆⊥(s) = V ∗∆(s)V , we can perform the decomposition

IN−1 −H[τ ]⊥Γ0⊥ = IN−1 −N0Γ0⊥ − τN0(s)∆⊥(s)Γ0⊥

= N0

[
N−1

0 IN−1 − Γ0⊥ − τ∆⊥(s)Γ0⊥
]

= N0G
−1
V [IN−1 − τGV ∆⊥(s)Γ0⊥] .

Notice now thatN0G
−1
V = I−N0Γ0⊥, which by assumption i) satisfies σmin(N0G

−1
V (jω)) ≥

ε, for all ω ∈ R∪∞ where ε > 0 is some positive number. From Eq. 4.50 we can therefore

conclude the existence of ε̃ > 0 such that

σmin(IN−1 − τGV ∆̌Γ0⊥) geqε̃, ∀ω ∈ R ∪∞ \ P. (4.52)

We can now introduce the following matrix transfer function:

G[τ ](s) = (IN−1 − τGV ∆⊥(s)Γ0⊥)−1GV V
∗(IN−1 + τ∆(s), (4.53)
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where we see that G[0] = GV V
∗ and G[1] = (IN−1 −H⊥Γ0⊥)−1V ∗H, which is the closed

loop transfer function from r to y⊥.

We will finally show that this transfer function is stable, i.e. it is analytic in the right

half plane. For this purpose, we introduce

ψ(s, τ) = det(IN−1 − τGV (s)∆⊥(s)Γ0⊥)

By assumption i) we know that ψ(s, 0) is analytic in the right half plane. Moreover, by

Eq. 4.52 it follows that ψ(jω, τ) 6= 0 for all ω ∈ R ∪∞ \ P and τ ∈ [0, 1]. Condition

iii) implies that Eq. 4.52 holds by continuity for ω ∈ \P too. Assume in fact N0(s) =
1

dm(s)Ñ0(s) where dm(s) = (s− jωm)νm . It is easy to obtain

lim
ω→ωm

(IN−1 − τGV ∆⊥Γ⊥) = Γ−1
⊥ V ∗(IN + τ∆(s))V Γ⊥.

Now Eq. 4.52 holds for ωm ∈ P and for any τ ∈ [0, 1] if

Γ−1
⊥ V ∗(IN + τ∆(s))V Γ⊥x = 0

implies x = 0. In fact, since Γ⊥ is invertible and V is full column rank, the only possibility

is

(IN + τ∆(s))V x̃ = β1

where x̃ = V x and β ∈ R. Hence

V x̃ = β(IN + τ∆(s))−11

and multiplying on the left by 1T

β1T (IN + τ∆(s))−11 = 0

Now by iii) 1T (IN + τ∆(s))−11 6= 0, ∀τ , and thus it must be β = 0 implying x̃ = 0 and

thus actually x = 0.

It follows now by the zero exclusion principle that ψ(jω, 1) is analytic in the right

half plane, see e.g. Lemma A.1.18 in [17]. By assumption ii) it also holds that G[1] is

analytic in the right half plane.

This concludes the proof.
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5
Applications of Synchronization Algorithms

5.1 Introduction

The fifth Chapter of this dissertation is devoted to Applications of synchronization

algorithms. The first application is clock synchronization, which is among the most

studied Higher Order Consensus problems in the literature. A clock will be basically

modeled as a double integrator and the results in Chapter 4 will be applied in order

to study robust synchronization with respect to uncertainties and non–idealities. The

second application is cameras calibration, which is seen as an optimization problem on

the manifold S1, and then recast as consensus on S1, a difficult problem due to the

presence of multiple local minima. We address this problem exploiting cycles on the

communication graph in order to rewrite consensus as if it was on the Euclidean space,

where it is known how to solve it. This goes along lines somehow different from what

has been done in the rest of the dissertation, and yet shows the difficulty of the simple

consensus problem on non–Euclidean sets.

5.2 Synchronization of Networks of Clocks

The first application for our criteria is in the field of clock synchronization. This is a topic

which has attracted much attention due to the fact that in many practical applications
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agents need to perform their actions in a restricted time interval in order to reduce

energy consumption, and thus the necessity of a common time. The problem has been

addressed via hierarchical algorithms such as leader election in a spanning tree ([32, 133]),

or clustering of the network ([134]). Despite the effectiveness of such algorithms, they

suffer from bad scalability characteristics and especially from failure of nodes. In fact, if

one node fails, the whole subtree which has that node as root gets disconnected from

the rest of the network. Full distributed algorithms have been proposed ([135, 136]).

Since all the agents in such algorithms act in exactly the same way, there is no need for

a leader and since the network remains connected it does not suffer from node failures.

We proceed along this direction. The model we consider has been originally proposed in

[137], where clocks are modeled as integrators with constant and identical disturbances.

This simple and ideal case has been modified in [9, 138], where each clock is modeled

as a double integrator whose behavior is subject to uncertainty, and where there is no

leader. This is the model we use in this Section.

A mathematical model for the clocks

In this paragraph we propose a simplified version of the clock model in [138]. A network

of clocks is modeled, as usual, trough the communication graph G = (V, E) in which

V = {1, . . . , N} is the set of clocks. We imagine that each clock, say the k-th, possesses

a counter and an oscillator which produces periodically some event, and for each event

the counter is incremented by 1. The value sk(t) is the value of the counter at time t,

and the reading of the k-th clock is produced according to the rule

yk(t) = yk(t0) + zk(t)(sk(t)− sk(t0))

where yk(t0) is called the initial offset. The role of zk(t) can be explained as follows.

Assume that the oscillator of the k-th clock produces events with period δk, which is

called its skew. If let alone, its time reading would be

yk(t) = yk(t0) + zk(t)δk(t− t0)

namely a ramp–shaped function whose initial condition is the initial offset yk(t0) and

whose slope is given by zk(t)δk. The variable zk(t) is thus an estimate of the inverse of

the skew. Notice that if a clock does not receive any information from other agents, it

has no incentive to modify zk(t). In particular, we can imagine that a nominal value

δnom is given for the skews, so that a good initialization for zk(t) is 1/δnom.

Consider now a network of clocks with different initial offsets and skews which can
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exchange the time readings yk(t)’s along the edges of a communication graph G = (V, E).

In analogy with consensus, the goal is to design a way to progressively tune the initial

offsets yk(t0)’s and the estimate of the skews zk(t)’s on the basis of how different are the

time readings, in order to synchronize the clocks.

In order to carry on our analysis, first of all we further simplify the model. In

particular, we assume that the clock readings are exchanged periodically with period T ,

so that

sk(t)− sk(t− 1) = T (5.1)

for any k and t. This is clearly totally unrealistic since is requires synchronization of the

clocks, which is the goal of the algorithm. The rationale is that if T is small, then the

idealized model should behave in a similar way to the original system. A more detailed

analysis is given in [9].

Making use of the assumption in Eq. 5.1, we model thus each clock as a 2–dimensional

system which evolves according to the following rule





xk(t+ 1) =


1 Tδk

0 1


xk(t) +


f1

f2


uk(t)

yk(t) =
[
1 0

]
xk(t)

(5.2)

A robust synchronization result

We choose the simplest way to produce the control, namely a simple linear combination

of the clock readings

ui(t) =
∑

j∈V
γijyj(t)

thus u(t) = Γ0y(t). We assume that Γ0 respects Assumption 4.3.2, namely it is normal

and its kernel is given by span {1}.
The whole system can be written in the form of Eq. 4.33 as




y = Hu

u = Γ0y + r
(5.3)

where r is an `2 signal used to set the initial conditions. The matrix of transfer functions

H(z−1) is diagonal and its (k, k)-th entry is given by

Hk(z
−1) =

z−2(Tδkf2 − f1) + f1z
−1

(1− z−1)2
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namely in this model the clocks are double integrators with one zero dependent on the

skew.

We assume that a nominal value is given for the skews of the clocks, so that

δk = δnom + δ̃k,∀k ∈ V

With this notation, we have

Hk(z
−1) =

z−2(δnomTf2 − f1) + f1z
−1

(1− z−1)2
+
δ̃kTf2z

−2

(1− z−1)2

= H0(z−1)(1 + ∆k(z
−1))

where

H0(z−1) =
z−2(δnomTf2 − f1) + f1z

−1

(1− z−1)2
=

(δnomTf2 − f1) + f1z

(z − 1)2

∆k(z
−1) =

δ̃kTf2z
−2

z−2(δnomTf2 − f1) + f1z−1

Notice that N0(z−1) can be interpreted as the nominal system, whereas the perturba-

tion operator ∆k(z
−1) constitutes a multiplicative perturbation which well fits within

our framework.

The synchronization criterion is based on the following result, which is immediately

implied by the derived simplified direct criterion presented in Section 4.5 for the case

under analysis.

Lemma 5.2.1. Consider the system in Eq. 5.3 where H and Γ0 as above. Denote by

µ0, λ1, . . . , µN−1 the eigenvalues of Γ0, with µ0 = 0. The system synchronizes to span {1}
if

1. stability of nominal system: the feedback system [H0, µi] is stable for any µi 6= 0

2. conditions on the unstable poles: the transfer functions ∆k(z
−1) are stable for any

k ∈ V

3. condition at the pole: it holds

n∑

i=1

1

δnom + τ δ̃k
> 0, ∀ τ ∈ [0, 1]

4. Nyquist-criterion: it holds the direct projected Nyquist-like criterion, namely the
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convex hull of the inverse of the spectrum of Γ0, co
{

1
µ2
, . . . , 1

µN−1

}
, and the

projected Nyquist polytope, co {H0, H1, . . . , HN} are disjoint.

Based on this, we can state and prove the follow synchronization criterion. We restrict

for simplicity to the case in which the communication graph G is undirected and Γ0 is

the Laplacian of a symmetric primitive stochastic matrix P associated with G.

Theorem 5.2.2. Consider a clock network with N clocks modeled by the undirected

communication graph G = (V, E). Assume that each clock has a skew δk = δnom + δ̃k > 0,

with δnom > 0. Assume the k-th clock is modeled as





xk(t+ 1) =


1 Tδk

0 1


xk(t) +


f1

f2


uk(t)

yk(t) =
[
1 0

]
xk(t)

uk(t) =
∑

j∈Nk γkjyj(t)

(5.4)

and that the matrix Γ0 = [γkj ] ∈ RN×N is symmetric and such that Γ0 = I − P where P

is a primitive stochastic matrix.

Then the network synchronizes to 1 if





f1 > 0, f2 > 0

0 < f2
f1
< 1

δnomT

0 < δk <
f1
Tf2

, ∀ k = 1, . . . , N

4
δkTf2−2f1

< −2, ∀ i = 0, 1, . . . , N

(5.5)

Proof. We want to show that the stated conditions are sufficient to satisfy all the

constraints in Lemma 5.2.1. Notice that by assumption δk > 0, ∀ k.

• Condition on the unstable poles: in order it to be satisfied, each transfer function

δ̃kTf2z
−2

z−2(δnomTf2 − f1) + f1z−1
=

δ̃kTf2

(δnomTf2 − f1) + f1z

must be stable, namely it must hold

|f1 − δnomTf2

f1
| < 1⇒ |1− δnomTf2

f1
| < 1

or equivalently

0 <
f2

f1
<

2

δnomT
(5.6)
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which is implied by the second in Eq. 5.5.

• Condition on the nominal system: the transfer function of the feedback is

[H0, µi] =
H0

1− µiH0
=

(δnomTf2 − f1) + f1z

z2 + z(−2− µif1) + 1− µi(δnomTf2 − f1)
.

By applying the bilinear transformation z = 1+s
1−s to the denominator we obtain

s2(4− µi(δnomTf2 − 2f1)) + 2µi(δnomTf2 − f1)s− µiδnomTf2

(1− s)2

and in order the zeros to have negative real part we need all the signs of the

coefficients to be positive. From the last one we obtain f2 > 0, since −µi > 0. This

implies that f1 > 0 as well1.

We also need δnomTf2 − f1 < 0, which implies f2
f1
< 1

δnomT
, which is the third

of Eq. 5.5. Finally, 4 − µi(δnomTf2 − 2f1) > 0 implies, by δnomTf2 − 2f1 < 0,
4

δnomTf2−2f1
< µi.

• Condition at the pole: by imposing δk > 0, ∀ k the condition is immediately

satisfied.

• Nyquist-like condition: take the generic Hk(ω) := Hk(e−jω), and call x := x(ω) =

ReHk(ω) and y := y(ω) = ImHk(ω).

It is not difficult to show that




x = f1+(δkTf2−f1) cosω

2(cosω−1)

y = (δkTf2−f1) sinω
2(1−cosω)

.

We consider the case ω ∈ [0, π], being ω ∈ [−π, 0] totally analogous. We obtain,

since δk > 0,

y =
δkTf2 − f1

2

√
δkTf2

δkTf2
sgn(2x− δkTf2 + f1)

√
δkTf2 − 2f1 − 4x

where sgn(x) is the sign of x. Since x < δkTf2−2f1
4 , we have

2x− δkTf2 + f1 < −
δkTf2

2
< 0.

1Otherwise, if all the eigenvalues of Γ0 were positive, we could just switch the signs of f1 and f2.



5.2 Synchronization of Networks of Clocks 131

Thus, again using f2 > 0, we have

y =
δkTf2 − f1

2
√
δkTf2

√
δkTf2 − 2f1 − 4x.

We need to ensure that the convex hull of the Nyquist curves does not touch,

frequency-wise, the interval on the real line [1/µ2, . . . , 1/µN ]. In order this to be

true, we need to impose
1

µN
<

4

δkTf2 − 2f1
, ∀ k

and thus

δ̃k >
4 + 2f1µN − δnomµNTf2

µNTf2
.

Moreover, we need the imaginary parts of the Nyquist plots to have the same sign

for all the values of ω ∈ (0, π] and ω ∈ [−π, 0). This can be ensured requiring that

δkTf2 − f1 < 0⇒ δ̃k <
f1

Tf2
− δnom,

which is, again, satisfied by Eq. 5.5.

The proof is now concluded once we notice that since Γ0 = I − P , and all the

eigenvalues of P lie in the interval (−1, 1], then µN > −2.

As an applicative and vivid example, we can state the following example-corollary.

The proof is straightforward.

Corollary 5.2.3. Assume for sake of simplicity δnom = 1, and set f1 = 1
2 and Tf2 = 1

2 .

Then the clocks network synchronizes if

−1 < δ̃k < 1 (5.7)

namely the possible relative variation w.r.t. the nominal value is 100%.

Numerical examples

In this section we are going to provide several examples and counterexamples to our

result.

As a first case, consider a network of N = 10 clocks. For each state, the first

component (the offset) is taken according to the gaussian density N (20, 1), while the

second component is set to the value 1. Namely, each clock at the beginning assumes
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that its skew is the “natural” one. We take δnom = 1 and δ̃k ∈ U [−1, 1], ∀ k = 1, . . . , N .

The interconnection matrix is

Γ0 = −In + .5 ∗ CN + 0.5 ∗ C−1
N

where CN is defined as in Section 4.5, as the Cayley matrix generated by the row vector

g =
[
0 1 0 . . . 0

]
. We set moreover T = 1, f1 = 1 and f2 = 1

2T as in Corollary 5.2.3.

In Fig. 5.1 we show on the left panel a typical trajectory of the clocks. On the right

panel we show the Nyquist plots of the N systems and the instability region, which is

the thick horizontal segment on the real axis. In accordance with Corollary 5.2.3, the

system synchronizes since the convex hull (done frequency–wise) of the Nyquist plots

does not intersect the instability region.
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Figure 5.1: An example of the network synchronizing. Left panel: the trajectory of the
states. Right panel: the Nyquist plots of the systems and the instability region (thick segment

along the real axis).

We consider now the first counterexample. Take a network of N = 5 clocks with the

same settings as before, apart from the fact that δk = 1 for k = 1, . . . , 4, and δ5 = −1
4 .

Since
5∑

k=1

1

δnom + τ δ̃k
= 0

for τ = 1 the criterion is not satisfied. This is shown in Fig. 5.2. On the left panel, the

trajectory of the clocks is shown, while on the right panel we show the projection of

such trajectories on span {1}⊥. If the system synchronizes, this projection must decay

asymptotically. Instead, because of the unsatisfied constraint, a constant steady state

error appears in the projection. The Nyquist criterion is not shown but it is respected,

as well as all the other assumptions of Theorem 5.2.2.
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Figure 5.2: First counterexample: condition at the pole unsatisfied.

For the second counterexample, consider again the same network with the same

settings as before where δk = 1 +U [0, 0.2] for k = 1, . . . , 9 and δ10 = 3. Here the Nyquist

criterion is not satisfied since, as depicted on the right panel of Fig. 5.3, the sign of the

imaginary part of the Nyquist plots for ω ∈ [0, π] is not always negative. This means

that their convex hull intersects the instability region (shown as thick segment on the

real axis), and the criterion is not satisfied. In fact, on the left panel of Fig. 5.3 a typical

trajectory of the outputs of the systems is depicted.
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Figure 5.3: Second counterexample. Left panel: trajectory of the states. Right panel: the
Nyquist plots, for ω ∈ [0, π], of the systems and the instability region (thick segment along
the real axis). The Nyquist plots do not belong all to the half–plane of negative imaginary

parts, so their convex hull will for sure intersect the instability region.

The third counterexample is a network with N = 10, the same Γ0 as before, f1 = 1.24,

T = 1, f2 = 0.5, an δk = δnom + U [−0.2, 0.2], with δnom = 1. In this case some of the

Nyquist plots intersect the instability region, so the criterion cannot be satisfied, as
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depicted ont he right panel of Fig. 5.4. On the left panel, the corresponding trajectories

of the clocks, clearly not synchronizing.
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Figure 5.4: Third counterexample. Left panel: trajectory of the clocks. Right panel: Nyquist
plots and instability region (in thick along the real axis). The criterion is not satisfied.

Synchronization of clocks with quasi-saturation of the input

In this paragraph we give an example of the application of the the results in Section 4.4 in

order to analyze a network of clocks which for sake of simplicity is considered homogeneous,

in the sense that all the skews are equal to the nominal value δnom = 1.

In order to directly apply the Popov criterion proposed in Section 4.4, we consider

the system in continuous–time, so that the update equations are changed to





ẋk(t) =


0 T

0 0


xk(t) +


f1

f2


uk(t),

yk(t) =
[
1 0

]
xk(t),

(5.8)

The input is quasi saturated in the sense that the ideal input is as usual

uk,id(t) =
∑

j∈Nk
γ0,jkyj(t)

while the applied input is

uk(t) = (1 + ∆k)(uk,id(t)) =




uk,id(t), |uk,id(t)| ≤ uth
uth + αk(uk,id(t)− sgn(uk,id(t))uth), |uk,id(t)| > uth
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The function (1 + ∆k)(u) is depicted (for u ≥ 0) in Fig. 5.5.

uth u

(1 + ∆k)(u)

αk

Figure 5.5: Clock synchronization with quasi–saturation. An instance of the memoryless
perturbation considered.

To run a numerical simulation we consider a network of N = 9 agents interconnected

through the matrix

Γ0 = −IN + 0.15(CN + C−1
N ) + 0.30C5

N + 0.40C−5
N

We assume for simplicity T = 1 and we set f1 = 1.7, f2 = 1, so that the transfer function

of the clocks is

N0(s) =
f1s+ f2q

s2
=

1.7s+ 1

s2
,

One can check that feedback of any nonzero eigenvalues of Γ0 with N0 is stable. We take

moreover αk ∈ [0.2, 1], ∀k = 1, . . . , N .

We check the synchronization criterion for this network using the multiplier π∆ in

Eq. 4.16 with λ = 3. In Fig. 5.7, also zoomed in the region of interest, are depicted the

Popov plots of the feedbacks

µiN0

1− µiN0
=

1.7s+ 1

s2 − 1.7µis− µi

which, as one can see, all belong to the same half-plane described by the line with slope
1
λ = 1

3 and crossing − 1
αmin

= −5. Thus, Corollary 4.4.4 is satisfied and in fact, as we can

see in Fig. 5.6, the clocks all converge to the same ramp.

Synchronization of clocks using randomized protocols

The synchronization protocol used so far requires perfect synchronicity among the agents,

since they all periodically exchange their time readings and update their initial offsets

and estimates of the inverses of the skews.

In this paragraph we drop this idealistic assumption and we consider randomized

protocols, which has been widely studied in the classical consensus algorithm for asyn-
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Figure 5.6: Clock synchronization with quasi–saturation. A typical trajectory of the outputs.
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Figure 5.7: Left panel: the Popov plot in the case of quasi saturation. The big cross marks
the point − 1

αmin
+ j0. Right panel: particular showing that the Popov criterion is satisfied at

low frequencies.

chronous scenarios. For a randomized consensus protocol, in fact, at each time instant

there is some probability that a node, or a group of nodes, wakes up, calls its neighbors

only, performs the update with them, and then returns to a rest state. The typical

example is symmetric gossip, in which only one node wakes up, calls one of its neighbors,

they exchange their values and update their state to the average of them. If we assume
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that agent k wakes up and calls agent j, the update equations are





xk(t+ 1) = 1
2(xk(t) + xj(t)

xj(t+ 1) = 1
2(xk(t) + xj(t)

xi(t+ 1) = xi(t),∀, i 6= k, j

In matrix form this reads

x(t+ 1) = P (t)x(t)

in which P (t) is a (randomly picked) matrix which expresses the gossip among the two

nodes which perform the update. In case at time t it takes place a gossip among k and j,

for example, we have

P (t) = I − 1

2
(eke

T
k + eje

T
j ) +

1

2
(eke

T
j + eje

T
k ) (5.9)

where ek is, as usual, the k-th vector of the canonical base of RN . Notice that P (t)1 = 1,

but the associated graph is not strongly connected, so the single P (t) cannot solve

consensus.

To study randomized protocols, we define F to be the family of matrices associated

with the instances of the protocol. For example, in the symmetric gossip, the elements

of F are of the type in Eq. 5.9. We define moreover a probability distribution pf on

F , which tell us which is the probability that the instance f is performed. We assume

then {P (t)} to be an i.i.d. matrix random process and we assume that each P (t) ∈ F is

picked according to the distribution pf .

The question is now whether there exists a suitable definition of consensus for the

randomized protocols, and which are the conditions under which it is achieved. Following

[139], we say that a randomized protocol achieves probabilistic consensus if

• if x(0) ∈ span {1} ⊂ RN , then x(t + 1) = x(t), ∀t ≥ 0. Namely, if consensus is

reached then no other iterations of the algorithm are needed;

• for any x(0) ∈ RN , there exists a scalar random variable such that

x(t)
t→∞−→ α1, almost surely

To give conditions for probabilistic consensus to be achieved, define the average graph

GP̄ to be the graph associated with P̄ = EP (t), namely the graph G = (V, E) in which V
is the set of agents and there exists an edge (k, j) ∈ E if there exists at least one element

P of F , which can be picked with non zero probability, such that Pkj > 0, or, in words,
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if (k, j) “exists and can be chosen” by the algorithm. The following result, taken from

[139], clarifies the situation.

Theorem 5.2.4 ([139]). Assume that for any k ∈ V we have Pkk(t) > 0 almost surely.

If GP̄ is strongly connected then the algorithm achieves probabilistic consensus.

This result is rather general an allows to check probabilistic consensus in many cases.

However, our interest is on clock synchronization for which the analysis becomes more

involving. For example, in randomized consensus protocols it is not problematic how

much time elapses among two iterations of the algorithm. In clock synchronization,

instead, the more time elapses, the more un–synchronized clocks tend to deviate one

from each other. This must be taken into account.

Let thus T (t) be the (random) time elapsed among the t-th and the t+ 1-th iterations

of the algorithm. We consider the following model for the network of clocks





x(t+ 1) =


IN T (t)D

0 IN


x(t) +


f1

f2


⊗ INu(t)

y(t) =
[
IN 0

]
x(t)

u(t) = E(t)y(t)

(5.10)

where IN is the N ×N identity matrix, D is a diagonal matrix whose (k, k)-th entry is

the k-th skew δk, ⊗ is the Kronecker product, and E(t) ∈ RN×N takes the role which

was of the constant matrix Γ0. Analogously, a reasonable choice is E(t) = −(I − P (t))

where {P (t)} is a family achieving probabilistic consensus. For example, if at time t we

perform symmetric gossip among agents k and j we have

E(t) = −1

2
(eke

T
k + eje

T
j ) +

1

2
(eke

T
j + eje

T
k )

Notice that Eij1 = 0, since if the clocks are synchronized the control must be zero, yet,

again, the single E(t) do not satisfy Assumption 4.3.2 since its kernel is not limited to

span {1}.

A slight manipulation of the system Eq. 5.10 allows us to rewrite it as

x(t+ 1) =

[
I − f1E(t) T (t)D

−f2E(t) I

]
x(t) (5.11)
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Let as usual V ∈ CN×N−1 such that V ∗V = IN−1 and V ∗1 = 0, and define

[
ȳ(t)

z̄(t)

]
= x̄(t) =

[
V ∗ 0

0 V ∗D

]
x(t)

The goal of this section is to provide conditions on the gains f1 and f2 such that x̄(t)

converges to zero in mean–square. If this holds true, in fact, in particular ȳ(t) converges

to zero in means–square and thus y(t) converges to the synchronization space span {1}
in mean–square.

By simple computations (and using the fact that E(t) = E(t)V V ∗) we obtain

x̄(t+ 1) =

[
I − f1Ẽ(t) T (t)

−f2F̃ (t) I

]
x̄(t), (5.12)

where Ẽ(t) = V ∗E(t)V while F̃ (t) = V ∗DE(t)V . Notice that in case of symmetric

protocols, in which each E(t) is symmetric, it holds F̃ (t) = D̃Ẽ(t) where D̃ = V ∗DV .

Since our interest is on the second moment of x̄(t), we define

Σ(t) = E[x̄(t)x̄(t)T ] =

[
Σyy(h) Σyz(h)

Σzy(h) Σzz(h)

]

Assume now T (t) to be an i.i.d. random process with E[T (t)] = µ and E[(T (t)−µ)2] =

σ2. Define

• Ē := E[E(t)], Ẽ := V ∗ĒV = EẼ(t) and Ê = EẼ(t)⊗ Ẽ(t)

• F̃ := V ∗DĒV = EF̃ (t) and F̂ = EF̃ (t)⊗ F̃ (t)

and moreover ÊF = EẼ(t)⊗ F̃ (t) and F̂E = EF̃ (t)⊗ Ẽ(t)(t).

Using the fact that the matrix process {E(t)} is i.i.d., it is easy to obtain the linear

iteration

Σ(t+ 1) = EQ(t)TΣ(t)Q(t)
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where Q(t) are suitable matrices. In particular, we obtain the four linear iterations

Σyy(t+ 1) = E(I − f1Ẽ(t))Σyy(t)(I − f1Ẽ(t)+) + (I − f1Ẽ(t))T (h)Σyz(t)

+ T (h)Σzy(t)(I − f1Ẽ(t)T ) + T (h)2Σzz(t)

Σyz(t+ 1) = E− f2(I − f1Ẽ(t))Σyy(t)F̃ (t)T + (I − f1Ẽ(t))Σyz(t)

− f2T (h)Σzy(t)F̃ (t)T + T (h)Σzz(t)

Σzy(t+ 1) = E− f2F (t)Σyy(t)(I − f1Ẽ(t)T )− f2T (h)F̃ (t)Σyz(t)

+ Σzy(t)(I − f1Ẽ(t)T ) + T (h)Σzz(t)

Σzz(t+ 1) = Ef2
2 F̃ (t)Σyy(t)F̃ (t)T − f2F̃ (t)Σyz(t)− f2Σzy(t)F̃ (t)T + Σzz(t)

We study these iterations taking the vectorized version of the blocks of Σ(t), namely

defining

Y (t) = vect Σyy(t) Z(t) = vect Σzz(t)

W (t) = vect Σyz(t) W̄ (t) = vect Σzy(t)

we also have 


Y (t+ 1)

W̄ (t+ 1)

W (t+ 1)

Z(t+ 1)




= M(f2)




Y (t)

W̄ (t)

W (t)

Z(t)




where

M(f1, f2) = M0(f1) + f2M1(f1) + f2
2M2(f1)

with

M0(f1) =




I − f1(I ⊗ Ẽ + Ẽ ⊗ I) + f2
1 Ê µ(I − f1(Ẽ ⊗ I)) µ(I − f1(I ⊗ Ẽ)) σ2I

0 I − f1(Ẽ ⊗ I) 0 µI

0 0 I − f1(I ⊗ Ẽ) µI

0 0 0 I




M1(f1) =




0 0 0 0

−(I ⊗ F̃ − f1ÊF ) 0 −µ(I ⊗ F̃ ) 0

−(F̃ ⊗ I − f1F̂E) −µ(F̃ ⊗ I) 0 0

0 −(F̃ ⊗ I) −(I ⊗ F̃ ) 0



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and

M2(f1) =




0 0 0 0

0 0 0 0

0 0 0 0

F̂ 0 0 0



.

Recall that our goal is to give conditions on f1 and f2 for the mean–square convergence

of x̄(t) to zero. The previous discussion shows that this is equivalent to check for conditions

such that the matrix M(f2, f1) is stable. In particular, we consider from now on f1 fixed,

so that the problem becomes to study the eigenvalues of a matrix of the type

M(f2) = M0 + f2M1 + f2
2M2

We use the following perturbation result taken from [140], in which we call an

eigenvalue semi–simple it its algebraic multiplicity coincides with its geometric multiplicity.

Theorem 5.2.5. Let be M(alpha) ∈ RN×N be a matrix dependent on the parameter

α in a sufficiently smooth way so that the first derivative Ṁ(α)|α=0 exists. Let more-

over µ1, . . . , µm be semi–simple eigenvalues of M(α) with associated right eigenvectors

r1, . . . , rm and left eigenvectors lT1 , . . . , l
T
m. Assume that these families of eigenvectors

are chosen such that if

R =
[
r1 . . . rm

]
L =




lT1
...

lTm




then

LR = Im

where Im is the m×m identity. Then the derivative of µi with respect to α, in α = 0,

exists and it is the i-th eigenvalue of the matrix LM ′R where M ′ = Ṁ(α)|α=0.

Notice that in our case Ṁ(f2)|f2=0 = M1. Notice moreover that it is clear from the

block–upper triangular structure of M0 that this matrix has many eigenvalues in 1. The

first step is to compute how much there are of them, and whether they are semi–simple.

For simplicity, we define M̃0 = M0 − I and we look for the kernel of M̃0. Denoting by

Λ(M̃0) the spectrum of M̃0, we have

Λ(M̃0) = Λ(f1(I ⊗ Ẽ + Ẽ ⊗ I) + f2
1 Ê) ∪ Λ(0(N−1)2) ∪ Λ(f1(I ⊗ Ẽ)) ∪ Λ(f1(Ẽ ⊗ I)).

Due to the analogy with what is done in the proof of Theorem 5.2.4, we claim that
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Ẽ and Ê are both non singular matrices if the average graph GP̄ is strongly connected.

Moreover, we claim that Ẽ is a negative definite matrix, so that if f1 is sufficiently small

all the eigenvalues of M0 which are not in 1 are inside the unit circle.

This result immediately implies that the unique zero eigenvalues of M̃0 are only due

to the zero block 0(N−1)2 . Once we define

L =
[
0 0 0 σ2

f21
Ẽ−1 ⊗ Ẽ−1

]

R =




(f1(I ⊗ Ẽ + Ẽ ⊗ I)− f2
1 Ê)−1(f1(I ⊗ ẼẼ ⊗ I)

f1
µ I ⊗ Ẽ
f1
µ Ẽ ⊗ I
f21
σ2 Ẽ ⊗ Ẽ




it is just a matter of computation to show that

LM0 = L, M0R = R

Moreover, it is easy to check that the columns of R and the rows of L are linearly

independent one each other, so we have a family of N−1 left and N−1 right eigenvectors,

and the corresponding eigenvalues are semi–simple. To conclude, it is immediate to see

that

LR = I(N−1)2 .

We can now state and prove the following existence result.

Theorem 5.2.6. Consider the randomized clock synchronization protocol for a network

of clocks proposed in Eq. 5.11, where {E(t)} is an i.i.d. matrix random process such

that the corresponding P (t) = −(I −E(t)) achieves average consensus, and fix a positive,

sufficiently small value for the parameter f1 so that all the eigenvalues of M0 are inside

the unit circle, apart from those in 1. Assume the positive definiteness of the matrix

Q = Ẽ−1F̃ ⊕ Ẽ−1F̃

where ⊕ is the Kronecker sum defined as A ⊕ B = A ⊗ I1 + B ⊗ I2, I1 and I2 being

identity matrices of suitable dimension. Then there exists a positive real scalar f̄2 such

that if f2 ∈ (0, f̄2) such that the protocol achieves mean–square synchronization.

Proof. If L and R denote the matrices defined above, it is easy to obtain

LM1R = − σ2

f1µ
Ẽ−1F̃ ⊕ Ẽ−1F̃
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so by Theorem 5.2.5 and noticing that µ > 0 it follows that

µi(f2)

f2
|f2=0 < 0

for all the eigenvalues µi = 1 of M0. This implies that there exists a (possibly very small)

interval (0, f̄2) such that if f2 belongs to it, all the eigenvalues of M(f2) are strictly inside

the unit circle.

The condition on the matrix Q in the previous theorem is simple to check in many

cases of interest. For example, in case the protocol is symmetric, so that F̃ = F̃ Ẽ, and if

D = dI, so that D̃ = dIN−1, we obtain

Q = dẼ−1Ẽ ⊕ dẼ−1Ẽ = 2dIN1

which is always positive definite if d > 0.

More generically, under symmetric protocol and if D = dI + ∆, we obtain

Q = 2dI(N−1)2) + T ⊕ T

where T = Ẽ−1V ∗∆V Ẽ. It is easy to see that the eigenvalues of the Kronecker sum

A⊕B are all the possible sums of one eigenvalue of A and one eigenvalue of B. Thus,

the maximum absolute value of the eigenvalues of T ⊕ T is at most twice the absolute

value of the eigenvalues of T . Since T and V ∗∆V share the same set of eigenvalues, one

can study the spectrum of V ∗∆V , which is hermitian, thus its eigenvalues are real. In

particular, using the fact that V ∗V = IN−1 we have

|x
∗V ∗∆V x
x∗x

| = |v
∗∆v
v∗v

| ≤ max
k
|∆kk|

so, making use of the variational characterization of the eigenvalues give by the Rayleigh–

Ritz theorem, one concludes that the eigenvalues of T are in absolute value smaller than

maxk |∆kk|.
By the previous reasoning, it is easy to see that Q is positive definite, and thus

mean–square synchronization takes place, if d > maxk |∆kk|.
We want to remark that Theorem 5.2.6 is an existence–only result, namely we are

unable, by now, to estimate the value f̄2, which heavily depends on the protocol, namely,

on the family from which the matrices E(t) are picked. Intuitively, this is due to the

“quadratic term” f2
2M2, which heavily depends on the randomized protocol which is used.
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5.3 Distributed calibration algorithms for networks of

cameras on a plane

In a network of cameras deployed in a plane one of the most important problems is

calibration. Namely, each camera has to know how it is oriented, at any instant, with

respect to a certain common reference frame. The importance of this is clear: assume

that an external agent, which has to be tracked, is exiting from the range of the u-th

camera and entering in that of the v-th one. In this case camera u has to communicate to

camera v to move and follow the agent before camera u looses it. Clearly, both cameras

must share the same reference frame.

Usually, this is set off-line by a human operator, or by a centralized unit. Instead, in

this Section we present algorithms which aim to complete autonomy and avoid central

control to carry on computations. This allows improved accuracy and possibility of

periodical autonomous re–calibration.

The model for the network is, as usual, a graph G = (V, E) in which V is the set of

cameras, and E the set of edges, the couples of communicating cameras. The information

which is used to calibrate the network, inspired by the works by Barooah and Hespanha

[96, 141, 86] on localization, is the relative orientation among communicating cameras,

which can be computed if their field of view overlaps.

Cameras calibration through relative orientations can be transformed into a consensus

like problem over the manifold S1: this problem has already attracted much attention

by research community. In [142, 13, 12] the authors propose a consensus algorithm

on S1 based on the gradient flow of a potential defined using the chordal distance,

namely, the Euclidean distance in the Euclidean space R2 in which S1 can be immersed.

In [10] a similar approach based on the geodesic distance is proposed to study the

more general calibration problem on SE(3). The trouble with both these approaches

is that the defined potentials are characterized by several nontrivial local minima in

which, apart from particular initial conditions, it is easy to fall. Avoiding instead the

problems of optimizing on manifold, the paper [143] proposes to constrain a priori the

noisy measurements of relative orientations to sum to zero on cycles. Based on this

construction, a least-square estimation algorithm, which is proved to be optimal on a ring

graph, is presented. Our work tries somehow to exploit the best of these two approaches.

We choose to concentrate on the simple case of calibration in SO(2) ∼ S1, and we

use the geodesic distance. Our main idea is to break the estimation problem into two

parts: first we estimate a sort of combinatorial object which is a vector in ZM and takes

care of the fact that noise around cycles in general does not sum up to 0. Once this is
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done we estimate by solving a quadratic optimization problem like in the localization

problem. Our method is consistent in the sense that in the noiseless case the algorithm

converges to the optimal solution. We propose two different algorithms: one based on

spanning trees, the other on minimal cycles.

Problem Formulation

We model a network of cameras as a connected undirected graph G = (V, E), V =

{1, . . . , N}, equipped with an orientation (t, h).

Fix an external reference frame and let (gv, Rv) ∈ R2 × SO(2) be the pose of camera

v, for each v ∈ V. The pose is made of two elements, namely the position of the camera

in the plane, gv, and its orientation with respect to the axis of the reference frame, Rv.

The set of orientations is a manifold, and its elements can be thought as the set of 2× 2

orthogonal matrices with determinant equal to +1, namely RTv Rv = I2 and |Rv| = +1,

for each v.

Here we are interested in calibration of orientations only, so we discard gv. Moreover,

we do not represent the orientations as matrices, but just as elements of R which give

the measure of the orientation angle of the cameras. In other terms, the pose of camera

v will be represented by a value θ̄v ∈ R, with the implicit convention that the orientation

is given by

Rv := Rv(θ̄v) =

[
cos θ̄v − sin θ̄v

sin θ̄v cos θ̄v

]

Notice that the map θ → R(θ) is surjective but clearly not injective. However, the

parametrization using angles in R will turn out to be useful, so in the following we almost

always treat orientations as real values.

Our aim is to solve the calibration problem, namely to obtain, for each node v, an

estimate of its orientation, θ̂v, as close as possible to the actual orientation. More formally,

once we stack all the actual orientations in the vector θ̄ ∈ RN and all the estimates in

the vector θ̂ ∈ RN , we aim to minimize the following index

W (θ̂) = ‖(θ̂ − θ̄)2π‖2

where (x)2π = x − 2πq2π(x) and q2π(x) = b x+π
2π c. This is reasonable since the values

θ̄v’s and θ̃v’s are angles, so that if θ̃v = θ̄v + 2πh, namely (θ̂v − θ̃v)2π = 0, they represent

the same orientation, R(θ̃v) = R(θ̄v). For this reason, given θ̄ ∈ RN , we say that θ̃ is

a representative of θ̄ if θ̃ = θ̄ + 2πl, l ∈ Z, i.e. if (θ̄ − θ̂)2π = 0. It is manifest that to

calibrate the network to θ̄ is the same as to calibrate it to any representative of θ̄.
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In order to accomplish this task, cameras exchange information trough the com-

munication graph G and update their estimate θ̂v’s making use of a notion of relative

distance among them. More precisely, we assume that for any edge e ∈ E , the two

communicating cameras h(e) and t(e) have their fields of view overlapping. By means

of known algorithms, briefly recalled in the next paragraph, they can obtain a noisy

measurement ηt(e),h(e) of their relative orientation θ̄t(e)− θ̄h(e). Without loss of generality,

we assume that this measurement is an angle in [−π, π), so that we have, for each e ∈ E ,

ηe = (θ̄t(e) − θ̄h(e) − εe)2π = θ̄t(e) − θ̄h(e) − εe − 2πK̄e (5.13)

where notice that K̄t(e),h(e) = q2π(θ̄t(e) − θ̄h(e) − εt(e),h(e)). We assume that

εe ∈ (−π, π), ∀e ∈ E (5.14)

which is reasonable under very mild hypothesis on cameras.

Remark 5.3.1. In the manifold SO(2), the relative difference among Rv and Ru is given

by Ruv = R−1
v Ru ∈ SO(2), and it is known that if Rv = R(θ̄v) and Ru = R(θ̄u), then

Ruv = R(θ̄u − θ̄v), so Ruv = R(ηuv) in case of noiseless measurements.

Making use of the incidence matrix B of the graph G, one can rewrite in a compact

form the model for the measurements as

η = Bθ̄ − ε− 2πK̄, (5.15)

where K̄ ∈ ZM .

Relative measurements reconstruction algorithm

For the purpose of recovering the relative measurements stacked in η ∈ RM , on each edge,

the corresponding cameras, labeled as t(e) and h(e), overlap their field of view, and are

supposed to share a certain number of feature points. We assume the imaging model to

be the so-called ideal pin-hole. Each camera is represented by a plane, called image plane,

and a point, called optical center, that is the origin of the camera reference frame. Each

camera knows the noisy projection of the shared points in R3 on its image plane, and

has to reconstruct the relative pose. In the general 3D case at least 8 points in general

position are necessary to the scope, see [144]. In our case, the network is assumed to be

planar, in the sense that all the cameras lie on the same plane, for example because they

are all positioned at the same height with respect to the soil. The only requirement for

the reconstruction algorithm to properly work is that not all the feature points shared
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by two communicating cameras lie on the same plane as the cameras, which is a mild

assumption.

Cost function

The cameras, clearly, cannot directly measure their actual orientation, since otherwise

the problem would be trivial. Our scope is to solve the calibration problem making use of

the relative measurements of the orientations, and in this spirit we propose the following

cost

V (θ) =
∑

e∈E
(θt(e) − θh(e) − ηe)2

2π = ‖(Bθ − η)2π‖22. (5.16)

Remark 5.3.2. The cost is based on the geodesic distance among elements of SO(2),

which is the length of the minimum path connecting the elements of SO(2). In our simple

case, if Rv = R(θv) and Ru = R(θu), the geodesic distance is given by

d(R(θ1), R(θ2))2 := d(θ1, θ2)2 = (θ1 − θ2)2
2π

In this light, the term (θt(e) − θh(e) − ηe)2
2π of the cost simply represents the geodesic

distance among the angles ηe and θt(e) − θh(e).

Some remarks must be done. First of all, in case of noiseless measurements, V (θ)

attains the value zero, the global minimum, for any representative of θ̄, and only for

these points. However, even in this ideal idea case, it has multiple local minima, due to

the geometry of the manifold S1. This has been shown in [142] for a slightly different

cost based on the chordal distance, which shows nonetheless a similar behavior.

Such local minima do no correspond to good estimates of the actual orientations, so

we need a procedure to avoid them. This procedure is based on the following way to

tessellate RN . Define the regions

RK(η) := {θ ∈ RN : |Bθ − η − 2πK| ≤ π1}2, (5.17)

where K ∈ ZM . These regions are convex and form a partition of RN . However, some

of them can be empty, since they are defined by M constraints on N variables and in

general M > N . It is trivial to see that if θ ∈ RK(η), and only for these points, then

V (θ) = ‖Bθ − η − 2πK‖22,

which is purely quadratic and convex in RK(η). For this reason, in each RK(η) there

2|v| ≤ p, where both v,p ∈ Rn, means −pi ≤ vi < pi for all i = 1, . . . , n.
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can be at most one local minimum of V (θ). Notice that by the way η has been defined,

|Bθ̄ − η − 2πK̄| = |ε| ≤ π1 (5.18)

so that θ̄ ∈ RK̄(η). If we have obtained an estimation K̂ such that K̂ = K̄ + Bl for

some l ∈ ZN , then, clearly, θ̄ + 2πl ∈ RK̂(η).

The main idea is thus the following: first of all, obtain a reasonable estimate K̂ of

K̄. Then minimize the reshaped cost

VK̂(θ) := ‖Bθ − η − 2πK̂‖22 (5.19)

which is defined by first restricting V (θ) to the region RK̂(η) and then extending the

quadratic form to RN .

A simple continuity argument then shows that, when the threshold ε̄ tends to 0, the

estimation θ̂ converges to θ̄ + 2πl. In other terms, with such a K̂, we have a guarantee

that our solution is close to a feasible one, namely to a representative of the true θ̄. In

Section 5.4, we will analyze in deeper detail the performance of the algorithms.

Calibration as noisy consensus

The cost function

V (θ) = ‖(Bθ − η)2π‖22

has an interpretation in terms of consensus. In fact, once we perform the change of

variables

x = θ − θ̄

it is easy to see that

V (x) = ‖(Bx− ε)2π‖22

In the Euclidean space, namely dropping the modulo 2π, a gradient descend for this cost

is

ẋ(t) = −εBT (Bx− ε)

which elementwise becomes

ẋk(t) = −ε
∑

j∈Nk
(xk(t)− xj(t)− εkj)

This consensus protocol is the noisy version of the first discrete time algorithm proposed

in Section 3.2. Notice that the effect of the noise is to make two agents appear more
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distant (or closer) then what they are.

5.4 Some tools from graph theory

In this section we recall some known facts from algebraic graph theory not to included in

Chapter 2 which will be instrumental in proving effectiveness of our algorithms.

Given a graph G = (V, E), a spanning tree T = (V, ET ) of G = (V, E) is simply a

subgraph of G which is a tree. Notice that |ET | = N − 1.

Changing slightly the definition, in this section a path h of length n is an ordered

sequence of nodes h = (v1, v2, · · · , vn+1) such that {vi, vi+1} ∈ E for all i = 1, . . . , n.

A path h = (v1, v2, · · · , vn+1) is said to be closed if v1 = vn+1. A closed path h =

(v1, v2, · · · , vn, v1) is said to be a cycle if n ≥ 3 and vi 6= vj for all i, j ∈ {1, . . . , n}
with i 6= j. The support of a path is given by the set of its edges, namely, if h =

(v1, v2, · · · , vn+1), then supp(h) := {e ∈ E | e = {vi, vi+1}, ∃i = 1, . . . , n}.
Consider now the Z-module of ZM of row vectors with elements in Z. Given r ∈ ZM ,

we define it support as

supp(r) := {e ∈ E | r(e) 6= 0}

We now associate to every path h, an element rh ∈ ZM as follows. First, if h = (v1, v2),

we put

rh(e) =

{
Bev1 if e = {v1, v2}
0 otherwise

Then, for a generic path h = (v1, v2, · · · , vn+1) we put rh(e) =
∑n

i=1 r(vi,vi+1)(e).

Denote now by Γ the Z-submodule of ZM generated by all the vectors rh as h varies

in the set of closed paths. It holds true that Γ has dimension equal to M −N + 1. This

fact is very well known in the slight different context where no orientation is considered

and where vector spaces are used [14]; in our setting it will be a consequence of the

considerations below which will also lead to the explicit construction of a Z-basis for Γ.

Fix a spanning tree T = (V, ET ) of G. Order arbitrarily the edges in E \ ET as

e1, . . . , eM−N+1 and consider cycles h1, . . . , hM−N+1 in G such that for each i we have

that supp(hi) ⊆ ET ∪{e1, . . . , ei} and rhi(ei) = 1. In words the cycle hi is constructed with

the edges in ET ∪ {e1, . . . , ei} containing ei and oriented in such a way that rhi(ei) = 1.

We have the following result whose proof is given in the appendix.

Proposition 5.4.1. We have that Γ = {r ∈ ZM | rB = 0} and {rh1 , . . . rhM−N+1
} is a

Z-basis of it.

We now propose two particular ways to select the family cycles h1, . . . , hM−N+1



150 Applications of Synchronization Algorithms

introduced above. The simplest way is to take hi to be the only cycle in G with edges in

ET ∪ {ei} and such that rhi(ei) = 1. Such cycles are called (T -)fundamental cycles.

Another possible construction is the following iterative one:

• Among all cycles whose edges are all in ET except one, choose one of minimal

length. Call it h1 and call e1 the only edge in h1 which is not in ET .

• Suppose edges e1, . . . , ei and cycles h1, . . . , hi have been selected. Among all cycles

whose edges are all in ET ∪ {e1, . . . ei} except one, choose one of minimal length.

Call it hi+1 and call ei+1 the only edge in hi+1 which is not in ET ∪ {e1, . . . ei}.

We will refer to this set of cycles as a set of minimal cycles.

From now on we will assume that a spanning tree T has been fixed. Once the spanning

tree is fixed, we can construct a set of minimal cycles, denoted by hM1 , . . . , hMM−N+1, which

will impose an order e1, . . . , eM−N+1 on the edges in E \ET . Finally from this order we can

determine a set of fundamental cycles, denoted by hF1 , . . . , h
F
M−N+1. The corresponding

row vectors associated with minimal and fundamental cycles will be denoted rMi and

rFi , respectively. A straightforward consequence of Proposition 5.4.1 is that there exist

elements tij ∈ Z for 1 ≤ i, j ≤M −N + 1 such that

rFi =
∑

i,j

tijr
M
j (5.20)

for every i = 1, . . . ,M −N + 1. It can be shown that tii = 1 for all i and that tij = 0 if

j > i.

Let RF , RM ∈ Z(M−N+1×E be the matrices having as rows the vectors rFi and rMi
respectively. Clearly, (5.20) can be rewritten in matrix form as RF = TRM where T is

the square matrix having tij as entries.

Interpreting RM and RF as Z-homomorphisms acting on ZM and the incidence matrix

B as a group homomorphism from ZN to ZM , we have the following result.

Lemma 5.4.2. It holds kerRM = kerRF = ImB.

Description of the algorithms

Both algorithms we now describe are based on the idea illustrated above of breaking the

estimation problem into two steps: first give an estimate K̂ of K̄ and then minimize the

quadratic function defined in Eq. 5.19. The two algorithms only differ in the first step,

since the first one uses the fundamental cycles with respect to a chosen spanning tree,

the second one instead the minimal cycles.
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Regarding the first step, the main idea underlying both algorithms exploits the fact

that the relative differences of the actual orientations θ̄v along a cycle must necessarily

sum up to a multiple of 2π. More precisely, let h be an oriented cycle and let rh be its

representative vector. Then, from Eq. 5.15, using the fact that rhB = 0, we obtain that

rhK̄ = −q2π(rhη) − q2π(rhε). Therefore, if it happens that the algebraic sum of the

noise along the cycle h is below π in modulus, i.e. |rhε| < π, we obtain that

rhK̄ = −q2π(rhη). (5.21)

In other terms, in this case rhK̄ can be exactly computed on the basis of the measurements

η along the cycle h. This would suggest to define K̂ in such a way that rhK̂ = −q2π(rhη)

for any cycle h, but this in general will not be possible since the various rh’s are linearly

dependent. What must be done is to restrict the cycles to a subset for which the

corresponding rh’s form a Z-basis for the Z-module Γ (generated, we recall, by the rows

rh’s). The choice of this basis is the essential difference among the two algorithms.

The Tree-algorithm

Fix a spanning graph T and consider the Z-basis relative to the fundamental cycles

construction rFi ’s. Let us impose that rFi K̂ = −q2π(rFi η) for any i. From Lemma 5.4.2

we know that this determines K̂ up to elements in the image of B as required. A concrete

solution can be easily found by imposing K̂e = 0 for every e ∈ ET . Then, we easily

obtain that, for any i = 1, . . . ,M −N + 1,

K̂ei = −q(rFi η)

This algorithm is very simple and easily implementable. As we will point out, however,

its performances are for large graphs rather poor. A distributed way to compute K̂ is

proposed below. Fix an anchor node, denoted by v∗, which will serve as a root in the

tree T . First of all, we propagate the measurements along the tree starting from the

root, namely, given a node v and called f(v) its father, we set

θ̂FE, v = θ̂FE, f(v) + ηvf(v)

initializing the value at the root as θ̂FE, v∗ = θ̄v∗ , if it is available, or simply θ̂FE, v∗ = 0.

As a side effect, in this way, we also obtain a first estimate θ̂FE of θ̄.

Now we construct K̂. For each edge e = {t(e), h(e)} ∈ E \ ET , the nodes t(e) and
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h(e) exchange their first estimates θ̂FE, t(e), θ̂FE, h(e) and compute K̂e as

K̂e =

⌊
θ̂FE,t(e) − θ̂FE,h(e) − ηe

2π

⌋
.

This is actually the only choice of K̂ for which θ̂FE ∈ RK̂(η).

Finally we obtain a final estimate of θ̄, call it θ̂, by minimizing the quadratic cost function

in Eq. 5.19. This problem can be for example easily solved using a distributed Jacobi

algorithm as shown in [141, 86].

Algorithm 1 Tree-Algorithm

(Input variables)
1: θ̄v∗ , value of the anchor
2: ηe, e = 1, . . . ,M
3: T spanning tree

(Step A: first estimate θ̂FE)
4: θ̂FE,v∗ = θ̄v∗ ;
5: for i = 1, . . . , N do
6: for j = 2, . . . , N do
7: if j is a son of i in T then θ̂FE,j = θ̂FE,i + ηj,i

(Step B: estimate K̂)
8: for e ∈ E do

9: K̂e =

⌊
θ̂FE,t(e)−θ̂FE,h(e)−ηe

2π

⌋

(Step C: second estimate θ̂)
10: Initial condition: θ̂(0) = θ̂FE

11: compute θ̂ = argmin
∥∥∥Bθ − η − 2πK̂

∥∥∥
2

2

Minimal cycles-algorithm

The second algorithm exploits instead the minimal cycles construction of a Z-basis for Γ

denoted, we recall, rMi ’s.

Let us impose that rMi K̂ = −q2π(rMi η) for any i. From Lemma 5.4.2 we know that this

determines K̂ up to elements in the image of B as required.

A concrete method for constructing such K̂ once the values −q2π(rMi η) have been

computed for every i, can be easily based on Proposition 5.4.1. We start, as in the
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previous case, assigning K̂e = 0 on the edges in ET . We then consider the remaining

edges e1, e2, . . . , eM−N+1 and we define K̂ iteratively as

K̂ei = −q(rMi η)−
∑

e6=ei
rMi (e)K̂e. (5.22)

The last step of the Minimal cycle-algorithm is the same as that of the Tree-algorithm.

The only difference being that, if we want to use iterative algorithms, the initial condition

cannot be set to some particular value, so it is taken to be (0, . . . , 0) for simplicity.

Algorithm 2 Minimal cycles-algorithm

(Input variables)
1: ηe, e = 1, . . . ,M
2: T spanning tree
3: r1, . . . , rM−N+1 minimal cycles set

(Step A: computation of b = −q2π(RMη))

4: for i = 1, . . . ,M −N + 1 do bhi = −
⌊∑

e∈hi ηe+π
2π

⌋

(Step B: estimate K̂)
5: for e ∈ ET do K̂e = 0

6: for i = 1, . . . ,M −N + 1 do K̂ē = bhi −
∑

e∈hi,e6=ē rhe(e)K̂e

(Step C: second estimate θ̂)
7: Initial condition: θ̂(0) = (0, . . . , 0)

8: compute θ̂ = argmin
∥∥∥Bθ − η − 2πK̂

∥∥∥
2

2

This second algorithm allows much better performances than the Tree-algorithm,

but it requires a greater order of communication and collaboration among nodes. In

fact, we assume that, through some local collaboration among nodes, each minimal cycle

corresponds to a “superagent”, able to sense all the measurements along the edges of its

cycle. Clearly, this is far more than just locally exchanging information.

Let us illustrate how the Minimal cycles-algorithm works with the following simple

example.

Example 5.4.3. Consider the simple graph in Fig. 5.8. There h1, . . . , h5 are minimal

cycles and 1, . . . , 13 are edges. Assume that b1 = 1, b2 = 2, b3 = · · · = b5 = 0, where

b = −q2π(R0η). The edges 1, . . . , 8 form a spanning tree T of the graph. First of all,

thus, K̂1 = . . . K̂8 = 0. Now, the cycles h1 and h2 are made of edges of the tree apart
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from the edges 9 and 10 respectively. Thus h1 sets K̂9 = 1 while h2 sets K̂10 = −2, since

the direction of 10 is incoherent with the orientation of h2. Once this is done, we know

the value of K̂ of all the edges of h3 and h4, apart from 12 and 11 respectively. In order

the sum over the cycles to be equal to b3 and b4, we obtain K̂12 = −1 and K̂11 = 2. At

last, all the edges of h5 have a value apart from 13, so it is set K̂13 = −1. Now the sum

of K̂ over the five minimal cycles correspond entry by entry to b.

h1

h2 h3

h4

h5

1 2

3

4 5

6

7 8

9

10

11

12

13

Figure 5.8: A simple graph to show how the second algorithm works.

Analysis and comparison of the algorithms

In this section we analyze the estimation θ̂ for both algorithms and we make a comparison.

Both algorithms propose a solution in two steps: first they construct the estimation

K̂, then they derive the estimation θ̂. We will first analyze the dependence of θ̂ on θ̂.

Secondly, by means of closed formulae, a comparison between the estimates K̂ given by

the two algorithms is provided. Finally we state a deterministic threshold for the noise

in order to guarantee a correct estimate of K̄.

In both algorithms the estimate θ̂ is defined to minimize the cost VK̂(θ) = ‖Bθ−η−
2πK̂‖22. Since B has a kernel (which is spanned by 13) of course θ̂ is only determined up

to multiples of 1. This non uniqueness can be avoided as follows. As already done in the

previous Section, fix an anchor node v∗ ∈ V that knows the true value of its orientation,

and assume that it never changes its estimate. Then consider the vector ξ ∈ RN defined

by ξ(v∗) = 1 and ξ(v) = 0 for any v 6= v∗. Now define the Green matrix associated to G
and v∗ as the solution of the following equations




GBTB = I − 1ξT

Gξ = 0.
(5.23)

31 represents a vector of suitable dimension whose entries are all equal to 1.
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Writing down the stationary point equation for our quadratic problem and using the

Green function we have just defined, it is straightforward to show that the following

result holds true.

Proposition 5.4.4. The minimum of VK̂(θ) is attained at

θ̂ = θ̄ −GBTε− 2πGBT (K̄ − K̂). (5.24)

Notice that, if K̂ = K̄ +Bl, with l ∈ ZN , it is immediate to see that

θ̂ = θ̄ + 2π(I − 1ξT )l−GBTε = θ̃ −GBTε

where θ̃ = θ̄ + 2π(I − 1ξT )l is a representative of θ̄.

A natural choice for the performance index can be

E(θ̂) := inf{||θ̂ − θ̄ − 2πl||2 | l ∈ ZN}

and from (5.24) we can derive the estimation:

E(θ̂) ≤ ||GBTε||2 + 2π inf{||GBT (K̂ − K̄ −Bl)||2 | l ∈ ZN}. (5.25)

This illustrates how E(θ̂) is made of two terms. The first one, ||GBTε||2, is unavoidable

and only depends on the fact that the measurements are noisy. This term is the localization

error in the works by Barooah and Hespanha on RN . The second term, instead, depends

on the estimation K̂, and it is due to the geometry of S1.

To deepen the analysis of the second term, we need to work more on the graph theoretic

side. We assume as before to have fixed an undirected graph G = (V, E) equipped with

an orientation s : E → V and t : E → V and a spanning sub-tree T = (V, ET ) with an

anchor v∗. The incidence matrix B ∈ ZM×N of G can be partitioned by ordering edges

in such a way that first to appear are those in ET , and ordering vertices such that the

anchor v∗ is the first one. We obtain

B =

[
BT
BT c

]
=

[
−B̄T 1 B̄T
−B̄T c1 B̄T c

]

where B̄T ∈ Z|ET |×N−1, and B̄T c ∈ ZM−N+1×N−1. It is a standard fact that B̄T
is invertible and the following characterization of B̄−1

T holds true. For the sake of

completeness a proof is reported in the appendix.
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Lemma 5.4.5. For any k 6= v∗ and e ∈ ET , we have

[B̄−1
T ]ke =




−1, if e is in the path from v∗ to k in T
0, otherwise.

(5.26)

We have the following result

Lemma 5.4.6. It holds true that

RF =
[
−B̄T cB̄−1

T I
]

(5.27)

interpreting the identity matrix I ∈ ZM−N+1×M−N+1.

Below, we will consider on the vector K̄ the relative splitting

K̄ = (K̄T , K̄T c)

where K̄T ∈ ZN−1, K̄T c ∈ ZM−N+1.

We now come to the main result in this section which give closed formulas for the

estimations K̂
F

and K̂
M

, obtained using, respectively, the fundamental and the minimal

cycles algorithm based on the same spanning tree T . Define

Q :=

[
0

T

]
∈ {±1, 0}M×M−N+1 . (5.28)

where, recall T is the matrix which transforms the base for Γ written in terms of the

fundamental cycles, into the one written in terms of minimal cycles.

Proposition 5.4.7. The following relations hold:

K̂
F

= K̄ +Bl+ q2π

(
QRMε

)

K̂
M

= K̄ +Bl+Qq2π

(
RMε

) (5.29)

where

l := −
[

0

B̄−1
T

]
K̄T .

Proof. Let us focus on the first estimate, and recall that by construction RF K̂
F

=

−q2π(RF η) and (K̂
F

)e = 0 for every e ∈ ET . From this we obtain

K̂
F

= −
[

0

I

]
q(RF η) = q

([
0

RF

]
ε

)
+

[
0

RF K̄

]
. (5.30)
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Using now Lemma 5.27 we obtain

[
0

RF K̄

]
=

[
0

−B̄T cB̄−1
T K̄T + K̄T c

]
= −B

[
0

B̄−1
T

]
K̄T + K̄. (5.31)

Substituting (5.31) in (5.30), and recalling that RF = TRM , we obtain the thesis.

Regarding the second estimate, notice that, from Eq. (5.22) we obtain that K̂
M

satisfies the relations RMK̂
M

= −q(RMη). Hence, pre-multiplying by T and using

again the definition of RF , we obtain K̂
M

= −
[

0

T

]
q(RMη). The result now follows,

substituting Eq. 5.15 and using again (5.31).

Proposition 5.4.7 shows how the difference of the two algorithms only consist in an

inversion of the two operators q2π and Q. However, this turns out to have a big difference

on the way performance depends on noise. Below we find conditions for both algorithms

under which the noise term in the relation (5.29) vanishes.

Let L0 be the maximum length of a minimal cycle and LT the maximum length of a

T -fundamental cycle.

It is clear that L0 ≤ LT , and in general LT depends on the number of nodes of the graph,

as the examples in Section 5.5 will point out. We present now the main result of this

section, which basically gives a noise threshold for both algorithms, under which it is

guaranteed to have K̂ − K̄ ∈ ImZB.

Corollary 5.4.8. If

Tree-algorithm : ε̄ <
π

LT

Minimal Cycles-algorithm : ε̄ <
π

L0

we have

K̂ = K̄ +Bl, l ∈ ZN .

Proof. The statement can be easily derived from the closed formulas in Eq. (5.29).

Otherwise a proof can be achieved with the following easy observations. The two cases

can be analyzed in the same exact way. Below we give a proof for the Minimal cycles-

algorithm. Notice that the assumption implies that K̄ satisfies Eq. (5.21) for any minimal

cycle h1, . . . , hM−N+1. Since, by definition, also K̂ satisfies the same equation, we obtain

that RM (K̂ − K̄) = 0. By invoking Lemma 5.4.2, the thesis follows.

If the assumptions of Corollary 5.4.8 hold, we have as a straightforward consequence
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θ̂ = θ̃ +GBTε, where θ̃ is a representative of θ̄.

In this case the error term is exactly the same appearing in the vector space case and

can be analyzed exploiting the probabilistic assumptions made on the noise, namely that

εe ∼ U [−ε̄, ε̄], ∀ e ∈ E . In case this holds, from paper [96] we can obtain an estimate of

the variance of the final estimate error in terms of the effective resistance of a suitable

electrical network. Namely, take an electrical network whose nodes are the nodes of the

graph G and where there is a resistance of 1 Ohm among all nodes for which an edge

exists in G. Denote by Ruv the effective resistance among any pair of nodes u, v ∈ V ×V .

Then we have the following result.

Proposition 5.4.9 ([96]). The estimate θ̂ = θ̃ + GBT ε is unbiased, namely Eθ̂ = θ̃,

and its v-th component has variance

E[(θ̂v − θ̃v)2] = Rvv∗ (5.32)

where v∗ is the anchor. As a consequence, the normalized scalar estimation variance is

1

N
var(θ̂ − θ̃) =

1

N

∑

v∈V
Rvv∗ (5.33)

which is the average effective resistance among the anchor and the other nodes of the

network.

Remark 5.4.10. The previous Proposition gives mean and variance of the estimation error

δ = θ̂ − θ̃. However, this is not entirely correct, since what we are really interested in

is δ2π = (θ̂ − θ̃)2π, which has still zero mean, and variance less then that in Eq. (5.33).

Nonetheless, if the noise is big and θ̂ is not near θ̃, the probability to end up in a point

near another representative of θ̄ is intuitively very small, so we preferred to give only the

results in Proposition 5.4.9.

In principle, Proposition 5.4.7 can be of interest in more general situations even when

the noise term does not vanishes. If for instance, the noise term in (5.29) is zero except

in a bounded number of edges (due to the error of few malfunctioning cameras), it should

be possible to prove, coupling (5.29) with (5.24), that the estimation error far from the

malfunctioning cameras is little affected by their measurements. This type of analysis is

left for further research.
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5.5 Examples

In this section we compare the two algorithms we have proposed for several different

graph topologies. We concentrate on grid-like topologies since they can be used to model

real networks of cameras.

First of all, we give a simple example of how our algorithms can avoid the local minima

in the original cost. Consider the simple ring graph with 3 agents in Fig. 5.9, and assume

θ̄1 = θ̄2 = θ̄3 = 0 for sake of simplicity (the problem becomes thus consensus on S1).

Consider the ideal noiseless case, so that η12 = η23 = η31 = 0 and K̄12 = K̄23 = K̄31 = 0.

In the noiseless case we correctly estimate K̂ = K̄.

Consider the case in which we have as initial conditions θ̂1(0) = 0, θ̂2(0) = 2
3π and

θ̂3(0) = 4
3π.

If we use directly the original cost in Eq. (5.16), it is easy to see that the initial

condition is a local maximum (in case of 5 or more agents the analogous configuration is a

local minimum), so any gradient-descent like algorithm gets stuck. However, if we reshape

the cost using our guess K̂, we have to minimize VK̂(θ) = ‖Bθ − 2πK̂‖22 = ‖Bθ‖22, and

we converge to the actual orientations fixing the anchor at θ̂1 = θ̄1 = 0.

1

2 3

θ̂1(0)

θ̂2(0)

θ̂3(0)

Figure 5.9: A simple ring with 3 agents. On the right the initial conditions.

In order to draw now a comparison among the two algorithms, consider the graphs

shown in Fig.5.10. In both cases we have a line–like graph with many nodes deployed

along one dimension, and the chosen spanning trees are shown in thick line. They are

rooted on the anchor on the most left-top node. The set of the minimal cycles basis is

simply the set of squares which form the graph.

Figure 5.10: Two examples of spanning trees for a line–like graph. The proposed algorithms
work in a similar manner for the one on the right, while the Minimal cycles-algorithm is far

more effective for the one on the left.
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For the graph on the left, if we take the tree and we add the last edge on the right

we obtain a cycle with maximum length LT = N . On the contrary, the minimal cycles

are of length L0 = 4. As an immediate consequence, the Minimal cycles-algorithm has

much better performances since the upper bound ε̄ < π
4 is independent on the number of

nodes. On the contrary, in order the Tree-algorithm to produce a good estimate K̂, the

magnitude of the noise should decrease with the dimension of the graph.

If we consider instead the spanning tree on the right, we can see that LT = 4 as well,

since the spanning tree is chosen in a much better way. In this case, the two algorithms

have comparable and good performance.

It is not always true, however, that the Minimal cycles-algorithm has good perfor-

mances. For example, if we consider the ring graph in Fig. 5.11 we can easily see that

there is only one minimal cycle. Here the two proposed algorithms basically coincide,

comparing performances. In such a case, the Tree-algorithm is better, since it is easier to

implement and completely distributed, it requires less information on the topology of the

network, as well as less communications.

As a last example, consider the 2D grid on the right in Fig. 5.11. The comb-shaped

spanning tree is the one in thick line. As before, here LT ∼
√
N adding one of the edges

on the bottom, while L0 = 4. However, it can be shown that for the grid LT ∼
√
N is

actually the best one can do. So in this case the Minimal cycles-algorithm has always

better performances than the Tree-algorithm. Notice that the choice of the spanning tree

is fundamental to draw a comparison between the algorithms. Even if the tree is such

that LT is minimum, the choice of the better algorithm depends on the topology of the

graph, since it could hold LT > L0, as highlighted in the previous example. Furthermore

the construction of such an optimal spanning tree is a NP-complete problem.

Figure 5.11: On the left a ring graph, for which the two algorithms have the same performance.
On the right, a grid graph.
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5.6 Numerical results

In this Section we provide a numerical comparison between the two approaches we

propose in this paper. Specifically, in the experiments we simulate the Tree-algorithm

and the Minimal cycles-algorithm on square grid graphs of size N = n2 for n ranging

from 3 up to 19. An example of square grid graph is depicted in Fig. 5.12 (left panel),

where n = 4 and, in turn, N = 16.

anchor anchor

Figure 5.12: On the left a square grid graph for n = 4. On the right the correspondent
spanning tree used in simulations.

In all our simulations we set θ̄1 = 0, while, for i ∈ {2, . . . , N}, θ̄i is randomly sampled

from a uniform distribution on [−π, π]. The values of the noises εe, e ∈ E , are also

randomly sampled, in this case from a uniform distribution on [−ε̄, ε̄] where ε̄ = π
8 .

The simulation results obtained are reported in Fig. 5.13. For each n the values we

plot are averaged over 200 trials (a different θ̄ and a different set of noises are generated

for each trial).

The kind of spanning tree we use to run our algorithms is illustrated in Figure 5.13. Here

we have n = 4, but for different values of n the spanning tree used is similarly built.

Observe that, for the square grid graphs and the corresponding spanning tree we consider,

we have L0 = 4 independently from n, and LT = 2n+ 2.

In Fig. 5.13, left panel, we show the value of the estimate error e = 1
N ‖(θ̄ − θ̂)2π‖2

for both the Tree-algorithm and the Minimal cycles-algorithm; in Fig. 5.13, right panel,

we plot the value eK = 1
M ‖(K̄ − K̂)ImZB‖2, where if X ∈ ZM , (X)ImZB represents the

projection out of the Z-submodule spanned by the columns of B. This quantity is taken

as a measure of the distance between the actual value K̄ and the estimates obtained

through the algorithms. Notice that, since

π

L0
=
π

4
>
π

8
= ε̄

it follows from Corollary 5.4.8 that the Minimal cycles-algorithm always correctly esti-
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mates K̄, thus eK = 0. On the contrary, observe that in the case of the Tree-algorithm

eK is increasing with the dimension of the graph. This is not surprising since LT grows

linearly with
√
N , and so intuitively the probability of the estimate to be bad becomes

larger and larger.

As expected, one can check from Fig. 5.13 that the Minimal cycles-algorithm outperforms

the Tree-algorithm. Also, it is not unexpected the log-shaped behavior of the norm of

the error when the minimal cycles is used, as predicted by Proposition 5.4.9 and known

behaviors of the variance for 2−D graphs [96].
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Figure 5.13: Left panel: Average error on the orientations (modulo 2π). Right panel:
Average error on K̂.

Proofs of Lemmas

In this paragraph we give some algebraic properties of the row vectors rh associated with

the paths h. Start by observing that,

(r(v1,v2)B)v =
∑

e∈E
r(v1,v2)(e)Bev = B{v1,v2},vB{v1,v2},v =





1, if v = v1

−1, if v = v2

0, if v 6= v1, v2.

In other words r(v1,v2)B = 1v1 − 1v2 , where the symbol 1v means the column vector in

RV with the entry of position v equal to 1 and all the other entries equal to 0. Observe



5.6 Numerical results 163

moreover that, if h = (v1, v2, · · · vn, vn+1), then

rhB =

n∑

i=1

r(vi,vi+1)B =

n∑

i=1

1vi − 1vi+1 = 1v1 − 1vn+1

which proves that, if h is a closed path, then rhB = 0.

Proof of Proposition 5.4.1. (a) The fact that Γ ⊆ {r ∈ ZM | rB = 0} follows from the

previous arguments.

(b) We now prove that the rhi ’s generate {r ∈ ZM | rB = 0}. Let r ∈ ZM such that

rB = 0. First notice that supp(r) ⊆ ET implies r = 0. Indeed, if supp(r) ⊆ ET
and supp(r) 6= ∅, then supp(r) would possess at least one leaf, namely a node v∗

such that there exists only one edge e∗ ∈ supp(r) containing v∗. In this case

0 = (rB)v∗ =
∑

e

r(e)Bev∗ = r(e∗)Be∗v∗

which yields r(e∗) = 0, a contradiction. Assume now that supp(r) 6⊆ ET . Recall

that the edges in E \ ET are ordered as e1, . . . , eM−N+1. Then, we can define,

i(r) := min{j | supp(r) ⊆ ET ∪ {e1, . . . , ej}}. (5.34)

We now prove that r can be expressed as a Z-combination of the rhi ’s by induction

on i(r). If i(r) = 1, consider r̃ = r − r(e1)rh1 . Clearly, by (a), r̃B = 0 and

supp(r̃) ⊆ ET . Hence, by previous considerations, r̃ = 0, namely, r = r(e1)rh1 .

Suppose now that the claim holds true for i(r) ≤ i − 1 and let us prove it if

i(r) = i. Consider, as before, r̃ = r − r(ei)rhi . Clearly, by (a), r̃B = 0 and

supp(r̃) ⊆ ET ∪ {e1, . . . , ei−1}. Then the induction proves the assertion.

(c) It remains to prove the Z-independence of the row vectors rh1 , . . . rhMN+1
. Assume

that αi ∈ Z are such that ∑

i

αirhi = 0

We need to prove that αi = 0. If this were not the case, we could define ` :=

max{i | αi 6= 0}. Then
∑

i≤` αirhi = 0 and so

0 =
∑

i≤`
αirhi(e`) = α`rh`(e`)

which would yield a contradiction, since by definition we have that rh`(e`) = 1.
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Proof of Lemma 5.4.2. The fact that ImB ⊆ kerRM follows from Proposition 5.4.1. The

fact that kerRM = kerRF follows from the fact that RF = TRM , where T is in invertible.

The only thing that remains to be shown is that kerRF ⊆ ImB. Let K ∈ kerRF .

Since rows in RF form a basis of Γ, we have that rhK = 0 for every h closed path. Let

us fix a node i0 ∈ V. Then for any other node i ∈ V let γi be the path in the spanning

tree connecting i0 to i. Define now the column vector θ ∈ ZV with components

θi := rγiK =
∑

e∈E
rγi(e)Ke

We now show that Ke = θh(e)− θt(e), for any e ∈ E which would imply that K = Bθ and

so K ∈ ImB. Consider the closed path h which is the concatenation of the paths γt(e),

(t(e), h(e)) and −γh(e), where we recall that −γh(e) denotes the path obtained reversing

γh(e). Observe that rh = rγt(e) + r(t(e),h(e)) − rγh(e) . It follows that

0 = rhK = rγt(e)K + r(t(e),h(e))K − rγh(e)K = θt(e) +Ke − θh(e)

whence the thesis holds.

Proof of Lemma 5.4.5. Denote V1 = V \ {1}, where 1 is the anchor, and consider the

matrix B̄T B̄
−1
T = I|V1| to have rows and columns indexed by the edges of the tree. If e

and e′ are not directly connected to the anchor,

∑

k∈V1
[B̄T ]ek[B̄

−1
T ]ke′ = [B̄−1

T ]t(e)e′ − [B̄−1
T ]h(e)e′ = δee′ .

By construction of B̄−1
T , if e = e′ then [B̄−1

T ]t(e)e′ = 0 and [B̄−1
T ]h(e)e′ = −1 and the

previous relation holds. If e 6= e′, then [B̄−1
T ]t(e)e′ and [B̄−1

T ]h(e)e′ are both −1 (if e′ is on

the path from the anchor to t(e)) or 0 (in any other case), so we obtain δee′ = 0. If e or

e′ are directly connected to the anchor the proof follows in an analogous way.

Proof of Lemma 5.4.6. Consider

Ce,e′ =
∑

k

[B̄T c ]ek[B̄
−1
T ]ke′

and by the previous interpretation of B̄−1
T , we have [B̄T c ]ek[B̄

−1
T ]ke′ = 1 if e′ is on the

path on T from the anchor to k and k = h(e), we have [B̄T c ]ek[B̄
−1
T ]ke′ = −1 if e′ is on
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the path on T from the anchor to k and k = t(e) with incoherent orientation, and 0 in

any other case. By inspection we obtain now the claim.
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6
Conclusions

In this dissertation we have studied one of the most simple and yet important problems

in Network Controlled Systems, which is synchronization. By synchronization we mean a

state of the network such that all the outputs of the agents are and remain equal in time.

The simplest synchronization problem we have studied is consensus, in which the

agents have to agree on a constant value. We have considered in particular the linear

consensus, in which the update of the local variable of an agent is a convex combination of

the variables of its neighbors. It is known that there exist many performance metrics for

the consensus algorithms, each suitable to measure a particular aspect of the procedure.

It is also known that, for many realistically implementable network structures, the linear

consensus algorithm performs worse and worse as the number of agents in the network

increases. It is thus important to take into account this issue when designing a multi

agent network.

We have decided to concentrate our attention on two particular metrics, which are

the rate of convergence and an LQ cost. The rate of convergence is related on how fast

consensus is achieved, and it is essentially a worst case metric. The LQ cost measures

instead in a more uniform way the convergence to consensus, and is related to the norm

of the difference among the trajectory of the states and the asymptotic consensus value.

The contributions of this dissertation to the Analysis of performance metrics for

consensus algorithms are manifold. First of all, we have shown that the LQ cost can be
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estimated using the average effective resistance of a resistive electrical network, whose

edges are the edges of the communication graph, and in which each resistance is set

to 1 Ohm. This result is important due to the appealing monotonicity properties of

the average effective resistance. For example, it proves that, concerning the LQ cost,

similarly weighted consensus protocols behave in a similar way.

Another contribution concerns the class of graphs we call geometric graphs, which

resemble perturbed grids. We have shown that, under mild hypothesis, the rate of

convergence of a geometric graph deployed in Rd and having N nodes can be estimated

as 1 − C
N2/d , while the LQ cost behaves linearly in the number of nodes when d = 1,

logarithmically when d = 2, and is bounded by a constant when d ≥ 3. This unifies many

results already known in literature both for regular d-dimensional tori and for random

geometric graphs, and poses fundamental limits on the performances of graphs deployed

for example on a plane, which is the most important and common case. Namely, any

sensor network in R2 in which mild assumptions are satisfied (the nodes cannot be too

dense or sparse, the communication range cannot be too wide, nodes which are near

communicate via a limited number of hops) will behave qualitatively in the same manner.

These results unfortunately heavily lie on the assumption that the consensus protocol

is reversible. Future research will concentrate on breaking this constraint, since there are

many simple cases, not yet covered by the results here presented, in which the behaviors

of the performance metrics are very well known. This is the case, for example, of a

ring graph with directional communication, in which the single agent is allowed to send

information to the node at its “right” and receive it from the node at its “left”. The

corresponding matrix is not reversible, thus we cannot use our result. This is clearly a

weak point of our work which must be enforced.

The Synthesis Chapter moved from agreement on a constant value to agreement on

time–varying trajectories, considering Higher Order Consensus Networks. The contribu-

tion of this dissertation to this research topic is mainly in presenting a framework which

is able to cover many cases presented in the literature. The main theorem of this Chapter

is a powerful tool which provides robust synchronization, in the sense that input/output

characterizations for the perturbation operators and for the interconnection operator

are presented. The importance of this result, and of the many corollaries proposed for

particular cases of perturbations and interconnections, lies on the consolidate literature

on Integral Quadratic Constraints, which provides multipliers able to characterize large

families of possible operators. Also, the proposed criteria are often scalable, in the sense

that they require to check a simple condition for each agent, instead of a unique one on

the whole network, which would be computationally expensive. The required check is
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often a graphic plot on the complex plane, a particularly simple and intuitive criterion. To

conclude, the phenomenon of leader following, which is well–known in classic consensus,

has been studied in the framework of Higher Order Consensus.

The weak point of the Chapter, which gives the main research direction for the

future, is that the interconnection operator is required to be memoryless. Thus, it is not

possible to consider as interconnections operator a generic matrix of transfer functions,

for example representing delays. The main point here is the type of projection considered

in this dissertation, which does not allow much flexibility. Another promising line of

research is considering randomized protocols, instead of deterministic ones, motivated by

the fact that simulation results show their effectiveness. The issue concerning randomized

protocols is that they do not fit well with input/output techniques, which are related

to the worst–case scenario. This research direction thus needs for more sophisticated

theoretical tools.

The last Chapter of the dissertation is devoted to Application of the proposed

algorithms to the problems of clock synchronization and cameras calibration.

The results previously proposed have been applied to a Higher Order Consensus

network where clocks are modeled as double integrators. This yields bounds on the

maximum differences allowed among the clocks in order to let synchronization happen.

The results shown here are partial, in the sense that more realistic models of clocks

exist. Since these models are characterized by nonlinear behaviors, it is expected that

the analysis of robust synchronization will become more involved.

In clock synchronization, the increased complexity mainly depends on the type of

agents in the network, which are no longer simple integrators but higher order systems.

In cameras calibration, instead, the agents are still simple integrators, but the values

they exchange and update are not elements of an Euclidean space anymore. In fact,

cameras calibration can be seen as an optimization/consensus problem on the manifold

S1. Unfortunately, the particular geometry of S1 makes the classical consensus algorithm

useless. In the literature there is a huge effort to understand which is the largest set of

initial conditions which allows convergence to a single point. Our contribution suggests

how to avoid this problem. We propose a procedure based on an intuitive constraint,

namely that the differences between the true relative orientations of the cameras along

cycles must sum up to a multiple of 2π. This constraint allows to rewrite the optimization

problem on S1 as an optimization problem on the Euclidean space, which can be easily

solved. In the future, this procedure will be generalized to the much more difficult (and

interesting) case of calibration on SO(3).
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[10] Roberto Tron and René Vidal. Distributed image-based 3-d localization of camera

sensor networks. In CDC, pages 901–908, 2009.

[11] R. Tron, B. Afsari, and R. Vidal. Average consensus on riemannian manifolds with

bounded curvature. In CDC, 2011.

[12] L. Scardovi, A. Sarlette, and R. Sepulchre. Synchronization and balancing on the

n-torus. Systems & Control Letters, 56(5), 2007.

[13] A. Sarlette and R. Sepulchre. Consensus optimization on manifolds. SIAM Journal

Control and Optimization, 58(1):56–76, 2009.

[14] R. Diestel. Graph Theory (Graduate Texts in Mathematics). Springer, 2005.

[15] F.R.K. Chung. Spectral Graph Theory, volume 92 of Regional conference series in

mathematics. American Mathematical Society, 1997.

[16] C. Godsil and G. Royle. Algebraic Graph Theory. Graduate Texts in Mathematics.

Springer, 2001.

[17] R. F. Curtain and H. Zwart. An Introduction to Infinite Dimensional Linear

Systems Theory. Springer-Verlag, 1995.

[18] C. Desoer and M. Vidyasagar. Feedback systems: input-output properties. Academic

Press, 1975.

[19] R. Olfati-Saber and R.M. Murray. Consensus protocols for networks of dynamic

agents. In American Control Conference, 2003. Proceedings of the 2003, volume 2,

pages 951 – 956, june 2003.

[20] A. Jadbabaie, Jie Lin, and A.S. Morse. Coordination of groups of mobile autonomous

agents using nearest neighbor rules. IEEE Transactions on Automatic Control,

48(6):998 – 1001, june 2003.

[21] J. Cortes, S. Martinez, and F. Bullo. Robust rendezvous for mobile autonomous

agents via proximity graphs in arbitrary dimensions. Automatic Control, IEEE

Transactions on, 2006.

[22] J.A. Fax and R.M. Murray. Information flow and cooperative control of vehicle

formations. IEEE Transaction on Automatic Control, 49(9):1465–1476, September

2004.



Bibliography 173

[23] R. Olfati-Saber. Distributed kalman filter with embedded consensus filters. In

Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC

’05. 44th IEEE Conference on, 2005.

[24] R. Olfati-Saber. Distributed kalman filtering for sensor networks. In Proc. of 46th

Conference on Decision and control. CDC’07, 2007.

[25] A. Speranzon, C. Fischione, and K. H. Johansson. Distributed and collaborative

estimation over wireless sensor networks. In Proc. of 45th Conference on Decision

and control. CDC’06, pages 1025–1030, 2006.

[26] L. Xiao, S. Boyd, and S. Lall. A scheme for robust distributed sensor fusion based

on average consensus. In Proc. of 4th International Symposium on Information

Processing in Sensor Networks. IPSN ’05, pages 63–70, april 2005.

[27] D. P. Spanos, R. Olfati-Saber, and R. M. Murray. Approximate distributed

kalman filtering in sensor networks with quantifiable performance. In Proc. of 4th

International Symposium on Information Processing in Sensor Networks. IPSN

’05, pages 133–139, april 2005.

[28] P. Alriksson and A. Rantzer. Distributed kalman filtering using weighted averaging.

In Prooceedings of the 17th International Symposium on Mathematical Theory of

Networks and Systems, 2006.

[29] R. Carli, A. Chiuso, L. Schenato, and S. Zampieri. Distributed kalman filtering

based on consensus strategies. Selected Areas in Communications, IEEE Journal

on, 26(4):622 –633, may 2008.

[30] G. Cybenko. Dynamic load balancing for distributed memory multiprocessors.

Journal of Parallel and Distributed Computing, 7(2):279–301, 1989.

[31] J. E. Boillat. Load balancing and poisson equation in a graph. Concurrency:

Practice and Experience, 7(4):289–313, may 1990.

[32] S. Ganeriwal, P. R. Kumar, and M. B. Srivastava. Timing-sync protocol for

sensor networks. In Proceedings of the 1st International Conference on Embedded

Networked Sensor Systems. SenSys ’03, pages 138–149, 2003.

[33] S. Bolognani, S. Del Favero, and L. Schenato. Distributed sensor calibration and

least-square parameter identification in wsns using consensus algorithms. In Proc.

of 46th Annual Allerton Conference on Communication, Control and Computing.,

pages 1191–1198, sept. 2009.



174 Bibliography

[34] L. Schenato and G. Gamba. A distributed consensus protocol for clock synchro-

nization in wireless sensor network. In Decision and Control, 2007 46th IEEE

Conference on, pages 2289 –2294, dec. 2007.

[35] G. Xiong and S. Kishore. Discrete-time second-order distributed consensus time

syhchronization algorithm for wireless sensor networks. J. Wirel. Commun. Netw.

EURASIP, 1(1):1–12, jan. 2009.

[36] A. Fagiolini, S. Martini, and A. Bicchi. Set-valued consensus for distributed clock

synchronization. In Proceedings of IEEE Conference on Automation Science and

Engineering. CASE ’09, pages 116–121, august 2009.

[37] A. Nedic, A. Ozdaglar, and P.A. Parrilo. Constrained consensus and optimization

in multi-agent networks. Automatic Control, IEEE Transactions on, 55(4):922

–938, april 2010.

[38] A. Nedic and A. Ozdaglar. Distibuted subgradient methods for multiagent opti-

mization. Automatic Control, IEEE Transactions on, 54(1):48–61, jan. 2009.

[39] Z. Minghui and S. Martinez. On distributed optimization under inequality and

equality constraints via penalty primal-dual methods. In Prof of. American Control

Conference. ACC’10, pages 2434–2439, july 2010.

[40] B. Johansson, M. Rabi, and M. Johansson. A simple peer-to-peer algorithm for

distribured optimization in sensor networks. In Prof of. 46th IEEE Conference on

Decision and Control. CDC’07, pages 4705–4710, dec. 2007.

[41] S. Sundhar Ram, A. Nedic, and V. V. Veeravalli. Incremental stochastic subgradient

algorithms for convex optimization. SIAM Journal on Optimization, 20(2):691–717,

2009.

[42] B. Johansson, C. M. Carretti, and M. Johansson. On distributed optimization

using peer-to-peer communications in wireless sensor networks. In Proc. of 5th

Annual IEEE Communication Society Conference on Sensor, Mesh and Ad Hoc

Communications and Networks. SECON ’08, pages 497–505, june 2008.

[43] B. Johansson, M. Rabi, and M. Johansson. A randomized incremental subgradient

method for distributed optimization in networked systems. SIAM Journal on

Optimization, 20(3):1157–1170, 2009.



Bibliography 175

[44] Hao Zhu, A. Cano, and G.B. Giannakis. Distributed demodulation using consensus

averaging in wireless sensor networks. In Signals, Systems and Computers, 2008

42nd Asilomar Conference on, pages 1170 –1174, 26-29 2008.

[45] Hao Zhu, A. Cano, and G.B. Giannakis. Distributed consensus-based demodulation:

algorithms and error analysis. IEEE Transactions on Wireless Communications,

9(6):2044–2054, june 2010.

[46] E. Lovisari and S. Zampieri. Performance metrics in the consensus problem: a survey.

In Proc. of 4th IFAC Symposium on System, Structure and Control. SSSC’10, 2010.

[47] E. Lovisari and S. Zampieri. Performance metrics in the average consensus problem:

a tutorial. Annual Reviews in Control, 2012.

[48] E. Lovisari, F. Garin, and S. Zampieri. A resistance-based approach to performance

analysis of the consensus algorithm. In Proceedings of the 44th Conference on

Decision and Control CDC 2010, pages 5714–5719, Dec. 2010.

[49] E. Lovisari, F. Garin, and S. Zampieri. A resistance-based approach to consensus

algorithm performance analysis. In Proc. of MTNS’10, July 2010.

[50] E. Lovisari, F. Garin, and S. Zampieri. Resistance-based performance analysis

of the consensus algoritm over geometric graphs. SIAM Journal on Control and

Optimization (submitted), .

[51] P.G. Doyle and J.L. Snell. Random Walks and Electric Networks. Carus Monographs.

Mathematical Association of America, 1984.

[52] P. Gupta and P.R. Kumar. The capacity of wireless networks. IEEE Transactions

on Information Theory, 46(2):388 –404, mar. 2000.

[53] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip algorithms.

IEEE Transactions on Information Theory, 52(6):2508 – 2530, june 2006.

[54] D.A. Levin, Y. Peres, and E.L. Wilmer. Markov Chains and Mixing Times.

American Mathematical Society, 2008.

[55] Wei Ren and R.W. Beard. Consensus seeking in multiagent systems under dynami-

cally changing interaction topologies. IEEE Transactions on Automatic Control,

50(5), may 2005.



176 Bibliography

[56] R. Olfati-Saber, J.A. Fax, and R.M. Murray. Consensus problems in networks of

agents with switching topology and time-delays. IEEE Transactions on Automatic

Control, 49(9):1520 – 1533, sept. 2004.

[57] R. Olfati-Saber, J.A. Fax, and R.M. Murray. Consensus and cooperation in

networked multi-agent systems. Proceedings of the IEEE, 95(1):215 – 233, jan.

2007.

[58] F. Fagnani and S. Zampieri. Average consensus with packet drop communication.

SIAM Journal on Control and Optimization, 48:102–133, 2009.

[59] P.-A. Bliman and G. Ferrari-Trecate. Average consensus problems in networks

of agentws with delayed communications. In Proc. of 44th IEEE Conference on

Decision and Control and European Control Conference. CDC-ECC ’05, pages

7066–7071, dec. 2005.

[60] S. Kar and J. M. F. Moura. Distributed consensus algorithms in sensor netowks

with imperfect communcation: Link failures and channel noise. IEEE Transactions

on Signal Processing, 57(1):355–369, jan. 2009.

[61] S. Kar and J. M. F. Moura. Distributed consensus algorithms in sensor networks:

Quantized data and random link failures. IEEE Transactions on Signal Processing,

58(3):1383–1400, march 2010.

[62] Wei Ren and R.W. Beard. Consensus seeking in multiagent systems under dynami-

cally changing interaction topologies. IEEE Transactions on Automatic Control,

50(5):655 – 661, may 2005.

[63] S. Boyd, A. Ghogh, B. Prabhakar, and D. Shah. Analysis and optimization of

randomized gossip algorithms. In Proc. of 43th IEEE Conference on Decision and

Control. CDC’04, volume 5, pages 5310–5315, dec. 2004.

[64] S. Patterson, B. Bamieh, and A. El Abbadi. Distributed average consensus with

stochastic communication failures. In Proc. of 46th IEEE Conference on Decision

and Control. CDC’07, pages 4215–4220, dec. 2007.

[65] Y. Hatano and M. Mesbahi. Agreement over random networks. IEEE Transactions

on Automatic Control, 50(11):1867–1872, nov. 2005.

[66] R. Carli, F. Fagnani, A. Speranzon, and S. Zampieri. Communication constraints

in the average consensus problem. Automatica, 44:671–684, 2008.



Bibliography 177

[67] J.C. Delvenne, R. Carli, and S. Zampieri. Optimal strategies in the average

consensus problem. Systems & Control Letters, 58:759–765, 2009.

[68] A. Olshevsky and J. N. Tsitsiklis. Convergence rates in distributed consensus and

averaging. In Proc. of 45th IEEE Conference on Decision and Control. CDC’06,

pages 3387–3392, dec. 2006.

[69] V. D. Blondel, J.M. Hedrickx, A. Olshevsky, and J. N. Tsitsiklis. Convergence in

multiagent coordination, consensus, and flocking. In Proc. of 44th IEEE Conference

on Decision and Control and European Control Conference. CDC-ECC ’05, pages

2996–3000, dec. 2005.

[70] R. Olfati-Saber. Algebraic connectivity ratio of ramanujan graphs. In Proc. of

American Control Conference. ACC’07, pages 4619–4624, july 2007.

[71] A. Tahbaz-Saleh and A. Jadbabaie. Small world phenomenon, rapidly mixing

markov chains, and averaging consensus algorithms. In Proc. of 46th IEEE Confer-

ence on Decision and Control. CDC’07, pages 276–281, dec. 2007.

[72] R. Olfati-Saber. Ultrafast consensus in small-world networks. In Proc. of American

Control Conference. ACC’05, pages 2371–2378, june 2005.

[73] S. Boyd, P. Diaconis, P. Parrillo, and L. Xaio. Fastest mixing markov chain on

graphs with symmetries. SIAM Journal on Optimization, 20(2):792–819, 2009.

[74] L. Xiao and S. Boyd. Fast linear iterations for distributed averaging. Systems &

Control Letters, 52, 2004.

[75] S. Boyd, P. Diaconis, and L. Xiao. Fastest mixing markov chain on a graph. SIAM

Review, 2004.

[76] L. Xiao, S. Boyd, and S.-J. Kim. Distributed average consensus with least-mean-

square deviation. Journal of Parallel and Distributed Computing, 67(1):33–46,

2007.

[77] B. Johansson, A. Speranzon, M. Johansson, and K. Henrik. On decentralized

negotiation of optimal consensus. Automatica, 44:1175–1179, april 2008.

[78] M. M. Zavlanos, D. E. Koditschek, and G. J. Pappas. A distributed dynamical

scheme for fastest mixing markov chains. In Proc. of American Control Conference.

ACC’09, pages 1436–1441, june 2009.



178 Bibliography

[79] K. Jung, D. Shah, and J. Shin. Distributed averaging via lifted markov chains.

IEEE Transactions on Information Theory, 56(1):634–647, jan. 2010.

[80] P. Frasca, R. Carli, F. Fagnani, and S. Zampieri. Average consensus on networks

with quantized communication. International Journal of Robust and Nonlinear

Control, 19:1787 – 1816, 2008.

[81] R. Rajagopal and M. Wainwright. Network-based consensus averaging with general

noisy channels. IEEE Transactions on Signal Processing, 2011.

[82] A. Kashyap, T. Basar, and R. Srikant. Quantized consensus. Automatica, 43:192–

1203, 2007.

[83] J. Lavaei and R.M. Murray. On quantized consensus by means of gossip algorithm

- part i: Convergence proof. In American Control Conference, 2009. ACC ’09.,

pages 394 –401, 2009.

[84] J. Lavaei and R.M. Murray. On quantized consensus by means of gossip algorithm

- part ii: Convergence time. In American Control Conference, 2009. ACC ’09.,

pages 2958 –2965, 2009.

[85] M. Huang and J. H. Manton. Coordination and consensus of networked agents

with noisy measurements: stochastic algorithms and asymptotic behavior. SIAM

Journal on Control and Optimization, 48(1):134–161, 2009.

[86] P. Barooah and J. Hespanha. Estimation on graphs from relative measurements:

Distributed algorithms and fundamental limits. IEEE Control System Magazine,

27(4):57–74, Aug. 2007.

[87] P. Diaconis and D. Stroock. Geometric bounds for eigenvalues of markov chains.

The Annals of Applied Probability, 1(1):36–61, 1991.

[88] R. Carli. Topics on the average consensus problem. PhD thesis, PhD school in

Information Engineering – University of Padua, 2008.

[89] M.R. Samatham and D.K. Pradhan. The de bruijn multiprocessor network: A

versatile parallel processing and sorting network for vlsi. IEEE Transactions on

Computers, 38(4):567–581, april 1984.

[90] M.R. Samatham. Augmented multiprocessor networks, July 1992. US Patent

Number 5134690.



Bibliography 179

[91] N.G. de Bruijn. A combinatorial problem. Koninklijke Nederlandse Akademie v.

Wetenschappen, 46, 1946.

[92] S. Hoory, N. Linail, and A. Wigderson. Expander graphs and their applications.

Bullettin of the American Mathematical Society, 43(4):439 – 561, oct. 2006.

[93] J. Cortes, S. Martinez, and F. Bullo. Spatially-distributed coverage optimization

and control with limited-range interactions. In ESAIM. Control, Optimization &

Calculus of Variations, pages 691–719, 2004.

[94] J.W. Jaromczyk and G.T. Toussaint. Relative neighborhood graphs and their

relatives. Proceedings of the IEEE, 80(9):1502 –1517, sep 1992.

[95] Godfried T. Toussaint. Some unsolved problems on proximity graphs, 1991.

[96] P. Barooah and J. Hespanha. Estimation from relative measurements: Error bounds

from electrical analogy. In Prooceedings of the 2nd International Conference on

Intelligent Sensing and Information Processing, ICISIP ’05, 2005.

[97] P. Barooah and J. Hespanha. Estimation from relative measurements: Electrical

analogy and large graphs. IEEE Transactions on Signal Processing, 56(6):2181–2193,

june 2008.

[98] P. Barooah and J. Hespanha. Error scaling laws for linear optimal estimtation from

relative measurements. IEEE Transactions on Information Theory, 55(12):5661–

5673, dec. 2009.

[99] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal,

23(2):298–305, 1973.

[100] Persi Diaconis and Laurent Saloff-Coste. Comparison techniques for random walk

on finite groups. The Annals of Probability, 21(4):2131–2156, 1993.

[101] Persi Diaconis and Laurent Saloff-Coste. Comparison theorems for reversible

markov chains. The Annals of Probability, 3(3):696–730, 1993.

[102] J. Fulman and E.L. Wilmer. Comparing eigenvalue bounds for markov chains:

When does poincare beat cheeger? The Annals of Applied Probability, 9(1):1–13,

1999.

[103] M. Jerrum and A. Sinclair. Approximating the permanent. SIAM Journal on

Computing, 18(6):1149–1178, 1989.



180 Bibliography

[104] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press, 1990.

[105] E. Behrends. Introduction to Markov Chain (with special enphasys on rapid mixing).

Vieweg Verlag, 1999.

[106] R. Carli, F. Garin, and S. Zampieri. Quadratic indices for the analysis of consensus

algorithms. In Proc. of ITA Workshop 2009, 2009.

[107] B. Bamieh, M. Jovanovic, P. Mitra, and S. Patterson. Coherence in large-scale

networks: Dimension dependent limitations of local feedback. IEEE Transactions

on Automatic Control, 2009.

[108] F. Garin and L. Schenato. Distributed estimation and control applications using

linear consensus algorithms, volume Networked control systems, A. Bemporad, M.

Heemels, M. Johansson eds. of Lecture Notes in Control and Information Sciences,

chapter 3. Springer, 2011.

[109] F. Garin and S. Zampieri. Mean square performance of consensus-based distributed

estimation over regular geometric graphs. SIAM Journal Control and Optimization,

2011. to appear.

[110] D. Aldous and J. Fill. Reversible Markov Chains and Random Walks on Graphs. ,

. Draft available online at http://www.stat.berkeley.edu/~aldous/RWG/book.

html.

[111] A. Giridhar. In-Network Computation in Wireless Sensor Networks. PhD thesis,

University of Illinois, Urbana-Champaign, 2006.

[112] A. Giridhar and P.R. Kumar. Distributed clock synchronization over wireless

networks: Algorithms and analysis. In Proceedings of the 45th IEEE Conference

on Decision and Control CDC’06, pages 4915–4920, Dec. 2006.

[113] A. Ghosh, S. Boyd, and A. Saberi. Minimizing effective resistance of a graph. SIAM

review, 50(1):37–66, 2008.
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