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THREE-like spectral estimators
[Byrnes, Georgiou & Lindquist, IEEE TSP, 2000]

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 11, NOVEMBER 2000 3189

A New Approach to Spectral Estimation: A Tunable
High-Resolution Spectral Estimator

Christopher I. Byrnes, Fellow, IEEE, Tryphon T. Georgiou, Fellow, IEEE, and Anders Lindquist, Fellow, IEEE

Abstract—Traditional maximum entropy spectral estimation
determines a power spectrum from covariance estimates. Here,
we present a new approach to spectral estimation, which is based
on the use of filter banks as a means of obtaining spectral inter-
polation data. Such data replaces standard covariance estimates.
A computational procedure for obtaining suitable pole-zero
(ARMA) models from such data is presented. The choice of the
zeros (MA-part) of the model is completely arbitrary. By suitably
choices of filterbank poles and spectral zeros, the estimator can
be tuned to exhibit high resolution in targeted regions of the
spectrum.

Index Terms—Filter banks, interpolation, optimization, spectral
estimation.

I. INTRODUCTION

I N THIS PAPER, we present a novel approach to spectral
estimation, which relies on new results in analytic interpola-

tion theory developed in [10] and based on efforts by the authors
over a number of years [2]–[10], [16]–[18].
The approach leads to a tunable high resolution estimator

(THREE) that is based on three elements, namely
i) a bank of filters;
ii) a theory for parameterizing the complete set of spectra
that are consistent with the “filter measurements” and
have bounded complexity;

iii) computational procedures for constructing spectra from
the set described in ii).

The purpose of the bank of filters is to process, in parallel,
the observation record in order to obtain estimates of the power
spectrum at desired points. These points are related to the filter-
bank poles and can be selected to give increased resolution over
desired frequency bands. The theory in ii) implies that a second
set of tunable parameters are given by so-called spectral zeros
that determine the moving-average (MA) part of solutions. The
solutions turn out to be spectra of auto-regressive/moving-av-
erage (ARMA) filters of complexity that are at most equal to
the dimension of the filter bank, and hence, the method provides
parametric spectral models.

Manuscript received December 28, 1998; revised July 18, 2000. This work
was supported in part by grants from AFOSR, NSF, TFR, the Göran Gustafsson
Foundation, and Southwestern Bell. The associate editor coordinating the re-
view of this paper and approving it for publication was Dr. Shubha Kadambe.
C. I. Byrnes is with the Department of Systems Science and Mathematics,

Washington University, St. Louis, MO 63130 USA.
T. T. Georgiou is with the Department of Electrical Engineering, University

of Minnesota, Minneapolis, MN 55455 USA.
A. Lindquist is with the Division of Optimization and Systems Theory, Royal

Institute of Technology, Stockholm, Sweden (e-mail: alq@math.kth.se).
Publisher Item Identifier S 1053-587X(00)09301-6.

The computational procedures in iii) come in two forms: For
the default setting when the spectral zeros are chosen equal
to the filterbank poles, a particularly simple algorithm, based
on the so-called central solution of the classical interpolation
theory, is available. For any other setting, a convex optimiza-
tion problem needs to be solved. The theory for this was intro-
duced in our companion paper [10] and for a similar problem in
[9]. In this paper, we consider only real processes. However, the
framework is quite general and applies also to complex-valued
stochastic processes [11].
Typically, the resulting spectra show significantly higher res-

olution as compared with traditional linear predictive filtering.
Moreover, they appear to be more robust than linear predictive
filtering due to the fact that we use statistical estimates of only
zeroth-order, or first-order, covariance lags, as opposed to high
order lags. Therefore, THREE appears to be especially suitable
for being applied to short observation records.
We demonstrate the applicability of the approach in identi-

fying spectral lines and in estimating power spectra with steep
variations. Such problems occur in many areas of signal pro-
cessing and statistical prediction. In particular, in communica-
tions, radar, sonar, and geophysical seismology, spectral anal-
ysis methods that estimate or describe the signal as a sum of
harmonics in additive noise [29, p. 139] are needed. The case
when the noise is colored is considered especially challenging.
Therefore, we illustrate the effectiveness of THREE filters for
the problem of line-spectra estimation in colored noise and com-
pare with periodogram and AR-based methods.We also demon-
strate the effectiveness of THREE filters in estimating spectra
with zeros and poles close to each other.
The structure of the paper is as follows. In Section II, we intro-

duce the bank of filters and discuss how the covariances of their
outputs provide estimates of the power spectrum at the reflected
pole positions. The variability of such statistical estimates and
how they are affected by the position of the poles is briefly con-
sidered. Section III presents the basic elements of analytic inter-
polation that are relevant to the current problem. The classical
results are reviewed first, and then, our recent theory of analytic
interpolation with degree constraint is explained in the context
of spectral estimation. In Section IV, the computational proce-
dure for the default setting when the spectral zeros coincide with
the filterbank poles is introduced, and the method is illustrated
by estimation of spectral lines in colored noise. We present a
simulation study comparing THREE with traditional AR fil-
tering and with periodogram analysis. We also give an example
indicating that spectral estimation of certain processes can be
considerably improved if tuning of spectral zeros is used. This
leads to Section V, where the convex optimization approach is

1053–587X/00$10.00 © 2000 IEEE
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Kullback–Leibler Approximation of Spectral Density
Functions

Tryphon T. Georgiou, Fellow, IEEE, and Anders Lindquist, Fellow, IEEE

Abstract—We introduce a Kullback–Leibler-type distance be-
tween spectral density functions of stationary stochastic processes
and solve the problem of optimal approximation of a given spectral
density by one that is consistent with prescribed second-order
statistics. In general, such statistics are expressed as the state co-
variance of a linear filter driven by a stochastic process whose spec-
tral density is sought. In this context, we show i) that there is a
unique spectral density which minimizes this Kullback–Leibler
distance, ii) that this optimal approximate is of the form
where the “correction term” is a rational spectral density func-
tion, and iii) that the coefficients of can be obtained numerically
by solving a suitable convex optimization problem. In the special
case where , the convex functional becomes quadratic and
the solution is then specified by linear equations.
Index Terms—Approximation of power spectra, cross-entropy

minimization, Kullback–Leibler distance, mutual information, op-
timization, spectral estimation.

I. INTRODUCTION

I N this paper, we are interested in approximation of powerspectra of stationary stochastic processes and, in particular,
in the following type of problem. Suppose that an a priori esti-
mate of the power spectrum is available and that new data is
obtained that is inconsistent with this estimate. Then the basic
problem is to find another power spectrum that is as close as
possible to in some suitable sense and is consistent with the
data. This is motivated by applications where one is called to
reconcile inconsistent sets of data and incorporate prior infor-
mation into the modeling process.
Thus, the starting point is a stationary stochastic process

with zero mean and spectral density . In this
paper, the spectral density will be regarded as a real-valued func-
tion on the unit circle .
The data for the approximation problem will be in the form
of second-order statistics of . These could be estimates of
autocorrelation lags or, more often,
cross correlations of outputs of different linear filters driven
by . Such filters could represent the dynamics of physical
or algorithmic devices used for measurement. A general
framework encompassing all such possibilities is to take as data
an estimate of the state covariance of a linear system driven

Manuscript received May 2, 2002; revised January 5, 2003. This work was
supported in part by grants from AFOSR, the Swedish Research Council, and
the Göran Gustafsson Foundation.
T. T. Georgiou is with the Department of Electrical Engineering, University

of Minnesota, Minneapolis, MN 55455, USA (e-mail: tryphon@ece.umn.edu).
A. Lindquist is with the Department of Mathematics, Division of Optimiza-

tion and Systems Theory, Royal Institute of Technology, 100 44 Stockholm,
Sweden (e-mail: alq@math.kth.se).
Communicated by A. Kavčić, Associate Editor for Detection and Estimation.
Digital Object Identifier 10.1109/TIT.2003.819324

by . Thus, we require to be consistent with such a state
covariance.
As a distance measure between two spectral density func-

tions, and , we will use

(1.1)

where, for economy of notation, we often write simply
to denote integrals of the form . This is known
as the Kullback–Leibler distance, originally applied to proba-
bility distributions [11], and possessing some rather useful prop-
erties. Although not symmetric in its arguments, it is jointly
convex. Assuming that and have the same zeroth moment,

with equality if and only if .
Given an arbitrary a priori spectral estimate and the

second-order statistics , the main result of this paper is that
the problem of minimizing subject to consistency
with has a unique minimum . It is worth noting that this
minimizing solution is unaffected by scaling , since this
modifies by a constant additive term and a positive,
multiplicative, and constant factor.
When there is no a priori spectral estimate, it is reasonable to

take , which corresponds to white noise. Then, since

minimizing the Kullback–Leibler distance amounts to maxi-
mizing the entropy gain. Consequently, the maximum-entropy
solution is the spectral density closest to white noise that is
consistent with the data.
The Kullback–Leibler integral has been studied intensively

in statistics, information theory, and communication, typically
optimizing with respect to the first argument [11]–[13], and
has been considered as providing a distance measure between
Gauss–Markov [29] and hiddenMarkovmodels [15]. In another
direction, estimating Markov models from covariance data has
a long history; see, e.g., [2], [8], [14], [17], [28], [30], [32], [36].
The approach taken here is based on ideas developed in [5], [6]
in the context of Carathéodory extension, in [3], [4] in the con-
text of Nevanlinna–Pick interpolation, and in [9], [10] in the
context of generalized moment problems with complexity con-
straint. In this paper, the theory is developed in the framework
of generalized analytic interpolation [21], [22].

II. STATE COVARIANCE STATISTICS

In this section, we explain the nature of the covariance data
of our approximation problem. We model the measuring device
as a linear system

0018-9448/03$17.00 © 2003 IEEE
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Hellinger Versus Kullback–Leibler Multivariable
Spectrum Approximation

Augusto Ferrante, Michele Pavon, and Federico Ramponi

Abstract—In this paper, we study a matricial version of a gen-
eralized moment problem with degree constraint. We introduce
a new metric on multivariable spectral densities induced by the
family of their spectral factors, which, in the scalar case, reduces
to the Hellinger distance. We solve the corresponding constrained
optimization problem via duality theory. A highly nontrivial exis-
tence theorem for the dual problem is established in the Byrnes–
Lindquist spirit. A matricial Newton-type algorithm is finally pro-
vided for the numerical solution of the dual problem. Simulation
indicates that the algorithm performs effectively and reliably.

Index Terms—Approximation of multivariable power spectra,
convex optimization, Hellinger distance, Kullback–Leibler index,
matricial descent method.

I. INTRODUCTION

IN the past ten years, building on their previous work, Byrnes,
Georgiou, Lindquist, and collaborators have developed a

broad program on generalized analytic interpolation and gen-
eralized moment problems that arise in spectral estimation and
robust control [3], [6]–[11], [17], [21]–[27], [42]. While we re-
fer the reader to the cited literature for better motivation, we
recall that many problems of H∞ control, signal processing,
and maximal power transfer in circuit theory may be reduced to
a Nevanlinna–Pick interpolation problem [6], [16], [52]. In all
of these applications, it is crucial to put a bound on the degree
of the interpolant so that the controller, filter, etc., has lim-
ited complexity. As is well known, while the Nevanlinna–Pick
theory features a simple criterion in terms of the Pick matrix
for the existence of solutions and beautiful iterative techniques
(Schur-type algorithms) to produce solutions when they exist,
the degree specification on the interpolant is much harder to cap-
ture in this framework. The overcoming of this difficulty by the
Byrnes, Georgiou, and Lindquist school has opened the way to
several new applications in speech processing, bioengineering,
and robust control [5], [32], [43]. Notice that [3], [25], and [27]
deal with the more difficult multidimensional case.

One of the central steps, in these authors’ approach, is the
formulation of a convex optimization problem that includes as
a (very) special case maximum entropy problems. The smooth
parametrization of the complete class of interpolants occurs in
the optimization setting, where it is crucial to the dependence
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of the criterion on certain a priori parameters, cf. e.g., Remark
3.2 discussed later. It should be observed that, as in all of the
previously mentioned applications, the primal problem is infi-
nite dimensional, while the dual problem is finite dimensional.
Hence, it is natural to seek the (unique) solution to the primal
problem via duality theory.

In [31], Georgiou and Lindquist have applied this convex opti-
mization approach to constrained spectrum approximation. The
basic ingredients of the optimization problem are the following:
An a priori power spectral density Ψ is given. Then, new data
become available in the form of asymptotic state-covariance
statistics for a bank of filters. The latter induces a linear con-
straint on the family of spectral densities. It is then necessary to
find a spectrum Φ that satisfies the constraint and is as close as
possible to Ψ in a prescribed metric.

In [31], a Kullback–Leibler criterion was employed, where
minimization is performed with respect to the second argument.
This unusual choice was dictated by two considerations: 1) the
desire to have maximum entropy as a special case (Ψ = I); 2)
the simple form of the optimal solution belonging to a para-
metric family of “rational” densities. The latter class, as well as
another parametric class of “exponential type” [26, p. 3], were
recognized from the start [7], [9] to be critical points of loga-
rithmic entropy-like functionals. In [26] and in [27], homotopy
like methods were proposed as an effective tool to solve a class
of scalar and multidimensional generalized moment problems.

In this paper, we investigate constrained approximation of
spectral density functions in a different metric, also originating
in mathematical statistics, namely the Hellinger distance [14],
[35], [39], [40]. The main reason for this choice is that, as for
the Kullback–Leibler case, this approximation leads to solutions
of bounded degree, but, differently from the Kullback–Leibler
method, it generalizes nicely to the multivariable case. The cru-
cial observation is that the Hellinger distance between two scalar
spectra amounts to the minimum L2 distance between corre-
sponding spectral factors. This leads us to a natural extension of
the Hellinger distance to multivariable spectra (Theorem 6.1).
We then attack the corresponding multivariable problem and
obtain an explicit form for the optimal solution (see Theorem
7.2). We also establish an existence theorem for the dual prob-
lem (Theorem 7.7) that parallels a corresponding fundamental
result due to Byrnes and Lindquist [11]. We finally investigate
iterative numerical methods to solve the dual problem. Although
the dual problem is an unconstrained convex finite-dimensional
problem, the numerics is nontrivial. As observed in [3, Sec. VI]
and [31, Sec. VII], the dual functional has an unbounded gradi-
ent at the boundary. Reformulation of the problem to avoid this
difficulty may lead to loss of global convexity, requiring initial-
ization of any descent method close to the minimum [3], [6],
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Time and Spectral Domain Relative Entropy: A New
Approach to Multivariate Spectral Estimation

Augusto Ferrante, Chiara Masiero, and Michele Pavon

Abstract—The concept of spectral relative entropy rate is intro-
duced for jointly stationary Gaussian processes. Using classical in-
formation-theoretic results, we establish a remarkable connection
between time and spectral domain relative entropy rates. This nat-
urally leads to a new spectral estimation technique where a mul-
tivariate version of the Itakura–Saito distance is employed. It may
be viewed as an extension of the approach, called THREE, intro-
duced by Byrnes, Georgiou, and Lindquist in 2000 which, in turn,
followed in the footsteps of the Burg–Jaynes Maximum Entropy
Method. Spectral estimation is here recast in the form of a con-
strained spectrum approximation problem where the distance is
equal to the processes relative entropy rate. The corresponding so-
lution entails a complexity upper bound which improves on the one
so far available in the multichannel framework. Indeed, it is equal
to the one featured by THREE in the scalar case. The solution is
computed via a globally convergent matricial Newton-type algo-
rithm. Simulations suggest the effectiveness of the new technique
in tackling multivariate spectral estimation tasks, especially in the
case of short data records.

Index Terms—Convex optimization, matricial Newton method,
maximum entropy, multivariable spectral estimation, spectral
entropy.

I. INTRODUCTION

M ULTIDIMENSIONAL spectral estimation is an old and
challenging problem [36], [46] which keeps generating

widespread interest in the natural and engineering sciences, see,
e.g., [20], [24], [44], and [42]. A new approach to scalar spectral
estimation called THREE was introduced by Byrnes, Georgiou,
and Lindquist in [5] and [19]. It may be viewed as a (consid-
erable) generalization of classical Burg-like maximum entropy
methods. This estimator permits higher resolution in prescribed
frequency bands and is particularly competitive in the case of
short observation records. In this approach, the output covari-
ance of a bank of filters is used to extract information on the
input power spectrum. A first attempt to generalize this ap-
proach to the multichannel situation was made in [42], where,
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due to the lack of multidimensional theoretical results, a non
entropy-like distance was employed in the optimization part
of the procedure. The resulting solution, however, had higher
McMillan degree than in the original scalar THREE method.

The main contribution of this paper is twofold: On the one
hand, we introduce what appears to be a most natural multi-
variate generalization of the THREE method, called RER since
the metric employed in the optimization problem originates
from the relative entropy rate of the two processes. The latter
may be viewed as a multivariate extension of the classical
Itakura–Saito distance widely used in signal processing [1].
The proposed method features a complexity upper bound
which, considerably improving on the one so far available, is
in fact equal to the one featured by THREE in the scalar case.
Like all previous THREE-like methods, RER exhibits high
resolution features and works extremely well, outperforming
classical identification methods, in the case of short observation
records. On the other hand, further cogent support for the
choice of our distance measure between spectra is provided by
a novel information-theoretic result: We introduce the concept
of spectral entropy rate for stationary Gaussian processes and
we establish a circular symmetry property of the increments of
the process occurring in the spectral representation. Then, using
classical results of Pinsker [40], Van den Bos [48], Stoorvogel
and Van Schuppen [47], we prove that the time and spectral
domain relative entropy rates are in fact equal! This profound
result is deferred to the last section of the paper for expository
reasons.

The paper is outlined as follows. Section II collects basic re-
sults on entropy for Gaussian vectors and processes. Section III
introduces THREE-like spectral estimation methods. Section IV
presents the new approach RER via a convex optimization
problem and derives the form of the optimal spectral estimate.
In Section V, we establish a nontrivial existence result for the
dual problem. A globally convergent, matricial Newton-type
method is presented in Section VI to solve the dual problem. The
computational burden is dramatically reduced thanks to various
nontrivial results of spectral factorization. In Section VII, both
scalar and multivariate examples are studied via simulation: the
performance of the RER method is compared to that of previ-
ously available approaches. In Section VIII, some background
results on complex Gaussian random vectors and on the spectral
representation of stationary Gaussian processes are presented.
Finally, in Section IX, we introduce the spectral relative entropy
rate of Gaussian processes and establish a profound connection
between time and spectral domain relative entropy rates.
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A New Family of High-Resolution
Multivariate Spectral Estimators

Mattia Zorzi

Abstract—In this paper, we extend the Beta divergence family
to multivariate power spectral densities. Similarly to the scalar
case, we show that it smoothly connects the multivariate Kullback-
Leibler divergence with themultivariate Itakura-Saito distance.We
successively study a spectrum approximation problem, based on
the Beta divergence family, which is related to a multivariate ex-
tension of the THREE spectral estimation technique. It is then
possible to characterize a family of solutions to the problem. An
upper bound on the complexity of these solutions will also be pro-
vided. Finally, we will show that the most suitable solution of this
family depends on the specific features required from the estima-
tion problem.

Index Terms—Beta divergence, convex optimization, gener-
alized covariance extension problem, spectrum approximation
problem, structured covariance estimation problem.

I. INTRODUCTION

T HE recent development of THREE-like approaches to
multivariate spectral estimation has triggered a renewed

interest for multivariate distance measures (or simply diver-
gence indexes) among (power) spectral densities, [1]. In the
THREE approach, the output covariance of a bank of filters is
used to extract information on the input spectral density. More
precisely, the family of spectral densities matching the output
covariance matrix is considered and a spectrum approximation
problem, which “chooses” an estimate of the input spectral
density in this family, is then employed. The choice criterium
is based on finding the spectral density which minimizes a
divergence index with respect to an a priori spectral density.
Note that, the problem of parameterizing the family of feasible
spectral densities may be viewed as a generalized covariance
extension problem [2]–[7]. The key feature for these estimators
concerns the high resolution achievable in prescribed fre-
quency bands, in particular with short data records. Significant
applications to these methods can be found in robust
control [8], [9], biomedical engineering [10], and modeling and
identification [11]–[13].
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The most delicate issue for this theory deals with the choice
of the divergence index. In fact, the corresponding solution to
the spectrum approximation problem (that heavily depends on
the divergence index) must be computable and possibly with
boundedMcMillan degree. Accordingly, it is important to have
many different indexes available in such a way to choose the
most appropriate index in relation to the specific application.
The THREE estimator, introduced by Byrnes, Georgiou, and
Lindquist in [14], has been extended to the multichannel case by
suggesting different multivariate divergence indexes, [15]–[17].
In particular, Georgiou introduced a multivariate version of the
Kullback–Leibler divergence, [15], which has been frequently
used within information theory, and a multivariate extension
of the Itakura–Saito distance has been recently presented by
Ferrante et al., [17]. The latter metric has an interpretation in
terms of relative entropy rate among processes. Finally, it is
worth noting that the output covariance is not available in a
THREE-like spectral estimation method. Indeed, we need to
estimate it by using a collection of sample data generated by
feeding the bank of filters with the signal whose spectral den-
sity is to be estimated.Moreover, the family of spectral densities
matching the estimated output covariance must be non-empty.
This covariance estimation task is accomplished by solving a
structured covariance estimation problem, [18], [19]. Therefore,
a THREE-like spectral estimation procedure consists in solving
a structured covariance estimation problem and then a spectrum
approximation problem.
The main results of this paper are three. First, we extend to

the multivariate case the Beta divergence family (introduced
for the scalar case in [20]) which smoothly connects the Kull-
back–Leibler divergence with the Itakura–Saito distance. It is
worth mentioning that the Beta divergence family for scalar
spectral densities has been widely used in many applications:
Robust principal component analysis and clustering [21], robust
independent component analysis [22], and robust nonnegative
matrix and tensor factorization [23], [24].
Second, we consider a spectrum approximation problem

which employs the multivariate Beta divergence family. It
turns out that it is possible to characterize a family of solutions
to the problem with bounded McMillan degree. Moreover, the
limit of the family coincides to the solution obtained by using
the Kullback–Leibler divergence.
Finally, we tackle the related structured covariance estima-

tion problem which can be viewed as the static version of the
previous spectrum approximation problem. Also in this case, a
Beta matrix divergence family for covariance matrices, leading
to a family of solutions to the structured covariance estimation
problem, may be introduced.
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Likelihood Analysis of Power Spectra and
Generalized Moment Problems

Tryphon T. Georgiou, Fellow, IEEE, and Anders Lindquist, Life Fellow, IEEE

Abstract—We develop an approach to the spectral esti-
mation that has been advocated by [A. Ferrante et al., “Time
and spectral domain relative entropy: A new approach
to multivariate spectral estimation,” IEEE Trans. Autom.
Control, vol. 57, no. 10, pp. 2561–2575, Oct. 2012.] and,
in the context of the scalar-valued covariance extension
problem, by [P. Enqvist and J. Karlsson, “Minimal itakura-
saito distance and covariance interpolation,” in Proc. 47th
IEEE Conf. Decision Control, 2008, pp. 137–142]. The aim
is to determine the power spectrum that is consistent with
given moments and minimizes the relative entropy between
the probability law of the underlying Gaussian stochastic
process to that of a prior. The approach is analogous to
the framework of earlier work by Byrnes, Georgiou, and
Lindquist and can also be viewed as a generalization of
the classical work by Burg and Jaynes on the maximum
entropy method. In this paper, we present a new fast
algorithm in the general case (i.e., for general Gaussian
priors) and show that for priors with a specific structure
the solution can be given in closed form.

Index Terms—Maximum likelihood estimation, spectral
analysis, method of moments.

I. INTRODUCTION

CONSIDER a stationary, vector-valued, discrete-time,
zero-mean, Gaussian stochastic process {y(t) | t ∈ Z},

where y(t) ∈ Rm , and Z, R are the sets of integers and re-
als, respectively. We denote the corresponding probability law
(on sample paths of the process) by P [3, Ch. 1] and the power
spectral density, which we assume exists, by Φ(eiθ ), θ ∈ [0, 2π).
Further, we assume that the stochastic process is nondetermin-
istic in that the entropy rate is finite

∫ π

−π

log det Φ(eiθ )dθ < ∞. (1)
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This is a fairly general class that includes, e.g., all stochas-
tic processes with nonsingular rational power spectral densi-
ties. We study the basic problem to estimate Φ from sample-
statistics of {y(t)}. Following [1], we view this problem in
a large-deviations framework where a prior law Q is avail-
able, and where this law corresponds to a power spectral den-
sity Ψ with finite entropy rate. We postulate that available
sample-statistics of the process are not consistent with the prior
law Q, and therefore, we seek the law P that is consistent
with these statistics and is the closest such law to the prior
in the sense of large deviations, which amounts to P being
such that the Kullback–Leibler (KL) divergence [4] between
P and Q is minimal. Our approximation problem was consid-
ered in [2] for the special case of comparing the Itakura–Saito
distance between scalar-valued time series since, in fact, the
Itakura–Saito distance between the corresponding power spec-
tra is precisely the KL-divergence between the two laws [3,
Ch. 10], [5]–[7].

The theme of the approach, namely, to obtain power spectra
that are consistent with empirical statistics and optimal with
respect to a suitable criterion, is a standard recurring theme in
works going back to Burg [8]. The problem to obtain empirical
statistics from data is discussed in [9]–[11] and will not be ad-
dressed in this paper. Statistics represent (generalized) moment
constraints and, in the past 30 years, a rich theory emerged that
made contact with analytic function theory and the classical
moment problem, see [12]–[38] and the references therein. A
detailed and rigorous exposition of related topics and ideas in
signal processing is given in [39].

Initially, following Burg, early researcher works focused on
the entropy rate (1) as such a suitable functional to analyze
geophysical time series. This eventually became dominant in
speech processing under the acronym LPC (Linear Predic-
tive Coding) [40]. The entropy rate relates to the variance of
one-step-ahead linear prediction and the problem reduces to
solving a linear set of equations, the normal equations [41].
In the context of autoregressive modeling these are solved by
the Levinson algorithm. It soon became apparent that Burg’s
method was a special case of the Itakura–Saito autocorrelation
approach, which in turn amounted to minimization of the dis-
crimination information between a nominal model and a prior
in the sense of the KL-divergence between their probability
laws.

Subsequent developments viewed spectral estimation as an
inverse problem to achieve consistency with estimated statis-
tics. Initial motivation was provided by a question of R.E.
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THREE-like spectral estimators

Ingredients

A bank of linear time-invariant filters G(z) = (zI − A)−1B, A ∈ Rn×n, B ∈ Rn×1,
with A strictly (Schur) stable and (A,B) reachable
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steady-state covariance

Σ = E[xx>] > 0

Σ =
∫ π

−π
G(ejθ)Φy (ejθ)G∗(ejθ) dθ

2π
moment constraint!
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A bank of linear time-invariant filters G(z) = (zI − A)−1B, A ∈ Rn×n, B ∈ Rn×1,
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A prior spectral density estimate Ψy (ejθ) > 0, θ ∈ [−π, π]2
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A distance measure between spectral densities d(Ψy ,Φy )3

Task Find Φ̂y = arg min
Φy∈S(T)
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∫

GΦy G∗
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Kullback–Leibler framework
[Georgiou & Lindquist, IEEE TIT, 2003]

Kullback–Leibler divergence: S(Ψy‖Φy ) :=
∫

Ψy log Ψy
Φy
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Kullback–Leibler framework
[Georgiou & Lindquist, IEEE TIT, 2003]

Kullback–Leibler divergence: S(Ψy‖Φy ) :=
∫

Ψy log Ψy
Φy

No prior information: S(I ‖Φy ) = −
∫

log Φy

entropy gain!
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Kullback–Leibler framework
[Georgiou & Lindquist, IEEE TIT, 2003]

Kullback–Leibler divergence: S(Ψy‖Φy ) :=
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Ψy log Ψy
Φy

Problem KL

Find Φ̂y = arg min
Φ∈S(T)

S(Ψy‖Φy ) s.t. Σ =
∫

GΦy G∗

Existence of solutions?

Σ ∈ Range Γ, Γ: X 7→
∫

GXG∗,

X complex-valued continuous function on the unit circle

(many other equivalent conditions...)
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Hermitian matrix!
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Kullback–Leibler framework
[Georgiou & Lindquist, IEEE TIT, 2003]

Kullback–Leibler divergence: S(Ψy‖Φy ) :=
∫

Ψy log Ψy
Φy

Problem KL

Find Φ̂y = arg min
Φ∈S(T)

S(Ψy‖Φy ) s.t. Σ =
∫

GΦy G∗

Solutions?

Φ̂y = Ψy
G∗ΛG , Λ ∈ Cn×n, Λ = Λ∗,

∫
Ψy = 1

Solution to Problem KL is unique and has the form?

1 G∗ΛG > 0 for all θ 2
∫

G Ψy
G∗ΛG G∗ = I

? after “normalization” of Ψy and Σ
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Numerical solution

How to solve Problem KL numerically?

gradient-based approach
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fixed-point algorithm

[Pavon & Ferrante, IEEE TAC, ’06]
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Pavon–Ferrante algorithm
[Pavon & Ferrante, IEEE TAC, 2006]

Λk+1 = Λ1/2
k

∫
G Ψy

G∗ΛkG G∗Λ1/2
k Λ0 ∈ Cn×n, Λ0 > 0,

tr(Λ0) = 1(preserves unit trace and positivity)
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∫
G Ψy

G∗ΛkG G∗Λ1/2
k Λ0 ∈ Cn×n, Λ0 > 0,

tr(Λ0) = 1(preserves unit trace and positivity)
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Pavon–Ferrante algorithm
[Pavon & Ferrante, IEEE TAC, 2006]

Λk+1 = Λ1/2
k

∫
G Ψy

G∗ΛkG G∗Λ1/2
k Λ0 ∈ Cn×n, Λ0 > 0,

tr(Λ0) = 1(preserves unit trace and positivity)

If the iteration converges to a positive definite fixed point Λ̄ > 0

1 G∗Λ̄G > 0 for all θ 2
∫

G Ψy

G∗Λ̄G
G∗ = I

Φ̂y = Ψy

G∗Λ̄G
solution to Problem KL
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Modified algorithm: example

A =
[

0 1
0 0

]
, B =

[
0
1

]

Ψy (z) = 1.25
(z + 1.5)(z−1 + 1.5)

h
0.3611 �0.4615

�0.4615 0.6389

i

�1 �0.5 0 0.5 1
�1

�0.5

0

0.5

1

2⇤21

⇤
22

�
⇤

11

Modified PF algorithm

key idea
Add a suitable “correction”

term whenever the trajectory
approaches the boundary
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Multivariate parametric extension
[Ferrante, Pavon & Zorzi, book chap., 2010]

scalar

Φ̂y = Ψy
G∗ΛG

Φ̂y ,Λ = W−1
y ,Λ Ψy W−∗

y ,Λ, G∗ Λ G = W ∗
y ,Λ Wy ,Λ

multivariate (m > 1)

m ×m spectral densities outer spectral factor

Λ ∈ L := {Λ = Λ∗ : G∗ΛG > 0}

the parameter

+ moment constraint:
∫

GΦ̂y ,ΛG∗ = Σ



9

Existence of a solution?

Q: Given Σ > 0, Σ ∈ Range Γ, does there exist Λ̄ ∈ L such that∫
GΦ̂y ,Λ̄G∗ = Σ ?



9

Existence of a solution?

Q: Given Σ > 0, Σ ∈ Range Γ, does there exist Λ̄ ∈ L such that∫
GΦ̂y ,Λ̄G∗ = Σ ?

partial answer
Yes, if Ψy = Mψy , M = M∗ > 0 constant, ψy scalar spectral density

[Ferrante, Pavon & Zorzi, book chap., 2010]



9

Existence of a solution?

Q: Given Σ > 0, Σ ∈ Range Γ, does there exist Λ̄ ∈ L such that∫
GΦ̂y ,Λ̄G∗ = Σ ?

partial answer
Yes, if Ψy = Mψy , M = M∗ > 0 constant, ψy scalar spectral density

[Ferrante, Pavon & Zorzi, book chap., 2010]

complete answer
Yes, for any m ×m prior spectral density Ψy !



9

Existence of a solution?

Q: Given Σ > 0, Σ ∈ Range Γ, does there exist Λ̄ ∈ L such that∫
GΦ̂y ,Λ̄G∗ = Σ ?

partial answer
Yes, if Ψy = Mψy , M = M∗ > 0 constant, ψy scalar spectral density

[Ferrante, Pavon & Zorzi, book chap., 2010]

complete answer
Yes, for any m ×m prior spectral density Ψy !

(proof based on a homotopy argument)



9

Existence of a solution?

Q: Given Σ > 0, Σ ∈ Range Γ, does there exist Λ̄ ∈ L such that∫
GΦ̂y ,Λ̄G∗ = Σ ?

partial answer
Yes, if Ψy = Mψy , M = M∗ > 0 constant, ψy scalar spectral density

[Ferrante, Pavon & Zorzi, book chap., 2010]

complete answer
Yes, for any m ×m prior spectral density Ψy !

(proof based on a homotopy argument)

?
uniqueness?
computation
of solutions?



To sum up...

Maximum entropy estimation methods offer an attractive and effective alternative
to standard spectral estimation techniques. The THREE paradigm can be thought
of as a (considerable) generalization of these methods.

In the THREE setting, we investigated the convergence of an efficient algorithm
for the Kullback–Leibler estimation of spectral densities and the feasibility of a
parametric multivariate extension of the latter problem.
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