Novel Results on the Factorization and Estimation of Spectral Densities

Giacomo Baggio

Dipartimento di Ingegneria dell'Informazione Università degli Studi di Padova

Padova, February 22nd, 2018

Existence and computation of $W_y(z)$

[Baggio & Ferrante, IEEE TAC, 2016a]

Uniqueness of min complexity $W_y(z)$

[[]Baggio & Ferrante, IEEE TAC, 2016b]

- ✓ Existence and computation of $W_y(z)$
- ✓ Uniqueness of min complexity $W_y(z)$
- Parametrization of min complexity $W_y(z)$

[Baggio & Ferrante, IEEE TAC, 2016a][Baggio & Ferrante, IEEE TAC, 2016b][Baggio & Ferrante, IEEE TAC, 2018 (to appear)]

System Id

(PEM, subspace, kernel-based,...)

Convergence analysis of an efficient method [Baggio, IEEE TAC, 2018 (to appear)]

✓ Convergence analysis of an efficient method [Baggio, IEEE TAC, 2018 (to appear)]

Existence of solutions to parametric family [Zhu & Baggio, IEEE TAC, 2018 (accepted)]

Convergence analysis of an efficient method [Baggio, IEEE TAC, 2018 (to appear)]

Existence of solutions to parametric family [Zhu & Baggio, IEEE TAC, 2018 (accepted)]

more in a few slides...

Conal metrics for rational spectra [Baggio, Ferrante & Sepulchre, Under Review, 2018]

Spectral estimation

Setup

- 1 Let $y = \{y(t)\}_{t \in \mathbb{Z}}$ be a zero mean, real-valued, second-order stationary and purely nondeterministic process
- 2 Let $\{y(t)\}_{t=1}^{N}$ be a finite observation record of y

Spectral estimation

Setup

- 1 Let $y = \{y(t)\}_{t \in \mathbb{Z}}$ be a zero mean, real-valued, second-order stationary and purely nondeterministic process
- 2 Let $\{y(t)\}_{t=1}^{N}$ be a finite observation record of y

Task

Estimate the spectral density $\Phi_y(e^{j\theta})$ of y from $\{y(t)\}_{i=1}^N$

$$\{y(t)\}_{t=1}^{N} \longrightarrow estimator} \widehat{\Phi}_{y}(e^{j\theta})$$

Spectral estimation

Setup

- 1 Let $y = \{y(t)\}_{t \in \mathbb{Z}}$ be a zero mean, real-valued, second-order stationary and purely nondeterministic process
- 2 Let $\{y(t)\}_{t=1}^{N}$ be a finite observation record of y

.

[Byrnes, Georgiou & Lindquist, IEEE TSP, 2000]

3189

A New Approach to Spectral Estimation: A Tunable High-Resolution Spectral Estimator

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 11, NOVEMBER 2000

Christopher I. Byrnes, Fellow, IEEE, Tryphon T. Georgiou, Fellow, IEEE, and Anders Lindquist, Fellow, IEEE

.

[Byrnes, Georgiou & Lindquist, IEEE TSP, 2000]

	BEET TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 11, NOVEMBER 2000		3189	
A New Approach to Spectral Es			stimation: A Tunable	
	2910 BEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 11, NOVEMBER 2003		ral Estimator IEEE, and Anders Lindquist, <i>Fellow, IEEE</i>	
	Kullback-Leibler Approximation of Spectral Pens	sitv		
, ,	Functions		HEEE TRANS	SACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 4, MAY 2008
	Tryphon T. Georgiou, Fellow, IEEE, and Anders Lindquist, Fellow, IEEE Hellin		nger Versus Kullback–Leibler Multivariable	
	IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 10, OCTOBER 2012	2561	Spectrum Approxi	mation
	Time and Spectral Domain Relative Entropy: A New Approach to Multivariate Spectral Estimat		Augusto Ferrante, Michele Pavon, and Federico Ramponi IIEE IRANSACTIONS ON AUTOMATIC CONTROL, VOL. 99, NO. 4, APRIL 2014	
L	Augusto Ferrante, Chiara Masiero, and Michele Pavon		A New Family of High-Resolution	
	480 EEE TRANSACTIONS ON AUTOMATIC CONTROL. VOL. 42, NO. 9, BEPTEMBER 2017		Multivariate Spectral Estimators Mattia Zorzi	
			and many more	
4		_		

Ingredients

■ A bank of linear time-invariant filters $G(z) = (zI - A)^{-1}B$, $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times 1}$, with A strictly (Schur) stable and (A, B) reachable

steady-state covariance

$$\Sigma = \mathbb{E}[xx^\top] > 0$$

$$\Sigma = \int_{-\pi}^{\pi} G(e^{j\theta}) \Phi_y(e^{j\theta}) G^*(e^{j\theta}) \frac{\mathrm{d} heta}{2\pi}$$

moment constraint!

Ingredients

- 1 A bank of linear time-invariant filters $G(z) = (zI A)^{-1}B$, $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times 1}$, with A strictly (Schur) stable and (A, B) reachable \downarrow $\Sigma > 0$ s.t. $\Sigma = \int G\Phi_y G^*$
- 2 A prior spectral density estimate $\Psi_y(e^{j heta})>0,\ heta\in[-\pi,\pi]$

Ingredients

- **1** A bank of linear time-invariant filters $G(z) = (zI A)^{-1}B$, $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times 1}$, with A strictly (Schur) stable and (A, B) reachable \downarrow $\Sigma > 0 \text{ s.t. } \Sigma = \int G\Phi_y G^*$
- 2 A prior spectral density estimate $\Psi_y(e^{j heta})>0,\ heta\in[-\pi,\pi]$
- 3 A distance measure between spectral densities $d(\Psi_y, \Phi_y)$

Ingredients

- 2 A prior spectral density estimate $\Psi_y(e^{j heta})>0,\ heta\in[-\pi,\pi]$
- 3 A distance measure between spectral densities $d(\Psi_y, \Phi_y)$

$$\textbf{\textit{Task}} \hspace{1.5cm} \mathsf{Find} \hspace{0.1cm} \widehat{\Phi}_y = \arg\min_{\Phi_y \in \mathcal{S}(\mathbb{T})} d(\Psi_y, \Phi_y) \hspace{0.1cm} \mathsf{s.t.} \hspace{0.1cm} \Sigma = \int G \Phi_y G^*$$

.

[Georgiou & Lindquist, IEEE TIT, 2003]

Kullback–Leibler divergence:
$$\mathbb{S}(\Psi_y \| \Phi_y) := \int \Psi_y \log \frac{\Psi_y}{\Phi_y}$$

.

[Georgiou & Lindquist, IEEE TIT, 2003]

Kullback–Leibler divergence:
$$\mathbb{S}(\Psi_y \| \Phi_y) := \int \Psi_y \log \frac{\Psi_y}{\Phi_y}$$

No prior information:
$$\mathbb{S}(I \| \Phi_y) = -\int \log \Phi_y$$

entropy gain!

.

[Georgiou & Lindquist, IEEE TIT, 2003]

Kullback–Leibler divergence: $\mathbb{S}(\Psi_y \| \Phi_y) := \int \Psi_y \log \frac{\Psi_y}{\Phi_y}$ Problem KL

$$\mathsf{Find} \ \widehat{\Phi}_y = \mathsf{arg}\min_{\Phi \in \mathcal{S}(\mathbb{T})} \mathbb{S}(\Psi_y \| \Phi_y) \ \, \mathsf{s.t.} \ \, \Sigma = \int G \Phi_y \, G^*$$

[Georgiou & Lindquist, IEEE TIT, 2003]

Kullback–Leibler divergence: $\mathbb{S}(\Psi_y \| \Phi_y) := \int \Psi_y \log \frac{\Psi_y}{\Phi_y}$ Problem KL

$$\mathsf{Find} \ \widehat{\Phi}_y = \mathsf{arg}\min_{\Phi \in \mathcal{S}(\mathbb{T})} \mathbb{S}(\Psi_y \| \Phi_y) \ \, \mathsf{s.t.} \ \, \Sigma = \int G \Phi_y G^*$$

Existence of solutions?

$$\Sigma \in \mathsf{Range} \ \mathsf{\Gamma}, \ \ \mathsf{\Gamma} \colon X \mapsto \int \mathcal{G} X \mathcal{G}^*,$$

X complex-valued continuous function on the unit circle

(many other equivalent conditions...)

.

[Georgiou & Lindquist, IEEE TIT, 2003]

Kullback–Leibler divergence: $\mathbb{S}(\Psi_y \| \Phi_y) := \int \Psi_y \log \frac{\Psi_y}{\Phi_y}$ Problem KL

$$\mathsf{Find}\ \widehat{\Phi}_y = \arg\min_{\Phi\in\mathcal{S}(\mathbb{T})}\mathbb{S}(\Psi_y\|\Phi_y) \ \, \mathsf{s.t.}\ \, \Sigma = \int G\Phi_y G^*$$

Solutions?

Solution to Problem KL is unique and has the form

$$\begin{split} \widehat{\Phi}_{y} &= \frac{\Psi_{y}}{G^{*}\Lambda G}, \quad \Lambda \in \mathbb{C}^{n \times n}, \ \Lambda = \Lambda^{*}, \\ G^{*}\Lambda G &> 0 \text{ for all } \theta \qquad \qquad 2 \quad \int G \frac{\Psi_{y}}{G^{*}\Lambda G} G^{*} = \Sigma \end{split}$$

.

[Georgiou & Lindquist, IEEE TIT, 2003]

Kullback–Leibler divergence: $\mathbb{S}(\Psi_y \| \Phi_y) := \int \Psi_y \log \frac{\Psi_y}{\Phi_y}$ Problem KL

$$\mathsf{Find}\ \widehat{\Phi}_y = \mathsf{arg}\min_{\Phi\in\mathcal{S}(\mathbb{T})}\mathbb{S}(\Psi_y\|\Phi_y) \ \, \mathsf{s.t.}\ \, \Sigma = \int G\Phi_y G^*$$

Solutions?

Solution to Problem KL is unique and has the form

$$\widehat{\Phi}_{y} = \frac{\Psi_{y}}{G^{*} \wedge G}, \quad \Lambda \in \mathbb{C}^{n \times n}, \quad \Lambda = \Lambda^{*}, \qquad \text{Hermitian matrix}$$
$$G^{*} \wedge G > 0 \text{ for all } \theta \qquad 2 \qquad \int G \frac{\Psi_{y}}{G^{*} \wedge G} G^{*} = \Sigma$$

[Georgiou & Lindquist, IEEE TIT, 2003]

Kullback–Leibler divergence: $\mathbb{S}(\Psi_y \| \Phi_y) := \int \Psi_y \log \frac{\Psi_y}{\Phi_y}$ Problem KL

$$\mathsf{Find}\ \widehat{\Phi}_y = \mathsf{arg}\min_{\Phi\in\mathcal{S}(\mathbb{T})}\mathbb{S}(\Psi_y\|\Phi_y) \ \, \mathsf{s.t.}\ \, \Sigma = \int G\Phi_y G^*$$

Solutions?

Solution to Problem KL is unique and has the form*

$$\begin{split} \widehat{\Phi}_{y} &= \frac{\Psi_{y}}{G^{*}\Lambda G}, \quad \Lambda \in \mathbb{C}^{n \times n}, \quad \Lambda = \Lambda^{*}, \quad \int \Psi_{y} = 1 \\ 1 \quad G^{*}\Lambda G > 0 \text{ for all } \theta \qquad 2 \quad \int G \frac{\Psi_{y}}{G^{*}\Lambda G} G^{*} = I \end{split}$$

* after "normalization" of Ψ_{γ} and Σ

Numerical solution

.

Numerical solution

Numerical solution

Pavon–Ferrante algorithm

[Pavon & Ferrante, IEEE TAC, 2006]

$$\Lambda_{k+1} = \Lambda_k^{1/2} \int G \frac{\Psi_y}{G^* \Lambda_k G} G^* \Lambda_k^{1/2} \qquad \Lambda_0 \in \mathbb{C}^{n \times n}, \ \Lambda_0 > 0,$$
(preserves unit trace and positivity)
$$\operatorname{tr}(\Lambda_0) = 1$$

(preserves unit trace and positivity)

Pavon–Ferrante algorithm

[Pavon & Ferrante, IEEE TAC, 2006]

$$\begin{split} \Lambda_{k+1} &= \Lambda_k^{1/2} \int G \frac{\Psi_y}{G^* \Lambda_k G} G^* \Lambda_k^{1/2} & \Lambda_0 \in \mathbb{C}^{n \times n}, \ \Lambda_0 > 0, \\ (preserves unit trace and positivity) & \operatorname{tr}(\Lambda_0) = 1 \end{split}$$

If the iteration converges to a *positive definite* fixed point $\bar{\Lambda} > 0$

$$\checkmark \quad 1 \quad G^* \overline{\Lambda} G > 0 \text{ for all } \theta \qquad \checkmark \quad 2 \quad \int G \frac{\Psi_y}{G^* \overline{\Lambda} G} G^* = I$$

• 1111

Pavon–Ferrante algorithm

[Pavon & Ferrante, IEEE TAC, 2006]

$$\begin{split} \Lambda_{k+1} &= \Lambda_k^{1/2} \int G \frac{\Psi_y}{G^* \Lambda_k G} G^* \Lambda_k^{1/2} & \Lambda_0 \in \mathbb{C}^{n \times n}, \ \Lambda_0 > 0, \\ (\text{preserves unit trace and positivity}) & \operatorname{tr}(\Lambda_0) = 1 \end{split}$$

If the iteration converges to a *positive definite* fixed point $\bar{\Lambda}>0$

$$\checkmark$$
 1 $G^*\bar{\Lambda}G > 0$ for all θ \checkmark 2 $\int G \frac{\Psi_y}{G^*\bar{\Lambda}G} G^* = I$

$$\widehat{\Phi}_{y} = rac{\Psi_{y}}{G^{*}\overline{\Lambda}G}$$
 solution to Problem KI

.

.....

Local convergence to (closure of set of) positive definite fixed points

[Ferrante, Ramponi & Ticozzi, IEEE TAC, 2011]

Local convergence to (closure of set of) positive definite fixed points

[Ferrante, Ramponi & Ticozzi, IEEE TAC, 2011]

Global convergence to a fixed point

\checkmark Local convergence to (closure of set of) positive definite fixed points

[Ferrante, Ramponi & Ticozzi, IEEE TAC, 2011]

Global convergence to a fixed point

(proof based on a Lyapunov argument)

\checkmark Local convergence to (closure of set of) positive definite fixed points

[Ferrante, Ramponi & Ticozzi, IEEE TAC, 2011]

Global convergence to a fixed point

(proof based on a Lyapunov argument)

positive definite? 🝝

\checkmark Local convergence to (closure of set of) positive definite fixed points

[Ferrante, Ramponi & Ticozzi, IEEE TAC, 2011]

Global convergence to a fixed point

(proof based on a Lyapunov argument)

positive definite? ◄

Not guaranteed

Local convergence to (closure of set of) positive definite fixed points

[Ferrante, Ramponi & Ticozzi, IEEE TAC, 2011]

Global convergence to a fixed point -

(proof based on a Lyapunov argument)

positive definite? 🔺

Not guaranteed, but the algorithm can be *modified* in order to ensure global convergence to a positive definite fixed point

Modified algorithm: example

PF algorithm

Modified algorithm: example

Modified PF algorithm

7

Modified algorithm: example

$$egin{array}{rcl} A &=& egin{bmatrix} 0 & 1 \ 0 & 0 \end{bmatrix}, \ B &=& egin{bmatrix} 0 \ 1 \end{bmatrix} \ \Psi_y(z) &=& rac{1.25}{(z+1.5)(z^{-1}+1.5)} \end{array}$$

key idea

Add a suitable "correction" term whenever the trajectory approaches the boundary $\widehat{\Phi}_{v} =$

Multivariate parametric extension

[Ferrante, Pavon & Zorzi, book chap., 2010]

multivariate

Ψ

 $G^*\Lambda$

$$\widehat{\Phi}_{y,\Lambda} = W_{y,\Lambda}^{-1} \Psi_y W_{y,\Lambda}^{-*}, \quad G^* \Lambda G = W_{y,\Lambda}^* W_{y,\Lambda}$$

 $\widehat{\Phi}_{v} =$

ıIJ

 G^{*}

Multivariate parametric extension

[Ferrante, Pavon & Zorzi, book chap., 2010]

multivariate (m > 1)

$$\widehat{\Phi}_{y,\Lambda} = W_{y,\Lambda}^{-1} \Psi_y W_{y,\Lambda}^{-*}, \quad G^* \Lambda G = W_{y,\Lambda}^* W_{y,\Lambda}$$

$$m \times m \text{ spectral densities} \qquad \text{outer spectral factor}$$

$$\Lambda \in \mathcal{L} := \{\Lambda = \Lambda^* : G^* \Lambda G > 0\}$$

the parameter

.....

.

 $\widehat{\Phi}_{v} =$

ıIJ

 G^*

Multivariate parametric extension

[Ferrante, Pavon & Zorzi, book chap., 2010]

multivariate (m > 1)

$$\widehat{\Phi}_{y,\Lambda} = W_{y,\Lambda}^{-1} \Psi_y W_{y,\Lambda}^{-*}, \quad G^* \Lambda G = W_{y,\Lambda}^* W_{y,\Lambda}$$

$$m \times m \text{ spectral densities} \qquad \text{outer spectral factor}$$

$$\Lambda \in \mathcal{L} := \{\Lambda = \Lambda^* : G^* \Lambda G > 0\}$$

the parameter

.....

+ moment constraint:
$$\int G\widehat{\Phi}_{y,\Lambda}G^* = \Sigma$$

Q: Given Σ > 0, Σ \in Range Γ , does there exist $\bar{\Lambda}\in \mathcal{L}$ such that

$$\int G\widehat{\Phi}_{y,ar{\Lambda}}G^* = \Sigma$$
 ?

Q: Given Σ > 0, Σ \in Range Γ , does there exist $\bar{\Lambda}\in \mathcal{L}$ such that

$$\int G\widehat{\Phi}_{y,ar{\Lambda}}G^* = \Sigma$$
 ?

partial answer

Yes, if $\Psi_y = M\psi_y$, $M = M^* > 0$ constant, ψ_y scalar spectral density [Ferrante, Pavon & Zorzi, book chap., 2010]

Q: Given Σ > 0, Σ \in Range Γ , does there exist $\bar{\Lambda}\in \mathcal{L}$ such that

$$\int G\widehat{\Phi}_{y,ar{\Lambda}}G^* = \Sigma$$
 ?

partial answer

Yes, if $\Psi_y = M\psi_y$, $M = M^* > 0$ constant, ψ_y scalar spectral density [Ferrante, Pavon & Zorzi, book chap., 2010]

complete answer

Yes, for any $m \times m$ prior spectral density Ψ_y !

Q: Given $\Sigma > 0$, $\Sigma \in \mathsf{Range}\,\Gamma$, does there exist $\bar{\Lambda} \in \mathcal{L}$ such that

$$\int G\widehat{\Phi}_{y,ar{\Lambda}}G^* = \Sigma$$
 ?

partial answer

Yes, if $\Psi_y = M\psi_y$, $M = M^* > 0$ constant, ψ_y scalar spectral density [Ferrante, Pavon & Zorzi, book chap., 2010]

complete answer

Yes, for any $m \times m$ prior spectral density Ψ_y !

(proof based on a homotopy argument)

Q: Given $\Sigma > 0$, $\Sigma \in \mathsf{Range}\,\Gamma$, does there exist $\bar{\Lambda} \in \mathcal{L}$ such that

$$\int G\widehat{\Phi}_{y,ar{\Lambda}}G^* = \Sigma$$
 ?

partial answer

Yes, if $\Psi_y = M \psi_y$, $M = M^* > 0$ constant, ψ_y scalar spectral density

[Ferrante, Pavon & Zorzi, book chap., 2010]

uniqueness? computation of solutions?

complete answer

Yes, for any $m \times m$ prior spectral density Ψ_y !

(proof based on a homotopy argument)

To sum up...

Maximum entropy estimation methods offer an attractive and effective alternative to standard spectral estimation techniques. The **THREE** paradigm can be thought of as a (considerable) generalization of these methods.

In the THREE setting, we investigated the **convergence** of an efficient algorithm for the Kullback–Leibler estimation of spectral densities and the **feasibility** of a parametric multivariate extension of the latter problem.

Thank you for your attention!

baggio@dei.unipd.it
www.dei.unipd.it/~baggio

References

- C. Byrnes, T. Georgiou & A. Lindquist, "A New Approach to Spectral Estimation: A Tunable High-Resolution Spectral Estimator." IEEE Trans. Signal Process., 48(11), pp. 3189–3205, 2000.
- T. Georgiou & A. Lindquist, "Kullback–Leibler Approximation of Spectral Density Functions." IEEE Trans. Inf. Theory, 49(11), pp. 2910–2917, 2003.
- M. Pavon & A. Ferrante, "On the Georgiou–Lindquist Approach to Constrained Kullback-Leibler Approximation of Spectral Densities." *IEEE Trans. Autom. Control*, 51(4), pp. 639–644, 2006.
- A. Ferrante, F. Ramponi & F. Ticozzi, "On the Convergence of an Efficient Algorithm for Kullback-Leibler Approximation of Spectral Densities." *IEEE Trans. Autom. Control*, 56(3), pp. 506–515, 2011.
- A. Ferrante, M. Pavon & M. Zorzi, "Application of a Global Inverse Function Theorem of Byrnes and Lindquist to a Multivariable Moment Problem with Complexity Constraint." Three Decades of Progress in Control Sciences, pp. 153–167, Springer, 2010.

Publications

- G. Baggio & A. Ferrante, "On the Factorization of Rational Discrete-Time Spectral Densities." IEEE Trans. Autom. Control, 61(4), pp. 969–981, 2016.
- <u>G. Baggio</u> & A. Ferrante, "On Minimal Spectral Factors with Zeroes and Poles Lying on Prescribed Regions." *IEEE Trans. Autom. Control*, 61(8), pp. 2251–2255, 2016.
- G. Baggio & A. Ferrante, "Parametrization of Minimal Spectral Factors of Discrete-Time Rational Spectral Densities." IEEE Trans. Autom. Control (to appear), 2018.
- G. Baggio, "Further Results on the Convergence of the Pavon–Ferrante Algorithm for Spectral Estimation." IEEE Trans. Autom. Control (to appear), 2018.
- B. Zhu & <u>G. Baggio</u>, "On the Existence of a Solution to a Spectral Estimation Problem à la Byrnes–Georgiou– –Lindquist." *IEEE Trans. Autom. Control (accepted)*, 2018. [ArXiv preprint available]
- G. Baggio, A. Ferrante & R. Sepulchre, "Conal Distances Between Rational Spectral Densities." Under Review, 2018. [ArXiv preprint available]