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“Neo: But we control these machines, they don’t control us.
Councillor Hamann: Of course not, how could they? The idea’s pure

nonsense, but... it does make one wonder just... what is control?
Neo: If we wanted, we could shut these machines down.

Councillor Hamann: Of course... that’s it. You hit it! That’s control, isn’t
it? If we wanted, we could smash them to bits. Although if we did, we’d

have to consider what would happen to our lights, our heat, our air.”



Abstract
In the recent years, the field of automation has witnessed a tendency to employ networked
control for groups of agents to fulfill complex tasks arising from robotic surveillance to
smart-grid production, from autonomous vehicle servicing to sensor network monitoring
and a variety of space-based applications. Such mobile systems are referred to as
multi-agent systems (MASs). In this thesis, the main research interest concerns how to
design the effective decentralized coordination among autonomous agents, by means of a
limited local sensing, to perform common tasks, aiming at reaching a high-quality overall
performances. This approach has had a transformative impact in several application
domains and, indeed, MASs possess well-known capabilities for autonomous and intelligent
operation based on planning, reactivity, learning, proactivity, mobility, adaptivity and
reasoning. Furthermore, such elements collaborate to seek a solution to problems that
are out of reach for the single entity.
What has led to this rapid progress in the last two decades is a combination of technological
advances in price, scale of the platforms themselves, computational performance and a
novel breakthrough of how the mobile robots should be arranged algorithmically. At
the light of these increasing trends of investigation, it is crucial to reinforce the latest
knowledge to keep up with the research demand.

The main objective of this thesis is firstly represented by the investigation of distributed
strategies to optimize the design of MASs. In particular, numerous theoretical method-
ologies borrowed from Optimization Theory, Combinatorial Graph Theory, Dynamic
Systems and Control are applied to realistic multi-agent-based models in order to offer
new perspectives exploring efficient solutions and consolidate the vast paradigm of MASs.
To fully present the potential of the optimization approach applied to MASs, four major
research studies are here considered and deeply examined in the theoretical, algorithmic
and application point of view.

1. The development of a distributed algorithm to perform dynamic robotic coverage
and focus on event with limited sensing capabilities.

2. The design of optimal control laws to accomplish time-invariant robotic formation
tracking that also take into account energy consumption aspects.

3. The conceptualization, analysis and optimization of a general regularized distributed
linear model to perform a state estimation from relative measurements.

4. The research of spectral properties connecting circulant algebraic entities to the
Dirichlet kernel.
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Sommario
Recentemente, nel campo dell’automazione, si ha assistito a una tendenza data dell’impiego
di controlli su reti formate da gruppi di agenti per realizzare complessi compiti, emergenti
dalla sorveglianza robotica alla produzione di smart grids, dai servizi per veicoli au-
tonomi al monitoraggio attuato grazie a reti di sensori e una vasta gamma di applicazioni
spaziali. A tali sistemi mobili si fa riferimento con i cosiddetti sistemi multi-agente
(MASs). In questa tesi, il principale interesse di ricerca verte sull’indagine di un efficace
coordinamento decentralizzato attraverso agenti autonomi, per mezzo di un utilizzo di
sensori limitati a misurazioni locali, con lo scopo di svolgere compiti comuni, mirando
al raggiungimento di prestazioni globali ad elevata qualità. Questo approccio ha avuto
un impatto trasformativo in vari domini applicativi e, infatti, i MASs possiedono note
capacità per operazioni intelligenti autonome basate sulla pianificazione, la reattività,
l’apprendimento, la proattività, la mobilità, l’adattabilità e il ragionamento. Inoltre, tali
elementi collaborano alla ricerca di soluzioni a problemi al di fuori della portata per la
singola entità.
Ciò che ha condotto a questo rapido progresso negli ultimi due decenni è la combinazione
di avanzamenti tecnologici nel prezzo, nelle dimensioni delle piattaforme stesse, nella
capacità computazionale e in un’innovativa svolta sul come i robot mobili dovrebbero
organizzarsi metodicamente. Alla luce di questo crescente andamento di investigazione, è
cruciale rinforzare le conoscenze recenti per stare al passo con le esigenze di ricerca.

Il principale obiettivo di questa tesi è in primo luogo rappresentato dall’investigazione
di strategie distribuite per ottimizzare la progettazione di MASs. In particolare, nu-
merose metodologie teoriche prese in prestito dalla teoria dell’ottimizzazione, dalla teoria
combinatoria dei grafi, dai sistemi dinamici e dal controllo sono applicate a realistici
modelli multi-agente al fine di offrire nuove prospettive in grado di esplorare soluzioni
efficienti e consolidare il vasto paradigma dei MASs. Allo scopo di presentare appieno il
potenziale dell’approccio di ottimizzazione applicato ai MASs, quattro studi predominanti
vengono qui considerati e largamente esaminati da un punto di vista teorico, algoritmico
e applicativo.

1. Lo sviluppo di un algoritmo distribuito per eseguire copertura dinamica con agenti
robotici e focalizzazione attorno a un evento mediante sensori a capacità limitata.

2. La progettazione di leggi ottimali per governare un gruppo di robot e realizzare un
inseguimento tempo-invariante in formazione tenendo conto del consumo energetico.

3. Il concepimento, l’analisi e l’ottimizzazione di modelli lineari distribuiti e regolariz-
zati per portare a termine una stima dello stato a partire da misure relative.

4. La ricerca di proprietà spettrali che connettono entità algebriche dotate di struttura
circolante al nucleo di Dirichlet.
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PD Proportional Derivative (controller)
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PP Proximal Point (algorithm)
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r.h.s. right hand side
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TC Tracking Control
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Thm. Theorem
TILQ Time-Invariant Linear Quadratic
TO Trajectory Optimization
UAV Unmanned Aerial Vehicle
USA United States of America
w.l.o.g. without loss of generality
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Notation
The majority of symbols adopted for this manuscript is defined in the appendix: the
interested reader is thus addressed to Sec. B. All the statements belonging to the latter
have to be intended of global usage for the whole document. In the following lines, the
most used symbols together with further basic notation are reported as a preliminary.

Generic entities
M dimension of Euclidean spaces (positive natural number)
N degrees of freedom/ generic dimension/ generic natural number
Ω generic set
ω generic element of a set (usually a real or complex number)
Ω generic matrix, note: all matrices are bold uppercase
ω generic vector, note: all vectors are bold lowercase

Numerical constants
π pi
e Neper number
i imaginary unit
0N zero vector of dimension N
1N vector of dimension N whose component are equal to 1
ZN1×N2 zero matrix of dimensions N1 ×N2

ZN zero matrix of dimensions N ×N
IN identity matrix of dimension N

Set operations and relations
⊂ proper subset of
⊆ improper subset of
Ω complement subset of set Ω
∈ belongs to
/∈ does not belongs to
Ω1 ∪ Ω2 union of set Ω1 with set Ω2

Ω1 ∩ Ω2 intersection between set Ω1 with set Ω2

Ω2 \ Ω1 elements of Ω2 which are not in Ω1⋃
union operator⋂
intersection operator

|Ω| cardinality of finite set Ω
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Generic relations
= equality relation
' approximate equal to
> greater than/ positive (for vectors, matrices)
≥ equal or greater than / nonnegative (for vectors, matrices)/

subgroup relation
� positive definite (for matrices)
� positive semi-definite (for matrices)
< less than
≤ equal or less than
≺ negative definite (for matrices)
� negative semi-definite (for matrices)
∀ for all
∃ there exists
:= assignment of a quantity
← stored variable
→ function relation
7→ maps to

Well-known sets and classes
∅ empty set
N set of the natural numbers
Z set of the integer numbers
R set of the real numbers
C set of the complex numbers
S1 unit radius circle
C i class of continuous functions up to the i-th derivative
<∞ finite values/ convergent sequence
stoc(R) class of stochastic matrices
stoc2(R) class of doubly stochastic matrices
X topological space

Mathematical quantities
λΩi i-th eigenvalue of matrix Ω

$Ω
i i-th eigenvector of matrix Ω

υΩ
i i-th left eigenvector of matrix Ω

h cost functional
L maximum length (natural number)
Γ curve in a space
z generalized frequency (variable for the Z-transform)
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Standard numeric operators
χΩ characteristic function over set Ω
max(Ω) maximum element in Ω
min(Ω) minumum element in Ω
arg min h argument that minimizes the cost functional h
exp(·) exponential function
sech(·) hyperbolic secant
arcosh(·) inverse hyperbolic cosine
b·c floor operator
d·e ceiling operator
< real part of a complex number
= imaginary part of a complex number
|ω| modulus of ω ∈ C
∆ scalar variation operator, e.g. ∆t = tfinal − tinitial∑

summation symbol∏
product symbol

d

dω
derivative w.r.t. ω

∂

∂ω
partial derivative w.r.t. ω∫

l(ω)dω integral of function l(ω) w.r.t. ω

∇x gradient w.r.t. x
Hxx Hessian w.r.t. x

Physical quantities, Control Theory
t discrete time instant
T final time horizon (real and positive)
Ts sampling time
τ continuous time instant
pi position of the i-th agent such that pi ∈ RM

ṗi velocity of the i-th agent such that ṗi ∈ RM

pc centroid position, pc ∈ RM

ṗc centroid velocity, ṗc ∈ RM

x state, variable or unknown vector
u control input vector
U generic space for a control input
X generic space for the state/ variable
T trajectory manifold
P PRONTO map
ϑ generic parameter
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Algebraic operators
[ω]i entry i of vector ω
[Ω]ij entry (i, j) of matrix Ω

Ω−1 inverse of matrix Ω

Ω> transpose of matrix Ω

Ω∗ conjugate transpose of matrix Ω

Ω−> inverse and transpose of matrix Ω

Ω† pseudo-inverse of Ω
span{ω} space spanned by vector ω
im {Ω} range of matrix Ω

ker {Ω} kernel of matrix Ω

det(Ω) determinant of the matrix Ω

adj(Ω) adjugate matrix of Ω
rank(Ω) rank of the matrix Ω

tr(Ω) trace of the matrix Ω

〈ωi,ωj〉Ω scalar product between vectors ωi,ωj according to matrix Ω

‖ω‖Ω norm of vector ω weighted by matrix Ω

‖ω‖N N -norm of vector ω
Diag(ω) diagonal matrix whose diagonal elements are specified by vector ω
diag(Ω) vector given by the diagonal of matrix Ω

⊗ Kronecker product
Λ(Ω) spectrum of matrix Ω

R(·, ·) Rayleigh quotient

Graph Theory
G (undirected) graph
V vertex set
vi i-th vertex
n number of vertices in a graph
E edges set
eij edge connecting vertex vi to vertex vj
E number of edges in a graph
Ni neighborhood of the i-th vertex
deg(vi) degree of the i-th vertex
A adjacency matrix
D degree matrix
E incidence matrix
L graph Laplacian matrix
L normalized graph Laplacian matrix
RRR Randić matrix
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1
Introduction

“It’s the question that brought you here.”
Trinity

Contents

1.1. Technological trends in the contemporary networked era . . . . 1
1.1.1. Networked Control Systems . . . . . . . . . . . . . . . . . . . . 2

1.2. Multi-agent systems . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1. Examples of networked systems . . . . . . . . . . . . . . . . . . 4

1.3. Structure of the manuscript . . . . . . . . . . . . . . . . . . . . . 6

1.1 Technological trends in the contemporary networked era

According to Goldberg (2019), the original robots relied on collaboration. In the play that
coined the word ‘robot’ (R.U.R., 1920, by the Czech writer Karel Čapek) robot workers
acted cooperating to rebel against unfair working conditions. And the first real robots,
designed during World War II to handle radioactive materials, moved their mechanical
limbs under the close supervision of human ‘tele-operators’ who utilized levers behind
protected walls.
Since then, almost all the members of the Robotics community, had assumed that
robots must carry their own power supply, memory and computing circuitry and be
self-contained. This assumption imposed rigid design constraints, limiting the capability
of robots to manage uncertainty and adapt to changing conditions.
Nevertheless, over the past decade robots have begun to collaborate again, accelerated
by progress in cloud and networking computing. Contemporary robots are immersed in
a networking ecosystem that involve massive remote data hubs, sensors, data streams,
distributed computing and a myriad of human inputs. Robots can download software
and data on demand, and accomplish stochastic motion planning and learning remotely
both online and offline. This novel generation of robots will be able to deal better with
unpredictable scenarios and environments, and integrate safely and usefully in our world.

In this wide-ranging overview, some of the most fascinating questions and challenges for
analyzing, designing and governing networked control systems are introduced by focusing
on the engineering constraints induced by the geometric, combinatorial, algebraic and
analytic properties of the information-exchange mechanism.
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1 Introduction

1.1.1 Networked Control Systems

Authors in Mesbahi and Egerstedt (2010) affirm that Network Science has emerged as a
powerful conceptual paradigm in Engineering and Science. Phenomena and constructs
such as random and small-world networks, interconnected networks, and phase transition
nowadays arise in a large variety of research literature, ranging across statistical physics,
social networks, economics, sensor networks and of course multi-agent control and
coordination. The reason for this uncommon attention to Network Science is twofold.
On the one hand, in a number of disciplines – particularly in material and biological
sciences – it has become vital to obtain a deeper understanding of the role that inter-
elemental interactions play in the collective functionality of multilayered systems. On the
other hand, technological advances have facilitated an ability to synthesize networked
engineering systems – such as those found in sensor networks, multi-vehicle systems and
nanostructures – that resemble, sometimes remotely, their natural counterparts in terms
of their operational and functional complexity.

As stated in Zhang, Han, Ge, Ding, Ding, Yue, and Peng (2019b), the rapid development
of network technologies has led much variability to people’s life. Modern communication
networks can provide reliable and swift communication between any two or more physical
plants located in different places. Such outstanding features make communication
networks extensively utilized to connect control components within a control loop, bringing
to the so-called Networked Control Systems (NCSs). NCSs have been applied in several
areas, such as industrial automation, environments, space exploration, robots, remote
diagnostics and troubleshooting, aircraft, manufacturing plant monitoring, automobiles
and teleoperations.
An NCS inherits both advantages and disadvantages from communication networks.

On the one hand, communication networks allow data packets to be shared among
control components, which means that some traditional point-to-point wiring in the
installation of a control system may be avoided. As a result, control cost incurred
from installation and maintenance can be reduced significantly. Besides, the well-used
communication protocols can ensure data packets to be successfully transmitted between
control components, which renders an NCS of high reliability. On the other hand,
communication networks transmit data packets only in the form of digital signals rather
than continuous signals. This means that signals from physical plants should be sampled
and quantized before being transmitted. Furthermore, since the network bandwidth is
limited, network traffic congestion is unavoidable, usually leading to some constraints
such as packet dropouts and network-induced delays.
Two of the key research directions for NCSs are represented by ‘control of networks’

and ‘control over networks’ Murray (2003). ‘Control of networks’ aims at providing a
good quality of service (QoS) of communication networks such that NCSs can fulfill
satisfactory control performance. In this framework, network resources can be utilized
efficiently and network data flows perform very well. ‘Control over networks’ aims at
devising suitable control strategies to reduce the effects of network imperfections on
desired control performance. Clearly, ‘control of networks’ focuses on how to improve
the QoS of networks while ‘control over networks’ on how to enhance control robustness

2



1.2 Multi-agent systems

against network constraints. The latter falls into the scope of control systems while the
former is within the field of computer science. Among the results reported by literature
in control over networks, five issues have gained much attention: quantization control,
sampled-data control, networked control, security control and event-triggered control.
Nevertheless, in this thesis, the emphasis is placed in a third sub-field of networked
systems, historically represented by the so-called multi-agent systems Zampieri (2008).

1.2 Multi-agent systems

Multi-agent systems (MASs) cope with the study of how network interactions between
network components and its architecture influence global control targets. More precisely,
the problem here is to understand how local laws describing the behavior of individual
agents influence the global behavior of the networked system.
Nature has created a large number of multi-agent systems, where local interaction

rules/mechanisms are exploited at different levels by groups of agents to attain a common
group goal Chen and Ren (2019). Flocks of birds and schools of fish are typical examples of
MASs, which have fascinated scientists from diverse disciplines, such as Biology, Computer
Science and Physics. Thanks to the parallel characteristics, MASs can be employed to
solve engineering problems that are difficult or impossible for an individual agent to
accomplish. For instance, the sub-field of Swarm Robotics aims to integrate principles
and theoretical background of swarm behaviors with theory and methodology describing
principles of self-organizing adaptation and cooperative localization of autonomous robots
leading to a flexible stand-alone system, as depicted in Fig. 1.1.
MASs are more robust – the malfunction of the single agent or a small portion of the
group typically will not affect the functionality of the system; MASs are scalable – no
matter what the size of the system is, the communication and computation costs of MASs
are kept at a reasonably low level.

Figure 1.1. Micro aerial vehicles stabilized relatively to their neighbors within a formation or a
swarm. [Credits : http://mrs.felk.cvut.cz/research/swarm-robotics]

Although research in the field of MASs can be traced back long ago, it was only at the
beginning of the 21st century that MASs emerged as a separate subject. In 2005, the paper
“Coordination of Groups of Mobile Autonomous Agents Using Nearest Neighbor Rule”
won the prestigious George S. Axelby outstanding paper award from IEEE Transactions on
Automatic Control, a top-notched journal in systems and control. Then, the International
Federation of Automatic Control (IFAC) and American Automatic Control Council
(AACC) organized a series of workshops and conferences focusing on MASs. IFAC

3

http://mrs.felk.cvut.cz/research/swarm-robotics


1 Introduction

established several technical committees having close ties with MASs. New journals with
a major interest in MAS or network systems are established, e.g., IEEE Transactions
on Network Sciences and Engineering and IEEE Transactions on Control of Network
Systems.
As a critical enabler of several research fields, MASs are quintessentially multidis-

ciplinary. In the search for applications and theories, biologists, computer scientists,
physicists, and others have all contributed to the development of MASs. In 1987, Craig
Reynold proposed three rules that lead to simulated flocking: velocity matching, collision
avoidance and flock centering Reynolds (1987). On the other perspective, the study on
MASs also provides insights for the related fields, leading to innovative developments in
the latter. A cornerstone of MAS control is the mathematical rigor where stability and
convergence analysis plays a central role, maybe an inheritance from Control Theory.
Although MAS Theory shares some analogies with other branches of natural sciences,
there exists some fundamental diversity. In natural sciences, methodological reductionism
plays a key role and has achieved great success, which attempts to explain entire systems
in terms of their elements. Reductionism assumes that the interactions among system
components (subsystems) are not essential and their effect is negligible. However, the
assumption failed to work for MASs. The goal of MAS study is to understand and exploit
the local interaction rules among its elements, from which a global behavior can emerge.
As a result, methodological reductionism becomes less useful for MAS study. Compared
with single agent control where there already exists interaction among several systems
components, e.g., control component and sensing component, MASs add another layer of
interactions at a higher level. How to understand and exploit these interactions is the
key to the success of MASs.

In many engineering fields, it is not unusual to see that multiple agents work coopera-
tively to accomplish a complex task. The examples include distributed reconfigurable
sensor networks, smart grids, space-based interferometers, distributed machine learning
and surveillance, combat, and reconnaissance systems. Although the problems arise
from different application domains, they share some fundamental characteristics. Firstly,
agents have simple communication, sensing, and computation capabilities and function
in a fully autonomously manner; secondly, there is not a central decision coordinator or
maker, and each agent makes its own decision by its local information, i.e., the system is
distributed. Today, the research scope of MASs is still expanding.

1.2.1 Examples of networked systems

Few examples extracted from Mesbahi and Egerstedt (2010) of such distributed and
networked systems in which the paradigm of MAS is crucial are reported hereafter.

Formation Flight

Distributed aerospace systems, such as fleets of autonomous rovers, formations of un-
manned aerial vehicles and multiple spacecraft, have been identified as a novel paradigm
for a large variety of applications. It is envisioned that distributed aerospace technologies
will allow for the implementation of a spatially distributed network of vehicles that coop-
erate toward a common collective scientific, military, or civilian target. These systems are
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of great interest since their distributed architecture promises a significant cost reduction
in their design, operation and manufacturing. Additionally, distributed aerospace systems
lead to higher degrees of scalability and adaptability in response to changes in the system
capabilities and mission specifications. An example of a multiple platform aerospace
system is space-borne optical interferometry. Space interferometers are distinguished
by their operational environment and composition. They are composed of separated
optical instruments, leading to a so-called sparse aperture. Although optical interfer-
ometers can, in principle, function on the earth’s surface, there are many advantages in
operating them in space. Space-borne interferometers have greater optical resolution
and sensitivity, wider field of view, and greater detection capability. The resolution of
these interferometers, compared with space telescopes (e.g. Hubble), depends on the
separation between the light collecting elements rather than their size. Consequently, as
the achievable imaging resolution of a space telescope is dictated by the size of the launch
vehicle and the complex deployment mechanism, advanced manufacturing techniques,
the capability of a space-borne optical interferometer is limited by how accurately the
operation of separated optical elements can be coordinated. These space-borne optical
interferometers can be mounted on a single large space structure, composed of rigid or
semirigid trusses or even inflatable membranes. In this case, the structural dynamics
of the spacecraft plays a crucial role in the operation and the success of the mission.
Another strategy is to fly the interferometer on multiple physically separated spacecraft,
namely, a distributed space system.
Another important set of applications of networked aerospace systems falls in the area of
unmanned aerial vehicles (UAVs) of various capabilities and scales. These vehicle systems
provide unique capabilities for a number of mission objectives, including surveillance,
mapping, synthetic aperture imaging, environmental monitoring and target detection.

Sensor Networks

A wireless sensor network consists of spatially distributed autonomous devices that
cooperatively monitor environmental or physical conditions, such as vibration, sound,
pressure or temperature. Each node in a sensor network is equipped with a wireless
communication device as well as an energy source – such as a battery – that requires to
be efficiently used. The cost, size, and fidelity of a single sensor node can vary greatly,
often in direct correspondence with its computational speed, energy usage and the ease
by which it can be integrated within the network. Each sensor exchanges information on
its local measurements with other network nodes in order to reach an accurate estimate
of the environmental or physical variable of interest. It is remarkable to notice that
the efficiency requirement on the utilization of the energy source for each sensor often
dictates a geometric pattern on the inter-node communication for the sensor network.

Nanosystems

In the last twenty years, there has been a surge of interest by material scientists in
organic compounds that are interconvertible via chemical reactions; this process is often
addressed as tautomerization. These chemical reactions can be used for building molecular
switches, where a molecule is governed between two or more stable states in a controlled
fashion. Other electronic components such as transistors and diodes can be made that
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rely on similar induced transitions between structural isomers. Such molecular devices
can then be put together, leading to the possibility of designing molecular networks,
circuits and, generally, molecular dynamic systems. For instance, a molecular switch
is a hydrogen tautomerization employed to manipulate and probe a naphthalocyanine
molecule via low-temperature scanning tunneling microscopy. The functionality and
properties of the corresponding molecular networks and machines are highly dependent
on the inter-molecular bonds that can generally be shaped by techniques such as electron
beam lithography and molecular beam epitaxy.

Social Networks

Social networks are comprised of social entities, such as organizations and individuals,
with a given set of interdependencies. The interaction between these entities can assume
a multitude of relations, such as informational, financial and social. Such networks are
of significant interest in a variety of areas, including organizational studies, theoretical
sociology and sociolinguistics. In fact, the structure of social networks has always been
of fundamental importance for understanding these networks. Recently, the notion of
manipulating the network architecture has been contemplated as a viable means of
altering the network behavior. For instance, the concept of a change agent refers to a
network entity that indirectly or intentionally accelerates or causes social, behavioral or
cultural change in the network.

Energy Networks

Large-scale complex energy systems, delivering mechanical and electrical energy from
generators to loads via an intricate distribution network, are among the most useful
engineered networked dynamic systems. These systems often consist of a heterogeneous
set of dynamic subsystems, such as switching logics and power electronics, that evolve
over multiple timescales. Dynamics, control and stability of individual power system
elements (e.g., synchronous machines) or their interconnections (e.g., multi-machine
models) have widely been examined in the literature. Nevertheless, as the need for more
efficient utilization and generation of energy has become prevalent, distributed network
structures, such as the smart grids, have gained particular relevance.

1.3 Structure of the manuscript

The remainder and comprehensive structure of this manuscript is organized as follows. In
Chap. 2, the general background, the theoretical methodologies and the contributions of
this work as well as the common thread in it are provided. Chapters 3, 4, 5, 6 represent
the thesis core since they report the predominant research studies carried out during the
PhD activity: further details about them are given in Sec. 2.3. Chap. 7 draws the general
conclusions and presents potential future works for the contents of this dissertation.
Finally, further supplementary material and a detailed appendix are reported in Chap.
A and Chap. B respectively.
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Networked Optimization for

Multi-Agent Systems
“Believe me when I say we have a difficult time ahead of us. But if

we are to be prepared for it, we must first shed our fear of it.”
Morpheus
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2.1 General background

In the recent decades, researchers have focused their attention in distributed multi-agent
networks composed by a large number of smart devices that can collaborate to achieve
a common target and are capable of taking local decisions independently, without any
supervisory framework. Although complex large-scale monitoring and control systems
are not new, as, for example, smart grids applications Gao, Xiao, Liu, Liang, and Chen
(2012) or urban traffic control Wang, Djahel, and McManis (2014), novel architectural
models are still emerging, as UAVs for multimedia delivery in industry Al-Turjman
and Alturjman (2018). The choice of multi-agent systems is motivated by the fact
that they can be supported by hierarchical developments, which has the considerable
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advantage to be relatively easy to be designed maintaining safety guarantees. However,
these systems require reliable actuators and sensors that are, generally, very expensive.
In addition, the potential adoption of a centralized approach has been extensively
proven to be a limitation for flexibility, scalability, adaptivity and maintenance Ge,
Yang, and Han (2017). The recent trend, indeed, encourages the substitution of costly
actuators, sensors and communication mechanisms with a larger number of devices
that can autonomously compensate potential failures and a high computational burden
through smart communication protocols and strong cooperation.

2.1.1 Foundations

As computer network become increasingly complex, the problem of allocating resources
within such networks, in a distributed fashion, will turn more and more into of a design
and implementation concern Brooks (2008). This is especially true where the allocation
involves distributed collections of resources with several degrees of utility that can satisfy
the desired allocation, and where this allocation process must be done in soft real-time.
The field of MASs has developed a large variety of methodologies for distributed resource
allocation. One application that highlights new issues in distributed resource allocation
is that involving the management of adaptive distributed sensor networks. Indeed,
distributed sensor networks are drawing growing attention within computer science and
beyond. In adaptive sensor networks, the communication resources, processing and
allocation of sensing, is dynamically regulated based on the phenomena that are occurring
in the environment so as to most effectively interpret those phenomena. For instance,
in such networks there may be diverse types of sensors, and sensor capabilities may
be dynamically adjustable, e.g., in terms of parameters such as what aspects of the
environment are sensed, the frequency and precision of sensing, and the nature of whatever
local processing is carried out prior to transmitting information. This distributed resource
allocation also has to resolve conflicting resource assignments that may occur when there
are multiple phenomena happening in the environment that require to be interpreted
currently.
To summarize, the foundations of multi-agent systems are deeply rooted in the focused
use of distributed architectures and advanced theoretical tools allowing their analysis,
design and implementation.

Centralized vs distributed architectures

Differently from centralized networks (see Fig. 2.1), distributed networks are not the
easiest to maintain since they have multiple point of failure. This is not the case of the
centralized architectures, which, in theory, are more prone to maintenance. On the other
hand, this is also its major drawback: the centralized architectures are very unstable,
since any problem that affects the central server can generate chaos throughout the
system. Nonetheless, the distributed architectures are more stable, by storing the totality
of the system information in a large number of nodes that maintain equal conditions
with each other. This same aspect is what gives distributed networks a higher level of
security, since to perform malicious attacks a large number of nodes should be struck at
the same time. As the information is distributed among the nodes of the network, if a
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legitimate change is made, this will be reflected in the rest of the nodes of the system
that will accept and verify the new information. On the other hand, if some illegitimate
variation is made, the rest of the nodes will be able to detect it and will not validate
this information. This consensus between nodes protects the network from deliberate
attacks or accidental changes of information. In addition, distributed systems have an
advantage over centralized systems in terms of network speed, since the information is not
stored in a central location a bottleneck is less likely. Indeed, whenever a large number of
people attempts to access a centralized server, waiting times slow down the system. Also,
centralized systems tend to exhibit scalability problems, since the capacity of the server
is limited and cannot support infinite traffic. Distributed systems have greater scalability,
due to the large number of nodes that support the network. Finally, in a distributed
network the extraction of any of the nodes would not disconnect from the network to
any other. All the nodes are connected to each other without necessarily having to
pass through one or several local centers. In this type of networks the center/periphery
division disappears and therefore the filtering capability over the information flowing
through it makes it a practical and efficient system.

Figure 2.1. Schematization of centralized and ditributed architectures.

Mobile multi-agent systems: combinatorial modeling

Distributed Coordination of multi-agent networks introduces problems, models, and
issues such as collective periodic motion coordination, collective tracking with a dynamic
leader, and containment control with multiple leaders, and explores ideas for their
solution. Solving these problems extends the existing application domains of multi-
agent networks; for example, collective periodic motion coordination is appropriate for
applications involving repetitive movements, collective tracking guarantees tracking of a
dynamic leader by multiple followers in the presence of reduced interaction and partial
measurements, and containment control enables maneuvering of multiple followers by
multiple leaders.
According to the existing literature, combinatorial tools are imperative to cope with

multi-agent systems, e.g. Graph Theory and Rigidity Theory. An n-agent system can be
modeled through a graph G = (V, E) so that each element in the nodes set V = {v1 . . . vn}
corresponds to an agent in the group, while the edge set E ⊆ V × V describes the agents
interactions (see also Sec. B.3 for further notions of Graph Theory). In the rest of
the thesis, it is assumed that G is undirected and that the set E depicts both agents
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visibility and communication capabilities, meaning that there exists eij = (vi, vj) ∈ E if
and only if the i-th and j-th agents can sense each other and are able to reciprocally
exchange information according to some predetermined communication protocol, as
illustrated in Fig. 2.2. The agents interplays are generally represented by the adjacency
matrix A. For each node vi in G, the neighborhood Ni represents the set of agents
interacting with the i-th agent. By convention, it holds that vi /∈ Ni and, whenever Ni
possesses any order, vj = [Ni]j is the j-th neighboring vertex of vi, for j = 1, ..., |Ni|.
The cardinality of Ni is the degree, deg(vi), of the i-th agent. This corresponds to the
i-th element in the main diagonal of the degree matrix D = diag(A1n) ∈ Rn×n, where
1n indicates a n-dimensional (column) vectors whose entries are all ones. The matrix
D in turn contributes to the definition of the Laplacian matrix, L = D −A ∈ Rn×n.
Other remarkable matrices, related to G, are represented by the normalized Laplacian
L = D−1/2AD−1/2 and the Randić matrix RRR = D−1/2AD−1/2. Lastly, depending on
the context, vertices and edges can be both weighted by positive real weights.

simply-connected, as we demonstrate through experimental
results in complex, indoor environments with obstacles.

We adopt a simplicial complex representation (in par-
ticular, a Rips complex) as the richer and more formal
description of the sensor coverage, without using metric
information, to solve the problem of deployment of robots
in an unknown environment without global localization.
The robots only have onboard sensors to measure bearings
to neighboring robots in their local coordinates and touch
sensors for collision avoidance. Such limited sensing data
essentially allows deployment of robots in a dark room, with
the robots using their camera to identify their neighbors by
illuminated (LED) markers on each other. Since our approach
is fundamentally topological, the proposed method is highly
robust to sensor noise. We attain complete sensor coverage
of the entire finite environment assuming sufficient number
of available robots, along with guarantees on coverage,
exploration and a notion of local optimality.
B. Problem Description

We consider the problem of efficiently exploring an un-
known indoor environment with a rapidly expanding swarm
of robots with limited and noisy local sensing with no global
localization or sensing capabilities. In particular, the only
sensory capabilities that we assume on each robot are those
of an omni-directional camera with a limited radial range
of vision and a touch sensor to detect contact/collision with
obstacles and other robots. We call the disk around a robot,
representing a sensing radius of the omni-directional camera,
the robot’s disk of visibility, within which the bearing to
the neighboring robots and their identities can be detected.
However, the camera does not provide a range measurement
due to projection of the spacial world on to the camera plane.
Thus, obstacles are detected through touch sensors near the
base of the robots, and cannot be detected using the camera.
The robots can also communicate with each other and with
a central router through wireless communication. The robots
are assumed to holonomic (i.e. can be driven in arbitrary
direction). We assume that there are sufficiently large number
of robots available, which are being deployed from one or
multiple sources (e.g. entrance to an environment).

The contribution of this paper is to design a distributable
control algorithm for the robots such that they deploy them-
selves to attain hole-less coverage of the entire environment
using their disks of visibility. That means, at least one
robot should be able to see each and every point in the
environment after the coverage is attained. However, the only
information that they have are the bearing to their neighbors
in their respective local coordinate frames and a directional
touch information with obstacles. This means that there is
absolutely no metric information available.

II. PRELIMINARIES
A. Notations

We denote by W ⊂ R2 the obstacle-free region where the
robots are being deployed and the sensor coverage of which
needs to be attained. If there are n robots deployed in W ,
we assign IDs to them, 1, 2, · · · , n, and represent their joint
configuration by X = [x1, x2, · · · , xn], xi ∈W .

Hole

Fig. 1. Illustration of a swarm of robots entering an environment and
attaining coverage. The hole shown on the right figure is something we
would like to avoid.

A robot, i, can measure the bearing to a neighbor, j ∈ Ni,
in its local coordinates, where Ni = {j | ‖xi−xj‖ ≤ rv} are
the neighbors of i. We call this measurement θij ∈ [−π, π).
If it measures the bearing to another robot, k as θik, then we
define θijk =

(
(θik − θij) mod 2π

)
−π — i.e., the bearing

to k relative to the bearing to j (and the angle converted to
a value in [−π, π)).

B. Vietoris–Rips Complex of Camera Sensing Footprints

We do not assume that the robots can localize themselves
and the only way of sensing/identifying neighbors is by
using the camera. Thus, if the disks of visibility of two
robots merely overlap, there is no way of detecting that fact
(Figure 2(a)). We need to use a stronger notion of overlap
— two robots know that their disks of visibility overlap if
and only if they are in each other’s disks of visibility and
their line of sight is not blocked (Figure 2(b)).

1 2

(a) Robots can’t see each other,
and hence have no way of de-
tecting that their disks of visi-
bility overlap.

1 2

(b) Robots can see each other, and
hence know that their disks of vis-
ibility overlap. Visibility is repre-
sented by the dotted magenta line.

Fig. 2. Detection of overlap of disks of visibility using only local visibility-
based sensing.

We can thus consider a simplicial complex [17] repre-
sentation of the free space that the camera footprints cover.
The description of the abstract simplicial complex goes as
follows (Figure 3): We add one 0-simplex to the complex for
every deployed robot in the environment (the 0-simplices are
identified by the robot IDs). A 1-simplex is added between
two 0-simplices if the corresponding robots are in each
other’s disk of visibility (i.e., are within distance of rv from
each other) and can see each other. A 2-simplex is added
to the complex for every 3-tuple of robots that can all see
each other (and hence their disks of visibility has a non-
empty intersection). We do not construct any 3 or higher
dimensional simplices since on a planar environment with
obstacles, we are only concerned with the H1 homology.
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Fig. 3. Nine robots, their disks of visibility and the corresponding abstract
simplicial complex, Rrv .

3409

(a) Agent interactions (b) Corresponding graph representation

Figure 2.2. A network of agents equipped with omnidirectional range sensor can be viewed
as a graph, with nodes corresponding to agents and edges to interconnections.
[Credits : Ramaithitima et al. (2015)]

2.1.2 A quick overview on optimization problems

Nowadays, the concept of optimization is now well rooted as a principle underlying the
analysis of many complex allocation or decision problems. It offers a certain degree of
philosophical elegance that is hard to dispute, and it often provides an indispensable
degree of operational simplicity. Using this optimization philosophy, one approaches a
complex decision problem, involving the selection of values for a number of interrelated
variables, by focusing attention on a single objective designed to quantify performance
and measure the quality of the decision. Such objective is minimized (or maximized,
depending on the context) subject to the constraints that may limit the selection of
decision variable values. If a suitable single aspect of a problem can be characterized by
an objective and isolated, be it speed or distance in a physical problem, loss or profit in a
business setting, social welfare in the context of government planning, or expected return
in the environment of risky investments, optimization may provide a suitable framework
for analysis.
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2.1 General background

In this paragraph, few elements for the understanding of the ideas that are necessary to
state and formalize interesting engineering problems for networked multi-agent systems
are provided. Classical paradigms of Mathematical Programming, such as Convex
Optimization or Combinatorial Optimization are introduced as well as Optimal Control
problems, in order to serve as a preliminary for the forthcoming multi-agent optimization
problems in the following chapters of this thesis.

Problem formalization in Mathematical Programming

Mathematical Programming is the selection of a best element (with regard to some
criterion) from some set of available alternatives. Optimization problems of sorts arise
in all quantitative disciplines from Computer Science and Engineering to Operations
Research and Economics, and the development of solution methods has been of interest
in mathematics for centuries. Many optimization problems can be classified, yet the
general Mathematical Programming problem, according to Luenberger and Ye (2008),
can be stated as

min
x

h(x) (2.1)

subject to cIi (x) ≤ 0, i = 1, . . . , nI
cEi (x) = 0, i = 1, . . . , nE
x ∈ X

where h(x) is a cost functional to be minimized in the variable x, cIi (x) is the i-th
inequality constraint, cEi (x) is the i-equality constraint and X is the feasibility set for x.
Whenever nI = 0 and nE = 0, i.e. no constraint is present, and X = RN , problem (2.1)
is said to be unconstrained.

Example 2.1.1 (Convex optimization problems).
Convex optimization problems can be characterized similarly to problem (2.1), assuming
that h(x), cI1(x), . . . , cInI (x) are convex functions, cE1 (x), . . . , cEnE (x) are linear affine
functions in x and X a convex set in RN .

Example 2.1.2 (Quadratic optimization problems).
Quadratic optimization problems can be characterized similarly to problem (2.1), assigning

h(x) = 1
2x>Qx + a>x, Q ∈ RN , a ∈ RN , (2.2)

assuming functions cI1(x), . . . , cInI (x) and cE1 (x), . . . , cEnE (x) are linear affine in x and
X = RN .

Example 2.1.3 (Combinatorial optimization problems).
Combinatorial optimization problems can be characterized similarly to problem (2.1),
assuming h(x) = h(x0,x) for a given x0 belonging to the set of instances I ⊆ RN , and
x = x(x0) ∈ X(x0) where X(x0) is the finite feasibility set induced by instance x0.
Frequently, X(x0) is a discrete set, e.g. it is a subset of ZN or NN . Function h(x0,x) is
then optimized over x.
For each problem of this kind, there is a corresponding decision problem that asks whether
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there is a feasible solution for some particular measure h(x0,x). For instance, let G be a
graph which contains vertices vi and vj . A combinatorial optimization problem might be
“find a path from vi to vj that uses the fewest edges”.

Optimal Control problems

Optimal Control problems are particular optimization problems in which the main focus
is to find a control law for a dynamic system over a period of time such that an objective
function is optimized. It has numerous applications in both science and engineering.
For example, the dynamic system might be a spacecraft with controls corresponding
to rocket thrusters, and the objective might be to reach the moon with minimum fuel
expenditure Luenberger (1979). Or the dynamic system could be a nation’s economy,
with the objective to minimize unemployment; the controls in this case could be fiscal
and monetary policy. In this paragraph, a concise formalization of classical Optimal
control problems is provided. Further details can be found in Fornasini (2013); Vinter
(2010).

Firstly, the dynamics of the generic system with state x ∈ RNS and input u ∈ RNI

ẋ(τ) = f(x(τ),u(τ)) (2.3)

is considered, together with its initial condition

x(0) = x0. (2.4)

It is assumed that f is sufficiently smooth, e.g. C 2 in (x,u) and C 0 in τ , and instantaneous
values of the input u belong, by the nature of the problem or by conditions that have to
be satisfied by the control variables, to an assigned set U of RNI :

u ∈ U ⊂ RNI , ∀τ. (2.5)

Secondly, assuming that there exists an input u(·) satisfying (2.5), the control problem
under analysis is to seek u(·), acting on the time interval [0, T ], such that it minimizes1

the objective functional

h(x(·),u(·)) = m(x(T )) +
∫ T

0
l(x(τ),u(τ), τ)dτ. (2.6)

Functional (2.6) identifies:

• a specific trajectory of the state x(·), that substituted along with u(·) in the
arguments of the instantaneous cost l, determines the incremental values and the
amount of the integral;

• a specific final state x(T ) and, with it, the final cost m.

To conclude this brief premise, cost (2.6) can be interpreted as a functional defined on the
set of admissible input functions u(·) and the set of the state trajectories x(·). Therefore,

1Analogously, one can consider the opposite problem, i.e. the objective maximization. This is solved by
means of the same techniques here illustrated, either changing sign conventions while defining (2.6) or
using the antithetical Pontryagin’s Minimum Principle.
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this can be seen as the minimization problem of functional (2.6) subject to the condition
that x(·) and u(·) are constrained by (2.3) and (2.4).

2.1.3 Motivations, application examples and new perspectives

According to Xie and Liu (2017), modeling and computation tasks are becoming much
more complex as their size continues to increase. As a result, it is laborious and difficult
to handle them using centralized methods. Although motivations to apply multi-agent
systems for researchers from various disciplines are different, the major advantages of
using multi-agent technologies include:

1. individuals take into account the application-specific nature and environment;

2. local interactions between individuals can be modeled and investigated;

3. difficulties in modeling and computation are organized as sublayers and/or compo-
nents.

Therefore, multi-agent systems provide a good solution to distributed control as a
computational paradigm.
In the forthcoming discussion, some of the most classic applications of multi-agent

systems to cooperative tasks are provided and analyzed, with a point of view focused
on Optimization Theory. In particular, well established topics as Voronoi partitions for
Robotic Coverage Control, graph theoretic methods related to agreement protocols, linear
consensus algorithms for Distributed Estimation and design of artificial-potential control
laws for agent formations are introduced together with relevant application examples,
allowing for a mathematical formalism based on optimization problems. To this end, the
key elements to achieve such cooperative tasks are properly synthesized into constrained
or unconstrained cost functionals obtained by the specific requirements of the problem
under analysis. Also, few strategies to tackle the minimization of these task-oriented
costs are proposed and debated.

Robotic Coverage Control

The coverage problem concerns ensuring that a collection of mobile robots are placed in
such a way that the area under consideration is completely covered by sensors, that is, such
that each location in the area is seen by at least one sensor. Applications that demand
this task include exploring a confined space for search and rescue Dornhege, Kleiner,
Hertle, and Kolling (2016); Vijay Kumar, Rus, and Sanjiv Singh (2004), deploying wireless
coverage Liu, Chin, Yang, and He (2019), and scouting for urban combat Mclurkin and
Smith (2004). Once distributed, the swarm may be largely stationary, as in the cases
above, or may attempt to move dynamically as an aggregate. Coverage techniques are
generally relevant for exchanging information in the presence of controlled interconnected
dynamic systems Antonelli (2013). Typically, approaches to this problem require local
coordinate information, such as distance and angle to neighbors or relative heading (see,
for example, Cortes, Martinez, Karatas, and Bullo (2004) and Olfati-Saber (2006)). In
the forthcoming lines, the concept of Voronoi tessellations is introduced along with a
procedure that leads to the accomplishment of an optimal surface subdivision, known
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as Lloyd’s algorithm (see also Du, Faber, and Gunzburger (1999) and Mesbahi and
Egerstedt (2010) for further details).

Given a closed set Ω ⊆ R2, the collection of closed sets {Ωi}ni=1 is called a tessellation
of Ω if Ωi ∩ Ωj = ∅ for i 6= j and

⋃n
i=1 Ωi = Ω. The interpretation here is that Ωi is the

region in Ω that agent i is responsible for, addressed as the i-agent dominance region.
Let ‖·‖2 denote the Euclidean norm on R2. Given a set of points {pi}ni=1 belonging to Ω
and denoting with Ω the tessellation {Ωi}ni=1, the following local cost coverage functional
can be defined:

hΩ(p1, . . . ,pn,Ω) =
n∑
i=1

∫
Ωi
‖ω − pi‖22 dω =

∫
Ω
‖ω − pi‖22dω. (2.7)

The interpretation of functional (2.7) is that it divides the space Ω into the dominance
regions Ωi, and then parametrizes how well these regions are covered by the agents, with
the coverage quality (how well agent in pi can sense the point ω) degrading quadratically
as a function of ‖ω − pi‖2.
Intuitively, it makes sense to simplify the problem of minimizing (2.7) over points pi,

i = 1, . . . , n, and Ω̂ by assuming that Ω̂ is the Voronoi partition of Ω, that is, Ω̂ = {Ω̂i}ni=1,
where the i-th Voronoi tessellation Ω̂i corresponding to the point pi is defined by

Ω̂i =
{
ω ∈ Ω | ‖ω − pi‖2 ≤ ‖ω − pj‖2 , for j = 1, ..., n, j 6= i

}
. (2.8)

In this formulation, the locational optimization problem is in the form of minimizing

hΩ̂(p1, . . . ,pn) =
∫

Ω
min

i∈{1,...,n}
‖ω − pi‖22 dω (2.9)

Depending on the application, there exist many different names for Voronoi regions,
including, for instance, Dirichlet regions, area of influence polygons, Meijering cells,
Thiessen polygons, and S-mosaics (see Fig. 2.3).

(a) Euclidean-based partition (b) Manhattan-based partition

Figure 2.3. Two Voronoi diagrams attained by partitioning the space Ω with different criteria:
(a) Voronoi partition obtained with functional 2.9, using the Euclidean norm ‖·‖2.
(b) Similar Voronoi partition obtained by substituting the Manhattan norm ‖·‖1 to
‖·‖2 in the definition of 2.9.

Given a density function fρ : Ω → R defined in Ω, the mass centroid pc,i of Ωi is
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2.1 General background

defined by

pc,i =
∫

Ωi ωfρ(ω)dω∫
Ωi fρ(ω)dω . (2.10)

Thus, for the n given points {pi}ni=1, it is possible to construct their associated Voronoi
tessellations {Ω̂i}ni=1. On the other hand, given the tessellations {Ω̂i}ni=1, it is possible to
define their mass centroids {pc,i}ni=1. Problem (2.9) suggests, indeed, that the optimal
solution for the Voronoi partition is achieved when condition

pi = pc,i, i = 1, ..., n (2.11)

holds, i.e., the points pi that serve as generators for the Voronoi tessellations Ω̂i, are
themselves the mass centroids of those regions. This situation is quite special since, in
general, arbitrarily chosen points in R2 are not the centroids of their associated Voronoi
tessellations. As shown in Fig. 2.4, these particular regions are, in a general framework,
polytopes (see Subsec. B.1.1) and possess correspondent dual tessellations (in R2, the
Delaunay triangulations).

(a) Delaunay triangulation (b) Voronoi partition

Figure 2.4. (a) The Delaunay triangulation with all the circumcircles and their centers, in blue.
(b) Connecting the centers of the circumcircles produces the Voronoi partition, in
blue.

One may ask, how to obtain Voronoi tessellations. Consider the following problem:
given

• a two-dimensional Euclidean closed space Ω ⊂ R2,

• n generators pi ∈ Ωi ⊆ Ω representing the n positions of the agents to be deployed,

• the density function fρ : Ω→ R,

find

• n regions Ω̂i that tessellate Ω, such that {Ω̂i}ni=1 are the correspondent Voronoi
tessellation for {pi}ni=1,

• n points pc,i ∈ Ω, such that {pc,i}ni=1 are the mass centroid of {Ω̂i}ni=1.
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pc,1 pc,2

pc,1

pc,2

Figure 2.5. Two centroidal Voronoi tessellations of a square. The points pc,1 and pc,2 are the
centroids of the rectangles on the left or of the triangles on the right.

The solution of this problem is in general not unique. For example, consider the case
of n = 2, with Ω ⊂ R2 a square, and fρ,i = 1, for all i = 1, . . . , n. Two solutions are
depicted in Fig. 2.5; others may be obtained through rotations.

Now, a deterministic approach for the determination of centroidal Voronoi tessellations
of a given set, known as Lloyd’s algorithm, is briefly illustrated and discussed. Given a
set Ω, a positive integer n, and a probability density function fρ defined on Ω,

1. select an initial set of n points {pi}ni=1, e.g., by using a Monte Carlo method;

2. construct the Voronoi tessellation {Ω̂i}ni=1 of Ω associated with the points {pi}ni=1;

3. compute the mass centroids {pc,i}ni=1 of the Voronoi regions {Ω̂i}ni=1 found in step
2; these centroids {pc,i}ni=1 are the new set of points w.r.t. {pi}ni=1.

4. If this new set of points meets some convergence criterion, terminate; otherwise,
return to step 2.

Defining pc =
[
p>c,1, . . . ,p>c,n

]>
, Lloyd’s algorithm can be seen as an equilibrium for the

algebraic differential equation

pc,i(t+ 1) =
∫

Ωi(pc(t))ωfρ(ω)dω∫
Ωi(pc(t)) fρ(ω)dω . (2.12)

Agreement protocols

According to Mesbahi and Egerstedt (2010), agreement is one of the fundamental protocol
problems in multi-agent coordination, where a group of agents are to agree on a joint
state value. Agreement among the processes in a distributed system is a fundamental
requirement for a wide range of applications: whether to commit a transaction to a
database, agreeing on the identity of a leader, atomic broadcasts and state machine
replication. The real world applications include state estimation Li, Wang, Wei, Ma, Hu,
and Ding (2015), clock synchronization Swain and Hansdah (2015), PageRank Brin and
Page (2017), opinion formation Kouvaros and Lomuscio (2016); Parsegov, Proskurnikov,
Tempo, and Friedkin (2015), smart power grids Camarinha-Matos (2016), control of
UAVs (and multiple robots/agents in general) Chmaj and Selvaraj (2015), load balancing
Amelina, Fradkov, Jiang, and Vergados (2015), blockchain Zheng, Xie, Dai, Chen, and
Wang (2017) and others. Many forms of coordination require the processes to exchange
information to negotiate with one another and eventually reach a common understanding
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or agreement, before taking application-specific actions.
Consider a situation where a group of sensors are to measure the temperature of a given
area. Although the temperature measured by each sensor will vary according to its
location, it is required that the sensor group – using an information sharing network
– agree on a single value that represents the temperature of the surface. For this, the
collection of sensors needs a protocol over the network, allowing it to achieve consensus
on what the common sensor measurement value should be.
The importance of the agreement protocol is twofold. On one hand, agreement has a
close relation to a host of multi-agent problems such as swarming, attitude alignment,
rendezvous, flocking and distributed estimation. On the other hand, this protocol
provides a concise formalism for examining means by which the network topology dictates
properties of the dynamic process evolving over it.

The agreement protocol involves n dynamic units, labeled 1, 2, . . . , n, interconnected
via relative information-exchange links. The rate of change of each unit’s state is assumed
to be governed by the sum of its relative states w.r.t. a subset of other (neighboring)
units. In the time-invariant continuous linear case, denoting the scalar state of unit i as
xi ∈ R, one has

ẋi(τ) =
∑
j∈Ni

(xj(τ)− xi(τ)), i = 1, . . . , n, (2.13)

where Ni is the set of units adjacent to, or neighboring, unit i in the network. When the
adopted notion of adjacency is symmetric (see Subsec. B.3.1), the overall system can be
represented by

ẋ(τ) = −Lx(τ) (2.14)

where the positive semidefinite matrix L is the Laplacian of the agents’ interaction
network G and x(τ) =

[
x1(τ), . . . , xn(τ)

]>
∈ Rn. Equation (2.14) is addressed as the

agreement dynamics. If xi is a vector in RM , with M > 1, one can still obtain a compact
description of (2.14), which is provided by

ẋ(τ) = −(IM ⊗ L)x(τ) (2.15)

where x(τ) =
[
x1(τ)>, . . . ,xn(τ)>

]>
∈ RN , with N = Mn, IM being the identity matrix

of dimension M and ⊗ denoting the Kronecker product operator2. Therefore, in this
paragraph, it is assumed, w.l.o.g., that M = 1.
As such a state of agreement is of great interest, a formal definition of this notion is
yielded by

Definition 2.1.4 (Agreement set).
The agreement set A ⊆ Rn is the subspace span{1n}, that is,

A = {x ∈ Rn|xi = xj , for all i, j}. (2.16)

It is worth to notice that a vector x? belongs to the agreement set A if and only if x?

2Recall that the Kronecker product has a lower priority w.r.t. the matrix or vector multiplication.
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is a minimizer of the cost function

hA(x) = 1
2x>Lx = 1

4

n∑
i=1

∑
j∈Ni

(xi − xj)2. (2.17)

This, undoubtedly, provides an important optimization viewpoint of the agreement
problem. Furthermore, another relevant observation can be made, since the agreement
set A also represents the set of equilibria for the consensus dynamics described by (2.14).
Indeed, all these crucial aspects belonging to the agreement protocol connect Optimization
issues to concepts related to System Theory, Control Theory and Graph Theory, forming
and indissoluble bond. The most remarkable fact confirming the previous statement is
expressed in the following theorem.

Theorem 2.1.5 (Convergence of the consensus dynamics).
For an undirected connected graph G = (V, E), the state trajectory generated by dynamics
in (2.14) with initial condition x(0) = x0 ∈ Rn satisfies

lim
τ→+∞

x(τ) = 1n1
>
n

1>n1n
x0 = x? (2.18)

with a rate of convergence dictated by the algebraic connectivity λL
1 of G, i.e. the smallest

nonzero eigenvalue of the Laplacian L associated to G (see also Subsec. B.3.2).

Nevertheless, it is imperative to recall that Theorem 2.1.5 actually represents just
a little piece of a bigger picture: in general, agreement protocols can be applied to a
larger class of problems, e.g. involving a discrete-time dynamics, a nonlinear dynamics,
time-variant weighted graphs, directed graphs or nondeterministic models. In conclusion,
to justify this approach to reality, it is provided a well-known example in which the
synchronization of several coupled oscillators takes place.

Example 2.1.6 (Coupled oscillators and the Kuramoto model).
According to Dörfler and Bullo (2014), a network of n oscillators (see Fig. 2.6) can be
represented by a weighted, undirected, and connected graph G = (V, E), where V and
E denote the set of oscillators (nodes) and edges (inter-agent forces), respectively. The
weighted adjacency matrix A of G can be exploited to capture the forces aij = [A]ij ≥ 0
between each couple of oscillators (i, j). Let S1 be the unit radius circle. The i-th oscillator
phase is denoted by the angle θi ∈ S1, whose dynamics evolve as a heterogeneous system:

θ̇i = ωn,i −
n∑
j=1

aij sin(θi − θj), i = 1, . . . , n. (2.19)

Assuming that all inter-agent forces aij are uniform, namely aij = Ksync/n for all i, j,
Kuramoto showed that synchronization occurs in model (2.19) if the coupling gain Ksync

exceeds a certain threshold Kcritical function of the distribution of the natural frequencies
ωn,i (Kuramoto (1975)). Dynamics (2.19) with uniform weights are nowadays known as
the Kuramoto model of coupled oscillators, and Kuramoto’s original work initiated a
broad stream of research.
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 הפקולטה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Coupled Oscillators

Figure 2.6. 32 Metronome Synchronization
[Credits : https://www.youtube.com/watch?v=5v5eBf2KwF8]

Distributed Estimation via linear consensus algorithms

Estimation theory is a truth-seeking endeavor; it is the scientific means of designing
processes by which a static or dynamic variable of interest can be uncovered by processing
noisy signal processing and control.

According to Garin and Schenato (2010), in the past decades, it has been witnessed
the growth of engineering systems composed by a large number of devices that can
communicate and cooperate to achieve a common goal. Although complex large-scale
monitoring and control systems are not new, as for example nuclear plants and air
traffic control, a new architectural paradigm is emerging, mainly due to the adoption
of smart agents. In fact, traditional large-scale systems have a centralized or at best a
hierarchical architecture, which has the advantage to be relatively easy to be designed
and has safety guarantees. However, these systems require very reliable sensors and
actuators, are generally very expensive, and do not scale well due to communication and
computation limitations. The recent trend to avoid these problems is to substitute costly
sensors, actuators and communication systems with a larger number of devices that
can autonomously compensate potential failures and computation limitations through
communication and cooperation. Although very promising, this new paradigm brings
new problems into the picture. In particular, there are only few tools for predicting the
global behavior of the system as a whole starting from the local sensing and control
rules adopted by the smart sensors and actuators. As a consequence, there has been
a strong effort in past years by many engineering as to develop such tools. One of the
most promising tools are the linear consensus algorithms, which are simple distributed
algorithms which require only minimal computation, communication and synchronization
to compute averages of local quantities that reside in each device. These algorithms have
their roots in the analysis of Markov chains Seneta (2006) and have been deeply studied
within the computer science community for load balancing Muthukrishnan, Ghosh, and
Schultz (1998); Tsitsiklis and Athans (1984) and within the linear algebra community
for the asynchronous solution of linear systems Frommer and Szyld (2000); Strikwerda
(2002).
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Let us consider the following linear and discrete time consensus protocol:

x(t+ 1) = F(t)x(t), x(0) = x0 (2.20)

where x(t) =
[
x1(t) · · · xn(t)

]>
∈ Rn and, for all t, F(t) ∈ Rn×n is a stochastic matrix,

i.e. [F(t)]ij = fij(t) ≥ 0 and
∑n
j=1 fij(t) = 1,∀i,∀t, i.e. each row sums to unity. For some

applications, it may be also required for F(t) to be a doubly stochastic matrix, namely,
both F(t) and F(t)> be stochastic.
As in the previous paragraph, it is worth to note that this model involves scalar states
xi, for i = 1, . . . , n, that can potentially be extended to their vector versions xi ∈ RM ,
such that the total dimension of the whole state x(t) =

[
x1(t)> · · · xn(t)>

]>
∈ RN be

N = Mn. Let also fij 6= 0 only if the i-the vertex vi ∈ V of an undirected or directed
graph G = (V, E) can receive information from the j-the vertex vj ∈ V, that is, the edge
eij belongs to E . Suppose that all the agents communicate synchronously3 and that the
transmissions among them are reliable.
Assuming all entries fij to be constant over the time, the standard consensus algorithm
works as follows.

1. At time t = 0 node vi initializes the state xi(0) to its observation x0,i.

2. At iteration t each node vi receives the estimate xj(t) from all its neighbors vj ∈ Ni.

3. Based on the received information, node vi updates state xi as

xi(t+ 1) = fiixi(t) +
∑
vj∈Ni

fijxj(t). (2.21)

To analyze the properties of (2.20), the interested reader is referred to the insightful
preliminaries given in Sec. B.2, for which the following theorem represents a theoretical
endpoint.

Theorem 2.1.7 (Consensus dynamics).
If a constant row-stochastic matrix F ∈ Rn×n has an associated graph that is connected
and aperiodic, i.e. F is primitive, then, for t ∈ N, one has

(i) limt→+∞Ft = υF
0 1
>
n , where υF

0 is positive and F>υF
0 = υF

0 , 1>nυF
0 = 1;

(ii) the solution to (2.20), with F(t) constant, satisfies

lim
t→+∞

x(t) = (υF
0 1
>
n )x0; (2.22)

and the rate of semi-convergence is yielded by the essential spectral radius λF =
max
|λF
i |<1
|λF
i | of F, namely the second largest eigenvalue (in modulus) of F belonging

to the interior of the unit circle.

If additionally F ∈ Rn×n is doubly stochastic, then
3However, in practice, it may be very expensive (in terms of communication overhead) or even impossible
(with very large networks) to guarantee synchrony. To overcome these issues, many asynchronous
consensus protocols have been developed, e.g. the broadcast asymmetric protocol or the gossip
symmetric protocol Aysal, Yildiz, Sarwate, and Scaglione (2009).
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(i) limt→+∞Ft = υF
0 1
>
n = 1n1

>
n

1>n1n
;

(ii) the solution to (2.20), with F(t) constant, satisfies

lim
t→+∞

x(t) = (υF
0 1
>
n )x0 = 1n1

>
n

1>n1n
x0 = avg(x0)1n; (2.23)

where agv is the average operator that computes the mean of all the components of
its vector argument.

It is worth to note that the gist of stochasticity plays a crucial role in Theorem
2.1.7, since all the convergence results depend on this peculiar property. Moreover,
doubly stochastic matrices are the key to fulfill the so-called average consensus, i.e. the
convergence of the state toward the average of the given initial condition. To achieve the
latter configuration for F several techniques are available, e.g. the well-known design of
F based on Metropolis-Hastings weights defined as

fij = 1
1 + max(deg(vi),deg(vj))

, for i 6= j

fii = 1−
∑
j∈Ni

fij , otherwise.
(2.24)

It is also remarkable to highlight the profound connection between that the agreement
protocol in (2.14) and the time evolution given by (2.20). It is possible to monitor the
progress of the agreement dynamics (2.14) at Ts > 0 time intervals,

x(t+ Ts) = e−TsLx(t), t = kTs, k ∈ N. (2.25)

To motivate this statement, the following proposition from Mesbahi and Egerstedt (2010)
is reported.

Proposition 2.1.8.
For all graphs G with n nodes and sampling intervals Ts, one has

e−TsL1n = 1n and e−TsL ≥ 0; (2.26)

that is, for all G and Ts > 0, e−TsL is a stochastic matrix. In fact, the right and left
eigenvectors of e−TsL are those of L ∈ Rn×n, respectively, associated with eigenvalues
eTsλL

i , for i = 0, . . . , n− 1.

Lastly, to give a rough idea of the importance of Consensus Theory, a final example of
network design based on agreement dynamics is proposed in the following lines.

Example 2.1.9 (Camera network calibration).
Consider a distributed planar camera network of n = 3 digital cameras, each measuring
a bearing angle xi(τ), for i = 1, . . . , n, and forming a connected undirected graph
G = (V, E ,W) weighted as in Fig. 2.7 by the real constants f̄12, f̄13 > 0.
In order to accomplish an initial balanced calibration among cameras, the agreement

protocol
ẋi(τ) =

∑
vj∈Ni

f̄ij(xj(τ)− xi(τ)), ∀i, j = 1, . . . , n (2.27)
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v1

v2
v3

f̄12

f̄13

Figure 2.7. Patrolling system made of 3 cameras v1, v2, v3 ∈ V. Thick arrows depict the
information exchange between a pair of cameras, while dashed lines denote the
reference for bearing angles for each element of the system.

can, in principle, be exploited to compute the distributed average of the current angles.
However, since the measurements are taken digitally, it is reasonable to assume that the
evolution of the i-th consensus is yielded by the discrete-time model

xi(t+ Ts) = xi(t) + Ts
∑
vj∈Ni

f̄ij(xj(t)− xi(t)) (2.28)

for sufficiently small sample intervals Ts > 0. Rewriting the dynamics in (2.28), one
obtains

x(t+ Ts) = Fx(t), F =

1− Tsf̄12 − Tsf̄13 Tsf̄12 Tsf̄13
Tsf̄12 1− Tsf̄12 0
Tsf̄13 0 1− Tsf̄13

 . (2.29)

Therefore, weights f̄12, f̄13 and sampling interval Ts can be chosen, for instance, trying to
maximize the rate of convergence of the relative dynamics, i.e. solving in practice

(f̄?12, f̄?13, T
?
s ) = arg min

{f̄12 ,̄f13,Ts}
λF (2.30)

subject to F ∈ stoc(R)
Ts > 0,

where λF is the essential spectral radius of F (see Sec. B.2). The solution to (2.30)
is quite trivial: it yields the spectrum Λ(F) = {−0.5, 0.5, 1}, and thus λF = 0.5, for
f̄?12 = f̄?13 = (2T ?s )−1 and any sampling time T ?s > 0.
To conclude, it is worth to underline that optimization techniques do not only recur
during the analysis phase, as mentioned in the previous paragraphs to describe coverage or
agreement topics, but it also arises while design. Indeed, in the design phase, optimization
can play a key role to achieve the best possible performances (as well as stability and
robustness for the system), e.g. in problem (2.30).

Artificial-potential-based Formation Control

According to Hernández-Martínez and Aranda-Bricaire (2011), motion coordination,
specifically formation control, is an important research area of mobile multi-agent systems
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Yang Quan Chen and Zhongmin Wang (2005). The main goal is to coordinate a group
of mobile agents or robots to achieve a desired formation pattern avoiding inter-agent
collisions at the same time.
The formation strategies are decentralized because it is assumed that every agent measures
the position of a certain subset of agents and, eventually, it detects the position of other
agents when a minimal allowed distance is violated and collision danger appears. Thus,
the main intention is to achieve desired global behaviors through local interactions. Also,
the decentralized approaches offer greater autonomy for the robots, less computational
load in control implementations and its applicability to large scale groups. Authors of
Desai (2002); Muhammad and Egerstedt (2005) proposed that the possible inter-agent
communications and the desired relative position of every agent w.r.t. the others can be
represented by a Formation Graph (FG). The application of different FG’s to the same
group of robots produces different dynamics on the team behavior. In the literature,
some special FG topologies are chosen and the convergence to the desired formation and
noncollision is analyzed for any number of robots.
A decentralized formation strategy must comply with two fundamental requirements
(Cao, Fukunaga, and Kahng (1997)):

1. global convergence to the desired formation;

2. inter-agent collision avoidance.

The standard methodology of Artificial Potential Functions consists in applying the
negative gradient of a mixture of Attractive (APF) and Repulsive Potential Functions
(RPF) as control inputs to satisfy the convergence and noncollision properties. The APFs
are designed according the desired inter-agent distances and steer all agents to the desired
formation. The RPFs are based on functions of the distance of a pair of agents. In a
decentralized noncollision strategy, a local RPF tends to infinity when two agents collide
and vanishes smoothly until the minimal allowed distance is reached. A control law based
on APFs only guarantees the global convergence to the formation pattern. However
inter-robot collision can occur. The addition of RPFs guarantees the noncollision.
Formation control schemes can be mainly classified into two categories. First, the

behavior-based schemes come from the study of animal behaviors where the agents are
formed following simple behavior rules, as maintaining a distance between neighbors,
swarm intelligence and self-organization, aggregation, flocks, hunter-prey system. This
scheme considers to all agents with the same sensing capacities and generally converges to
formation patterns without a specific position for every agent (e.g. the Voronoi partition
obtained in (2.11)). The second scheme is related to model-based behaviors or emergent
behaviors on the context of FGs. Some tools of Combinatorial Theory and Linear Systems
Theory are used to analyze the closed-loop system (see Sec. B.2 on Linear Spectral
Theory, Sec. B.3 on Graph Theory and, in particular, Sec. B.4 on Rigidity Theory (RT)).
Because of significant interest to this work, an example involving the latter approach
about FGs is illustrated in the following lines.

Example 2.1.10 (Formation stabilization of a simple integrator).
Given a framework (G,p) representing the formation graph G = (V, E) of n agents with
positions p =

[
p>1 . . . p>n

]>
∈ RN such that p1, . . . ,pn ∈ RM , it is required to achieve
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a desired geometric configuration

AF =
{
p ∈ RN : ‖pi − pj‖2 = dij , ∀eij ∈ E

}
(2.31)

in which dij represent the desired inter-agent distance between vertex i and vertex j.
Set in (2.31) is expressed by means of the relative distances pi−pj , i.e. the displacement
vectors ek = eij = pi − pj ordered as k = 1, . . . , E = |E|, and represents an affine
agreement set for the formation task. Let us define the formation potential

U(p) = 1
4

E∑
k=1

(‖ek‖22 − d
2
k)2 = 1

4

E∑
k=1

σ2
k =

∥∥∥∥rG(p)− 1
2d2

∥∥∥∥2

2
, (2.32)

where rG(p) is the rigidity function (defined in Sec. B.4), σk = e>k ek − d2
k is the k-th

additive potential and d2 is the ordered vector whose components are the squared desired
distances d2

k. In order to control the velocities of the n agents, the dynamics yielded by
the gradient system

ṗ = −∇U(p) (2.33)

can be exploited Anderson (2011); Krick, Broucke, and Francis (2009) and, consequently,
attain the formation goal

lim
τ→+∞

‖pi − pj‖2 = dij , ∀eij ∈ E . (2.34)

It is worth to notice that the gradient dynamics in (2.33) can be rewritten as

ṗ = −1
2

E∑
k=1

∂σk
∂p σk = −R(p)>σk = −R(p)>R(p)p −R(p)>d (2.35)

highlighting the fact that it shares many of the aspects belonging to a state-dependent
weighted agreement protocol. Observation in (2.35) allows to prove the stability and the
convergence of the gradient dynamics in (2.33), assuming that the formation potential in
(2.32) is a Lyapunov function. Indeed, denoting with σ =

[
σ1 · · · σE

]>
∈ RE in which

each component of σ preserves the same order for the displacement vectors, one obtains

d

dτ
U(p) = −σ>R(p)>R(p)σ ≤ 0 (2.36)

where R(p) ∈ RE×N is the rigidity matrix (defined in Sec. B.4) associated to framework
(G,p) and N = Mn. This results tells that if the rigidity matrix has full row rank then
the distributed distance-based formation control law converges (locally4) to set (2.31).
It is also remarkable to prove that the convergence is exponential, since, leveraging the
Min-max Theorem (see Sec. B.2),

d

dτ
U(p) = −σ

>R(p)>R(p)σ
1
4σ
>σ

U(p) ≤ −4λR
MINR(p)>R(p)U(p) (2.37)

4See also Sec. B.4 for a short panoramic on the differences between infinitesimal rigidity, related to the
local convergence of the formation, and global rigidity.
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where λR
MIN is the smallest nonzero eigenvalue of R(p), also known as the rigidity

eigenvalue. Again, in this example an optimization perspective can be given, since the
formation goal can be, in principle, accomplished by the design of control law based on
the potential (2.32), which represents the cost to be minimized.

Looking ahead

Research on multi-agent systems is mainly focused on system architecture, consensus
algorithm, distributed optimization, and software tools for simulation and implementation.
Agent technologies are crucial now and will continue to evolve in the future. To this end,
some interesting contributions that are displayed in the forthcoming chapters can be,
indeed, denoted by

1. the extension of distributed approaches to dynamic coverage problems in unknown
environments and in a framework with limited sensing capabilities,

2. the application of theoretical methods for multi-agent systems and Trajectory
Optimization to steer a swarm of robots taking into account various specifications
that exhibit trade-off aspects,

3. the distributed estimation from noisy relative measurements provided by a network
by means of highly performing iterative algorithms,

4. the deep mathematical investigation of specific case studies for a networked group
of agents (e.g. a surveillance camera network designed with a specific topological
pattern).

To conclude this section, it is worth to reaffirm that all the methodologies presented so
far are composed of well established theoretical concepts, since they give the possibility
to accomplish significant results in practice. On the other hand, in the following section,
further methods that may sometimes seem apparently disconnected to the application
examples illustrated will be introduced: new perspectives will be given in order to broaden
the capability of investigation and fulfill novel challenging goals.

2.2 Theoretical methodologies

In this section, the general research strategy that outlines the way in which this research
has been undertaken and identifies the methods used is expounded. Methods discussed
in this methodology description define the means or modes of data collection and how
a specific result is calculated. Specifically, the modality of application of the following
methods is debated for the accomplishment of the thesis purposes:

• analysis and synthesis of feedback systems, used to capture, interpret, model and
understand the general behavior of a group of elements and design the technology
by which a process or procedure is performed with minimal human assistance;

• Swarm-Robotics-oriented strategies, employed when the main focus of a project is
directed towards the coordination of multiple robots as a system which consists of
large numbers of mostly simple physical robots;

25



2 Networked Optimization for Multi-Agent Systems

• graph-based motion planning and clustering, adopted when a robot (or a group
of entities that locate in close geographical proximity) has to determine its own
position in its reference frame and then to plan a path towards some goal location;

• iterative methods for Optimization, exploited to generate a sequence of improving
approximate solutions, starting from an initial guess, for a disparate class of
optimization problems.

The complex of this techniques represents a large set of useful tools to cope with the
mathematical issues and challenges explained in Sec. 2.1.

2.2.1 Analysis and synthesis of feedback systems

A system is a group of interacting or interrelated entities that form a unified whole. It
is delineated by its spatial and temporal boundaries, surrounded and influenced by its
environment, described by its structure and purpose and expressed in its functioning. A
feedback system is a system based on feedback loops, i.e. actions that occur when the
outputs of the system are routed back as inputs as part of a chain of cause-and-effect
that forms a circuit. Feedback systems are designed to perform well under significant
uncertainties in the system and environment for extended periods of time, and they must
be able to compensate for significant failures without external intervention. Examples
of feedback systems can be yielded by a group of controlled Unmanned Aerial Vehicles
(UAVs), a driven mechanical pendulum or an electronic circuit.

In the following lines, some important preliminaries addressing the analysis and
synthesis of feedback systems are provided.

A System Theory perspective

System Theory is the interdisciplinary study of systems. According to Fornasini (2013),
in the analysis framework, the most immediate goal is the evaluation of the dynamic
behavior of the system consequent to the choice of initial state and the input functions, or
to the variation of one or more characteristic parameters of the adopted model. Whereas,
once completed an analysis phase, the obtained results are utilized to proceed towards
the input signal synthesis, which corresponds to a desired trajectory of the state and the
output.

To translate this methodology into practice, the construction of mathematical models
is essential, since these have the ability to provide a description of a system using
mathematical language. The leanings to apply analytical techniques, not only in the
study of natural phenomena or technological processes but also in subjects that have
been historically tackled in a qualitative fashion, has broaden the range of problems that
are studied leveraging mathematical methodologies.
The mathematical language is less rich than commonly spoken languages; however the
recourse to abstract systems and their formalized language is crucial whenever one wants
to effectuate an analysis leading to quantifiable results and whenever, in a synthesis
framework, one wants to compare the effects of different control and management
strategies. Furthermore, the construction process of a mathematical model does not only

26



2.2 Theoretical methodologies

have interest from the final-result point of view, but also in the intermediate stages of
study and clarification for the phenomenon under examination.

Typically, the dynamics of autonomous systems is represented by means of state-space
models. A state-space representation is a mathematical model of a physical system as a
set of input, output and state variables related by first-order differential equations (for
continuous quantities) or difference equations (for discrete quantities), e.g. system in
(2.3)-(2.4). State variables are variables whose values evolve through time in a way that
depends on the values they have at any given time and also depends on the externally
imposed values of input variables. Output variables’ values depend on the values of
the state variables. To conclude, the “state space” is the Euclidean space in which the
variables on the axes are the state variables. The state of the system can be represented
as a vector within that space. To abstract from the number of inputs, outputs and states,
these variables are expressed as vectors. Additionally, if the dynamic system is linear,
time-invariant, and finite-dimensional, then the differential and algebraic equations may
be written in matrix form.

State feedback and general control goals

Often, the design of input signals is based on the analysis of a phenomenon called feedback:
the latter represents the capability of a dynamic system to take into account output
results in order to modify features and attributes of the system itself. To implement
feedback loops on an feedback system, the design of feedback controllers is crucial.
According to Nerode and Kohn (1992), a feedback controller or closed-loop controller is a
system that interacts with another system called plant corresponding to a pre-established
configuration. Whereas, in an open-loop controller, also called a non-feedback controller,
the control action from the controller is independent of the state of the plant (see Fig.
2.8). The function of any controller is to drive the overall system, composed of the
plant and the controller, to a possibly time varying condition, called the goal, while
exhibiting a behavior that satisfies stated requirements and constraints in the presence
of environmental, structural, and knowledge uncertainties.

Every feedback controller is characterized by a mapping whose domain is the Cartesian
product of the goal and sensor data spaces and whose range is the space of feasible
actions. Here, the word space has a generic sense, implying a set of elements together
with associated algebraic, topological and measure structures. This mapping is referred
to as the control law, e.g. (2.5). The control law is thus a recipe for processing in real
time sensor and goal data, and generating action commands to the plant so that the
system satisfies the given requirements.
Usually, there are three fundamental aspects to be taken into account while designing
a control law: stability, performances and robustness. A system is said to be stable,
if its state and output are under control, i.e. if they can be driven accordingly to the
given purpose without causing any ungovernable, risky or dangerous behavior. Obviously,
stability represents the most important requirement for feedback systems; nevertheless,
performances and robustness make a relevant difference in real life applications. Good
performances are attained when all the control goals are achieved w.r.t. a certain physical
quantity, e.g. when the settling time specification is respected. Whereas, robustness
is obtained if the control law is able to achieve the given specifications even in case of
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Figure 2.8. Different control interconnection strategies. (a) Closed-loop control. The output
out is fed back and compared with the reference signal ref to obtain the error err.
The latter is then used to compute the input in through the controller. Finally, the
input governs the plant to achieve the goal. (b) Open-loop control. The reference
signal is directly used to compute the input that governs the plant. No error is
taken into consideration.

model uncertainties, presence of faults, usage of noisy sensor/actuator measurements or
different operating conditions for the system. Finally, to give a concrete idea of these
essential concepts, an illustrative example is proposed below.

Example 2.2.1 (Design of control laws for simple cases).
Given the discrete linear system Σϑ parametrized by ϑ ∈ (1, 2) with state x ∈ R2, input
u ∈ R, output y ∈ R2

Σϑ :

x(t+ 1) = Aϑx(t) + Bu(t)
y(t) = Cx(t)

=


x(t+ 1) =

−0.5 0
0 ϑ

x(t) +

1
1

u(t)

y(t) =

1 0
0 −1

x(t)

(2.38)
and assuming familiarity with the System Theory, it is briefly shown how to design

(i) an output feedback control law uR that stabilizes Σϑ such that uR guarantees
robustness to variations in ϑ;

(ii) an output feedback control law uP that stabilizes Σϑ such that uP ensures the best
convergence performance, provided that ϑ is known.

A generic output feedback control law u for a linear system Σ = (A,B,C), in which
A, B and C are the update, input and output matrices respectively, is such that
u = u(x) = Ky = KCx, where x and y are the state and the output respectively. In
order to solve both problems (i) and (ii), it is useful to compute the feedback update
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matrix, i.e.

Aϑ + BKC =
[
−0.5 +K1 −K2

K1 ϑ−K2

]
, K =

[
K1 K2

]
. (2.39)

Then, to accomplish task (i), whose goal is to achieve stability and robustness for the
system, one may trivially choose uR = KRy such that

KR,1 = 0, KR,2 = 1.5, (2.40)

from the information given by (2.39). On the other hand, to attain task (ii), whose
goal is to achieve stability and optimal performances provided that ϑ is now known, the
analysis of the characteristic polynomial of (2.39)

∆(λ) = λ2 + (K1 −K2 + ϑ− 0.5)λ+ (ϑK1 + 0.5K2 − 0.5ϑ) (2.41)

leads to a deadbeat controller uP = KPy such that

KP,1 = 0.25
0.5 + ϑ

, KP,2 = ϑ2

0.5 + ϑ
, (2.42)

by imposing ∆(λ) = λ2.
In this basic example, the role of spectral allocation is highlighted. The leitmotiv of

control law design for a (discrete5) time-invariant linear system Σ = (A,B,C) is indeed
the task-oriented placement of the zeros of the characteristic polynomial, which coincide
with the poles of the (discrete) transfer function

W(z) = C(zIN −A)−1B ∈ RN×N . (2.43)

Sensitivity analysis to parameter variations

The controller parameters are typically matched to the plant characteristics and since
the plant may change, it is important that they are chosen in such a way that the closed
loop system is not sensitive to variations in the plant dynamics.
Denoting with W(z, ϑ) the closed-loop transfer function of a generic6 system Σϑ that
is parametrized by ϑ ∈ R, the sensitivity to parameter variations of Σϑ w.r.t. ϑ can be
quantified as

Sϑ(z) = ∂ ln (det [W(z, ϑ)])
∂ ln(ϑ) . (2.44)

Applying differentiation rules and dividing by ϑ, definition (2.44) yields

S̄ϑ(z) = tr
[
W(z, ϑ)−>∂W(z, ϑ)

∂ϑ

]
, (2.45)

where tr[·] denotes the trace operator. Remarkably, (2.45) can be interpreted as the
multivariate generalization of the classic relative sensitivity function J. and M. (2008) for

5These concepts also apply in the continuous framework, replacing the Z-transform by the Laplace
transform and using common sense.

6Discrete and time-invariant, for the purposes of this thesis.
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a scalar version W (z, ϑ) of transfer function W(z, ϑ), since, for a small increment ∆ϑ of
parameter ϑ, one has the first order Taylor approximation

W (z, ϑ+ ∆ϑ) 'W (z, ϑ) + ∂W (z, ϑ)
∂ϑ

∆ϑ = W (z, ϑ)
(
1 + S̄ϑ(z)∆ϑ

)
. (2.46)

Hence, the modulus of (2.45) provides a normalized indicator that measures the robustness
of system Σϑ. In formulas, if |S̄ϑ(z)| tends to 0 for a fixed z then variations of ϑ do not
influence the response of Σϑ at that frequency. Furthermore, relative sensitivity in (2.45)
is also related to the precision of the frequency response of Σϑ at steady state conditions:
S̄ϑ(1) = 0 holds7 if and only if the perturbed system Σϑ+∆ϑ described by W (z, ϑ+ ∆ϑ)
maintains the same step response of the nominal system Σϑ.

Derivation of optimal control laws

Optimal Control is an extension of the Calculus of Variations (CV), and is a mathematical
optimization method for deriving control policies Sargent (2000), namely, it can be seen
as a control strategy in Control Theory. The method is largely due to the work of Lev
Pontryagin and Richard Bellman in the 1950s, after contributions to CV (see also Sec.
B.5) by Edward J. McShane Bryson (1996). In the following lines, the importance of
the Pontryagin’s Minimum Principle and the role of Trajectory Optimization to derive
control laws is highlighted and briefly discussed (more details can be found in Fornasini
(2013); Vinter (2010) and Rao (2014), respectively).

Theorem 2.2.2 (Pontryagin’s Minimum Principle - restricted version8).
Assume that the input function u(·), subject to condition u(τ) ∈ U ⊆ RNI , ∀τ ∈ [0, T ],
represents the optimal control that minimizes the objective (2.6) for (2.3)-(2.4).
Let x(·) ∈ X ⊆ RNS be the correspondent state trajectory and λ(·) : [0, T ] → RNS a
function9 such that u(·), x(·) and λ(·) satisfy

dx(τ)
dτ

= f(x(τ),u(τ)), (2.47)

x(0) = x0; (2.48)

−λ̇(τ)> = λ(τ)>∂f(x(τ),u(τ))
∂x

+ ∂l(x(τ),u(τ), τ)
∂x

, (2.49)

λ(T )> = ∂m(x(T ))
∂x

. (2.50)

Therefore, the Hamiltonian function

H(λ,x,u) = λ>f(x,u) + l(x,u, τ) (2.51)

satisfies, for all τ ∈ [0, T ] and for all ū ∈ U , the inequality

H(λ(τ),x(τ), ū) ≤ H(λ(τ),x(τ),u(τ)). (2.52)
7S̄ϑ(0) = 0 for continuous-time systems.
8The most general version of Pontryagin’s Minimum Principle applies to (almost) any possible objective
functional and choice of constraints. However, a treatise on the general version would require a much
longer discussion, falling outside the thesis purposes.

9Components of λ are usually called generalized Lagrange multipliers.
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The analysis of Theorem 2.2.2 represents a valuable starting point to understand
how Optimal Control problem can be generally tackled. The discussion begins from
the definition of the Hamiltonian function in (2.51) and the optimization w.r.t. the
augmented objective

ĥ = h(x(·),u(·))−
∫ T

0
λ(τ)> [ẋ(τ)− f(x(τ),u(τ))] dτ (2.53)

= m(x(T )) +
∫ T

0

[
H(λ(τ),x(τ),u(τ))− λ(τ)>ẋ(τ)

]
dτ. (2.54)

It is worth to note that ĥ = h whenever x(·) and u(·) satisfy (2.3)-(2.4). By using a
variational approach, the first order variation δĥ of (2.53)-(2.54) is given by

δĥ = δm(x(T )) +
∫ T

0
δ
[
H(λ(τ),x(τ),u(τ))− λ(τ)>ẋ(τ)

]
dτ (2.55)

'
(
∂m(x(T ))

∂x − λ(T )>
)
δx(T ) +

∫ T

0

[
λ̇(τ)> + λ(τ)>∂f(x(τ),u(τ))

∂x

]
δx(τ)dτ

(2.56)

+ λ(0)>δx(0) +
∫ T

0
[H(λ(τ),x(τ), ū)−H(λ(τ),x(τ),u(τ))] δx(τ)dτ (2.57)

where symbol ' addresses the assumption that ‖δx(·)‖ is sufficiently small. Hence,
optimality condition δĥ = 0 can be satisfied leveraging the state equation (2.47)-(2.48),
which can be written as ẋ(τ) = ∇λH(λ(τ),x(τ),u(τ))

x(0) = x0
, (2.58)

the adjoint (or costate) equation (2.49)-(2.50), which can be written asλ̇(τ) = −∇xH(λ(τ),x(τ),u(τ))
λ(T ) = ∇xm(x(T ))

, (2.59)

and, lastly, exploiting inequality (2.52). Variables u(·), x(·) and λ(·) are considered
unknown for the 2NS scalar equations yielded by (2.58)-(2.59). Furthermore, inequality
(2.52) leads to the remaining NI algebraic equations obtained by imposing the optimal
control equation

0n = ∇uH(λ(τ),x(τ),u(τ)), (2.60)

which can be exploited if a solution ū(·) belongs to the interior of U (see Subsec. B.1.1).
Assuming that an optimal input ū(·) ∈ int(U) yielded by equation (2.60) satisfies

∂2H(λ(τ),x(τ), ū)
∂u2 � 0, for all τ ∈ [0, T ], (2.61)

is a sufficient condition to affirm that ū verifies the so-called Minimum Principle, i.e. ū
minimizes the Hamiltonian function:

min
u∈U

H(λ(τ),x(τ),u(τ)) = H(λ(τ),x(τ), ū). (2.62)
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This can be justified by the fact that, if (2.62) holds, then the last term in (2.57) is
negative, indicating that the variation δĥ is also negative10, meaning that ū decreases
the value of h. In other words, assuming by contradiction that ū imply

H(λ(τ),x(τ), ū) > H(λ(τ),x(τ),u(τ)), (2.63)

it follows that the values assumed by functional h for the optimal input ū are greater of
those for a generic input u, violating the hypothesis that ū minimizes h.

Example 2.2.3 (Time-Invariant Linear Quadratic Optimal Control).
Time-Invariant Linear Quadratic (TILQ) optimal control problems can be described as
an application of Theorem 2.2.2 to objectives defined in (2.6) whenever those are written
as the quadratic costs

l(x,u) = a>x + b>u + 1
2x>Qx + 1

2u>Ru + x>Su, Q � 0, R � 0; (2.64)

m(x(T )) = r>1 x(T ) + 1
2x(T )>P1x(T ), P1 � 0; (2.65)

and are subject to a linear dynamics

ẋ = Ax + Bu, x(0) = x0; (2.66)

in which x ∈ RNS and u ∈ RNI represent the state and input, respectively.
The Hamiltonian related to this control problem is given by

H(λ,x,u) = λ>(Ax + Bu) + a>x + b>u + 1
2x>Qx + 1

2u>Ru + x>Su; (2.67)

therefore, the optimal control equation in (2.60) yields an optimal input of the form

ū = −R−1(S>x + B>λ+ b). (2.68)

Also, resorting to the state and adjoint equations in (2.58)-(2.59) and assuming u = ū,
one obtains

ẋ
λ̇

 =

A−BR−1S> −BR−1B
SR−1S> −Q SR−1B> −A>

x
λ

+

 −BR−1b
SR−1b− a

x(0)
λ(T )

 =

 x0

P1x(T ) + r1

 (2.69)

Now, the solution to this problem rests upon the key idea that the overall Hamiltonian
boundary-value problem (HBVP) in (2.69) can be tackled exploiting the linearity of the
dynamics, that is solving backwards the following differential equation[

x(τ)
λ(τ)

]
=
[

INS
P(τ)

]
x(τ) +

[
0NS
r(τ)

]
, P(T ) = P1, r(T ) = r1 (2.70)

for x(T ) fixed, where P ∈ RNS×NS is an unknown symmetric matrix and r ∈ RNS is an
10δx(0) = 0 since x(0) is fixed.
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unknown affine vector. Combining the differential equations in (2.69) with those in (2.70)
and assigning K := R−1(S> + B>P), it is possible to derive the first order optimality
condition related to this problem

∀x :
[
Ṗ + (A−BR−1S>)>P + P(A−BR−1S>)−K>RK + Q

]
x+

ṙ + (A−BK)>r−K>r + a = 0NS . (2.71)

Remarkably, the two terms located at the different lines in (2.71) can be distinguished.
In particular, for (2.71) to hold, it is sufficient that the term in the squared brackets
be arranged into a Riccati equation, such that, with the same value for K, both the
differential equations

− Ṗ = (A−BR−1S>)>P + P(A−BR−1S>)−K>RK + Q (2.72)

and
− ṙ = (A−BK)>r−K>r + a (2.73)

hold independently, since r is assumed to be affine w.r.t. x.
In practice, one exploits optimality conditions (2.72)-(2.73) to obtain the optimal control
input ū in the following steps:

1. find the solution11 Po(·) that solves the Riccati equation in (2.72) backwards in
time, assuming Po(T ) = P1;

2. compute the optimal feedback gain Ko := R−1(S> + B>Po);

3. solve backward in time equation (2.73), assuming r(T ) = r1 and using Ko, to find
the solution ro(·);

4. lastly, from (2.68), the optimal control input is yielded by

ū = −Kox−R−1(B>ro + b). (2.74)

To conclude, it is worth to notice that the second order sufficient condition in (2.61) is
satisfied in this framework since

∀(x,u) : ∂2H
∂u2 = R � 0; (2.75)

hence, input ū has to be consider a minimizer for the correspondent objective.

On the other hand, if none of the solution ū provided by (2.60) and verifying (2.61)
belongs to int(U), a procedure of general validity to satisfy (2.62) does not exist.
To face the latter issue, Trajectory Optimization may help when full closed-loop

solutions are either impossible or impractical. Trajectory Optimization (TO) is a process
where it is desired to determine the path and the corresponding input (control) to
a dynamic system that meet specified constraints on the system while optimizing a
specified performance index. Generally speaking, trajectory optimization is a technique
for computing an open-loop solution to an optimal control problem. Although the idea
11It can be shown that this solution it exists unique and, as expected, is symmetric.
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of trajectory optimization has been around for hundreds of years (CV, brachystochrone
problem), it only became practical for real-world problems with the advent of the computer.
Many of the original applications of TO were in the aerospace industry, computing rocket
and missile launch trajectories. Because complexity of modern applications has increased
tremendously as compared to applications of the past, methods for TO continue to evolve
and the discipline is becoming increasingly relevant in a wide range of subject including
virtually all branches of engineering, economics, and medicine.

As a result of the complexity of most applications, optimal trajectories are typically
generated using numerical methods. Numerical methods for TO are divided into two
major classes: indirect methods and direct methods. In an indirect method, the first-order
optimality conditions from variational calculus are employed. The TO problem is then
converted into a multiple-point HBVP, as shown in (2.69). The HBVP is then solved
numerically to determine candidate optimal trajectories called extremals. Each extremal
solution of the HBVP is then examined to see if it is a local minimum, maximum, or
a saddle point, and the extremal with the lowest cost is chosen. In a direct method,
the state and/or control of the original TO problem is approximated by parameterizing
the state and/or the control and the TO problem is transcribed to a finite-dimensional
nonlinear programming problem (NLP), as illustrated in (2.1). The NLP is then solved
using well known optimization techniques.

2.2.2 Swarm-Robotics-oriented strategies

The concept of swarm intelligence is based on the collective social behaviour of decen-
tralized body, either natural or artificial like ant, fish, bird, bee etc. Swarm intelligence
has gained very high priority among the researchers from different fields like commerce,
science and engineering. Multiple editions of swarm intelligence’s techniques made it
suitable for optimization problems.
Swarm intelligence, is composed by three main principles: evaluation, comparing and
imitation SinghPal and Sharma (2013). Evaluation is able to identify what is positive
or negative in nature. Learning won’t happen unless beings are capable of evaluate the
attractive and repulsive characteristics of the environment. In comparison, living beings
compare themselves with other beings as results of these comparisons may become a
motivation to learning and/or modification. Imitation is an effective form of learning.
Swarm-Robotics-oriented strategies can be exploited in order to accomplish complex

tasks as coverage or formation flocking in a distributed fashion. In this paragraph,
few tools to accomplish robotic coverage, as the hexagonal packing policy Chang and
Wang (2010) and the Simplicial Complex Theory Hatcher (2002); Nakahara (2003), are
introduced.

Hexagonal-packing-based policies

In Geometry, circle packing addresses the study of circles arrangement on the plane
such that no overlapping occurs. This can be seen as the two-dimensional analog of
Kepler’s sphere packing problem proposed in 1611. A circle configuration referring to
the centers of circles is a collection of points such that the distance between any two
points in the collection is equal to or greater than twice the common radius. Imagine
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filling a wide container with small circles with the same radius inside. The density of the
arrangement is provided the ratio between the area of the container that is taken up by
the circles and the area of the container itself. In order to maximize the number of circles
in the container, one has to find a distribution with the highest possible density, so that
the circles are packed together as closely as possible. Therefore, the density of a circle
configuration is the asymptotic limit on density with the container getting larger and
larger. In 1773, Lagrange showed that the minimal density is π/

√
12 under the hypothesis

that the circle structures are lattices. Furthermore, in 1831, Gauss demonstrated that the
minimal density of a 3-dimensional sphere packing is π/

√
18 under the hypothesis that

the sphere structures are lattices. Without the lattice assumption, the first proof of circle
packing problem was conceived by Axel Thue. Nevertheless, it is generally considered
that Thue’s original proof was incomplete and that the first exhaustive demonstration of
this evidence was developed by L. F. Toth (1940). Later, several various proofs were also
suggested by Segre and Mahler, Davenport, and Hsiang. On the other hand, leveraging
Delaunay triangulations, it is possible to show that the density of a Delaunay triangle
is less than or equal to π/

√
12. This implies that the density of the union of any finite

Delaunay triangles in a saturated circle configuration is also less than or equal to π/
√

12.
Therefore, a simple proof of Thue’s theorem can be obtained as follows.

Theorem 2.2.4 (Thue’s hexagonal packing).
The hexagonal lattice pattern depicted in Fig. 2.9 is π/

√
12 and it is the densest of all

possible circle packings.

Figure 2.9. Identical circles in a hexagonal packing arrangement, the densest packing possible.

To conclude, Theorem 2.2.4 states that the regular hexagonal packing is the densest
circle packing in the plane, yielding that the density of this circle configuration is almost
90.7%: this relevant fact can be adopted as a fundamental paradigm to develop efficient
coverage algorithms in which the sensor capabilities of robots are established by maximum
sensing radii.

Simplicial-complex-based tools

Simplices are an interesting topic of algebraic topology due to their combinatorial nature.
Their main advantage is to provide a good way for representing topological structures
in computers. As shown in Fig. 2.10, first few low dimensional simplices have their
own names: 0-simplex, 1-simplex, 2-simplex and 3-simplex are also called vertex, edge,
triangle and tetrahedron, respectively. Along with the concept of simplex, also the gist

35



2 Networked Optimization for Multi-Agent Systems

of simplicial complex and abstract simplicial complex should be considered. A simplicial
complex is defined as a collection of simplices; whereas, abstract simplicial complexes
can be imagined as the highest generalization of simplicial complexes.

Figure 2.10. From left to right show a vertex, an edge, a triangle and a tetrahedron.

An important contribution to achieve an hexagonal packing in some coverage algorithm
is undoubtedly yielded by the Vietoris-Rips complex, i.e. abstract simplicial complexes
that take into account some metric allowing a maximum distance among its elements (see
Subsec. B.1.2 for more formal definitions and technicalities). A Vietoris-Rips complex can
be constructed from the relative abstract simplicial complex by using a paradigm called
“Two-phase construction” Zomorodian (2010). The description of this method, illustrated
only graphically in Fig. 2.11, lies outside the purpose of this introduction. However,
to provide a useful preliminary for the following chapters, it is worth to underline the
relation between a Vietoris-Rips complex and its corresponding 1-skeleton by means of
the so-called neighborhood graph.

Figure 2.11. Construction of the Vietoris-Rips complex in a 3D space. In the first phase, a set
of input points (on the left) is processed to obtain the neighborhood graph (in
the middle). In the second phase, the 1-skeleton represented by the neighborhood
graph is dimensionally expanded until it reaches the desired Vietoris-Rips complex
(on the right).

The neighborhood graph (G, fw) is characterized by the undirected graph G = (V, E) and
a weighting function fw : E −→ R defined on its edges. The 1-skeleton of the VR complex
exactly coincides with its neighborhood graph. In particular, given an abstract simplicial
complex AS(κ) with n points V(AS(κ)) belonging to X = Rκ and the maximum diameter
`X > 0, the 1-skeleton of the Vietoris-Rips complex on AS(κ) is a neighborhood graph
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(G`X (AS(κ)), fw), where G`X (S(κ)) = (V(AS(κ)), E`X (AS(κ))) is such that

E`X (AS(κ)) =
{
{vi, vj} |dist(vi, vj) ≤ `X , vi 6= vj ∈ V(AS(κ))

}
; (2.76)

fw({vi, vj}) = dist(vi, vj), ∀eij ∈ E`X (AS(κ)). (2.77)

Lastly, for the second phase of the construction, Lem. B.3.46 on the path length given by
the powers of the adjacency matrix can be used to pinpoint basic simplicial structures.

2.2.3 Graph-based motion planning and clustering

A topological map is a graph-based representation of the environment. Each node
corresponds to a characteristic feature or zone of the environment, and can be associated
with an action, such as turning, crossing a door, stopping, or going straight ahead. Usually,
there are no absolute distances, nor references to any coordinate frame to measure space.
This kind of maps are suitable for long distance qualitative navigation, and specially for
path planning. In general, they do not explicitly represent free space so that obstacles
must be detected and avoided on line by other means. Topological maps are simple
and compact, take up less computer memory, and consequently speed up computational
navigation processes Bonin-Font, Ortiz, and Oliver (2008). In addition, the selection of
environmental features also plays a fundamental role since it helps in understanding data
and reducing computation burden, improving the prediction performances Chandrashekar
and Sahin (2014).
In the following lines, few concepts and tools to perform robotic navigation are

introduced. Specifically, this paragraph gives a brief introduction on greedy algorithms
for navigation Kamon, Rivlin, and Rimon (1996) and edge expansion techniques Chung
(1997), providing also a nice insight on spectral clustering algorithms Peng, Sun, and
Zanetti (2014).

Greedy algorithms for navigation

A greedy algorithm is a simple, intuitive algorithm that is used in optimization problems.
In these kinds of algorithms the optimal choice is made at each step as the greedy
procedure attempts to find the overall optimal way to solve the entire problem. Greedy
algorithms take all of the data in a particular problem, and then set a rule for which
elements to add to the solution at each step of the algorithm. If both of the properties
below are true, a greedy algorithm can be used to solve the problem.

• Greedy choice property: a global (overall) optimal solution can be reached by
choosing the optimal choice at each step.

• Optimal substructure: a problem has an optimal substructure if an optimal solution
to the entire problem contains the optimal solutions to the sub-problems.

In other words, greedy algorithms work on problems for which it is true that, at every
step, there is a choice that is optimal for the problem up to that step, and after the last
step, the algorithm produces the optimal solution of the complete problem.
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To make a greedy algorithm, it is required to identify an optimal substructure or sub-
problem in the problem. Then, determine what the solution will include (for example,
the largest sum). Finally, create some sort of iterative way to go through all of the
sub-problems and build a solution.

In many circumstances, greedy algorithms can be useful to robotic navigation problems.
To cite and give an insight of the most famous case, namely the search of a shortest path
in a graph, the following example is provided.

Example 2.2.5 (Shortest path in a graph).
Thinking of a mobile agent that is navigating in a Euclidean space, a graph G = (V, E)
may represent an appropriate tool to model the possible discretized locations and routes
in which the robot can move. In order to navigate across two points in the space, i.e.
two vertices vi and vj in V, the agent has to walk along a path πij and hence, generally,
one is interested at finding a shortest path π?ij between vi and vj , provided that each
edge ek ∈ E is endowed with a positive weight |ek|, representing a distance. Therefore,
indicating with `W (πij) the total length of a path πij weighted once by |ek|, for each ek
crossed, the following optimization problem can be set: compute π?ij such that

π?ij = min `W (πij) = min
∑

ek∈πij
|ek|. (2.78)

Problem (2.78) can be solved exploiting the well known Dijkstra’s algorithm. An
explanation of this procedure can be found in Goodrich and Tamassia (2011) but it is not
proposed in the following lines, since it falls outside the thesis purposes. However, the
key idea of edge relaxation in Dijkstra’s algorithm is highlighted here to underline how
a greedy paradigm acts. Assume that vi and vj are the source and destinations nodes
respectively. Let also dist(vk0 , vk1) = `W (πk0k1) be the weighted distance between two
adjacent vertices vk0 ∈ V and vk1 ∈ V and D(t)

ik a variable storing the length of the best
path from the source vi to vk ∈ V found until iteration t. The edge relaxation can be
summarized as

if D(t)
ik0

+ dist(vk0 , vk1) < D(t)
ik1

then

D(t+1)
ik1

← D(t)
ik0

+ dist(vk0 , vk1)

It is worth to observe that the edge relaxation takes place only locally (among two adjacent
vertices vk0 and vk1), representing the core of the greedy procedure. Nevertheless, it can
be proven that this leads to achieve an optimal solution for problem (2.78), meaning that
a greedy approach is globally optimal in this case.

Edge expansion techniques for partitioning

Partitioning a graph into two or more pieces is one of the most fundamental problems in
combinatorial optimization, and has comprehensive applications in various disciplines
of computer science. One of the most studied graph partitioning problems is the edge
expansion problem, i.e. finding a cut with few crossing edges normalized by the size of
the smaller side of the cut.
Given a vertex-weighted graph Gv = (V, E ,Wv) and its subgraph GS = (VS , ES),
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consider the following isoperimetric quantity:

hS(GS) = |∂ES |
volv(GS) (2.79)

where ∂ES and volv(·) are the cut of G induced by GS and the vertex-weighted volume
respectively (see Subsec. B.3.1 for formal definitions and details). Intuitively, for a “good
clustering” according to the balanced cut criterion one should look for a bipartition
{GS ,GS} of G

v such that

(i) hS(GS) and hS(GS) are both small

(ii) hG(GS) = hS(GS) + hS(GS) is small

It is worth to note that: (i) can be formulated as the following optimization problem

find GS such that h∂G = min
VS⊆V

max
{
hS(GS), hS(GS)

}
= min
VS⊆V

hConG (GS) (2.80)

whereas (ii) can be formulated as the following one

find GS such that hG = min
VS⊆V

hG(GS). (2.81)

These minimization problems are known to be NP-hard Matula and Shahrokhi (1990).
However, one can show that it is possible to partition a graph in κ components exploiting
the eigenvectors corresponding to the first κ eigenvalues of the Laplacian matrix Lee,
Gharan, and Trevisan (2014). This result allows to obtain partitions that are almost
optimal w.r.t. the balanced cut criterion. Alg. 1 provides a general procedure in order
to accomplish an (almost) optimal partition of an undirected graph G = (V, E) into two
subgraphs GS = (VS , ES), GS = (VS , ES).

Algorithm 1 Spectral method to partition a graph into two clusters
Input: Connected graph G and associated Laplacian L
Output: Subgraphs

{
GS ,GS

}
1: Choose the vertex weighting measure Wv for G
2: Compute λL

1 (the smallest non-zero eigenvalue of L) and the associated eigenvector ω
3: Define VS = {vi ∈ V|[ω]i ≥ 0}
4: Partition the the vertex set V according to VS and V \ VS
5: Check the performance of the partition using Cheeger’s inequalities (B.26)

Example 2.2.6 (Partition of a graph into two subgraphs).
Consider the graph G = (V, E) in Fig. 2.12. The eigenvectors of the Laplacian of G
associated to λL

1 ' 0.3983 are proportional to
[
0.4929 0.2966 0.4929 −0.3560 −0.3560 −0.3560 −0.2142

]>
. (2.82)

Alg. 1 can be also implemented by means of the normalized Laplacian L = D−1/2LD−1/2

instead of the Laplacian and checking inequalities (B.27) at the end of it. The eigenvectors
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of the normalized Laplacian of G associated to λL
1 ' 0.1597 are proportional to

[
0.4883 0.4071 0.4883 −0.3260 −0.3260 −0.3260 −0.1961

]>
. (2.83)

Both the expressions (2.82)-(2.83) exhibit component signs suggesting that the best
partition for V is yielded by VS = {1, 2, 3} and VS = {4, 5, 6, 7}, as shown in Fig. 2.12.
Approximating12 hChG = 1/3, hConG = 1/6 and hG = 1/4, one can be easily see that
Cheeger’s inequalities (B.26)-(B.27) are satisfied and, therefore, the chosen partition is a
good candidate to be optimal according to the balance cut criterion.

G

GS GS

1

2

3

4

5

6

7

Figure 2.12. Graph partitioning of G into GS and GS , according to Alg. 1.

2.2.4 Iterative methods for Optimization

The search algorithms can be broadly classified into two types: (1) direct search algorithm
and (2) indirect search algorithm. A direct search algorithm for numerical search
optimization depends on the objective function only through ranking a countable set of
function values. It does not involve the partial derivatives of the function and hence it is
also called nongradient or zeroth order method. Whereas, indirect search algorithm, also
called the descent method, depends on the first (first-order methods) and often second
derivatives (second-order methods) of the objective function. In this paragraph, few basic
indirect search algorithms, as the class of iterative descent methods for Optimization
Kelley (1999), are introduced. Moreover, addressing the methods that can be exploited
to solve distributed Convex Optimization problems, the Proximal Point algorithm Parikh
and Boyd (2014) applied to separable cost functions, is discussed.

Classic descent algorithms

An iterative method is a mathematical procedure that uses an initial guess to generate
a sequence of improving approximate solutions for a class of problems, in which the
approximation at iteration t is derived from the previous ones. A specific implementation
of an iterative method, including the termination criteria, is an algorithm of the iterative
method. An iterative method is called convergent if the corresponding sequence converges
for given initial approximations.
12Actually, this values are not only obtained by partitioning G as in Fig. 2.12, but also represent the

effective quantities, in this example.
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Iterative descent methods for Optimization are founded on first and second order
necessary and sufficient conditions to minimize a given function h : RN → R ∪ {+∞}.
The latter conditions are provided in the following theorems.

Theorem 2.2.7 (First and second order necessary conditions for optimality).
Let h be twice continuously differentiable and let x? be a local minimizer of h. Then

∇xh(x?) = 0N (2.84)

Moreover, Hxxh(x?) is positive semidefinite.

Theorem 2.2.8 (First and second order sufficient conditions for optimality).
Let h be twice continuously differentiable in a neighborhood of x?. Assume that ∇h(x?) =
0N and that Hxxh(x?) is positive definite. Then x? is a local minimizer of h.

In other words, Theorems 2.2.7 and 2.2.8 yield the key ideas to solve the unconstrained
version of problem (2.1), i.e.

min h(x), x ∈ RN . (2.85)

Indeed, descent algorithms exploit the information on the derivatives of the cost h in
order to converge, with an iterative procedure, to the solution. It is also important to
observe that

1. a minimizer does not exist if h is unbounded from below;

2. the convergence towards a unique minimizer can be ensured if and only if h is
a strictly convex function, since these kinds of functions are characterized by a
positive definite Hessian matrix Hxxh(x) for all x ∈ RN .

In general, a descent algorithm can be described by the following update equation

x(t+ 1) = x(t) + γt∆x(t), t ∈ N (2.86)

where γt > 0, for all t ∈ N, is the so-called step size, and ∆x(t) is the search direction.
The idea is to choose the search direction and the step size such that they satisfy the
descent condition

h(x(t+ 1)) < h(x(t)), (2.87)

until the optimum is reached and the algorithm terminates. The choice of step size at
each iteration is called line search. Assuming h to be convex, condition (2.87) is ensured
by a direction ∆x(t) such that

∇xh(x(t))>∆x(t) < 0, (2.88)

with such directions named descent directions.
Now, the problem of choosing a good step size is addressed. A possible choice for γt

could be the value that minimizes h along the direction x(t) + γt∆x(t), that is

γt = arg min
γ≥0

h(x(t) + γ∆x(t)). (2.89)
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This method is called exact line search, but in practice it may be too computationally
expensive. Therefore, one is often interested in methods that yield an approximate
minimizer of h. The backtracking line search is one such method, since it chooses γt to
satisfy the so-called Armijo’s condition

h(x(t) + γt∆x(t)) ≤ h(x(t)) + ηγt∇xh(x(t))>∆x(t) (2.90)

where η ∈ (0, 1), typically η = 0.4. Alg. 2 illustrates the method.

Algorithm 2 Backtracking line search
Input: h, ∇xh, x(t), ∆x(t), η ∈ (0, 1)
Output: γt
1: γt ← 1
2: while γt does not satisfy (2.90) do
3: γt ← βγt, with β ∈ (0, 1), typically β = 0.7
4: end while

Lastly, the few choices for the descent direction are briefly discussed. A very simple
option for the descent is the negative gradient

∆x(t) = −∇xh(x(t)) (2.91)

which gives the name to the gradient method or steepest descent method. It is worth to
notice that this choice is indeed a descent direction since

∇xh(x(t))>∆x(t) = −‖∇xh(x(t))‖22 < 0. (2.92)

Whereas, assuming that the Hessian Hxxh of h is positive definite, another possible
descent direction is given by

∆x(t) = − (Hxxh(x(t)))−1∇xh(x(t)), (2.93)

which characterizes the so-called Newton’s method. Clearly, this choice guarantees descent,
indeed by the positive definiteness of Hxxh it holds that

∇xh(x(t))>∆x(t) = −∇xh(x(t))> (Hxxh(x(t)))−1∇xh(x(t)) < 0. (2.94)

Also, it is worth to mention other choices for the descent direction, as the general descent
method in which

∆x(t) = −Ω(x(t), t)∇xh(x(t)), (2.95)

where Ω(x(t), t) ∈ RN×N is a generic positive definite matrix that has to be assigned
wisely in order to ensure convergence. For instance, this allows to implement a hybrid
procedure that switches from the gradient method to the Newton’s setting Ω(x(t), t) = IN
or Ω(x(t), t) = (Hxxh(x(t)))−1 for different t.
To conclude, an application to robotic coverage of descent algorithms is proposed in

the following example.

Example 2.2.9 (Coverage algorithm based on gradient method).
The coverage problem in (2.9) can be solved by a simple algorithm based on the gradient
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method Mesbahi and Egerstedt (2010). The idea is to use the latter descent approach
for moving agents, that is, to let

ṗi(τ) = −
∂hΩ̂(p1, . . . ,pn)

∂pi
= −2

∫
Ω̂i

(pi(τ)− ω)dω. (2.96)

This can be further improved upon allowing time-varying weights in the gradient descent
algorithm, as for the general descent paradigm. In particular, by setting

ṗi(τ) = − 1
2
∫

Ω̂i dω

∂hΩ̂(p1, . . . ,pn)
∂pi

(2.97)

it is possible to obtain
ṗi = fci(pi(τ))− pi(τ) (2.98)

where fci(pi(τ)) is the center of mass of the Voronoi cell i at time τ .

Iterative approaches for Convex Optimization

In this final paragraph, an approach to tackle Convex Optimization is introduced. In
particular, a class of algorithms, called proximal algorithms, for solving convex optimiza-
tion problems is discussed.
Much like Newton’s method is a standard tool for solving unconstrained smooth mini-
mization problems of modest size, proximal algorithms can be viewed as an analogous
tool for nonsmooth, constrained, large-scale, or distributed versions of these problems.
They are very generally applicable, but they turn out to be especially well-suited to
problems of recent and widespread interest involving large or high-dimensional datasets.
Proximal methods sit at a higher level of abstraction than classical optimization algo-
rithms like Newton’s method. In the latter, the base operations are low-level, consisting
of linear algebra operations and the computation of gradients and Hessians. In proximal
algorithms, the base operation is evaluating the proximal operator of a function, which
involves solving a small Convex Optimization problem. These sub-problems can be solved
with standard methods, but they often admit closed form solutions or can be solved very
quickly with simple specialized methods.
Let h : RN → R ∪ {+∞} be a closed proper convex function, which means that its

epigraph
epi h = {(x, h0) ∈ RN × R|h(x) ≤ h0} (2.99)

is a nonempty closed convex set. The effective domain of h is

dom h = {x ∈ RN |h(x) <∞} (2.100)

i.e., the set of points for which h takes on finite values. The proximal operator proxh :
RN → RN of h is defined by

proxh(ω) = arg min
x

(
h(x) + 1

2 ‖x− ω‖
2
2

)
. (2.101)

The function minimized on the r.h.s. of (2.101) is strongly convex and not everywhere
infinite, so it has a unique minimizer for every ω ∈ RN (even when dom h ⊂ RN ). Often
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the proximal operator of the scaled function ρh, where ρ > 0, is encountered. This can
be expressed as

proxρh(ω) = arg min
x

(
h(x) + ρ

2 ‖x− ω‖
2
2

)
. (2.102)

This is also called the proximal operator of h with parameter ρ, which plays the role of a
regularizer. Also, it is worth to note that the point x? minimizes h if and only if

x? = proxρh(x?), (2.103)

i.e. if x? is a fixed point of proxh for all the values of ρ > 0. This fundamental property
gives a link between proximal operator and Fixed Point Theory; e.g. many proximal
algorithms for optimization can be interpreted as methods for finding fixed points of
appropriate operators. This viewpoint is often useful in the analysis of these methods.

The proximal point algorithm (PP) is widely employed to deal with problems in which
their structure is separable, in order to compute a distributed solution. To this purpose,
two preliminary definitions are given in the following lines.

Definition 2.2.10 (Partition of a finite set).
Let [N ] = {1, . . . , N}. Given c ⊆ [N ] let xc ∈ Rc denote the subvector of x ∈ RN

referenced by the indices in c. The collection P = {c, . . . , cN}, where ci ⊆ [N ], is a
partition of [N ] if

⋃
P = [N ] and ci ∩ cj = ∅ for i 6= j.

Definition 2.2.11 (Separable function and scope).
A function h : RN → R is said to be P-separable if

h(x) =
N∑
i=1

hi(xci), (2.104)

where hi : R|ci| → R and xci is the subvector of x with indices in ci. The set ci is said
scope of hi. In other words, h is a sum of terms hi, each of which depends only on part
of x; if each ci = {i}, then h is fully separable.

Separability is of interest because if h is P-separable, then [(proxh(ω))]i = proxhi(ωi),
where ωi ∈ R|ci|, i.e., the proximal operator breaks into N smaller operations that can
be carried out independently in parallel. Thus , evaluating the proximal operator of a
separable function reduces to evaluating the proximal operators for each of the separable
parts, which can be done independently.
The main problem belonging to this thesis in which the proximal operator will be used
can be stated as follows:

arg min
x∈RN

h(x), with h convex and separable (2.105)

Therefore, the PP solving (2.105) can be formulated as

x(t+ 1) = proxρh(x(t)) (2.106)

where t is the iteration counter, and x(t) denotes the t-th iteration of the algorithm. If h
has a minimum, then it is proven that x(t) converges to the set of minimizers of h and
h(x(t)) converges to its optimal value Bauschke and Combettes (2011).
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2.3 Contributions and common thread

The major comprehensive contribution that has been devised in the entire dissertation
rests upon the combination and exploitation of distinct disciplines with the purpose
to consolidate both the theoretical and practical frameworks in which mobile multi-
agent systems play a crucial role. As depicted in Fig. 2.13, it is worth to observe that
various subjects are involved in this comprehensive methodology for tackling what can
be delineated as Networked Optimization for Multi-Agent Systems (NO4MAS), such as
Optimization Theory (OT), Dynamic Systems and Control (DS&C), Combinatorial Graph
Theory (CGT), Optimal Control (OC), Trajectory Optimization (TO), Combinatorial
Optimization (CO), Distributed Optimization (DO), Distributed Control Systems (DCS)
and Distributed Estimation (DE).

OT DS&C

CGT

NO4MAS

OC
TO

CO
DO

DE
DCS

Figure 2.13. Numerous topics from several subjects sharing common interests are needed to
find solutions to networked optimization problems for multi-agent systems.

The evidence that several abstract and tangible tools are required to concur in order to
solve a networked optimization problem with a group of robots is, in fact, the fundamental
aspect that broadens the scope of the existing methods already illustrated in this chapter.
At the light of this panoramic sketch, the next paragraph is dedicated to the description
of the research goals in this manuscript as well as the characterization of a more detailed
outline for the forthcoming chapters.

2.3.1 Research goals

This work was performed at the research laboratories of the universities of Padova (Italy)
and Colorado at Boulder (USA) for an overall period of three years. The most crucial
aims that have been set from the beginning of the PhD activity are primarily represented
by the following guidelines:

• the formalization of interesting engineering problems having practical consequences
in the advancement of networked-based distributed architectures and multi-agent
system research field;

• the development of analysis and design tools or mathematical methods for a group
of cooperating mobile robots with assigned and specified common tasks;
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• the creation, application and investigation of optimization-based strategies to
achieve the most disparate required specifications by drawing inspiration from the
existing methodologies and knowledge about agent technologies;

• the proof of theoretical statements settled in meaningful frameworks that are
restricted, endowed with the least amount of hypotheses, to the problem of interest;

• the virtual implementation and numerical simulation of the devised techniques to
assess numerical results of realistic case studies.

2.3.2 Detailed outline of the research activity

In this thesis, different types of (homogeneous) multi-agent systems are analyzed seeking
efficient distributed solutions to face several typical and new issues within the common
thread previously presented at the beginning of this section. For each of the next chapters
containing research activity, namely Chapters 3, 4, 5, 6, a similar scheme as in Fig.
2.13 will be illustrated in order to highlight the most significant theoretical frameworks
involved13. Such a scheme will be also associated to a box diagram showing a summarized
version of the specific investigation objectives established for each particular activity.
The single contributions given in the entire research complex are outlined as follows.

• Chap. 3. Dynamic Coverage with Limited Sensing Capabilities: a dis-
tributed algorithm is devised and tested through virtual simulations to accomplish
robotic deployment and focus on event in an unknown scenario with no metric
information available. In addition, further guarantees on the number of deployed
robots covering the environment are provided.

• Chap. 4. Optimal Time-Invariant Formation Tracking: two approaches to
govern a second order integrator system of multiple agents are derived, namely
an inverse dynamics offline control and a distributed online controller. The first
strategy leverages on a numerical tool for Trajectory Optimization, called Projection
Operator based Newton’s method, while the second one resorts on RT and CV. In
this work, the main objective is to steer the system into a robotic formation that
chases a desired trajectory while minimizing the energy spent.

• Chap. 5. Distributed State Estimation from Relative Measurements: a
general regularized distributed linear model is analyzed and optimized to perform a
state estimation from the noisy relative measurements provided by a network with
a fixed topology and a bidirectional information exchange.

• Chap. 6. On the Spectral Properties of κ-ring Graphs: the theory of
circulant matrices and graphs is the key for many distributed application, e.g. a
camera network for surveillance purposes. This highly theoretical work explores a
meaningful case study to ensure optimality conditions for activity 2.3.2, constituting
a bridge between the spectrum of stochastic matrices induced by a peculiar class of
circulant graphs – the κ-ring graphs – and the Dirichlet kernel.

13This will be done by emphasizing (in bold and italic) the acronyms in Fig. 2.13 corresponding to
frameworks that are relevant for the study in question.
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2019, Akko, Israel, pp. 203-208, Jul 1-4, 2019.

3.1 Overview

Sensor coverage of indoor environments using teams of mobile robots is a well-studied
problem in robotics. This chapter is focused on unknown complex indoor scenarios that
are typically hard to cover because there are no a priori information about the space
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3 Dynamic Coverage with Limited Sensing Capabilities

structure and there is not an optimal strategy to reach the complete coverage.
Generally, this task has to be performed using the lowest number of agents, the cheapest
sensors and actuators to steer each mobile robot. In particular, the aim of this part of the
thesis, is the development of an efficient algorithm to deploy and control a sensor network
consisting of a collection of sensing devices that can coordinate their actions through
wireless communication. Such a procedure has to guarantee the achievement of several
tasks as event detection, reconnaissance, surveillance, target tracking, exploration of a
specific region or rescue actions in environments that are hazardous to human operators.
The advantages of this type of operations are the possibility of visiting and monitoring
every point of the given space in an automatic and distributed fashion, the robustness
to failures of single robots, the ability of the agents to adapt their arrangement and
dynamics considering the obstacles in the environment, the reliability of a connected
sensor network and the maximization of the sensing information utilizing the lowest
amount of available local resources. In addition, it is worth to mention that swarms of
robots employed for dynamic coverage are involved in many applications, such as active
camera networks, mapping of unknown environments, transportation and delivery, fault
detection, precision agriculture, cooperative robotics and wireless sensor networks.
To conclude this heading, Fig. 3.1 depicts the main features arising in this work.

The principal methods employed resort on Optimization Theory, Combinatorial Graph
Theory, Combinatorial Optimization and Distributed Optimization. Leveraging the latter
tools, the main objectives for this study are represented by the design of a procedure for
the automatic and dynamic deployment of robotic agents, event detection, clustering and
dispatch. The developed algorithm is tested through virtual modeling and simulations of
realistic scenarios.

OT

CGT

NO4MAS

CO
DO

DS&COC
TO

DE
DCS

INVESTIGATION OBJECTIVES

I Automatic and dynamic
deployment

I Event detection

I Clustering

I Robotic dispatch

I Virtual modeling &
simulation

Figure 3.1. Theoretical fields and investigation objectives arising from this study.

3.1.1 Problem statement

In this chapter, the problem of an efficient indoor environment exploration by means of
an expanding swarm of robots with limited and noisy local sensing is considered. By
assumption, the indoor environment is unknown and two-dimensional and no global
localization is available. Specifically, the only sensor capabilities assumed on each robot
are those of an omni-directional camera with a limited radial range of vision and a touch
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sensor to detect contact or collisions with obstacles and other robots. The disk around a
robot representing a sensing radius of the omni-directional camera is called the robot’s
disk of visibility, within which the bearing to the neighboring robots and their identities
can be detected. However, each camera does not provide a range measurement due to
projection of the 3D world on to the camera plane. Thus, obstacles are detected through
touch sensors near the base of the robots, and cannot be detected using the camera. The
robots can also communicate with each other and can be driven in arbitrary direction.
Three subsequent tasks are chosen for the swarm:

1. the maximization of local communication: algorithm in Ramaithitima et al. (2015)
is used as starting point and reformulated in order to remove the assumption of a
centralized server that collects local information from individual robots (see Fig.
3.2);

2. the possibility to perform event detection of the covered area, with specific sensor
for it (see Fig. 3.3), e.g. sensing a increment of absolute temperature due to a fire;

3. the capacity of monitoring the event surface by sending a group of robots, as shown
in the example in Fig. 3.4.

simply-connected, as we demonstrate through experimental
results in complex, indoor environments with obstacles.

We adopt a simplicial complex representation (in par-
ticular, a Rips complex) as the richer and more formal
description of the sensor coverage, without using metric
information, to solve the problem of deployment of robots
in an unknown environment without global localization.
The robots only have onboard sensors to measure bearings
to neighboring robots in their local coordinates and touch
sensors for collision avoidance. Such limited sensing data
essentially allows deployment of robots in a dark room, with
the robots using their camera to identify their neighbors by
illuminated (LED) markers on each other. Since our approach
is fundamentally topological, the proposed method is highly
robust to sensor noise. We attain complete sensor coverage
of the entire finite environment assuming sufficient number
of available robots, along with guarantees on coverage,
exploration and a notion of local optimality.
B. Problem Description

We consider the problem of efficiently exploring an un-
known indoor environment with a rapidly expanding swarm
of robots with limited and noisy local sensing with no global
localization or sensing capabilities. In particular, the only
sensory capabilities that we assume on each robot are those
of an omni-directional camera with a limited radial range
of vision and a touch sensor to detect contact/collision with
obstacles and other robots. We call the disk around a robot,
representing a sensing radius of the omni-directional camera,
the robot’s disk of visibility, within which the bearing to
the neighboring robots and their identities can be detected.
However, the camera does not provide a range measurement
due to projection of the spacial world on to the camera plane.
Thus, obstacles are detected through touch sensors near the
base of the robots, and cannot be detected using the camera.
The robots can also communicate with each other and with
a central router through wireless communication. The robots
are assumed to holonomic (i.e. can be driven in arbitrary
direction). We assume that there are sufficiently large number
of robots available, which are being deployed from one or
multiple sources (e.g. entrance to an environment).

The contribution of this paper is to design a distributable
control algorithm for the robots such that they deploy them-
selves to attain hole-less coverage of the entire environment
using their disks of visibility. That means, at least one
robot should be able to see each and every point in the
environment after the coverage is attained. However, the only
information that they have are the bearing to their neighbors
in their respective local coordinate frames and a directional
touch information with obstacles. This means that there is
absolutely no metric information available.

II. PRELIMINARIES
A. Notations

We denote by W ⊂ R2 the obstacle-free region where the
robots are being deployed and the sensor coverage of which
needs to be attained. If there are n robots deployed in W ,
we assign IDs to them, 1, 2, · · · , n, and represent their joint
configuration by X = [x1, x2, · · · , xn], xi ∈W .

Hole

Fig. 1. Illustration of a swarm of robots entering an environment and
attaining coverage. The hole shown on the right figure is something we
would like to avoid.

A robot, i, can measure the bearing to a neighbor, j ∈ Ni,
in its local coordinates, where Ni = {j | ‖xi−xj‖ ≤ rv} are
the neighbors of i. We call this measurement θij ∈ [−π, π).
If it measures the bearing to another robot, k as θik, then we
define θijk =

(
(θik − θij) mod 2π

)
−π — i.e., the bearing

to k relative to the bearing to j (and the angle converted to
a value in [−π, π)).

B. Vietoris–Rips Complex of Camera Sensing Footprints

We do not assume that the robots can localize themselves
and the only way of sensing/identifying neighbors is by
using the camera. Thus, if the disks of visibility of two
robots merely overlap, there is no way of detecting that fact
(Figure 2(a)). We need to use a stronger notion of overlap
— two robots know that their disks of visibility overlap if
and only if they are in each other’s disks of visibility and
their line of sight is not blocked (Figure 2(b)).

1 2

(a) Robots can’t see each other,
and hence have no way of de-
tecting that their disks of visi-
bility overlap.

1 2

(b) Robots can see each other, and
hence know that their disks of vis-
ibility overlap. Visibility is repre-
sented by the dotted magenta line.

Fig. 2. Detection of overlap of disks of visibility using only local visibility-
based sensing.

We can thus consider a simplicial complex [17] repre-
sentation of the free space that the camera footprints cover.
The description of the abstract simplicial complex goes as
follows (Figure 3): We add one 0-simplex to the complex for
every deployed robot in the environment (the 0-simplices are
identified by the robot IDs). A 1-simplex is added between
two 0-simplices if the corresponding robots are in each
other’s disk of visibility (i.e., are within distance of rv from
each other) and can see each other. A 2-simplex is added
to the complex for every 3-tuple of robots that can all see
each other (and hence their disks of visibility has a non-
empty intersection). We do not construct any 3 or higher
dimensional simplices since on a planar environment with
obstacles, we are only concerned with the H1 homology.
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Fig. 3. Nine robots, their disks of visibility and the corresponding abstract
simplicial complex, Rrv .
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Figure 3.2. Illustration of a swarm of robots entering an environment and attaining coverage.
[Credits : Ramaithitima et al. (2015)]

Figure 3.3. Voronoi partitions obtained after the deployments have divided the covered region.
A partition, e.g. the blue one, is then monitored by a cluster of robots made by the
agent in the centroid and its neighbors.

3.1.2 Related works

Classic coverage applications are based on centralized localization for each robot (e.g.
GPS) in order to accomplish equitable partitions of the environment (as illustrated in
Subsec. 2.1.3) by minimizing a coverage cost. However, such approaches need a priori
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3 Dynamic Coverage with Limited Sensing Capabilities

Figure 3.4. Six agents are driven from their initial position (red stars) towards a specific target
while maintaining the connection with the rest of the network.

information about the environment where robots are deployed. Lately, complete sensor
coverage of indoor environments using swarms of robots has been studied Dudek, Jenkin,
Milios, and Wilkes (1991); Rutishauser, Correll, and Martinoli (2009) by modeling the
known network as a graph and assuming robots to have global localization, with the
possibility to navigate independently from one location to another in a global coordinate
frame. In all of these lines of research, global localization of the robots, a priori knowledge
of the environment (obstacle configuration), availability of metric information and ability
to control the robots from one point in the environment to another have been presumed.
In recent years, coverage by sensor network is studied more formally by using Simplicial
Complex Theory Zomorodian (2010) and homological tools from algebraic topology, as
in de Silva and Ghrist (2006, 2007); Ghrist, Lipsky, Derenick, and Speranzon (technical
report, 2012), requiring little to no metric information. One of the latest research, from
which this work draws inspiration, is Ramaithitima et al. (2015). Here, authors offer new
perspectives improving the previous studies by using a different approach based on three
aspects. Firstly, their method is robust to agent failure at any configuration. Secondly,
the approach of pushing agents through the network links in order to expand the graph
frontier, instead of navigating, does not require any restriction on the minimum distance
between two neighbors. Lastly, their algorithm does not demand the workspace to be
simply-connected, as demonstrated via experimental results.

3.1.3 Contribution and outline of the chapter

Starting from Ramaithitima et al. (2015), a more advanced and fully decentralized
algorithm to fulfill coverage and focus on event is implemented, motivated by several
works in the fields of event detection Wittenburg, Dziengel, Adler, Kasmi, Ziegert, and
Schiller (2012), cluster selection Afsar and Tayarani-N (2014) and robotic dispatch
Lukic and Stojmenovic (2013). A completely distributed approach, i.e. requiring local
communication only, is presented: each agent needs to share with its neighbors just the
information about measured bearing angles and neighborhoods. In particular, useless
agents are sought by exploiting bearing angles, instead of computing graph cycles.
Moreover, geometric models for the agents are adopted, e.g. circular shapes: this allow
to take into account collisions and space occupation in order to provide a lower bound
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for the number of agents deployed by the algorithm in question on virtual scenarios with
rectangular features. Once coverage is completed, the focus on a preset event is then
attained: in this final procedure, representing the new and original contribution of this
chapter, each agent builds on a network deformation that needs to increase the event
information while not losing connectivity and enhancing communication among activated
companions. The remainder of this paper is organized as follows. In Sec. 3.2, some
preliminary definitions and mathematical models are introduced, while Sec. 3.3 illustrates
central ideas for the implementation of this algorithm. The discussion continues in Sec.
3.4 with the analysis of lower and upper bounds for the minimum number of deployed
agents. In addition, numerical results reporting performances and limitations of this
algorithm can be found in Sec. 3.5. Finally, conclusions are drawn in Sec. 3.6.

3.2 Assumptions and models

In this section, the fundamental operating hypotheses are presented. Geometrical
assumptions are taken into consideration in order to define a proper environment for the
agents; whereas, many mathematical models are adopted in order to describe scenario,
event, agent and network features.

3.2.1 Geometrical assumptions

Hereafter, letters i, j, k and their variants are used as indexes; while letter L and its
variants indicate finite lengths of vectors or number of elements in a sequence.
Let Ω be a set, such that cl(Ω) be its closure and int(Ω) be its interior. Whenever Ω is
discrete and finite or empty its cardinality is denoted with |Ω| ∈ N, otherwise |Ω| = +∞.
Let pk = (xk, yk) ∈ R2 be a point in the plain. Whenever Ωk represents either a segment
or a polygon, the surface of Ωk is denoted with Ω2

k ⊂ R2, setting Ω2
k = Ωk if and only if

Ωk is a segment, such that if Ω =
⋃L
k=1 Ωk then Ω2 =

⋃L
k=1 Ω2

k. Moreover, ‖Ωk‖1 > 0 and
‖Ωk‖2 ≥ 0 indicate the perimeter of Ωk and the area of Ω2

k respectively, setting ‖Ωk‖2 = 0
if and only if Ωk is a segment. Lastly, if int(Ωi) ∩ int(Ωj) = ∅ for all i, j = 1, ..., L, with
i 6= j, then ‖Ω‖k̄ =

∑L
k=1 ‖Ωk‖k̄ for k̄ = 1, 2.

Further useful preliminaries are covered on geometrical and topological entities (see
Subsec. B.1.1).

3.2.2 Mathematical models

Scenario

As Fig. 3.5 depicts, a scenario SC = (EN,OB) is the planar space where actions take
place, composed of an enclosure EN and, possibly, a set of obstacles OB =

⋃Lob
k=1 obk

with finite number Lob of physical barriers obk. Whenever a scenario is obstacle-free, it is
assumed that SC = EN . For the sake of simplicity, it is imposed that EN is a polygon
and each obstacle obk is either a polygon or a segment. Moreover, to characterize SC
as a realistic environment, the following properties on its potential obstacles are also
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imposed:

• int(obi) ∩ int(obj) = ∅ for all i, j = 1, . . . , Lob, i 6= j;

• cl(OB2) ⊂ int(EN2);

• ‖OB‖2 ≤ kSC ‖EN‖2 for a given kSC ∈ (0, 1).

These three properties state that obstacles cannot overlap each other, they must be
contained inside the enclosure, and their space occupation in the enclosure must be
reasonably low with respect to the total available space. Finally, the surface to be
covered and the scenario boundaries are defined as CS2 = int(EN2) \ cl(OB2) and
SB = EN ∪OB, respectively.

Base station

A base station is the point BS = p1 ∈ CS2 that generates all robots during coverage
(see Fig. 3.5) and it also represents the position of the first agent a1. Because of this
choice, it is assumed that a1 cannot be removed while seeking potential redundant agents
in the network (see Alg. 4 in Subsec. 3.3.1).

Figure 3.5. A scenario (yellow area delimited by the black contour) and a base station (dot in
cyan).

Event

As shown in Fig. 3.6, an event is a point EV ∈ EN2 that becomes significant inside the
scenario after a complete coverage has been already attained and with a relevance that is
radially decreasing. The latter is modeled by the real scalar function

fEV (pp) = kEV exp
(
−‖pp − EV ‖2 /r2

EV

)
, ∀pp ∈ EN2 (3.1)

where kEV > 0 and rEV > 0 represent the maximum intensity and the decay distance
respectively.

Agents

Any agent ak = (vk,pk, rb, rv) is represented by a vertex in a graph G and modeled
by a circle with radius1 rb > 0 centered in pk ∈ CS2. They are also provided with a

1Because of this fact, corridors in the scenario with a width less than the body diameter 2rb, can never
be accessed by agents.
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Figure 3.6. Intensity of an event located in the middle of a squared scenario, also adopted
for simulation in Fig. 3.12. Black: real values of the event function. Red: cubic
spline interpolation of the estimated values providing a reconstruction of the event
function.
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(a) Exception case where a 1-simplex,
{i, j}, has all adjacent 1-simplices
lying on the same side, but is not a
fence simplex. This can be detected
from the perspective of robot k.
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(b) Detecting that a 1-simplex, {i, j},
is in O ⊆ Rrv (thick brown line).
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(c) Convex corner case where a
pair of 1-simplices, {i, j1} and
{i, j2}, are recognized as obstacle
1-simplices (thick brown lines).
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ij1

(d) If the robot i is to be “pushed”
along a path in the graph to expand
frontier {i, j1}, it performs a “test
drive” to ensure an obstacle is not
right in front of it.

Fig. 6. Identifying simplices for fence subcomplex K = F ∪O.

obstacles) in their convex hull is in the visibility disk of
at least one robot (aside from possibly small non-convex
sub-features present in that convex corner, which we
ignore). Thus, these 1-simplices are marked as obstacle
1-simplices to be pushed into O.

iii. Otherwise, at least one of the robots can be ex-
panded/moved to the unexplored region, and thus {i, j}
is placed in F along with the corresponding robots
(Figure 7, left).

iv. Additionally, if {i, j} ∈ F due to ‘iii.’, and i belongs
to the path for planned deployment, we perform a “test
drive” in the planned deployment direction for a small
distance to ensure sufficient space availability for new
deployment near obstacles (Figure 6(d)).

The complete illustration of the process of identifying 1-
simplices as part of F or O is given in Figures 7 and 9(a).
We next describe the COMPUTEEXCEPTION and DEPLOY-
MENTANGLE procedures.

1) The Exception Case: The aforesaid approach in de-
tecting fence 1-simplices using UnCovij may give false
positives in some cases when a 1-simplex, {i, j}, is com-
pletely covered by 2 simplices, of which {i, j} do not form
a boundary, as shown in Figure 6(a). Nevertheless, this
special case can be easily detected from the perspective of
a common neighbor, k, of i, j. If it is detected that θkij =
θkik1 + θkk1k2 + · · ·+ θkkrj (for some k1, · · · , kr ∈ Nk), such
that all the summands have the same sign as the summation,
then clearly {i, j} lies inside 2-simplices of which {i, j} do
not form a boundary but k is a vertex. Then {i, j} is marked
as an exception 1-simplex.

2) Identifying Locations for Robot Placement (Hexagonal
Packing): Given a 1-simplex {i, j} ∈ F and the uncovered
direction σ ∈ {+1,−1}, we need to find, in the local
coordinates of i and j, the location for the new robot position.
Figure 8(a) illustrates the uncovered side of 1-simplex {i, j}
in i’s local coordinate. Our strategy for choosing the position
to deploy next robot is to try and achieve a hexagonal
packing [19] (which is the most optimal packing on an
obstacle-free pane) of robots as much as possible, only
to be interrupted by the presence of obstacles or control’s
error. This essentially boils down to sending robots at an
angle of 60◦(= π

3 ) with respect to ij into the free region.
Algorithm 4 describes our DEPLOYMENTANGLE function
which first determines (lines 3-6) the “closest” other fence
1-simplices attached to i and j (e.g., {i, k} in Figure 8(b)).
If there is no other fence 1-simplex attached to i, we set

Algorithm 4 [θij,new, θ
j
i,new] = DEPLOYMENTANGLE (i, j,UnCovij)

Input: Robots i, j; the side of ij that is open/uncovered.
Output: New location for deployment in local coordinates of i, j,

or, {i, j} is marked an obstacle simplex.

1: θij,new ← ∅, θji,new ← ∅
2: for σ in UnCovij do
3: Si ← {l | {i, l} ∈ Rrv and sign(θij,l) = σ}
4: ki ← argmink′∈Si

|θij,k′ |
5: Sj ← {l | {j, l} ∈ Rrv and sign(θji,l) = −σ}
6: kj ← argmink′∈Sj

|θji,k′ |
7: if |θij,ki | <

π
3

(or |θji,kj | <
π
3

) then
8: Mark {i, ki} (or {j, kj}) as an obstacle simplex.
9: else

10: θij,new ← σmin{π
3
, |
θij,ki

2
|}

11: θji,new ← −σmin{π
3
, |
θ
j
i,kj

2
|}

12: end if
13: end for

θinew = θij + σij
π
3 — the 60◦ angle for deployment in

a hexagonal packing. Otherwise we set the angle to the
minimum between the one for hexagonal packaging (π3 ) and
the the one that bisects θijki . Likewise for θjnew.

i

j
u

θju
i Valid bearing 

for new robot

new

(a) The free side of {i, j}
where sign(θij,new) = σ.

i

j

k
θjk
i

θj,new
i

(b) The bearing to the new location,

θij,new=min{π
3
,
θijk
2
}, in i’s local coord.

Fig. 8. Determining bearing to the new location.

If i is not attached to a frontier 1-simplex (e.g., i is
a frontier robot in a narrow passage with a single file of
robots), then we simply choose the direction away from the
neighbors of i as the bearing to the new location (in the local
coordinates of i) for deployment of the new robot.
B. Identifying Path in 1-skeleton for “Pushing” Robots

The strategy in our algorithm for robot deployment in
every control cycle is to keep the structure of the existing
simplicial complex (and hence the positions of the existing
robots in W ) unchanged. New robots are deployed through
the complex simply by “pushing” through paths (i.e., making
each robot on a path move forward to take the place of the
one in front of it) in the 1-skeleton (graph) of the complex
(Figure 9). For computing this path, a centralized knowledge
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(a) Bearing-based sensing and control

This simplicial complex is, by definition, the Vietoris-
Rips complex [11] (or simply the Rips complex) on the
set of robots (constructed up to dimension 2 – i.e., we
do not construct the 3 and higher simplices), with distance
between pairs of robots being the length of the unobstructed
line segment connecting them (and a distance being infinity
if such a line segment does not exist due to presence of
obstacles) and the parameter for the Rips complex being rv .
For a particular joint configuration of the robots, X , we call
this simplicial complex Rrv (X). We denote the 0-simplices
in Rrv (X) by the corresponding robot ID (e.g., ‘i’), the
1-simplices by pairs of IDs of the robots that make them
up (e.g., {i, j}), and 2-simplices by three tuples (such as
{i, j, k}). Formally, Rrv (X) is a chain complex [17] and
constitutes of a sequence of modules (or vector spaces)
along with boundary maps: 0

0−→ C2
∂2−→ C1

∂1−→ C0
0−→ 0,

where Cd is an abstract module (or vector space) generated
(or spanned) by the d-dimensional simplices. Whenever
the robots’ configuration, X , is obvious or implied by the
context, we will write Rrv to denote the corresponding
complex for simplicity. In Section III-A we will identify two
sub-complexes of Rrv , namely the frontier subcomplex, F ,
and obstacle subcomplex, O, which together constitute the
fence subcomplex [11], K = F ∪O.

It is important to note that Rrv can be constructed with
local visibility information only, as described earlier, and
does not require the entire configuration, X , of the robots
to be known in a centralized manner. Furthermore, as will
be evident in the next section, we do not need to construct
the entire simplicial complex in a centralized fashion for
most of the algorithmic components. It’s only when we
compute generators for the relative homology H2(Rrv ,K),
for optimization purposes, that we will need to store Rrv in
a centralized manner.
C. Contact/Touch Sensing Model

As mentioned earlier, the only sensors on board each
robot are the omnidirectional camera and a collection of
touch/contact sensors at the base of the robots. The camera
is used to measure bearing with other robots inside the
disk of visibility and is incapable of measuring range. The
touch sensors are binary sensors, and are triggered when in
contact with an obstacle/wall or another robot (Figure 4).
The presence of multiple touch sensors (NT counts of them)
at the base also provides a rough estimate of direction of
contact (within an error of τ = π

NT
when a single touch

sensor is activated).

Fig. 4. The touch/contact sensors (gray protrusions) at the base of a robot
(red). Contact with an obstacle or another robot triggers one or more touch
sensors providing a rough estimate of the direction of contact.

D. Local Bearing-Based Controller
The robots are controlled using the bearing-based visual

homing controller presented in [18]. This controller utilizes

a gradient decent approach where desired bearing angles to
landmarks are used to drive robots. The distances between a
robot and its respective landmarks are not known. The only
information known are the bearing angles, as is consistent
with the assumptions in our paper. With the proper selection
of the cost functional for the optimization process, the
gradient of the path from start to goal (the velocity control
command for robot i) is given by vi = K

∑
j∈Li(θij,des−θij),

where, Li is the list of robots that are neighbors of i,
and which can be used as landmarks, θij,des is the desired
bearings with landmark j, and K is a gain. Note that
this velocity can be computed in the instantaneous local
coordinate frame of the robot i. This controller converges
to the goal configuration when the number of landmarks is
greater than or equal to two and not co-linear with the goal
location. In our implementation, the controller incorporates
adaptive gain scaling in order to obtain faster convergence.
We also use adaptive landmark detection depending on a
robot’s neighbor list while moving.

E. Relative H2 Homology
We periodically compute a non-trivial 2-cycle of the

relative complex (Rrv ,K) so that we can identify redun-
dant/extra robots that can be removed from the complex
without sacrificing sensor coverage. This is a direct applica-
tion of the result in [11]. We assume some familiarity with
algebraic topology and homology theory for the discussion
in this section [17]. Given the simplicial complex, Rrv , and
the fence subcomplex, K = F ∪ O, one can construct a
relative chain complex, C∗(Rrv ,K). This, in essence, is
the complex obtained by quotienting out the subcomplex
K (i.e., collapsing K to a single point, or introducing a
new 0-simplex, Q, and connecting 2-simplices {i, j, Q} to
every {i, j} ∈ K – as illustrated in Figure 5). Due to a
result from [11], if we can find a non-trivia relative cycle in
C2(Rrv ,K) such that it passes through all the 0-simplices
in the fence, K, then the 0-simplices (the robots) making up
that cycle is sufficient for maintaining the sensor coverage.
All other robots can be reallocated.
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(a) A Rips complex, Rrv , with the
frontier subcomplex, F , marked in
cyan, and the obstacle subcomplex,
O, marked in brown.
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(b) Topology of the space where the
entire fence complex, F ∪ O, have
been connected through 2-simplices
to an external 0-simplex, namely Q.

Fig. 5. An example where a redundant robot (#10) can be identified from
a non-trivial cycle in the space constructed by connecting all the fence
simplices to a single external 0-simplex.

III. ALGORITHM DESIGN
The outline of our swarm coverage algorithm is presented

in Algorithm 1. We begin by deploying robot 1 into the
unknown environment using an open-loop control so that it
maintains visual contact with the source/base. Then, in line 3,
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(b) Touch sensing (gray)

Figure 3.7. Driving sensors and actuators mounted on each agent.
[Credits : Ramaithitima et al. (2015)]

camera installed on the center with a visibility radius rv > 0 in order to acquire bearing
measurements (Ramaithitima et al. (2015), Sec. II-A). As depicted in Fig. 3.7(a), these
are used to measure the angles agents create with one or more neighbors. A bearing
measurement (in radians) of an agent ak w.r.t. one of its neighbor ai is denoted with
θki ∈ [−π, π). If it measures the bearing to another agent aj as θij , then the bearing to
ak relative to the bearing to aj is defined as θkij = ((θki − θkj ) mod 2π) − π, such that
θkij ∈ [−π, π). As illustrated in Fig. 3.8, two agents (ai, aj) are said neighbors if:

• ‖pi − pj‖ ≤ rv, i.e., their centers are not distant more than the visibility radius rv;

• (stij ∩ CS2) ⊂ CS2, i.e., there is no barrier between them;

simply-connected, as we demonstrate through experimental
results in complex, indoor environments with obstacles.

We adopt a simplicial complex representation (in par-
ticular, a Rips complex) as the richer and more formal
description of the sensor coverage, without using metric
information, to solve the problem of deployment of robots
in an unknown environment without global localization.
The robots only have onboard sensors to measure bearings
to neighboring robots in their local coordinates and touch
sensors for collision avoidance. Such limited sensing data
essentially allows deployment of robots in a dark room, with
the robots using their camera to identify their neighbors by
illuminated (LED) markers on each other. Since our approach
is fundamentally topological, the proposed method is highly
robust to sensor noise. We attain complete sensor coverage
of the entire finite environment assuming sufficient number
of available robots, along with guarantees on coverage,
exploration and a notion of local optimality.
B. Problem Description

We consider the problem of efficiently exploring an un-
known indoor environment with a rapidly expanding swarm
of robots with limited and noisy local sensing with no global
localization or sensing capabilities. In particular, the only
sensory capabilities that we assume on each robot are those
of an omni-directional camera with a limited radial range
of vision and a touch sensor to detect contact/collision with
obstacles and other robots. We call the disk around a robot,
representing a sensing radius of the omni-directional camera,
the robot’s disk of visibility, within which the bearing to
the neighboring robots and their identities can be detected.
However, the camera does not provide a range measurement
due to projection of the spacial world on to the camera plane.
Thus, obstacles are detected through touch sensors near the
base of the robots, and cannot be detected using the camera.
The robots can also communicate with each other and with
a central router through wireless communication. The robots
are assumed to holonomic (i.e. can be driven in arbitrary
direction). We assume that there are sufficiently large number
of robots available, which are being deployed from one or
multiple sources (e.g. entrance to an environment).

The contribution of this paper is to design a distributable
control algorithm for the robots such that they deploy them-
selves to attain hole-less coverage of the entire environment
using their disks of visibility. That means, at least one
robot should be able to see each and every point in the
environment after the coverage is attained. However, the only
information that they have are the bearing to their neighbors
in their respective local coordinate frames and a directional
touch information with obstacles. This means that there is
absolutely no metric information available.

II. PRELIMINARIES
A. Notations

We denote by W ⊂ R2 the obstacle-free region where the
robots are being deployed and the sensor coverage of which
needs to be attained. If there are n robots deployed in W ,
we assign IDs to them, 1, 2, · · · , n, and represent their joint
configuration by X = [x1, x2, · · · , xn], xi ∈W .

Hole

Fig. 1. Illustration of a swarm of robots entering an environment and
attaining coverage. The hole shown on the right figure is something we
would like to avoid.

A robot, i, can measure the bearing to a neighbor, j ∈ Ni,
in its local coordinates, where Ni = {j | ‖xi−xj‖ ≤ rv} are
the neighbors of i. We call this measurement θij ∈ [−π, π).
If it measures the bearing to another robot, k as θik, then we
define θijk =

(
(θik − θij) mod 2π

)
−π — i.e., the bearing

to k relative to the bearing to j (and the angle converted to
a value in [−π, π)).

B. Vietoris–Rips Complex of Camera Sensing Footprints

We do not assume that the robots can localize themselves
and the only way of sensing/identifying neighbors is by
using the camera. Thus, if the disks of visibility of two
robots merely overlap, there is no way of detecting that fact
(Figure 2(a)). We need to use a stronger notion of overlap
— two robots know that their disks of visibility overlap if
and only if they are in each other’s disks of visibility and
their line of sight is not blocked (Figure 2(b)).

1 2

(a) Robots can’t see each other,
and hence have no way of de-
tecting that their disks of visi-
bility overlap.

1 2

(b) Robots can see each other, and
hence know that their disks of vis-
ibility overlap. Visibility is repre-
sented by the dotted magenta line.

Fig. 2. Detection of overlap of disks of visibility using only local visibility-
based sensing.

We can thus consider a simplicial complex [17] repre-
sentation of the free space that the camera footprints cover.
The description of the abstract simplicial complex goes as
follows (Figure 3): We add one 0-simplex to the complex for
every deployed robot in the environment (the 0-simplices are
identified by the robot IDs). A 1-simplex is added between
two 0-simplices if the corresponding robots are in each
other’s disk of visibility (i.e., are within distance of rv from
each other) and can see each other. A 2-simplex is added
to the complex for every 3-tuple of robots that can all see
each other (and hence their disks of visibility has a non-
empty intersection). We do not construct any 3 or higher
dimensional simplices since on a planar environment with
obstacles, we are only concerned with the H1 homology.
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Fig. 3. Nine robots, their disks of visibility and the corresponding abstract
simplicial complex, Rrv .

3409

Figure 3.8. Visibility radii determine whether two agents are neighbors (right) or not (left).
Image taken from Ramaithitima et al. (2015).
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3 Dynamic Coverage with Limited Sensing Capabilities

It is assumed that ai and aj communicate even though between them another agent
has already been placed. Furthermore, agents are provided with contact sensors (see
Fig. 3.7(b)) that are triggered when touching any barrier in the scenario or another
agent, able to roughly estimate the direction of an impact (Ramaithitima et al. (2015),
Sec. II-C) within an error ∆eτ = π/NT , where NT is the number of contact points in
each touch sensor. Finally, each agent is provided by an event sensor in order to sense
an estimate f̂EV (pp) of the event intensity and it is controlled using the bearing-based
visual homing controller (Ramaithitima et al. (2015), Sec. II-D). This means that the
velocity ṗi of robot ai is given by ṗi = kp

∑
vj∈Mi

(θij,des − θij), where Mi ⊆ Ni is the
list of robots that are neighbors of ai and which can be used as landmarks, θij,des is the
desired bearing with landmark aj and kp is a positive gain.

Multi-Agent network

The multi-agent network arising from the interconnections of the deployed agents can
be modeled as a graph G = (V, E) with all its structural properties and related concepts
introduced in Sec. B.3. Each node vi ∈ V represents a robot ai and an edge eij ∈ E
between two robots (vi, vj) is created if only if (vi, vj) are neighbors.
In addition, the hexagonal-packing-based coverage policy discussed in Subsec. 2.2.2 is
adopted, since it provides the best approach to save resources in an obstacle-free planar
environments. Specifically, the deployment strategy employed in this work makes use of
the following simplexes (see Subsec. B.1.2 for more details):

• type 0: points, which represent nodes (agents);

• type 1: segments, which represent edges (communication links);

• type 2: triangles, to guarantee hexagonal packing policy (optimality condition).

For this reason, tools as the Vietoris-Rips Complex are applied in order to achieve
complete coverage.

3.3 Coverage and focus on event: algorithm design

A general overview of the main procedure is illustrated in Alg. 3 and described as follows.

• Coverage: Firstly, agents are deployed until full coverage is attained (line 1).

• Clustering: Subsequently, they sense an event EV in the scenario and a cluster
GCL ⊆ G with preselected cardinality nCL = |GCL| is created (line 10). The cluster
formation begins from a leader vertex v? that measures the highest intensity:
this node can be elected by means of max-consensus algorithms Oliva and Setola
(2013) (line 8). Then, the cluster grows with a greedy approach, maintaining its
connectivity.

• Dispatch: Finally, agents belonging to GCL perform a dispatch (line 16) according to
the minimization of an isoperimetric functional hG(GCL) with the purpose to drive
the cluster’s elements close to the event origin EV as far as possible, maintaining
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3.3 Coverage and focus on event: algorithm design

the connections constituted right after the coverage. This minimization takes place
iterating on cluster GCL, where a maximum number of iterations2 MaxIter is fixed
and each session can disable the flag f?d, breaking the dispatch loop. Also, the leader
node v? (line 15) is chosen in an adaptive fashion, since, at each cycle, the event
sensing for cluster nodes may vary while they move.

3.3.1 Coverage stage

As proposed in Ramaithitima et al. (2015), let us denote the Vietoris-Rips Complex (see
B.1.2) of the set of the deployed agents3 with Rrv , the frontier subcomplex with F ⊆ Rrv ,
the obstacle subcomplex with O ⊆ Rrv and the fence subcomplex with K = F ∪O. To
accomplish this stage, the Coverage function is implemented at line 1 in Alg.3 adopting
their hexagonal-packing-based coverage algorithm (see Fig. 3.9). However, since the
relative homology H2(Rrv ,K) (see B.1.3) is required to be stored in a centralized manner
(Ramaithitima et al. (2015), Sec. II-B), that procedure is not completely distributed. To
account for this aspect, an improvement to this scheme is introduced: conversely to the
homology-based approach utilized in Ramaithitima et al. (2015), Sec. II-E, a redundant
agent in the network is pinpointed exploiting reciprocal bearing measurement values, as
shown in Fig. 3.10. This allows to rule out agents belonging to the interior of a 1-simplex
(a segment) or 2-simplex (a triangle) taking advantage of simple angle properties4. In
Alg. 4, these two different cases are examined considering each triplet of distinct agents
ak = (ak1 , ak2 , ak3) that forms a 2-simplex and determines whether an agent is redundant
to coverage purposes.

Algorithm 3 Outline of the main procedure
1: G ←Coverage();
2: for each agent ai, s.t. i = 1, ..., n do
3: |vi| ← f̂EV (pi);
4: end for
5: for all eij ∈ E do
6: |eij | ← (|vi|+ |vj |)/2;
7: end for
8: v? ←Max-Consensus(G,BS);
9: GCL ← {v?}
10: Clustering(v?,1);
11: for all nodes vi ∈ GCL do
12: [cdi, fdi]← [0, false];
13: end for
14: while c?d < MaxIter and f?d = false do
15: v? ←Max-Consensus(GCL, v?);
16:

[
c?d, f

?
d

]
←Dispatch(v?,c?d + 1,true);

17: end while

2Iterations are counted by variables cdi, stored in each node vi ∈ VCL.
3Abuse of notation: a simplicial complex depends on the algorithm status.
4The remarkable facts that the summation result of the three convex angles in any triangle is equivalent
to a straight angle allows us to identify 1-simplex-redundant agents. Moreover, 2-simplex-redundant
agents are spotted whenever three explementary angles with the same vertex exist.
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3 Dynamic Coverage with Limited Sensing Capabilities

of the entire 1-skeleton is used (constructed by the robots
communicating each of their local information – the IDs of
the neighbors that each see – to a central server via wireless
communication), although the computation of the path can
indeed be performed in a decentralized manner through peer-
to-peer communication only (see [20] for a decentralized
implementation of the Dijkstra’s algorithm).

We consider the graph made out of the 1 and 0 simplices
in Rrv . The frontier subcomplex, F , computed in previous
section (the 0-simplices in it) provides the list of robots
which we need to potentially move to expand the frontier. We
assign a cost of 1 to all the 1-simplices in the graph, except
the 1-simplies in O, to which we assign cost of wO > 1
in order to avoid paths that pass through robots adjacent
to obstacles, where navigation is more challenging. We use
Dijkstra’s search algorithm to find the shortest path from the
source, which is the robot next to the base station (in case
of multiple source, we can initiate the open list in Dijkstra’s
algorithm with the multiple sources as illustrated in [5]), to
the closest vertex (0-simplex) in F .

Robots are then “pushed” along this path where each robot
on the path simply gets replaced by the one behind it on
the path, while the robot that is on the frontier computes
(as described next) and moves to a new location in the
free/unexplored region. Since robots on the path get replaced
by the robots behind them, this requires that we not only
update the IDs in Rrv , but also the robot IDs in F and O.
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(a) Shortest path 12→ 10→ 6→ 2
identified from the source to a vertex
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(b) Robots are “pushed” along the
path. Notice how the new robot 13
appears near the source.

Fig. 9. The complexRrv , and the subcomplexes F (cyan) and O (brown).
Path through the 1-skeleton illustrate “pushing”

C. Control of Robots
We use the visual homing controller described in Sec-

tion II-D (Figure 10(a)). For a frontier robot, i, the desired
bearings θij,des can be computed easily for the planned
direction for deployment of the new robot (θjnew in the current
coordinate frame if robot i), and assuming that the robots are
separated by a distance of rv − ε. For every other robot, i′,
on the path through which robots are being “pushed”, θi

′

j,des
are the current bearing values for the robot ahead of i′ in the
path (with correct ID re-orderings performed).

When robots are being “pushed” along a path, multiple
robots move simultaneously, and for a robot moving on the
path, some of its landmarks (i.e., neighbors) are themselves
moving. The bearing-based controller that we use, is in fact
capable of dealing with moving landmarks, and give similar
convergence properties. A few static landmarks (at least two
in total) referenced by some of the moving robots on the
path are sufficient in attaining convergence. In addition, the

desired bearing is set for each robot for all of their sur-
rounding neighbors. This allows robots to adaptively correct
their trajectory while simultaneously gaining and loosing
landmarks along their trajectory.

No robots reference the robot that is moving to a new
(unexplored) location for expanding the frontier. This is
because there are uncertainties about the unexplored region
(e.g., about presence of obstacles), and errors due to that
should not propagate upstream. Furthermore, if a robot does
not have more than one another robot to reference to as
landmark, it employs an open-loop control to reach the
desired location using odometry estimate, and drives back
in case it loses the single visual link that it had. This is
unavoidable when, for example, the robots move in a narrow
passage in a single file.

1) Action on Touching an Obstacle: Upon touching an
obstacle at a bearing of θio± τ (τ being the resolution in the
measurement of bearing to touch), the robot will not be able
to progress in the direction between (θio− π

2 +τ, θ
i
jo+

π
2 −τ)

(Figure 10(b)). Hence, if the command velocity, vi, computed
using the bearing-only controller “pushes” the robot inside an
obstacle, we take the best projection of that velocity into the
set of allowed velocities (ui in the figure, falling inside the
brown sector) such that using ui as the velocity command
the robot moves out toward the obstacle-free area freeing
itself from the obstacle. Overall, this results in a behavior
akin to sliding along the obstacle using the component of
the velocity parallel to the obstacle.

(a) The bearing-based controller
uses neighbors as landmarks and
use the bearing angles to them to
navigate to the desired location
knowing the desired bearing an-
gles.

vi

θ

ui

(b) Upon touching an obstacle,
the robot use the component of
the computed velocity that is the
projection in the valid/free sector
(brown).

Fig. 10. Components of the controller.
2) Scale Correction: Since our controller is purely

bearing-based, and although we attempt to create a hexagonal
packing, small accumulation of the errors can decrease the
average separation between the robots as we move further
away from the source. To correct this, we perform a scale
correction periodically, where we make a frontier robot,
i, move forward keeping the reference robots behind it
(opposite to a mean bearing to those robots), until it breaks
visual link with at least one of those neighboring robots.
Then we make the robot i drive back until it reestablishes
the visual link with all its neighbors. This ensures that the
average separation between the robots stay in O(rv).
D. Identification and Reallocation of Redundant Robots

Using the method described in [11] and briefly discussed
in Section II-E, we can identify redundant robots in the
complex by computing a generator (non-trivial relative cycle)
of the relative homology H2(Rrv ,K), where K = F ∪ O
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Figure 3.9. Coverage algorithm developed in Ramaithitima et al. (2015) leverages an innovative
pushing technique and an expansion policy that allows to attain an hexagonal packing
whenever border effect are not present. [Credits : Ramaithitima et al. (2015)]

Algorithm 4 Redundant agent search
for k = 1, 2, ... s.t. ak is a 2-simplex do
θk ←

[
θk1
k2k3

θk2
k1k3

θk3
k1k2

]
;

if ∃i ∈ {1, 2, 3} s.t. |[θk]i| = π and ki 6= 1 then
label aki as 1-simplex-redundant;

end if
Nk∩ ← Nk1 ∩Nk2 ∩Nk3 ;
for j = 1, ..., |Nk∩| s.t. akj

∈ Nk∩ do
if
∣∣∣θkj

k1k2
+ θ

kj

k2k3
+ θ

kj

k3k1

∣∣∣ = 2π and kj 6= 1 then
label akj

as 2-simplex-redundant;
end if

end for
end for

This simplicial complex is, by definition, the Vietoris-
Rips complex [11] (or simply the Rips complex) on the
set of robots (constructed up to dimension 2 – i.e., we
do not construct the 3 and higher simplices), with distance
between pairs of robots being the length of the unobstructed
line segment connecting them (and a distance being infinity
if such a line segment does not exist due to presence of
obstacles) and the parameter for the Rips complex being rv .
For a particular joint configuration of the robots, X , we call
this simplicial complex Rrv (X). We denote the 0-simplices
in Rrv (X) by the corresponding robot ID (e.g., ‘i’), the
1-simplices by pairs of IDs of the robots that make them
up (e.g., {i, j}), and 2-simplices by three tuples (such as
{i, j, k}). Formally, Rrv (X) is a chain complex [17] and
constitutes of a sequence of modules (or vector spaces)
along with boundary maps: 0

0−→ C2
∂2−→ C1

∂1−→ C0
0−→ 0,

where Cd is an abstract module (or vector space) generated
(or spanned) by the d-dimensional simplices. Whenever
the robots’ configuration, X , is obvious or implied by the
context, we will write Rrv to denote the corresponding
complex for simplicity. In Section III-A we will identify two
sub-complexes of Rrv , namely the frontier subcomplex, F ,
and obstacle subcomplex, O, which together constitute the
fence subcomplex [11], K = F ∪O.

It is important to note that Rrv can be constructed with
local visibility information only, as described earlier, and
does not require the entire configuration, X , of the robots
to be known in a centralized manner. Furthermore, as will
be evident in the next section, we do not need to construct
the entire simplicial complex in a centralized fashion for
most of the algorithmic components. It’s only when we
compute generators for the relative homology H2(Rrv ,K),
for optimization purposes, that we will need to store Rrv in
a centralized manner.
C. Contact/Touch Sensing Model

As mentioned earlier, the only sensors on board each
robot are the omnidirectional camera and a collection of
touch/contact sensors at the base of the robots. The camera
is used to measure bearing with other robots inside the
disk of visibility and is incapable of measuring range. The
touch sensors are binary sensors, and are triggered when in
contact with an obstacle/wall or another robot (Figure 4).
The presence of multiple touch sensors (NT counts of them)
at the base also provides a rough estimate of direction of
contact (within an error of τ = π

NT
when a single touch

sensor is activated).

Fig. 4. The touch/contact sensors (gray protrusions) at the base of a robot
(red). Contact with an obstacle or another robot triggers one or more touch
sensors providing a rough estimate of the direction of contact.

D. Local Bearing-Based Controller
The robots are controlled using the bearing-based visual

homing controller presented in [18]. This controller utilizes

a gradient decent approach where desired bearing angles to
landmarks are used to drive robots. The distances between a
robot and its respective landmarks are not known. The only
information known are the bearing angles, as is consistent
with the assumptions in our paper. With the proper selection
of the cost functional for the optimization process, the
gradient of the path from start to goal (the velocity control
command for robot i) is given by vi = K

∑
j∈Li(θij,des−θij),

where, Li is the list of robots that are neighbors of i,
and which can be used as landmarks, θij,des is the desired
bearings with landmark j, and K is a gain. Note that
this velocity can be computed in the instantaneous local
coordinate frame of the robot i. This controller converges
to the goal configuration when the number of landmarks is
greater than or equal to two and not co-linear with the goal
location. In our implementation, the controller incorporates
adaptive gain scaling in order to obtain faster convergence.
We also use adaptive landmark detection depending on a
robot’s neighbor list while moving.

E. Relative H2 Homology
We periodically compute a non-trivial 2-cycle of the

relative complex (Rrv ,K) so that we can identify redun-
dant/extra robots that can be removed from the complex
without sacrificing sensor coverage. This is a direct applica-
tion of the result in [11]. We assume some familiarity with
algebraic topology and homology theory for the discussion
in this section [17]. Given the simplicial complex, Rrv , and
the fence subcomplex, K = F ∪ O, one can construct a
relative chain complex, C∗(Rrv ,K). This, in essence, is
the complex obtained by quotienting out the subcomplex
K (i.e., collapsing K to a single point, or introducing a
new 0-simplex, Q, and connecting 2-simplices {i, j, Q} to
every {i, j} ∈ K – as illustrated in Figure 5). Due to a
result from [11], if we can find a non-trivia relative cycle in
C2(Rrv ,K) such that it passes through all the 0-simplices
in the fence, K, then the 0-simplices (the robots) making up
that cycle is sufficient for maintaining the sensor coverage.
All other robots can be reallocated.
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(a) A Rips complex, Rrv , with the
frontier subcomplex, F , marked in
cyan, and the obstacle subcomplex,
O, marked in brown.
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(b) Topology of the space where the
entire fence complex, F ∪ O, have
been connected through 2-simplices
to an external 0-simplex, namely Q.

Fig. 5. An example where a redundant robot (#10) can be identified from
a non-trivial cycle in the space constructed by connecting all the fence
simplices to a single external 0-simplex.

III. ALGORITHM DESIGN
The outline of our swarm coverage algorithm is presented

in Algorithm 1. We begin by deploying robot 1 into the
unknown environment using an open-loop control so that it
maintains visual contact with the source/base. Then, in line 3,
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Figure 3.10. In Ramaithitima et al. (2015), redundant agents are identified through
non-trivial 2-cycles belonging to the topological space H2 where the union
of the fence and obstacle nodes are collapsed into a a 0-simplex Q.
[Credits : Ramaithitima et al. (2015)]

3.3.2 Clustering stage

In this intermediate stage, illustrated in Alg. 5, it is supposed that each node in the
network has already sensed the event intensity, and hence each edge weight in the graph G
has already been assigned by a specific function of the measurements (e.g. the function5

at line 6 in Alg. 3): it follows that each neighborhood Ni in G can be sorted in a
descending order according to each weight |vj |, where vj = [Ni]k, k = 1, ..., |Ni|. The

5This weighting function has to be chosen according to condition in the r.h.s. at line 10 in Alg. 5
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3.3 Coverage and focus on event: algorithm design

latter assumption contributes to implement a greedy approach: each agent vi is labeled
as a cluster node if it is chosen as the best option in the neighborhood Ni according
to criteria that reflect local optimality. Alg. 5 should be actually seen as a distributed
one-hop loop and not as a centralized recursive procedure, since it is not required to save
the whole state of an agent in its stack while hopping. Keeping track of the last frame by
including three counters and two additional flags – used to report the affiliations to cluster
GCL and the subgraph of completed vertices GCO ⊆ G – is enough to preserve information.
Indeed, for every agent ai, counters k̄i, ki, |GCL| are just counting increasing quantities
and the two aforementioned flags, implementing lines 8 and 18, would be set only once.
Moreover, when the Clustering function is invoked to perform a communication hop
from vi to vj in a real framework, only the information related to the cardinality |GCL|
has to be passed and updated.
Three steps can be identified in Alg. 5, which generally stops once |GCL| = nCL holds
(line 13). Firstly, for k̄i = 1, all vertices in neighborhood Ni are inserted into cluster
GCL (line 8), as far as possible: if a new leader vj is found (line 10) a hop is performed
according to a greedy paradigm. Secondly, for k̄i = 2, nodes in Ni are forcefully visited
in order to expand the cluster, in case condition |GCL| = nCL is yet to be attained. If the
latter is not verified at the end of this loop then vertex vi is labeled as complete (line 18);
namely, all nodes in {vi ∪Ni} already belong to cluster GCL. Lastly, for k̄i = 3, vertex vi
is definitively left and its non-complete neighboring nodes are selected (line 12) to be
visited again.

Algorithm 5 Focus on event: cluster formation
procedure Clustering(vi, |GCL|)
1: for k̄i = 1, 2, 3 do
2: ki ← 0;
3: while ki < deg(vi) and |GCL| < nCL do
4: ki ← ki + 1;
5: vj ← [Ni]ki

;
6: if vj /∈ GCL or k̄i = 3 then
7: if k̄i < 3 then
8: GCL ← GCL ∪ {vj};
9: end if

10: ki1 ← k̄i = 1 and |vj | > |eij |;
11: ki2 ← k̄i = 2;
12: ki3 ← k̄i = 3 and vj /∈ GCO;
13: if |GCL| < nCL and (ki1 or ki2 or ki3) then
14: Clustering(vi, |GCL|);
15: end if
16: end if
17: if k̄i = 2 and ki = deg(vi) then
18: GCO ← GCO ∪ {vi};
19: end if
20: end while
21: end for

3.3.3 Dispatch stage

In this final stage representing the original contribution of this chapter, agents belonging
to cluster GCL are dispatched as shown in Alg. 6. Given a temporary leader vi and
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3 Dynamic Coverage with Limited Sensing Capabilities

its restricted neighborhood N ?
i (defined at line 5) sorted decreasingly w.r.t. the event

intensity, each node vj ∈ N ?
i is sent6 towards vi itself from position pj(t) to pj(t+ T ) =

pj(t) +Kcdi,j(pi(t)− pj(t))/ ‖pi(t)− pj(t)‖, Kcdi,j ≥ 0, as far as collisions or visibility
issues do not arise (line 10), i.e. Kcdi,j = 0. Moreover, a further stopping criterion
(line 18) for agent aj is given by the impossibility to locally minimize an isoperimetric
functional, precisely the cut bipartition function (see Subsec. B.3.1)

hG(GCL) := |∂GCL|
volv(GCL)︸ ︷︷ ︸

hCL

+
|∂GCL|

volv(GCL)︸ ︷︷ ︸
h
CL

. (3.2)

Drawing inspiration from isoperimetric problems Chung (1997), functional in (3.2) is
chosen to represent the “bottleneckedness” of the subgraph GCL w.r.t. graph G: the
higher hG(GCL) the interconnected GCL appears inside G (see also Subsec. 2.2.3, where
edge expansion techniques for partitioning are addressed). To minimize hG(GCL), it
has been chosen not to add new edges from nodes in GCL to nodes in GCL: keeping
∂ECL = ∂ECL constant during the dispatch procedure allows to consider term hCL only,
since volv(GCL) cannot vary and, thus, to simplify the minimization. Defining the positive
quantities εS := volv(GCL), εS := volv(GCL) and εC := |∂GCL|, this heuristics is justified
by the fact that the isoperimetric functional variation

∆hG(GCL) = −εC(ε−1
S + ε−1

S
)+

(εC + ∆εC)
[
(εS + ∆εS)−1 + (εS + ∆εS)−1

]
(3.3)

is expected not to become positive in all frameworks of interest. Condition ∆hG(GCL) < 0
represents a decrease for functional hG(GCL), denoting that cluster agents are driven
close to the event origin and among themselves at the highest possible level to maintain
connectivity with the rest of the network. Indeed, for a large number of nodes in GCL,
it is reasonable to assume7 that |∆εS | � εS and |∆εS | � εS . Therefore, trying to
preserve the previously established topology without removing edges, it would hold
that ∆hG(GCL) ' ∆εC(ε−1

S + ε−1
S

) > 0. Whereas, in the setting where hG(GCL) := hCL
and ∆εC := 0, it is possible – by showing that ∆εS + εS > 0 – to conclude that
∆hG(GCL) = −εC∆εS/ [εS(εS + ∆εS)] < 0 if and only if ∆εS > 0 (line 12). Denoting
with ∆Nj(t+ ∆t) :=

{
vk̄ ∈ GCL | ejk̄(t+ ∆t) ∈ E

}
the set of new vertices that node vj

can acquire as neighbors moving in pj(t+ ∆t), s.t. ∆t ∈ [0, T ], and with Nj(t+ ∆t) :=
Nj(t) ∪∆Nj(t+ ∆t) the new neighborhood for vj , the j-th contribution to the vertex
volume variation of cluster GCL is yielded by

∆jvolv(G) =
∑

∀vk̄∈∆Nj(t+∆t)
|vk̄| − |Nj(t) ∩ GCL| |vj(t)|+

|Nj(t+ ∆t) ∩ GCL| f̂EV (pj(t+ ∆t)). (3.4)

6It is assumed that the bearing-based visual homing controller follows a suitable feedback control law to
perform this navigation, e.g. steering the bearing measurement θij to zero while aj is moving.

7Moving just one agent in cluster GCL do not change graph volumes εS , εS significantly, if a large
number of agents has already been deployed.
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3.3 Coverage and focus on event: algorithm design

Since each agent aj moves while all the others do not change their position, i.e. each pk̄
remains constant for all vk̄ ∈ ∆Nj(t+ ∆t), it holds that ∆jvolv(G) = ∆volv(G) = ∆εS :
this relation proves that Alg. 6 is distributed. Moreover, since condition

εS =
∑

∀vk̄∈GCL

|vk̄(t)| |Nk̄(t) ∩ GCL| > |Nj(t) ∩ GCL| |vj(t)| (3.5)

is always verified, relation ∆εS > −εS holds true. In addition, to obtain an estimate of
∆jvolv(G) whenever the environment is noisy, it has been decided to take into account
the signal-to-noise ratio SNRw between the noise w and estimates f̂EV . Dividing term
− |Nj(t) ∩ GCL| |vj(t)| in (3.4) by the quantity (1 + αwSNR

−1
w ), where αw > 0 is a

tunable constant, facilitates the establishment of new communication links. Furthermore,
whenever a dispatch session starts, node weights are updated (line 4), by means of a
filtering procedure, e.g. by using a moving average FIR filter for each agent ai, acting in
the discrete time window where ai does not change position.
Once again, Alg. 6 should be seen as a distributed one-hop loop8, not as a centralized
recursive procedure because, thanks to the properties of N ?

i , only counters cdi have to be
stored and just incremented (line 2) for each node per each session. Lastly, variables c?d,
f?d are the only to be passed from node to node whenever a hop from vi to vj takes place.

Algorithm 6 Focus on event: agents’ dispatch
function [c?d, f

?
d] =Dispatch(vi,c?d,f

?
d)

1: if cdi < c?d then
2: cdi ← c?d;
3: end if
4: |vi| ←Filtering(|vi|,f̂EV (pi));
5: N ?

i ← (Ni ∩ GCL) \ {vk ∈ Ni | cdk = c?d};
6: for ki = 1, ..., |N ?

i | do
7: vj ← [N ?

i ]ki
;

8: while aj is moving from pj(t) to pj(t+ ∆T ) do
9: if vj cannot take a step forward then

10: break while
11: end if
12: if ∆jvolv(G) > 0 then
13: let aj move from pj(t) to pj(t+ ∆t);
14: |vj | ← f̂EV (pj(t+ ∆t))
15: Nj(t+ ∆t)← Nj(t) ∪∆Nj(t+ ∆t);
16: f?d ← false;
17: else
18: break while
19: end if
20: end while
21: [c?d, f

?
d]←Dispatch(vj ,c?d,f

?
d);

22: end for

8Agents are labeled randomly at the coverage stage and move using local information only. Neither
selection order nor navigation commands are imposed by a central hub at each dispatch session. The
leader selected with max consensus just triggers the dispatch procedure.
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3 Dynamic Coverage with Limited Sensing Capabilities

3.4 Discussion on the number of deployed agents

Given the lack of metric information, knowing exactly beforehand how many agents are
deployed in the coverage stage is generally arduous; thus, few bounds can be provided in
a simplified framework. To begin, the case in which the scenario SC is an obstacle-free
rectangle (A1) with dimensions bSC × hSC is considered; then, a further extension is
proposed. In addition, it is also supposed that rv ≥ 4rb to allow a proper hexagonal
packing policy implementation (A2), as far as it is possible. With these ideas in mind,
the following proposition is stated.

Proposition 3.4.1. Assume (A1) and (A2) hold. Let us define the dimensionless
quantities %b := bSC/rv, %b3 := %b/

√
3, %h := hSC/rv, %h3 := %h/

√
3 and the real scalar

functions in the positive variables (%1, %2)

gSC(%1, %2) :=1 + b%1cb%2c+ d%1ed%2 − 1/2e; (3.6)

gSC(%1, %2) :=1 + d%1 −
√

4− %2
2e; (3.7)

gSC(%1, %2) :=d%1e(d%2 + 1/2e+ b%2 − 1c)+
+ b%1cd%2 − 1e − b%1 + 1cb%2c. (3.8)

For %b3 > 1 and %h3 > 1, the minimum number of deployed agents na to attain a complete
coverage of the scenario can be upper bounded by na and lower bounded by na, such that

na := min(gSC(%b, %h3), gSC(%h, %b3)); (3.9)
na := min(gSC(%b, %h3), gSC(%h, %b3)). (3.10)

Moreover, it holds that

na =


gSC(%b, %h), %h3 ≤ 1 and %b > 1;
gSC(%h, %b), %b3 ≤ 1 and %h > 1;
1, %b ≤ 1 and %h ≤ 1.

(3.11)

Proof. Whenever %b3 > 1 and %h3 > 1 holds, it is possible to cover a rectangular surface
as shown in Fig. 3.11. The choice of an appropriate coverage policy allows to determine

VERTICAL
COVERAGE

HORIZONTAL
COVERAGE

Figure 3.11. Vertical and horizontal coverage policies.

an upper and a lower bound for the number of deployed agents na, in this case scenario.
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3.4 Discussion on the number of deployed agents

For this reason, in order to compute na and na in (3.9) and (3.10) respectively, it is
necessary to minimize among gSC(%1, %2) and gSC(%1, %2), selecting the most convenient
configuration among those shown in Fig. 3.11.
Let us define the fractional part of a real number ω ∈ R as frac(ω) := ω− bωc, for ω ≥ 0,
and the characteristic function χΩ(ω) on set Ω, 1-valued if ω ∈ Ω, 0-valued otherwise.
W.l.o.g., let us adopt the vertical coverage policy in Fig. 3.11. Then, gSC(%b, %h3) ≤ na
holds by assigning

gSC(%b, %h3) := (b%bc+ d%be) b%h3c+
d%beχ{ω|ω>1/2} (frac(%h3)) +
−b%h3cχ{0} (frac (%b)) +
−b%bcχ{0} (frac (%h3)) . (3.12)

In (3.12), first and second terms represent the space occupancy for agents at the first
and second rows in Fig. 3.11, while third and fourth terms take into account redundant
agents placed on the boundaries. Similarly, gSC(%b, %h3) ≥ na holds by assigning

gSC(%b, %h3) := 1 + (b%bc+ d%be) b%h3c+
d%beχ{ω|ω>1/2} (frac(%h3)) . (3.13)

Expressions (3.6) and (3.8) are then obtained by leveraging floor and ceiling properties
starting from (3.13) and (3.12), respectively. Now, w.l.o.g., let us assume that the width
bSC is larger than the height hSC . If %h3 ≤ 1 and %b > 1 holds then the scenario surface
can be exactly covered with the following number of agents:

na = gSC(%b, %h) := 1 + d%b − 2
√

1− (%h/2)2e. (3.14)

Equality in (3.14) holds true only if %b − 2
√

1− (%h/2)2 > −1 is satisfied; however, the
latter relation is already verified, since condition %h3 ≤ 1 and %b > 1 characterizes this
case scenario. Finally, for %b ≤ 1 and %h ≤ 1, one agent is trivially sufficient to cover the
entire surface.

This result, can be further extended by taking into account border effects while the
algorithm compute deployment positions. For instance, the fact that a rectangular
scenario SC has a well defined perimeter pSC = 2(bSC + hSC) suggests that a good
heuristic to approximatively improve lower bound in (3.10) can be adopted by adding
to na the quantity nap = bpSC/rvc. Finally, an additional step can be taken in order to
provide a rough estimate of the lower bound na(SC) for a generic scenario SC. Since
any connected space in R2 can be easily approximated by a segmentation into rectangles
{rek}Lrek=1 , it holds that

na(SC) ' σp0nap(EN) +
Lob∑
k=1

σpknap(obk) +
Lre∑
k=1

σgkna(re2
k) (3.15)

where the dependency of each bound on a precise element of the scenario is indicated
inside round brackets. In (3.15), coefficients σgk, for k = 1, ..., Lre, are either equal to 1,
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3 Dynamic Coverage with Limited Sensing Capabilities

if re2
k ⊆ CS2 or 0, otherwise and coefficients σpk ∈ [0, 1], for k = 0, . . . , Lob, are selected

to describe how much a delimitation conveys border effects.

3.5 Numerical simulations

The validity and the limitations of this work are discussed in this section providing
numerical simulations in

• A) an obstacle-free scenario SC = EN ;

• B) structured environment SC = (EN,OB) with presence of obstacles.

In this set-up, the following quantities are assigned: rv = 5 m, NT = 1, kEV = 160,
rEV = 15 m. Impacts against barriers, collision between agents and general dynamics
are virtually implemented in a realistic fashion for all instances of the algorithm. It
is assumed that estimates f̂EV (p) = fEV (p) + w(fEV (p)) are affected by a uniformly
distributed noise w(fEV (p)) with zero mean and variance fEV (p)2σ2

w/3; thus, αw = 3 is
set.

3.5.1 Obstacle-free scenario

In this simulation, Alg. 3 is tested in a 15 m × 15 m squared scenario as Fig. 3.12(a)
shows. Neither barriers nor noise are present. A coverage with na = 68 agents is attained.
Cluster formation takes place thanks to event sensing, illustrated in Fig. 3.12(b), after
a greedy selection of nCL = 15 members. Once the dispatch is completed, the spacial
distribution of the agents does not practically change (Fig. 3.12(c)), since the event
EV = (1m, 0) is situated in the middle of a quasi-perfect hexagonal packing. Finally,
Fig. 3.12(d) exhibits a slight decrease of functional hG(GCL): this phenomenon is due to
borders effects in the scenario that influence agents located in a marginal position w.r.t.
the scenario centroid.

3.5.2 Structured and noisy environment

In Fig. 3.13(a), a simulation in a structured squared scenario is shown choosing the event
in EV = (1m, 0). It is remarkable to note that more agents w.r.t. the obstacle-free case
have been deployed (na = 98). Cluster formation (nCL = 15 is set) mainly arises where
communication links are concentrated and around the event source after the sensing
phase, illustrated in Fig. 3.13(b). Differently from the previous case, during the dispatch
stage (Fig. 3.12(c) vs. Fig. 3.13(c)), agents focus on the event and, as a result, the
graph topology shrinks around and towards the point EV . Remarkably, many additional
edges are added in cluster GCL: this fact can be observed in Fig. 3.13(d), where, in
correspondence to each sharp decrease of functional hG(GCL), a new link between two
cluster nodes is created. Moreover, another peculiarity is highlighted: the minimization of
hG(GCL) requires several sessions and much more iterations to be accomplished w.r.t. to
the obstacle-free case. This fact is also due to the presence of noise (σw = 0.01 is set): the
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3.5 Numerical simulations

(a) Coverege and cluster selection (b) Event intensity

(c) Dispatch of the selected cluster (d) Isoperimetric functional

Figure 3.12. Dynamic coverage in an obstacle-free scenario. Hexagonal packing is mostly
achieved, up to border effects, and a cluster (red dots) is selected around the event
source (yellow star). The agent dispatch has practically no effect as expected,
since topology cannot shrink towards the event. After 20 iterations and 2 sessions,
the execution is terminated.

computation of volume variation ∆volv(G) is affected by uncertainty; therefore, wrong
descent directions for hG(GCL) are selected during dispatch. Finally, one can observe
that agent number 28, as few other relevant agents close to the event, is not involved in
the cluster because of the noisy environment, representing a potential limitation for this
approach.

As a further assessment, the algorithm remains robust enough when events are selected
in unreachable points of the scenario, e.g. EV = (−15m, 0) on the enclosure (Fig. 3.14(a))
and EV = (0, 6m) inside an inaccessible obstacle (Fig. 3.14(c)), even though these two
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3 Dynamic Coverage with Limited Sensing Capabilities

(a) Coverege and cluster selection (b) Event intensity

(c) Dispatch of the selected cluster (d) Isoperimetric functional

Figure 3.13. Dynamic coverage in a noisy structured scenario. Hexagonal packing is achieved
only in few areas, because of the large presence of obstacle borders. The agent
dispatch leads to a graph topology narrowing by increasing the cluster volume:
whenever an edge between two nodes in the cluster is added, the adopted isoperi-
metric functional decreases with a discontinuity (purple spikes). Execution stops
after 10 sessions, with more than 1000 iterations.

event sources are arduous or impossible to be covered. In both cases, especially when
the event is located on the enclosure, functional hG(GCL) requires a large number of
iterations and potentially infinite sessions to be minimized, as shown in Figs. 3.14(b) and
3.14(d), but a focus on the event is eventually achieved, to some extent. However, in these
more critical cases, few limitations emerge: the considerable presence of noise (σw = 0.1)
and the lower desired number of agents selected (nCL = 10) affect both clustering and
dispatch performances negatively. For instance, cluster in Fig. 3.14(c) does not involve
agent 23; moreover, in Fig. 3.14(a) the dispatch drives agents fairly far from the event.
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(a) Dispatch of the selected cluster (b) Isoperimetric functional

(c) Dispatch of the selected cluster (d) Isoperimetric functional

Figure 3.14. Dynamic coverage in a highly noisy structured scenario with unaccessible event
sources. In (a) and (b) the dispatch is attained towards an event placed on the
enclosure. In (c) and (d) the dispatch is attained around squared obstacle. The
abundant presence of noise limits the cluster selection and the poor sensing affects
the dispatch performances.
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3.6 Chapter summary

In this chapter, an algorithm for dynamic coverage and focus on event has been de-
signed. The agents employed for this task are provided by a bearing-based visual homing
controller relying on limited sensing capabilities and local information. Geometrical
models can simulate space occupation in an unknown scenario admitting the presence of
obstacles.
The devised algorithm is divided into three subsequent phases. Firstly, in the deploy-
ment stage, a fully distributed implementation is proposed, starting from the work in
Ramaithitima et al. (2015). Furthermore, bounds for the number of deployed agents are
given. Secondly, in the clustering stage, the same paradigm of Oliva, Panzieri, Setola,
and Gasparri (2019) has been exploited to carry out this task. Lastly, leveraging the min-
imization of an isoperimetric functional to increase the cluster volume and, consequently,
maximizing the communication over the cluster, the dispatch of agents has been attained
towards an event belonging to the environment.
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4
Optimal Time-Invariant

Formation Tracking
“There is a difference between knowing the path and walking the path.”

Morpheus
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4 Optimal Time-Invariant Formation Tracking

4.1 Overview

In the framework of MAS applications, researchers are often interested in designing
and controlling groups of agents in order to attain specific collective goals, such us, for
example, rendezvous in mobile robotics Luo, Kim, Parasuraman, Bae, Matson, and Min
(2019); Ozsoyeller, Beveridge, and Isler (2019), cooperative transportation Belbachir,
Fallah-Seghrouchni, Casals, and Pasin (2019); Shirani, Najafi, and Izadi (2019), reliable
communication over networks Bhanu, Reddy, and Hanumanthappa (2019); Redhu and
Hegde (2019), exploration and mapping of unknown environments Geng, Zhou, Ding,
Wang, and Zhang (2018), formation control for unmanned aerial vehicles He, Bai, Liang,
Zhang, and Wang (2018); Shao, Yan, Zhou, and Zhu (2019); Yan, Shi, Lim, Wu, and
Shi (2018); Zhou, Zhang, and Bi (2019), surveillance and monitoring Du, Sun, Cao, and
Wang (2017); Oliva et al. (2019); Tsochev, Trifonov, Yoshinov, Manolov, Popov, and
Pavlova (2018).

Recently, distributed formation tracking (FT) has emerged as one of the most appealing
topics related to MAS Chu, Peng, Wen, and Rahmani (2018); Li, Xie, and Yan (2017);
Peng, Sun, and Geng (2019); Wang, He, and Huang (2019), since many FT problems arise
in trajectory optimization, path planning and maneuver regulation when a multitude
of robotic agents is employed. Many recent works developed for autonomous vehicles
exploit Trajectory Optimization to devise such control strategies, even in constrained
environments. Practically, the employment of direct methods for the minimization of
a cost functional represent a fundamental approach to provide solutions to this kind of
problems.
To conclude this heading, Fig. 4.1 depicts the main features arising in this work.

The methods employed in this chapter widely range over almost every discipline related
to the manuscript, considering Optimization Theory, Dynamic Systems and Control,
Combinatorial Graph Theory, Distributed Optimization and Distributed Control Systems.
Nonetheless, the major focus in this work is directed toward the design of an optimal
controller able to accomplish the given specification tasks in a distributed fashion,
drawing inspiration from Optimal Control and exploiting a Trajectory-Optimization-
based numerical tool in order to explore the formation of agents involved in the flocking.
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INVESTIGATION OBJECTIVES

I Formation flocking

I Distributed control design

I Trajectory exploration

I Comparison of performances

Figure 4.1. Theoretical fields and investigation objectives arising from this study.
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4.1 Overview

4.1.1 Problem statement

The problem of FT Li and Duan (2015); Mesbahi and Egerstedt (2010) is usually
formalized as determining a coordinated control law that keeps the MASs maintain a
desired, not necessarily time-invariant, formation while following a reference orbit or
tracking a target.
In the past years, this topic was initially tackled separately as Formation Control (FC)
and Tracking Control (TC), when the subject of the study did not have a direct focus
on a particular realistic application Xiao, Wang, Chen, and Gao (2009); Zhao, Duan,
Wen, and Zhang (2013). Whereas, nowadays, a large part of the literature about this
field addresses both of these two aspects simultaneously Liu, Zhao, and Chen (2016);
Santiaguillo-Salinas and Aranda-Bricaire (2017); Yang, Cao, Garcia de Marina, Fang,
and Chen (2018). However, in the majority of these studies, the energy consumption of
the system under analysis is not taken into examination in details, even though it may
represent a crucial constraint for the design.
Given the intrinsic complexity of the problem, which exhibits multiple facets, and
considered the specific framework in which it is studied (along with the presence of novel
contributions regarding the energy consumption aspect) its formalization will be better
described in the dedicated Sec. 4.2.

4.1.2 Related works

Historically, TC, i.e. the field that studies how to generate proper input functions to track
a desired reference trajectory, has been faced in several fashions; yet, controllers taking
into account proportional actions to the position and velocity disagreement vectors have
been largely devised, analyzed and successfully implemented in second order integrator
MASs Zuo (2015). Furthermore, many open challenges can be classified as FC problems
Cenedese, Favaretto, and Occioni (2016); Fathian, Doucette, Curtis, and Gans (2018);
Schiano, Franchi, Zelazo, and Giordano (2016), in which the aim is represented by the
accomplishment of prescribed constraints on their states (e.g. shapes or, more generally,
geometrical patterns) for the multiple agents involved. Depending on the interaction
and the sensing capabilities of the agents, a variety of FC problems can be encountered
in the literature (see Anderson, Yu, Fidan, and Hendrickx (2008) for a comprehensive
overview). For instance, in Oh, Park, and Ahn (2015), authors discern FC problems
among distance-based, displacement-based and position-based according to the types
of controlled and sensed variables. Many models in FC make use of potential based
functions in order to implement one of the latter paradigm, since the maintenance of a
formation depends on trade off between single dynamics behaviors, collision avoidance,
and dispersion Chuang, Huang, D’Orsogna, and Bertozzi (2007); D’Orsogna, Chuang,
Bertozzi, and Chayes (2006); Hauser and Cook (2016). These and similar laws often
resort to a potential that determines the pairwise interactions among the agents, and
along this line, many FC algorithms adopt a formulation that contains an attractive part
to maintain the swarm cohesion and a repulsive one to avoid agent collision (see also
Subsec. 2.1.3).
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4.1.3 Contribution and outline of the chapter

In this work, it is proposed a novel approach to solve the formation problem for mobile
robots MAS in which the FT task is formulated as a single time-invariant optimal control
problem where the different subtasks are considered. Specifically, it is proposed a design
strategy based on a cost functional that accommodates the tasks of 1) tracking a given
a desired path (TC), 2) reach and maintain a formation (FC), specified by a feasible
geometric shape, and 3) control input energy minimization. In particular, starting from
the preliminary results in Fabris et al. (2019a), in which the optimization framework
PRONTO (PRojection Operator based Newton’s method for Trajectory Optimization,
Aguiar, Bayer, Hauser, Häusler, Notarstefano, Pascoal, Rucco, and Saccon (2017)) is
successfully adopted to obtain an inverse dynamics to steer the agents in formation
along a chosen trajectory. In this work, it is provided a more thorough analysis of
the approach and proposed a distributed control design that accounts for the presence
of communication constraints in the system of mobile robots, within a scenario where
information exchange between pairs of agents is not ensured. In order to provide a real
time solution for such a formalization, an online networked strategy based on an optimal
distributed proportional derivative (PD) controller is devised. No comparison between
such a controller and other PD controllers in the literature is here presented: future
developments on this side may be envisaged extending the work in this chapter. Instead,
the original contribution of this PD controller rests upon the capability and versatility to
accomplish all the aforementioned optimization tasks in a distributed fashion, according
to a given settling time specification.

In the remainder of the chapter, Secs. 4.2 and 4.3 describe, in a general way, how
the FT problem can be formulated and solved by using an optimization framework,
and specifically PRONTO. Then, the main technical Sec. 4.3 presents the derivation of
the distributed controller to govern the system’s dynamics and a brief analysis of the
system’s equilibria. Finally, Secs. 4.4 and 4.5 illustrate some numerical results, providing
a validation of the proposed approach and interesting final remarks for this research.

4.2 Problem setup

In this section, some assumptions related to the agents’ dynamics are reported and a
formalization of an optimal control problem is proposed, enriching the description of
the approach developed in Fabris et al. (2019a). In doing so, this is still addressed
as the Optimal Time-Invariant Formation Tracking (OIFT) problem, maintaining the
aim of finding a potential-based solution by minimizing a global cost functional able
to capture all the different assignments simultaneously. Nonetheless, communication
topology constrains are now taken into consideration: along with the application of
PRONTO as the chosen optimization framework for FT, the development of a distributed
optimal control law to accomplish these tasks represents a novel and crucial goal for this
work, that goes beyond the centralized formulation presented in Fabris et al. (2019a).
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4.2.1 Dynamics of the agents

It is supposed that n > 1 robotic agents with a linear dynamics are already located in an
M -dimensional space, M ∈ {1, 2, 3}. It is also assumed that each agent i, for i = 1, ..., n,
is aware of its own absolute position pi = pi(τ) ∈ RM , with τ indicating the continuous
time, and velocity ṗi ∈ RM , and can be governed by means of a control law acting on its
absolute acceleration p̈i ∈ RM . With N := nM , the expressions of the state x ∈ R2N

and the input u ∈ RN of this group of mobile agents are provided respectively by

x =
[
p>1 . . . p>n ṗ>1 . . . ṗ>n

]>
=
[
p> ṗ>

]>
; (4.1)

u =
[
p̈>1 . . . p̈>n

]>
= p̈. (4.2)

Differently from Fabris et al. (2019a), it is assumed that the state information is not
globally accessible for each agent, but just locally, so that an estimate of the centroid
position pc = n−1∑n

i=1 pi and velocity ṗc be available to each agent at each time
instant via an average consensus procedure. For this reason, it is considered a connected
undirected graph G to model the communication network among agents in the system.
It is set xc =

[
p>c ṗ>c

]>
, with xc ∈ R2M , to be treated as an output for this linear

dynamics.
Since the aim is to steer the agents such that their positions and velocities are controlled

through their accelerations, a double integrator model is chosen: the following linear
state space represents the adopted second-order dynamicsẋ = Ax + Bu

xc = Cx
. (4.3)

State matrix A ∈ R2N×2N , input matrix B ∈ R2N×N and output matrix C ∈ R2M×2N

in (4.3) are given by

A =
[
ZN IN
ZN ZN

]
, B =

[
ZN
IN

]
(4.4)

C = 1
n

[
IM . . . IM ZM . . . ZM
ZM . . . ZM IM . . . IM

]
, (4.5)

where I\ indicates the identity matrix of dimensions \× \, Z\1×\2 denotes null matrices
of dimensions \1×\2 and if \1 =\2 =\ the convention Z\×\ = Z\ is used.

4.2.2 Minimization problem formulation

In this context, it is required to perform tracking of a given path xc,des =
[
p>c,des ṗ>c,des

]>
with the formation centroid xc while minimizing the energy spent by the input u and
attaining a desired formation, by stating an optimal control problem and designing a
distributed proportional derivative (PD) control law. A more general OIFT problem can
now be stated as:
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4 Optimal Time-Invariant Formation Tracking

Problem 4.2.1. Given the second-order dynamics (4.3) and its trajectory manifold T
over the time interval [0, T ], such that ξ = (x(·),u(·)) ∈ T , find a solution ξ? such that

min
ξ∈T

h(ξ) (4.6)

is attained, where

h(x(·),u(·)) = m(x(T )) +
∫ T

0
l (x(τ),u(τ), τ) dτ (4.7)

represents the cost functional to be minimized over [0, T ].

Generalizing the approach in Fabris et al. (2019a), two different terms explicitly appear
in (5.1), to refer the three objectives defined before: the instantaneous cost

l (x(τ),u(τ), τ) := ltr(xc(τ)) + lin(u(τ)) + lfod (p(τ)) + lal(ṗ(τ)) (4.8)

and the final cost

m(x(T )) := ltr(xc(T )) + lfod (p(T )) + lal(ṗ(T )). (4.9)

Each term in (4.8) is minimized with the purpose to obtain the fulfillment of a specific
task. Indeed, setting rij(τ) := ‖pi(τ)− pj(τ)‖2 as the inter-agent Euclidean distance,
each contribution is defined as:

ltr(xc(τ)) = 1
2

n∑
i=1
‖xc(τ)− xc,des(τ)‖2Qc,ċ,i

(4.10)

for the tracking task;

lin(u(τ)) = 1
2

n∑
i=1
‖ui(τ)‖2Ri

(4.11)

for the input energy task and, given a family of potential functions σdij : R≥0 → R≥0, s.t.
i 6= j,

lfod (p(τ)) = kF
4

n∑
i=1

∑
∀j 6=i

σdij

(
r2
ij(τ)

)
(4.12)

for the formation task. Moreover, it is also accounted for term

lal(ṗ(τ)) = kA
4

n∑
i=1

∑
∀j 6=i
‖ṗi(τ)− ṗj(τ)‖2qAij (4.13)

in order to implement a velocity alignment paradigm between agents. This allows the
system to behave according to the well known Boids model, also based on cohesion and
separation principles Reynolds (1987).
For all i = 1 . . . n, matrix Qc,ċ,i = Diag {Qc,i,Qċ,i} ∈ R2M×2M in (4.10), such that

Qc,i ∈ RM×M and Qċ,i ∈ RM×M weight the i-th centroid position and velocity respec-
tively, is symmetric positive semidefinite and matrix Ri ∈ RM×M in (4.11) is symmetric
positive definite. In (4.12)-(4.13) coefficients kF > 0 and kA > 0 are constant weights, as
well as qAij ≥ 0, that are null, if agents i and j do not exchange information, and larger
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4.2 Problem setup

than zero, otherwise. All these parameters can be tuned according to given specifications
in order to penalize the trajectory tracking, the energy spent by the inputs and the
convergence to a desired shape respectively. Furthermore, considering the potential
functions σdij in the formation cost (4.12), each dij represents the desired inter-agent
distance between a pair of agents (i, j) that is allowed to exchange information: an
accurate selection of σdij leads to the implementation of the cohesion and separation
paradigms while using the optimization framework PRONTO, as explained next.

4.2.3 Potential-based formations

With regard to the formation objective, it is required the system of agents to achieve
desired 1D, 2D or 3D geometric shapes induced by a set of constraints of the form

rij = dij , s.t. i = 1, ..., n, ∀j 6= i; (4.14)

by means of opportunely designed potential functions. Let sij = r2
ij be the squared

inter-agent distance between agents i and j. Among several possible choices, the potential
function

σdij (sij) :=

krij (1− sij/d
2
ij)βij for 0 ≤ sij < d2

ij

kaij

(
(sij/d2

ij)αij − 1
)βij for sij ≥ d2

ij

(4.15)

is selected since it is a power function in rij with degree βij ∈ N, βij > 2, and differentiable
with respect to sij ≥ 0 until the second order. In addition, (4.15) is C 2 and its magnitude
can be adjusted by tuning constants krij ≥ 0 and kaij ≥ 0 independently. These two
parameters are on purpose designed to be directly proportional to the repulsion and
attraction actions between agents respectively, playing a crucial role in the intensity
regulation1 of the potential itself (see Fig. 4.2). Moreover, exponent αaij > 0 allows
to tune the magnitude of the attractive potential: specifically, if sij > 21/αaij d2

ij , it is
possible to say that the attraction force becomes significantly high (σdij > kaij ) for the
system of agents; on the other hand, the maximum repulsion intensity is reached as sij
approaches 0 to avoid collisions, with σdij → krij , being σdij ≤ krij in this regime. A
default choice can be preferred over others by setting αaij = 1/2, since this implies that
the attractive potential starts to play an important role whenever an effective inter-agent
distance sij exceeds twice its reference d2

ij . In practical applications, though, αaij should
be chosen accordingly to the communication range.

As depicted in Fig. 4.2, the qualitative graphic of (4.15) and its derivatives emphasize
the fact that

1. σ′dij (sij) ≤ 0 for 0 ≤ sij < d2
ij ;

2. σ′dij (sij) ≥ 0 for sij ≥ d2
ij ;

3. σ′′dij (sij) ≥ 0 for all sij ;

where the equalities in 1)-3) hold if and only if sij = d2
ij .

1Gains krij and kaij represent the nominal repulsive and attractive magnitudes respectively and are set
to zero if and only if no communication occurs between i and j.

75
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sij
d2ij

krij

kaij

4d2ij−3krij
d2ij

6krij
d4ij

σdij
(sij)

σ′
dij

(sij)

σ′′
dij

(sij)

Figure 4.2. Potential function σdij (sij) with βij = 3, αaij = 1/2, kaij > krij and its derivatives
w.r.t. sij up to the second order. Attractive and repulsive behaviors can be
associated to the values in the dark green and yellow areas respectively.

The employment of potential functions such as (4.15) can be justified by the fact that
they can lead to formations that verify the maximum number of feasible relations2 in
(4.14), since the dynamics is purposely driven to minimum-potential trajectories. Indeed,
it can be easily proven that σdij (sij) is nonnegative for all sij and exhibits a unique
global minimum point (sij , σdij (sij)) = (d2

ij , 0), i.e. these potentials go to 0 when the
desired distance dij within pair (i, j) is achieved.

4.3 Solutions for the OIFT problem

Here, it is provided a brief introduction to PRONTO3, the numerical tool used for
trajectory optimization, and clarify its adaptation to solve in a centralized fashion the
OIFT problem introduced before. In the second part of this section, we devise an online
distributed controller approximating the performance of inverse dynamics computed by
PRONTO, which serves as a reference to compare the performances of the decentralized
approach.

4.3.1 Basics of PRONTO

In its basic form, PRONTO is an iterative numerical algorithm for the minimization (see
also Sec. A.1), through a Newton method, of a general cost functional (5.1). To work on
the (infinite dimensional) trajectory Banach manifold T of a nonlinear control system
ẋ = f(x,u), f ∈ C k, k ≥ 1, state-control curves (α(·),µ(·)) in the ambient Banach space
are projected onto T , (x(·),u(·)) ∈ T , by using a linear time-varying trajectory tracking

2Meaning that they can be satisfied concurrently.
3For further details about properties of PRONTO, the interested reader is referred to the accurate
explanations provided in chapter 4 of thesis Häusler (2015) and in Aguiar et al. (2017); Hauser and
Saccon (2006).
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controller. To this end, a generic nonlinear feedback system

ẋ = f(x,u), x(0) = x0; (4.16)
u = µ+ K (α− x) , (4.17)

where matrix K acts as a (time-varying) controller, defines a nonlinear operator (C k

when f ∈ C k)
P (ξ) : ξ = (α(·),µ(·)) 7→ η = (x(·),u(·)) (4.18)

mapping bounded curves (in its domain) to trajectories.

Variables α(·) and µ(·) in (4.18) have to be intended as a curve ξ = (α(·),µ(·)) that is
not necessarily a trajectory and, initially, at iteration t = 0, represents the first attempt
to compute input u(·). Terms α(·) and µ(·) are then corrected and improved at each
updating step of the PRONTO algorithm, minimizing cost h(ξ), by means of the peculiar
projection operator features. Among the many properties of the projection operator P,
the most relevant in terms of the practical use of PRONTO refers to the fact that it
makes possible to easily switch between constrained and unconstrained minimization
procedures to solve a given optimization problem, as

min
ξ∈T

h(ξ) ⇔ min
ξ

g(ξ) (4.19)

where g(ξ) = h (P(ξ)).

In general, for any tangent curve ζ = (β(·),ν(·)) at a certain ξ = (α(·),µ(·)), the
Fréchet derivative (see also Sec. B.5) of P(·) is denoted with the continuous linear
operator

DP(ξ) : ζ = (β(·),ν(·)) 7→ γ = (z(·),v(·)) (4.20)

such that the approximation

P(ξ + ζ) ≈ P(ξ) +DP(ξ) · ζ (4.21)

holds for all ξ ∈ T . Then, the PRONTO algorithm can thus be formalized as

Algorithm 7 Projection operator Newton’s method Hauser (2002)
Input: initial trajectory ξ0 ∈ T
Output: final trajectory ξt+1 ∈ T
1: for t = 0, 1, 2, ... do
2: Redesign feedback K(·) for P(·), if desired/needed
3: ζt = arg min

ζ∈TξtT
Dh (ξt) · ζ + 1

2D
2g (ξt) · (ζ, ζ)

4: γt = arg min
γ∈(0,1]

g (ξt + γζt)

5: ξt+1 = P (ξt + γtζt)
6: end for

In particular, Step 3 in Alg. 7 encodes the search direction problem for the Newton’s
method and can be solved by finding a solution to the time-varying linear quadratic (LQ)
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4 Optimal Time-Invariant Formation Tracking

optimal control problem (see Ex. 2.2.3 for its time-invariant version) of the form

min
∫ T

0

a>z + b>v + 1
2

[
z
v

]>[Qo So
S>o Ro

][
z
v

]dτ + r>1 z(T ) + 1
2z(T )>P1z(T ) (4.22)

subject to ż = Āz + B̄v, z(0) = z0 (4.23)

where vectors a, b and matrices Qo, So, Ro, Ā, B̄ are time-varying parameters, obtained
from the instantaneous cost l and the adopted dynamics, and, furthermore, vector r1 and
matrix P1 are given constants that depend on the final cost. The relation between the
optimal problem (4.22)-(4.23) and the formulation of the cost functional (4.8)-(4.9) will
be made clearer in next subsection.

Interestingly, when problem (4.22)-(4.23) has a unique minimizing trajectory, it can be
solved resorting to the following differential Riccati equation in the matrix variable P:−Ṗ=Ā>P+PĀ−K>o RoKo+Qo, P(T )=P1

Ko=R−1
o

(
S>o +B̄>P

) (4.24)

4.3.2 Application of PRONTO to solve the OIFT problem

The application of PRONTO to the OIFT problem allows to compute a complete
trajectory ξt+1 = (xt+1(·),ut+1(·)) satisfying (4.6). Indeed, as mentioned before, the
definitions in Sec. 4.2 are related to PRONTO variables and parameters and, by choosing
in this framework f(x,u) = Ax + Bu, the following list of relations can be obtained:

Ā(τ) = fx = A (4.25)
B̄(τ) = fu = B (4.26)

a(τ) = l>x = C>Qc,ċ (xc − xc,des) +∇xl
fo
d +∇xl

al (4.27)
b(τ) = l>u = Ru (4.28)

r1(T ) = m>x = C>Qc,ċ (xc(T )− xc,des(T )) +∇xl
fo
d (T ) +∇xl

al(T ) (4.29)

Qo(τ) = lxx = C>Qc,ċC +Hxxl
fo
d +Hxxl

al (4.30)
So(τ) = lxu = Z2N×N (4.31)
Ro(τ) = luu = R (4.32)

P1(T ) = mxx = C>Qc,ċC +Hxxl
fo
d (T ) +Hxxl

al(T ). (4.33)

where Qc,ċ :=
∑n
i=1 Qc,ċ,i ∈ R2M×2M , R := Diag {R1 . . .Rn} ∈ RN×N and symbols ∇∗

and H∗∗ indicate standard gradient and Hessian operators w.r.t. ∗.
Therefore, a time-invariant PD controller as

K =
[
kpIN kvIN

]
, kp, kv > 0 (4.34)

is an immediate and efficient option to choose, meaning that step 2 in Alg. 7 is not
required to be processed. Moreover, let us analyze the gradient and Hessian matrix of
lfod w.r.t. the state x in (4.27) and (4.30) respectively. Indicating the zero vector of
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dimension \ with 0\ and the relative position displacements eij := pi − pj for all pairs
(i, j), their formal expressions are provided by

∇xl
fo
d =

[
∇>p l

fo
d ∇>ṗ l

fo
d

]>
=
[
∇>p l

fo
d 0>N

]>
(4.35)

Hxxl
fo
d =

[
Hppl

fo
d Hpṗl

fo
d

Hṗpl
fo
d Hṗṗl

fo
d

]
=
[
Hppl

fo
d ZN

ZN ZN

]
(4.36)

where, by assigning Πij := eije>ij ∈ RM×M , it holds that

∇pi l
fo
d (τ) = kF

∑
∀j 6=i

σ′dij (sij(τ)) eij(τ) (4.37)

and, for all i 6= j,

Hpipj l
fo
d (τ) = −kF

[
2σ′′dij (sij(τ))Πij(τ) + σ′dij (sij(τ)) IM

]
. (4.38)

Remarkably, the choice of maintaining σdij ∈ C 2 is required to use PRONTO. In addition,
an expression for the diagonal blocks in the Hessian Hppl

fo
d can be provided by

Hpipi l
fo
d (τ) = −

∑
∀j 6=i
Hpipj l

fo
d (τ). (4.39)

Similarly, the gradient and Hessian matrix of the velocity alignment term lal are yielded by

∇xl
al =

[
∇>p lal ∇>ṗ lal

]>
=
[
0>N ∇>ṗ lal

]>
(4.40)

Hxxl
al =

[
Hppl

al Hpṗl
al

Hṗpl
al Hṗṗl

al

]
=
[
ZN ZN
ZN Hṗṗl

al

]
(4.41)

where
∇pi l

al(τ) = kA
∑
∀j 6=i

qAij ėij(τ); (4.42)

Hṗiṗj l
al(τ) =


−kAqAij , if i 6= j

kA
∑
∀j 6=i

qAij , otherwise . (4.43)

As a matter of fact, the LQ problem in (4.24) needs for a positive semidefinite matrix
Qo to be solved; hence, care has to be taken while search directions in Alg. 7 are selected.
In reality, it can be observed that expression (4.30) does not always verify this condition,
given the general undetermined definiteness of the Hessian related to the formation
Hppl

fo
d . To this aim, a “safe version” of Qo, say Qsafe

o , is implemented by exploiting a
Gerschgorin-circle-theorem-based heuristic (see also Sec. B.2 for the statement of the
Gerschgorin circle theorem) as in Alg. 8, i.e. by computing for i 6= j the off-diagonal
blocks4

Hsafepipj l
fo
d (τ) = −kF

[
2σ′′dij (sij(τ))Πij(τ) + χ>0(σ′dij (sij(τ)))σ′dij (sij(τ)) IM

]
, (4.44)

4The diagonal blocks for the “safe version” are obtained exploiting (4.39).
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where χ>0 denotes the classic unitary step function centered in 0.

Algorithm 8 Heuristic for the modification of Hppl
fo
d to search effectively a descent

direction in PRONTO
1: for i = 1, ..., n do
2: Hpipi l

fo
d ← ZM

3: for j = 1, ..., n such that j 6= i do
4: Hpipj l

fo
d ← −2kFσ′′dij (sij)Πij

5: if Qsafe
o is not required or σ′dij (sij) > 0 then

6: Hpipj l
fo
d ← Hpipj l

fo
d − kFσ′dij (sij) IM

7: end if
8: Hpipi l

fo
d ← Hpipi l

fo
d −Hpipj l

fo
d

9: end for
10: end for

4.3.3 OIFT solution via distributed control law

The OIFT problem can be, in principle, solved even in a distributed way and online.
In order to design a distributed control law, it is drawn inspiration from the Calculus
of Variations (see Sec. B.5). Specifically, it is sought the expression of a feedback PD
controller u(τ) = u(x(τ)) in which each term represents an error to achieve tracking,
formation or alignment.
Firstly, let hl := h−m be the objective functional to be minimized, such that

hl(x(·),u(·)) =
∫ T

0
l (x(τ),u(τ), τ) dτ. (4.45)

It is assumed that the extrema for functions x(·) and u(·) are somehow fixed, since
x(0) is specified, x(T ) belongs to the manifold determined by final cost m(x(T )), u(0)
depends on x(0) and u(T ) = 0N is expected. It is worth to notice that instantaneous
cost l (x(τ),u(τ), τ) in (4.45) can be decomposed agent-wise as

l (x(τ),u(τ), τ) =
n∑
i=1

li (x(τ),u(τ)) , (4.46)

and, according to decomposition (4.46), for the i-th agent, one has

li = 1
2 ‖xc − xc,des‖2Qc,ċ,i

+ 1
2 ‖ui‖

2
Ri

+ kF
4
∑
∀j 6=i

σdij (sij) + kA
4
∑
∀j 6=i
‖ṗi − ṗj‖2qAij . (4.47)

With this premise, the following Thm. 4.3.1 is stated in order to design a proper PD
controller to drive the group of agents.

Theorem 4.3.1.
Let us define Qc :=

∑n
j=1 Qc,j/n, Qċ :=

∑n
j=1 Qċ,j/n, with Qċ non-singular. Assuming

to adopt a distributed PD controller u =
[
u>1 · · · u>n

]>
in order to govern the dynamics

of system (4.3), the objective in (4.45) is stationary with the following distributed control
law:
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ui =−R−1
i

[
ktrP,iQc(pc − pc,des) + ktrD,iQċ(ṗc − ṗc,des)

]
(4.48)

−R−1
i

kfoP,ikF ∑
j∈Ni

σ′dij (sij)eij + kalD,ikA
∑
j∈Ni

qAij ėij

 (4.49)

−R−1
i kfoD,ikF

∑
j∈Ni

[
2σ′′dij (sij)Πij + χ>0(σ′dij (sij))σ

′
dij (sij)IM

]
ėij ; (4.50)

where Ni is the neighborhood of the i-th agent, i.e. the set of nodes that have established
a communication with i, and ktrP,i, ktrD,i, k

fo
P,i, k

fo
D,i, kalD,i are positive tunable gains.

Proof. Recalling that the system under analysis is controlled through the acceleration
quantities, that is u = p̈, the i-th equation obtained by the Fundamental Lemma B.5.16
of CV applied to (4.45) is written in a distributed fashion:

n∑
j=1

(
− d2

dt2
∂lj(x,u)
∂p̈i

+ d

dt

∂lj(x,u)
∂ṗi

− ∂lj(x,u)
∂pi

)
= 0M , i = 1, . . . , n. (4.51)

Let us observe that the i-th equation in (4.51) can be rewritten as

n∑
j=1

[Qċ,j

n
(p̈c − p̈c,des)−

Qc,j

n
(pc − pc,des)

]
+
∑
∀j 6=i

[
kAqAij ëij − kFσ′dij (sij)eij

]
= Riüi.

(4.52)

Since the information on the centroid xc is not directly available, its computation is
allowed via an average consensus procedure with Metropolis-Hastings weights Garin and
Schenato (2010). The same strategy can be employed to compute terms

∑n
j=1 Qc,j/n

and
∑n
j=1 Qċ,j/n in (4.52), since they represent two average weights. That said, let us

denote the estimates of
∑n
j=1 Qc,j/n and

∑n
j=1 Qċ,j/n obtained via the consensus with

Qc and Qċ respectively. Now, in order to design a proper PD controller, it is needed an
explicit linear expression of u depending on position and velocity errors only. Hence, to
satisfy the first-order optimality condition in (4.52), it is reasonable, due to its structure,
to assume the centroid error acceleration and the relative5 accelerations to be governed
by the following decoupled dynamics6

(p̈c − p̈c,des) =− ktrP1,iQ
−1
ċ Qc (pc − pc,des)− ktrD1,i (ṗc − ṗc,des) ; (4.53)

ëij =−
kfoP1,ikF

kAqAij
σ′dij (sij)eij − k

al
D1,iėij (4.54)

−
kfoD1,ikF

kAqAij

[
2σ′′dij (sij)Πij + χ>0(σ′dij (sij))σ

′
dij (sij)IM

]
ėij ; (4.55)

where ktrP1,i, ktrD1,i, k
fo
P1,i, k

fo
D1,i, kalD1,i are positive constants for the PD controller under

construction. It is worth to note that the last term of (4.55) accounts for the fact that
also the second order time derivative of the formation term lfo affects each mutual

5Whenever a couple of agents (i, j) exchanges information.
6This is an important assumption since it allows for a decoupling of the system’s dynamics. Also it is
worth to observe that, summing up all the relative accelerations in (4.54)-(4.55), one obtains the null
vector.
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acceleration ëij between agents; thus, the same switching-based heuristics used in (4.44)
is adopted even in this framework not to contrast the alignment task. The regulation
in (4.54) and (4.55) allows us to state that the dynamics of input ui is exponentially
decaying to 0M , as constants ktrD1,i and kalD1,i can be tuned large enough such that both
the dynamics of (p̈c − p̈c,des) and ëij be exponentially and asymptotically stable. Thus,
it is also possible to assume that7

üi = Ku,iui, i = 1, . . . , n (4.56)

where constants Ku,i = ku,iIM ∈ RM×M , ku,i > 0, are adopted. As a remark, assumptions
(4.54), (4.55) and (4.56) are suitable choices in order to obtain distributed a PD controller8;
nonetheless, they have the drawback to add new constraints to which the control law
has to abide. Finally, let us define the positive tunable gains for the PD controller as
ktrP,i := (1 + ktrP1,i)/ku,i, ktrD,i := ktrD1,i/ku,i, k

fo
P,i := (1 + kfoP1,i)/ku,i, k

fo
D,i := kfoD1,i/ku,i,

kalD,i := kalD1,i/ku,i. Taking into consideration the proposed online average consensus
approach to estimate global quantities, the distributed control law in (4.48) for the i-th
agent can be designed exploiting (4.54)-(4.56) starting from relation (4.52).

Remark 4.3.2. Law (4.48) does not guarantee the minimization of (4.45). To prove
this fact, the second order variation of (4.45) has to be analyzed and it has to be shown
that this is a positive definite quadratic form for the input in (4.48).

In what follows, the derivation of the control law found in Thm. 4.3.1 is motivated.

4.3.4 Analysis of the equilibria

In this paragraph, the equilibria for the centralized and distributed solutions developed so
far are investigated. To do so, it is accounted for a graph-based formalism that leverages
concepts as incidence and rigidity matrices9 (see also Sec. B.4).
Given a graph G = (V, E), where V is the set of vertices (n = |V| in total) and E ⊂ V ×V
is the set of edges (E = |E| in total), the incidence matrix E ∈ Rn×E is defined as

[E]ij =


−1, the j-th edge sinks at node i;
1, the j-th edge leaves node i;
0, otherwise;

(4.57)

and, consequently, the Laplacian matrix L associated to G can be defined as L = EE>

(see also Subsec. B.3.2). With the same ordering for the edges of E given to the columns
of E, the rigidity functions rG : RN → RE associated to the frameworks (G,p) and (G, ṗ)
are respectively given by

7This assumption is reasonable because (i) the second derivative of an exponential function is proportional
(with a positive constant) to the function itself; (ii) the desired trajectory is expressed until its second
derivative only; (iii) by imposing p̈des = 0N , one seeks minimum energy solutions, since udes = p̈des.
In principle, to be rigorous, (4.56) should be proven a posteriori.

8Choices justified by the fact that in the PRONTO optimization framework a PD controller can be
employed successfully.

9For a detailed treatise on this, the reader is addressed to Oh et al. (2015) and Zhao and Zelazo (2016).
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rG(p) = 1
2
[
. . . , e>ijeij , . . .

]>
, (i, j) ∈ E ; (4.58)

rG(ṗ) = 1
2
[
. . . , ė>ij ėij , . . .

]>
, (i, j) ∈ E . (4.59)

One useful tool to characterize the rigidity property of a framework is the rigidity matrix
R ∈ RE×N , which is defined as the Jacobian of the rigidity function w.r.t. the spatial
quantity (either p or ṗ) considered in the relative framework. Let us also define DiagE
as the operator that maps the set of displacement vectors e>ij or ė>ij ordered as in (B.34)-
(4.59) into a diagonal matrix of dimensions E ×N , such that its k-th diagonal element
of dimensions 1×M is exactly given by the k-th displacement vector, for k = 1, . . . , E.
Then, the rigidity matrices for frameworks (G,p) and (G, ṗ) are yielded by

R (p) = ∂rG(p)
∂p = DiagE

{
e>ij
}(

E> ⊗ IM
)
, for (G,p); (4.60)

R (ṗ) = ∂rG(ṗ)
∂ṗ = DiagE

{
ė>ij
}(

E> ⊗ IM
)
, for (G, ṗ); (4.61)

where symbol ⊗ indicates the Kronecker product operator10.
Now, with these graph-based theoretical tools, it is possible to provide a different point

of view for the expression characterizing gradients in (4.37), (4.42) and Hessian matrices
in (4.39), (4.38), (4.43), offering a perspective from the networked control of the system.
Indeed, fixing an order for the edges in E , it is worth to note that one has

∇pl
fo
d = kFR(p)>σ′d(s); (4.62)

Hppl
fo
d = kF

[
R(p)>Diag(2σ′′d(s))R(p) + EDiag(σ′d(s))E> ⊗ IM

]
; (4.63)

∇ṗl = kAR(ṗ)>qA; (4.64)
Hṗṗl

al = kAEDiag(qA)E> ⊗ IM ; (4.65)

where vector s ∈ RE contains all the terms sij in the order adopted for the edges whenever
(i, j) ∈ E , function σd and its derivatives are applied component-wise to s, vector qA ∈ RE

contains all the terms qAij in the order adopted for the edges whenever (i, j) ∈ E and
Diag(·) is the operator that maps a vector argument into its correspondent diagonal
matrix.

The equilibria relative to the formation task are given by gradient in (4.62); in particular,
three conditions can be distinguished:

(i) σ′d(s) = 0E , i.e. sij = d2
ij for all (i, j) ∈ E ;

(ii) σ′d(s) ∈ ker {DiagE {eij}};

(iii) DiagE {eij}σ′d(s) ∈ ker {E⊗ IM};

where ker {·} denotes the kernel of a matrix and DiagE {eij} = DiagE
{
e>ij
}>

. The
first condition is exactly what the system should satisfy to accomplish the desired
formation and represents a stable equilibrium, since this would make the corresponding
instantaneous cost lfod vanishing11, being part of a minimum energy configuration. The
10It is assumed that the Kronecker product has a lower priority with respect to the matrix multiplication.
11Provided that the required geometric shape be feasible.
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second condition arises whenever an undesired consensus takes place, e.g. a rendezvous,
a collinear positioning or the achievement of an equivalent formation due to the lack of
global rigidity. Finally, the third condition means that DiagE {eij}σ′d(s) is a signed path
vector Mesbahi and Egerstedt (2010) associated to one of the cycles in G. It is plausible
that all the equilibria described by conditions (ii) and (iii) are unstable in case of global
rigidity guarantees, due to the fact that σ′d(sij) is monotonic and σ′d(sij) = 0 holds only
for sij = d2

ij .
Differently, the equilibria relative to the alignment task are given by gradient in (4.64).
Here, two conditions can be distinguished:

(i) qA ∈ ker {DiagE {ėij}}, i.e. ėij = 0M for all (i, j) ∈ E ;

(ii) DiagE {ėij}qA ∈ ker {E⊗ IM};

The first condition leads to the fulfillment of the alignment, since it is verified if and only
if the ker {DiagE {ėij}} reaches its maximum dimension. Whereas, the second condition
is not only satisfied under the latter assumption, but even when DiagE {ėij}qA is a signed
path vector relative to one of the cycles in G. Then, an alignment equilibrium is stable
only if the first condition is verified, since this would make the relative instantaneous
cost lal vanishing, being part of a minimum energy configuration for the system too.
The tracking task also exhibits equilibria for C>Qc,ċ (xc − xc,des) = 02M , condition

that can be easily separated into(pc − pc,des) ∈ ker
{
Qc

}
;

(ṗc − ṗc,des) ∈ ker
{
Qċ

}
;

(4.66)

and, trivially, (4.66) describes stable equilibria, since the corresponding tracking cost ltr,
which is a quadratic form weighted by positive semidefinite matrices Qc and Qċ, vanishes
when these conditions hold. In particular, one observes that equalities pc = pc,des and
ṗc = ṗc,des must hold at the equilibrium, if these average weights are chosen to be positive
definite.
Let us denote 1\ ∈ R\ as the vector in which all its \ components are equal to 1. In

order to inspect the equilibria of the system governed by the distributed control law
devised previously, its matrix representation is provided:

u =−R−1
(
DiagV

{
ktrP,i

}
⊗ IM

) (
1n ⊗Qc(pc − pc,des)

)
+

−R−1
(
DiagV

{
ktrD,i

}
⊗ IM

) (
1n ⊗Qċ(ṗc − ṗc,des)

)
+

−R−1
[(

DiagV
{
kfoP,i

}
⊗ IM

)
∇pl

fo
d +

(
DiagV

{
kalP,i

}
⊗ IM

)
∇ṗl

al
]

+

−R−1
(
DiagV

{
kfoD,i

}
⊗ IM

)
(E⊗ IM )DiagE

{
Hsafepipj ėij

}
1E (4.67)

where DiagV is the operator that maps its arguments indexed by i = 1, . . . , n into a
diagonal matrix of dimensions n× n, such that the i-th diagonal element coincides with
the i-th argument, and the expressions of gradients ∇pl

fo
d , ∇ṗl

al are provided in (4.62)
and (4.64) respectively. It is worth to notice that the last term of (4.67) has a similar
structure of a rigidity matrix in which the mutual velocities ėij are weighted by the “safe
version” of the Hessian Hpp computed in Alg. 8. This allows to take into account a
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second order curvature effect to better fulfill both the formation and alignment tasks.
Moreover, it is remarkable to observe that the equilibrium relations discussed so far
represent a sufficient condition to obtain u = 0N as τ → T and thus the control aims
at minimizing the global energy spent by the system of agents. Lastly, it is worth to
mention that control laws similar to (4.67), leading a group of agents to be seen as
dissipative second order Hamiltonian system, ensure local stability for the formations
to be attained in an infinite time horizon Mesbahi and Egerstedt (2010); Oh and Ahn
(2014). Moreover, closely related control laws working with finite-time specifications for
second-order multi-agent systems have been already developed in Fu, Wang, and Wang
(2019); Sun, Mou, Deghat, Anderson, and Morse (2014), supporting the robustness of
the approach devised in this chapter.
To sum up, Thm. 4.3.1 allows to devise the online control in (4.67) without provid-
ing enough information about the stability properties concerning the formation aspect.
Nonetheless, this derivation follows the principle of passivity while designing a coordina-
tion law for the group of agent in question Arcak (2007). Therefore, it can be concluded
the generic convergence to the desired formation from all initial conditions except for
those that lie on the stable manifolds of the unstable equilibria. This issue can be partially
avoided assuming global rigidity (or, at least, infinitesimal rigidity, if equivalent – but
not congruent – frameworks are accepted for the system of agents).

4.4 Numerical results

In this section, the focus is put on a singular case study12 where desired distances dij are
imposed such that the formation assumes a cubic shape in a space of dimension M = 3.
Precisely, the desired cube has side equal to d = 5 m and each of the n = 8 agents have
a neighborhood with degree |Ni| = 5, i = 1, . . . , n. These choices allow to present an
example where the formation to be achieved is globally rigid, thus ensuring the system to
converge towards stable equilibria. Also, the group of agents have to track the straight
line Γ(τ) = v(τ, τ, τ) with a constant desired velocity v = 1 ms−1 for each component.
The initial state of the system is assigned as follows:

p(0) =


−6

3
24

 ,
−9
−3
3

 ,
 6
−6
15

 ,
15

3
15

 ,
 −3
−18

6

 ,
6

6
6

 ,
 −3
−15
−3

 ,
15

6
9


m;

ṗ(0) =


10

1
0

 ,
10

0
0

 ,
0

0
0

 ,
15
−5
5

 ,
0

0
5

 ,
5

5
5

 ,
0

0
0

 ,
−10
−25
10


ms−1;

The input weighting matrix in (5.1) is selected as R = raIN , with ra = 1 m−2s4, in
(4.11), and keep the integration time T = 20 s fixed for all simulations, as well as the
structure of the output weighting matrices

12Further simulation examples involving unfeasible formation configurations can be found in Fabris et al.
(2019a).
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Qc,c,i =
[
qpIM ZM
ZM qvIM

]
, i = 1, . . . , n,

for (4.10), where qp = 1.25 m−2, qv = 0.125 m−2s2 are nonnegative constants. Moreover,
it is set, for all edges (i, j) ∈ E , the following parameters: krij = 250, kaij = 100, βij = 3,
αaij = 1/2, in (4.15), kF = 2, in (4.12) and kA = 0.25, qAij = 1 m−2s2 if (i, j) ∈ E ,
qAij = 0 (i, j) /∈ E , in (4.13). In each numerical simulation presented, it has been decided
to stop the execution of Alg. 7 by taking two actions: the algorithm can stop at the
iteration t ≤ MaxIter if, given a threshold εg > 0, the inequality −Dg (ξt) · ζt < εg is
verified. In particular, it is chosen εg = 10−8. In addition, an interruption occurs when
the preset maximum number of iterations MaxIter = 80 is exceeded.
Constant gains for the PD controller in (4.34) are selected leveraging the linear dynamics
of (4.3), as ωn = 3 rad s−1

ξ = 0.7
⇒

kp = ω2
n

kv = 2ξωn
.

Whereas, for the distributed PD controller in (4.48) it has been chosen gains ktrP,i = 0.8 s2,
ktrD,i = 11.2 s2, kfoP,i = 1.3 s2, kfoD,i = 1 s2, kalD,i = 0.3 s2 with a trial and error procedure.

4.4.1 Performances of the devised distributed PD controller

With the purpose of validating the distributed PD controller in (4.48), the two dynamics
obtained by the latter control law and the offline inverse dynamics provided by PRONTO
are compared. As a criterion, it is decided to look at the global energy spent by the input
and the settling time of the system dynamics. Specifically, it is accounted for the global
input energy lin(·) and the average input energy. This quantity is defined as the weighted
mean l̄in(·) := lin(·)/ ‖R‖F , where ‖R‖2F =

∑n
i=1 ‖Ri‖2F and ‖Ri‖F =

√
tr(RiR>i )

has to be considered the dimensionless version of the Frobenius norm of Ri used to
compute lin(·), for i = 1, . . . , n. Furthermore, selecting η ∈ [0, 1], the settling time instant
τη ∈ [0, T ] for the system is established whenever condition |lst(τ)| ≤ η holds for all
τ ≥ τη, in which function lst(τ) : R→ [−1, 1] is defined13 as

lst :=


lfo + lal − ltr

lfo + lal + ltr
, if lfo + lal + ltr 6= 0;

0, otherwise.
(4.68)

It is worth to note that function in (4.68) measures a weighted trade-off between relative-
related and centroid-related control performances, as it is expected to go to 0 and remain
null over the time if a control action is being applied.

In Fig. 4.3 the performances of these numerical simulations are illustrated, presenting
the inverse dynamics obtained by PRONTO on the left column and the online dynamics
governed by the distributed PD controller on the right column. In Figs. 4.3(a) and
4.3(b) one can observe that, in both cases, the positional trajectories described by the
system in the three-dimensional space, noting that each agent contributes eventually to
achieve a proper position as a vertex of the desired cubic shape. Moreover, the system’s
13This definition must be revisited when constraints (4.14) describe a unfeasible shape.
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centroid tracks the required straight line Γ(·). However, it is worth to note that the
trajectories of the system governed by the distributed control law are less smooth w.r.t.
those of PRONTO. This indicates that more effort is needed to steer the agents using
the distributed control (4.48); indeed, Fig. 4.3(d) depicts a higher energy consumption
levels over the time w.r.t. to that in Fig. 4.3(c). It can be observed that the input
energy spent with the distributed approach is approximately n = 8 times greater than
that spent in the PRONTO framework: this fact might suggest that the suboptimality14

degree of controller (4.48) could be quantified by the number of driven agents, provided
that the performances related to time appear fairly similar. Figs. 4.3(e) and 4.3(f) show
that this is the case for the numerical results here presented, since each settling time
instant can be compared among the two approaches with a maximum deviation of about
2 s and occurs before final time T . Also, the latter fact proves that law in 4.48 works
as a finite-time controller according to the choice of using function lst as a reference for
settling time, in this specific example.

Remarkably, three important evidences can be highlighted:

(i) the distributed control law in 4.48 allows to govern the state dynamics of the system
similarly to what PRONTO algorithm produces as optimal inverse dynamics;

(ii) the distributed control law in 4.48 is suboptimal w.r.t. the inverse dynamics
computed numerically, since it requires the system to spend more input energy,
probably scaling proportionally with the number of agents, if time performances
are comparable;

(iii) for global rigid geometrical shapes the convergence seems to be attained in a finite
time, provided that gains of the distributed PD controller are properly tuned.

4.4.2 Distributed control law as an agreement protocol

As shown in (4.54) and (4.55), the two control actions – relative distance and controid
regulations – can be analyzed separately. Moreover, control law in (4.67) points out that
the relative distance regulation acts exploiting the potentials in (4.15) as distance-based
error functions and the alignment term, indicating how these control actions can be seen
as agreement protocols (see also Subsec. 2.1.3).
Fig. (4.4) provides an overview on the whole convergent dynamics of the system

governed by the distributed PD controller. Firstly, Figs. (4.4(a)), (4.4(c)) and (4.4(e))
exhibit the convergence to zero of the distance errors depicted in Fig. 4.2 as τ → T = 20 s,
aiming at the achievement of the formation. The same happens in Fig. 4.4(b) for the
relative velocities responsible for the alignment task. Lastly, Figs. 4.4(d) and 4.4(f)
depict the response of positions and velocities of the centroid, showing that the tracking
task is fulfilled as required.
In each of these diagrams, it is worth to notice that the 1% settling time instant
computed through function lst gives significant information about the convergence of the
state towards all the specifications. Indeed, reasonably, this allow us to state that the
entire dynamics controlled by law in (4.67) practically attains a stable equilibrium after
T/2 = 10 s, for τ > τ1%.
14w.r.t. to the inverse dynamics obtained with PRONTO
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(a) PRONTO: Position trajectories (b) Distributed: Position trajectories

(c) PRONTO: Input energy consumption (d) Distributed: Input energy consumption

(e) PRONTO: Settling time (f) Distributed: Settling time

Figure 4.3. Comparison between the offline solution provided by PRONTO and the system
dynamics governed by the distributed controller. (a)-(b): trajectories of the positions,
in dark green; trajectory of the centroid position, in light green; desired straight
path, in black; cubic shape formation, depicted progressively with ordered shades
blue-indigo-purple-red, beginning with blue. (c)-(d): total input energy, in magenta,
and average input energy, in green, spent by the system; dashed lines show their time-
averaged values. (e)-(f): settling times at 10%, 1%, 0.1%, (i.e. η = 0.1, 0.01, 0.001
respectively) depicted by the vertical lines, and established evaluating a quantitative
weighted trade-off between formation/alignment and tracking instantaneous costs.
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(a) Zero-order formation consensus (b) Alignment consensus

(c) First-order formation consensus (d) Centroid position response

(e) Second-order formation consensus (f) Centroid velocity response

Figure 4.4. Distributed control law seen as agreement protocol. (a)-(c)-(e): distance-based
potential error functions and its derivatives converging to 0, guaranteeing agents
to reach the required geometrical shape. (b): relative velicities converging to 0,
ensuring the agents to follow the desired path with straight trajectories. (d)-(f):
centroid positions and velocities (first, second and third components in blue, orange
and yellow respectively) converging to the given specifications.
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4.5 Chapter summary

In this chapter, it has been introduced a complete version of the Optimal Time-Invariant
Formation Tracking problem whose minimum-energy solutions can be obtained by the
numerical tool PRONTO (offline) and a distributed control law (online). In order to
fulfill the required final configurations for the formations to be steered, generic potential
functions have been proposed. Specifically, simulations show the validity of the online
PD controller devised w.r.t. the trajectory and the energy profiles yielded by PRONTO,
which have been considered as a reference for the distributed control law. A short yet
detailed analysis of the equilibria has also been provided in order to give an overview
on the working principles of developed input law. Numerical results also illustrate the
versatility of this paradigm, since general communication constraints on the information
sharing among agents have been adopted during the whole dissertation.

90



5
Distributed State Estimation
from Relative Measurements

“Comprehension is not a requisite of cooperation.”
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5.1 Overview

In the latest years, MASs have received much attention as the number of distributed energy
components and devices continues to increase globally Xie and Liu (2017) and, thanks to
their versatile graph-based paradigm, their usage has considerably become interconnected
with relevant leading areas in research nowadays, such as Artificial Intelligence Rocha
and Kudenko (2019), Deep Learning Chen, Ding, Mao, Liu, and Hou (2019), Internet of
Things Fouad and Moskowitz (2019) and Intelligent Sensing Putra, Trilaksono, Riyansyah,
Laila, Harsoyo, and Kistijantoro (2019).
One of the main challenging aspects of the embedded multi-agent systems consists in
the wise management and exploitation of the local information since they are typically
involved in the solution of large-scale logically/spatially distributed optimization problems.
Along this line, system state estimation constitutes a popular task in several control and
learning smart networks applications, requiring to estimate the state of each agent through
the adoption of a distributed paradigm exploiting local information and interactions.
Remarkably, meaningful ongoing efforts have been directed towards the accomplishment
of distributed state estimation Dehghanpour, Wang, Wang, Yuan, and Bu (2019) in
relevant novel fields as networked microgrids Cintuglu and Ishchenko (2019) and global
navigation satellite systems Khodabandeh and Teunissen (2019). Many algorithms for this
peculiar purpose have been designed over the years for sundry kinds of sensor networks
Dong, Wang, Alsaadi, and Ahmad (2015); Olfati-Saber (2007); Xu, Lu, Shi, Li, and Xie
(2018); Yong, Liyi, Jianfeng, Zhe, and Yi (2019), exploiting methodologies that mainly
focus on consensus-based agreement protocols Chen, Yin, Zhou, Wang, Wang, and Chen
(2018); Jalalmaab, Pirani, Fidan, and Jeon (2019); Soatti, Nicoli, Savazzi, and Spagnolini
(2017) and the Alternating Direction Method of Multipliers (ADMM) Du, Li, Li, Chen,
Fei, and Wu (2019); Zhang, Li, Wu, and Zhou (2019a), especially in concurrence with
the resolution of least squares (LS) problems Aster, Borchers, and Thurber (2019).

To conclude this heading, Fig. 5.1 depicts the main features arising in this work. The
principal methods employed resort on Optimization Theory, Combinatorial Graph Theory,
Dynamic Systems and Control, Distributed Optimization and Distributed Estimation.
Leveraging the latter tools, the main objectives for this study are represented by the
design of distributed algorithms for networked estimations from relative measurements
and their performance analysis and comparison.

5.1.1 Problem statement

According to the model introduced in Subsec. 2.1.1, let us consider a multi-agent
system composed of n devices whose interactions are represented by an undirected and
connected graph G. It is assumed that the i-th agent in the network is characterized by
a multi-dimensional attribute xi ∈ RM (the i-th agent state) corresponding to a physical
quantity, and by a set of noisy relative measurements of the same quantity, namely
{x̃ij ∈ RM , vj ∈ Ni} where x̃ij represents a noisy measurement of the difference between
xj and xi. The single components of xi and x̃ij are denoted by xi,l and x̃ij,l respectively,
with l = 1 . . .M .
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Figure 5.1. Theoretical fields and investigation objectives arising from this study.

In this chapter, the focus is directed on the problem of network state determination, i.e.,
the estimation of the set {x?1, . . . ,x?n} that allows to best approximate (and be consistent
with) the set of the existing measurements. Formally, the major aim consists in solving
the following convex minimization problem:

Problem 5.1.1. Given the set of noisy relative measurements (x̃ij , x̃ji) for all i, j, where
x̃ij is not necessarily equal to x̃ji), find a solution to

arg min
{x1,...,xn}

1
2
∑
vi∈V

∑
vj∈Ni

(xi − xj + x̃ij)>(xi − xj + x̃ij). (5.1)

Setting N := nM , the cost function in (5.1), hereafter denoted by h := h(x), where
x =

[
x>1 . . . x>n

]>
∈ RN .

5.1.2 Related works

Several existing works explore the properties of the distributed state estimation solution
depending on the graph modeling the network in terms of available measurements. In
Barooah and Hespanha (2005); Barooah and Hespanha (2007) the distributed estimation
from relative measurements begun to be taken into account significantly. Whereas,
in Rossi, Frasca, and Fagnani (2017), the estimation task is studied supposing the
availability of both absolute and relative measurements and proving that the underlying
system topology determines whether the error of the LS optimal estimator decreases
to zero as the number of unknown variables grows to infinity. Similarly, the authors
of Barooah and Hespanha (2009) investigates how the variance of the estimation error of a
node variable grows with the distance of the node to an arbitrary reference one, providing
then a graphs classification according to their sparsity. In Carron, Todescato, Carli, and
Schenato (2014) the problem of optimal estimating the position of each agent in a network
from relative noisy distances is solved through a consensus-based algorithm whose rate of
convergence is determined for regular graphs such as Cayley, Ramanujan, and complete
graphs. Also, in Zelazo, Franchi, Bülthoff, and Giordano (2015), the decentralized rigidity
maintenance control with range measurements for multi-robot systems is tackled and,
recently, authors of Ravazzi, Chan, and Frasca (2019) studied the distributed estimation
from relative measurements of heterogeneous and uncertain quality.
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5.1.3 Contribution and outline of the chapter

The aim of this chapter is the presentation and comparison of three iterative linear
algorithms for the distributed state estimation from relative measurements (RM) in a
MAS modeled as in Subsec. 2.1.1. In particular, the consensus-like iterative scheme Ση

devised in Fabris et al. (2019b) and the new equivalent schemes (referred to Σρ and Σε

in the sequel) are here proposed and formalized in their multivariate version. In addition,
common features and notable distinctions are highlighted through a topological analysis.
Finally, since robustness frequently represents an important issue for linear multi-agent
protocols Xue, Wu, and Yuan (2019), a sensitivity analysis Hammond and Axelrod (2006)
is proposed in order to discern which iterative procedure is more appropriate as their
tunable regularizers η, ρ and ε change.
The remainder of the chapter is organized as follows. In Sec. 5.2, the distributed

schemes Ση, Σρ and Σε that yield the resolution of Problem 5.1.1 are discussed in details,
focusing on their convergence properties towards the centralized solution – as the network
topology varies – in the subsequent Sec. 5.3. In Sec. 5.4, the distributed approaches
for estimation are compared by means of a sensitivity analysis. In Sec. 5.5, numerical
simulations to support the theoretical results are illustrated. Lastly, Sec. 5.6 concludes
the dissertation summarizing this chapter.

5.2 Solutions for the state estimation from RM

To solve the state estimation problem defined in 5.1, in the following paragraphs different
approaches, both centralized and decentralized, are presented. In particular, a discussion
devoted to the different distributed iterative schemes is yielded as a starting point for a
comparison between this kind of algorithms.

5.2.1 Centralized vs Distributed Solution

In order to derive a centralized solution to minimization problem in (5.1), let us account
for the gradient of h whose i-th component is given by

∇xih = 2deg(vi)xi − 2
∑

vj∈Ni
xj −

∑
vj∈Ni

(x̃ji − x̃ij). (5.2)

such that, indicating with 0N the null vector of dimension N , condition

∇xh =
[
∇x1h

> · · · ∇xnh
>
]>

= 0N (5.3)

be satisfied. Indicating with xl =
[
x1,l · · · xn,l

]>
∈ Rn, it is worth to note that

equation (5.3) can be rewritten as

∇xlh = 0n, for l = 1, . . . ,M (5.4)
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since components of (5.2) can be mutually decoupled. As a consequence, conditions (5.4)
yields the following system of equations

2Lxl = x̃l, for l = 1, . . . ,M, (5.5)

where x̃l =
[∑

vj∈N1(x̃j1,l − x̃1j,l) · · ·
∑
vj∈Nn(x̃jn,l − x̃nj,l)

]> ∈ Rn. Hence, the next lemma
can be straightforwardly obtained.

Lemma 5.2.1 (Centralized solution).
Given a n-agents network associated to the graph G, if the relative noisy measurements
are such that x̃l /∈ ker(L) \ {0n} for l = 1, . . . ,M , the minimum norm solution of (5.1)
is given by

(x?)l = 1
2L†x̃l, for l = 1 . . .M, (5.6)

where L† ∈ Rn×n is the pseudo-inverse of the Laplacian matrix related to the graph G.

Relation (5.6) represents the centralized solution to the optimization problem (5.1) and
it only requires to be aware of the network topology and the noisy relative measurements.
On the other hand, each equation of system (5.5) refers to a single agent information,
in terms of local topology and measurements, thus suggesting a distributed approach.
Indeed, imposing ∇xi,lh = 0, from (5.2) one has

∑
vj∈Ni

(xj,l − xi,l) + 1
2
∑
vj∈Ni

(x̃ji,l − x̃ij,l) = 0, for l = 1, . . . ,M, (5.7)

or, equivalently

xi,l = 1
deg(vi)

( ∑
vj∈Ni

xj,l + 1
2
∑

vj∈Ni
(x̃ji,l − x̃ij,l)

)
, for l = 1, . . . ,M, (5.8)

i.e., the i-th node state depends exclusively on the states of its neighbors and on its
set of relative measurements. In the following paragraphs, three consensus procedures,
that can be classified as variants of the descent iterative method (see Subsec. 2.2.4), are
characterized according to the different categories given in Olfati-Saber, Fax, and Murray
(2007).

5.2.2 Development of distributed iterative schemes

In the next paragraphs, four distributed iterative schemes (Ση, Σρ, Σε and a particular
case of them, Σ0) deriving from the distributed solution (5.7) are introduced and briefly
discussed.

Distributed iterative schemes Σ0 and Ση

By considering the l-th state vector xl, a discrete time system Σl
0 of the form

Σl
0 : xl(t+ 1) = F0xl(t) + ul

0 (5.9)
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can be derived from (5.8) as an update rule driven by the input measurements. According
to (5.9) the i-th state at the t-th step affects the neighbors estimates at the (t+ 1)-th
step, but it is not considered for the recursive self-estimate. The state matrix F0 ∈ Rn×n

is indeed equal to the adjacency matrix A normalized by the node degrees and it is thus
a row-stochastic matrix. Formally, it occurs that

[F0]ij = 1
deg(vi)

[A]ij ⇒ F0 = D−1A. (5.10)

Similarly, the l-th input ul
0 ∈ Rn in (5.9) is given by the vector of the normalized relative

measurements
ul

0 = 1
2D−1x̃l. (5.11)

From Landau and Odlyzko (1981), it is possible to observe that if the graph G representing
the given system is connected, then the state matrix F0 has n real eigenvalues λF0

0 ≥
· · · ≥ λF0

n−1 in the range [−1, 1] with λF0
0 = 1 having single algebraic multiplicity. Because

of this spectral distribution, (5.10) exhibits stability issues that can be overcome with a
regularized distributed model that is constructed by introducing some memory in the
system and adopting (5.9) to provide only a weighted correction to current estimate.
This leads to

Σl
η : xl(t+ 1) = ηxl(t) + (1− η)

(
F0xl(t) + ul

0

)
= (ηIn + (1− η)F0) xl(t) + (1− η)ul

0

= Fηxl(t) + ul
η, (5.12)

where η ∈ [0, 1) and In is the identity matrix of dimension n, such that Σl
η = Σl

0 if and
only if η = 0. It is immediate to see that this approach considers a convex combination of
the result obtained in (5.8) between the i-th state and the rest of the states and RM, i.e.

xi,l = ηxi,l + 1− η
deg(vi)

( ∑
vj∈Ni

xj,l + 1
2
∑

vj∈Ni
(x̃ji,l − x̃ij,l)

)
, for l = 1, . . . ,M. (5.13)

The state matrix Fη ∈ Rn×n is still row-stochastic but with eigenvalues λFη
0 ≥ · · · ≥

λ
Fη
n−1 in the range (−1 + 2η, 1] ⊆ (−1, 1], as η ∈ (0, 1). In particular, one can observe

that, exploiting the linearity of the spectrum, eigenvalues of Fη can be characterized as
λ

Fη
i = η + (1− η)λF0

i , i = 0, . . . , n− 1, and hence they preserve the same order of the
spectrum of F0.

Distributed iterative scheme Σρ

Exploiting the contents of Subsec. 2.2.4, another distributed solution can be found resting
upon an approach based on the so-called Proximal Point (PP) algorithm. Let us define
the regularized PP objective function

hρ(xl,xl(t)) := h(xl) + ρ

2

M∑
l=1

∥∥∥xl − xl(t)
∥∥∥2

2
, for l = 1, . . . ,M (5.14)

96



5.2 Solutions for the state estimation from RM

with ρ ≥ 0, such that if ρ = 0 then h0 = h. One observes that gradient and Hessian of
(5.14) w.r.t. xl are respectively1

∇xlhρ(xl,xl(t)) = ∇xlh+ ρ(xl − xl(t)), t = 1, 2, . . . (5.15)
Hxlxlhρ(xl,xl(t)) = 2L + ρIn � 0, t = 1, 2, . . . (5.16)

Since Hessian in (5.16) is positive definite for all ρ > 0 and all t = 1, 2, . . . then cost
function in (5.14) is strictly convex for these values of ρ and its minimization admits one
solution only. Indeed, the latter can be provided by the optimality condition

∇xlhρ(xl(t+ 1),xl(t)) = 0n, (5.17)

which, for all i = 1, . . . , n, yields

xi,l(t+ 1) =
ρxi,l(t) + 2

∑
vj∈Ni xj,l(t) +

∑
vj∈Ni(x̃ji,l − x̃ij,l)

2deg(vi) + ρ
, for l = 1, . . . ,M. (5.18)

In (5.18), the i-th node state depends, as in (5.8), on the states of its neighbors and on
its set of RM. However, the use of the penalty ρ affects the i-th node state with the
previous information about itself. Indeed, it is remarkable to notice that (5.18) can be
also obtained as an alternative version of (5.7) in which, for l = 1, . . . ,M , it holds that

xi,l =
(

deg(vi) + ρ

2

)−1
( ∑
vj∈Ni

(xj,l) + ρ

2

)
+ 1

2

(
deg(vi) + ρ

2

)−1 ∑
vj∈Ni

(x̃ji,l−x̃ij,l). (5.19)

By considering the state vector xl, another discrete time system, namely Σl
ρ, can be

derived from (5.18) as an update rule driven by the input measurements, whenever ρ > 0,
for all l = 1, . . . ,M :

Σl
ρ : xl(t+ 1) = Fρxl(t) + ul

ρ. (5.20)

On the other hand, if and only if ρ = 0, Σρ = Σ0 is obtained (the same happens for
scheme in (5.10)), as for the previous case in which η = 0. In model (5.20) the i-th
state at step t affects the neighbors estimate at iteration t+ 1 and it is also taken into
account for a recursive self-estimate. As a consequence, the state matrix Fρ is equal to a
regularized adjacency matrix normalized by the regularized node degrees

[Fρ]ij =
[A]ij + ρ

2 [In]ij

deg(vi) + ρ

2
⇒ Fρ =

(
D + ρ

2In
)−1 (

A + ρ

2In
)

(5.21)

and it is still a row-stochastic matrix. The structure of (5.21) suggests that this approach
can be reformulated by adding a self-loop at each node whose value corresponds to ρ/2,
uniformly. Analogously, the input uρ in (5.20) is given by the vector of the regularized

1Let Ω ∈ R\×\ be a matrix. The symbology Ω � 0 and Ω � 0 is used to denote that Ω is positive
semidefinite and positive definite respectively. Moreover, given two \× \ matrices Ω1 and Ω2, the
notation Ω1 � Ω2 stands for Ω1 −Ω2 � 0. See also Sec. B.2.
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and normalized RM

ul
ρ = 1

2

(
D + ρ

2In
)−1

x̃l =
(

D + ρ

2In
)−1

Dul
0. (5.22)

Let dM be the maximum degree in G. If graph G is connected, Fρ has n real eigenvalues
λ

Fρ
0 ≥ · · · ≥ λ

Fρ
n−1 and they range in ((ρ− 2dM )/(ρ+ 2dM ), 1] ⊆ (−1, 1], as ρ > 0, with

λ
Fρ
0 = 1 always present with single algebraic multiplicity.

Distributed iterative scheme Σε

In this final paragraph, the most famous choice for the consensus matrix to reach an
agreement regarding the consensus-based techniques is mentioned. Let us start again
considering (5.7). Choosing ε ∈ (0, 2/ρS(L)), where ρS(L) = λL

n−1 ∈ (0, 2dM ) is the
spectral radius of the Laplacian matrix (see Sec. B.2), it is easy to show that

xi,l = xi,l − ε
∑

vj∈Ni
(xi,l − xj,l) + ε

2
∑

vj∈Ni
(x̃ji,l − x̃ij,l) (5.23)

provides another type of recursion that can be exploited to estimation purposes. Clearly,
relation (5.23) suggests an adoption of the classical scheme

Σl
ε : xl(t+ 1) = Fεxl(t) + ul

ε (5.24)

where

[Fε]ij =

−ε[L]ij , for i 6= j

1− ε[L]ii, otherwise
⇒ Fε = In − εL; (5.25)

and
ul
ε = ε

2 x̃l = εDul
0. (5.26)

System (5.24) is nothing but the nonnormalized version2 of scheme Σl
η devised in (5.12)

and therefore this approach can be seen as the choice of weighting each edge in the graph
G with ε and the addition of a unitary-weight self-loop for each vertex.
If graph G is connected, Fε has n real eigenvalues λFε

0 ≥ · · · ≥ λ
Fε
n−1 and they ranges in

(1− 2ε/ρS(L), 1] ⊆ (−1, 1], as ε ∈ (0, 2/ρS(L)), with λFε
0 = 1 always present with single

algebraic multiplicity. Moreover, exploiting the linearity of the spectrum, it is recalled
that λFε

i = 1 − ελL
i , for i = 0, . . . , n − 1. Also, it is important to note that ε must be

strictly smaller than 2/ρS(L), otherwise, it would not only cause matrix Fε to lose its
nonnegativity, but also it would drive Σl

ε to become unstable.
To conclude, it is worth to note that scheme Σl

ε cannot be compared with Σl
0 for small

values of ε. On the contrary, this can be done as ε approaches 2/ρS(L) from the left,
when the topology is bipartite. However, a full equivalence would hold only if G is also
regular, as discussed in the incoming Subsec. 5.2.3 and, lately, in Subsec. 5.3.2.

2The asymmetric normalized Laplacian can be defined as L′ = D′−A′, where D′ = In and A′ = D−1A,
so that In − ερS(L)L′/2 = In − ερS(L)D′/2 + ερS(L)A′/2 = ηD′ + (1 − η)A′ = ηIn + (1 − η)F0,
imposing η = 1− ερS(L)/2.
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5.2.3 Equivalence condition for the distributed solutions

Let us assume that, w.l.o.g., M = 1: as it will be shown in 5.3.1, this hypothesis can be
made since the distributed schemes devised in (5.12), (5.20) and (5.24) can be decoupled
component-wise in the index l. Thus, let us omit the presence of index l in this paragraph.

In order to discover an insightful equivalence between schemes Ση, Σρ and Σε, equality

(1− η)D−1 =
(

D + ρ

2In
)−1

= εIn (5.27)

can be derived imposing uη = uρ = uε. It is crucial to note that (5.27) holds true if and
only if

D = ρ

2
1− η
η

In = 1− η
ε

In = 2− ρε
2ε In = dIn, d ∈ N \ {0} . (5.28)

Hence, one can observe that if G is d-regular then, by (5.28), relation

d = ρ

2
1− η
η

= 1− η
ε

= 2− ρε
2ε (5.29)

can be then used as a change of variables, allowing to delineate three bijective relationships
among the different distributed schemes. Thus, in a d-regular framework, η can be chosen
in function of ρ and vice-versa, for instance. Finally, by (5.28), the full equivalence for
schemes Ση, Σρ, and Σε holds assuming of d-regularity; indeed, one has

Fη = Fρ, if d = ρ

2
1− η
η

; (5.30)

Fη = Fε, if d = 1− η
ε

; (5.31)

Fρ = Fε, if d = 2− ρε
2ε . (5.32)

Therefore, schemes Ση, Σρ, and Σε are exactly equivalent, meaning that there exists
a bijective map to rewrite one scheme into another, if and only if (i) they share the
same topological network, (ii) the topology is regular with common degree d and (iii)
parameters η, ρ and ε range in the intervals (0, 1), (0,+∞) and (0, 2/ρS(L)) respectively.

5.3 Convergence analysis of the distributed solutions

This section is crucial for the devised distributed solutions, since a large variety of
properties are proven to give guarantees of convergence from different points of view. In
the first paragraph the convergence of the distributed solutions toward the centralized
solution is taken into consideration. Then, the central paragraphs show the convergence
of the estimates for a large number of iterations. Finally, a comparison concerning
convergence properties among the different schemes is proposed.
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5.3.1 Convergence toward the centralized solution

In this paragraph, the convergence properties of all schemes Σl
η, Σl

ρ, Σl
ε is discussed.

Since, in these three cases, each adopted approach can be decoupled component-wise, let
us address a general distributed estimation procedure with Σl

ϑ, such that parameter ϑ ∈
Uϑ ⊆ R≥0 represents one among η, ρ and ε. Setting x′ :=

[
(x1)> · · · (xM )>

]>
∈ RN

and u′ϑ :=
[
(u1

ϑ)> · · · (uMϑ )>
]>
∈ RN , it holds that

x′(t+ 1) =


Fϑ 0

. . .
0 Fϑ

x′(t) + u′ϑ. (5.33)

Hence, the convergence of the whole distributed estimation dynamics towards its central-
ized version, described by means of system (5.33), is governed only by the eigenvalues
of stochastic matrix Fϑ belonging to its spectrum Λ(Fϑ). This fact implies that the
convergence of the multivariate scheme Σϑ :=

(
Σ1
ϑ, . . . ,ΣM

ϑ

)
univocally depends on the

topology of G and the choice of parameter ϑ. Moreover, given the spectral properties of
Λ(Fϑ), a reasonable criterion to tune ϑ is given by

ϑ? = arg min
rϑ∈Uϑ

{rϑ} = arg min
ϑ∈Uϑ

{
max

i=1,...,n−1

∣∣∣λFϑ
i

∣∣∣} . (5.34)

The criterion in (5.34) is introduced in order to optimize the converge rate rϑ ∈ [0, 1] of
scheme Σϑ: the smaller the convergence rate rϑ is the faster scheme Σϑ provides accurate
estimates as t → +∞. It is worth to notice that convergence analysis of estimation
procedures related to the multivariate problem in (5.1) boils down to its scalar version.
Therefore, index l is omitted in the continuation of this study, if not necessary, assuming
M = 1 for the sake of simplicity.
In the sequel, it is shown that if the equilibrium points of systems (5.12), (5.20) and

(5.24) exist, then these are those stated by Lemma 5.2.1. In other words, these equilibria
represent the distributed solutions of problem (5.1), as proven by the following

Theorem 5.3.1 (Convergence of the distributed schemes).
Estimations x̂ := limt→+∞ x(t) provided by schemes Ση, Σρ and Σε converge in terms of
relative differences3 to the centralized solution x? in (5.6), for all choices of the parameters
η ∈ (0, 1), ρ ∈ (0,+∞) and ε ∈ (0, 2/ρS(L)) respectively.

Proof. By the spectral properties of Fη, Fρ and Fε, marginal stability characterizes the
free dynamics

x(t+ 1) = Fϑx(t), ϑ = η, ρ, ε (5.35)

of each schemes Ση, Σρ, Σε for all η ∈ (0, 1), ρ > 0 and ε ∈ (0, 2/ρS(L)). Moreover,
identities λFη

n−1 ≥ −1 + 2η > −1, λFρ
n−1 ≥ (ρ − 2dM )/(ρ + 2dM ) > −1 and λFε

n−1 ≥
1− ερS(L) > −1 imply that the equilibrium point for (5.35) exists, it is unique, and it is
given by x̂H = βH1n, with βH ∈ R. Similarly, for Σϑ, with ϑ = η, ρ, ε, the equilibrium

3In the sense that x̂i − x̂j = x?i − x?j for all i, j = 1, . . . , n.
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point can be expressed as x̂ = x̂H + x̂P (uϑ). At the equilibrium, the next chain of
equivalences follows:

x̂ = Fϑx̂ + uϑ, ϑ = η, ρ, ε; (5.36)
2Dx̂ = 2 [ϑD + (1− ϑ)A] x̂ + (1− ϑ)x̃, if ϑ = η;
(2D + ϑIn) x̂ = (2A + ϑIn) x̂ + x̃, if ϑ = ρ;
2Inx̂ = 2(In − ϑL)x̂ + ϑx̃, if ϑ = ε;

(5.37)

2Lx̂ = x̃, ϑ = η, ρ, ε. (5.38)

Since x̂H ∈ ker {L}, equality (5.38) is a particular instance of (5.5) solved by x̂; thus, x̂
is a solution to problem (5.1).

5.3.2 More details on the convergence properties of the distributed schemes

At first, it is necessary to distinguish between the convergence of the cost function h
towards its minimum and the convergence of the states to the equilibrium values. In this
kind of analysis, only the latter is taken into account. It is desirable that the update
schemes (5.9) and (5.12) guarantee a monotonic decrease of the cost function, e.g., by
adopting a gradient descent iterative procedure, nevertheless the convergence of the states
towards the equilibrium configuration depends on the eigenvalues of the state matrices of
the evaluated model (F0 and Fη) and, in particular, the convergence rate depends on
the second largest eigenvalue in modulus.

Convergence properties of Σ0

Considering system (5.9), whose dynamics is governed by F0, the states convergence is
ensured only if λ = −1 is not among the eigenvalues of the matrix. Indeed, if λ = −1
belongs to the spectrum of F0 its multiplicity would be unitary and this would imply (for
large observation times t�1) constant oscillations of the states around their equilibrium
values due to the presence of a dominant oscillatory mode. From a graphical model point
of view, this case can be interpreted referring to the network topology since λ = −1
occurs if and only if the associated graph is bipartite, i.e., all its cycles consist of an even
number of nodes Landau and Odlyzko (1981) (see also Subsec. B.3.3). This statement
can be proven accounting for the next fact Chung (1997)

Fact 5.3.2.
Denoting by $i ∈ Rn the i-th eigenvector of F0, the following change of variables
$′i = D1/2$i is considered. Because of the spectrum linearity, for i = 0, . . . , n − 1, it
holds that

F0 D−1/2$′i = λF0
i D−1/2$′i ⇒ L $′i = (1− λF0

i )$′i, (5.39)

where L = In −D−1/2AD−1/2 ∈ Rn×n is the normalized Laplacian matrix of G. Hence,
indicating with λL

i the eigenvalues of L, such that 0 = λL
0 < λL

1 ≤ · · · ≤ λL
n−1 ≤ 2, one

has that
λL
i = 1− λF0

i , for i = 0 . . . n− 1. (5.40)
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Moreover, λL
n−1 = 2 if and only if G is bipartite, and consequently, λF0

n−1 = −1 having
unitary multiplicity.

When the graph describing the network is bipartite, convergence to the equilibrium
can be reached only if it is possible to modify such topology so that the resulting graph
presents at least one cycle made of an odd number of nodes. For example, in the multi-
agent scenario, the link addition case (corresponding to a graph topology modification)
translates into the possibility of finding an additional connection among devices that
are neighbors in the sense of both communication and sensing: such an edge selection
solution may not be feasible or convenient in real-world applications.
Conversely, in the non-bipartite case, convergence is assured and its rate is governed

by the second largest (in modulus) eigenvalue of the state matrix F0.

Convergence properties of Ση

The presence of self-loops in model (5.12), controlled by parameter η, allows to modify
the eigenvalues domain from the unit circle to the circle centered in (η, 0) with radius
Rη = 1− η, Rη ∈ (0, 1), ruling out the possible presence of the critic eigenvalue λ = −1.
Therefore, not only the stability of the system is obtained but also the states convergence
is always assured. In detail, the η parameter can be tuned in order to control the
convergence speed, governed by the second largest eigenvalue (in modulus) of state
matrix Fη. If this is negative the estimated states converge toward the equilibrium values
through an oscillatory transient period. On the contrary, if the second largest eigenvalue
is positive then the estimation trend is asymptotically convergent, monotonic for large
observation times. From an applicative perspective, the former oscillatory behavior is
preferable since an averaging operation might provide an approximate solution to the
convergence value, while in the latter case the iterations might consistently underestimate
or overestimate the asymptotic values. Remarkably, these different behaviors can be seen
as dependent on the control parameter η.

A good and viable strategy is to select the parameter η as

η? = arg min
η∈[0,1)

{
max

i=1,...,n−1

∣∣∣λFη
i

∣∣∣} , (5.41)

to minimize the convergence rate of scheme Ση. The value of η? can be analytically
computed as shown in the next proposition. Note that in (5.41) it is assumed that η (or
η?) might be zero: this case corresponds to consider model (5.9).

Proposition 5.3.3.
Given a multi-agent network represented by graph G, the optimal value η? in (5.41) is
univocally determined as

η? =

1− ς−1
L , ςL > 1

0, ςL ≤ 1
(5.42)

where ςL = 1
2(λL

1 + λL
n−1) ∈ R and L is the normalized Laplacian matrix related to G.

Proof. Because λFη
1 ≥ . . . ≥ λ

Fη
n−1 for all η ∈ [0, 1) and the spectrum linearity, problem
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(5.41) can be rewritten as

η? = arg min
η∈[0,1)

{
max

{∣∣∣λFη
1

∣∣∣ , ∣∣∣λFη
n−1

∣∣∣}} , (5.43)

where λFη
1 = η + (1− η)λF0

1 and λFη
n−1 = η + (1− η)λF0

n−1. Let then distinguish two cases:
(a) ςL > 1 and (b) ςL ≤ 1.
(a) The solution of (5.43) follows from the relation

−
(
η + (1− η)λF0

n−1

)
= η + (1− η)λF0

1 , (5.44)

under the constraint η ∈ [0, 1). Exploiting (5.40), it results that

η?=
λF0

1 + λF0
n−1

λF0
1 + λF0

n−1 − 2
=

2− (λL
1 + λL

n−1)
−(λL

1 + λL
n−1)

=1− ς−1
L . (5.45)

(b) If ςL ≤ 1 solution (5.45) is not valid because of the constraint on η. Furthermore,
problem (5.43) boils down to

η? = arg min
η∈[0,1)

{
η + (1− η)λF0

1

}
, (5.46)

because λF0
1 = 1− λL

1 , λ
F0
1 ∈ [0, 1), results to be the largest eigenvalue (in modulus) of

F0 inside the unit circle. Since term η + (1− η)λF0
1 in (5.46) is strictly increasing in the

variable η, the minimization is attained for η? = 0.

Remark 5.3.4.
Prop. 5.3.3 shows that, when ςL ≤ 1, the solution of (5.41) is η? = 0. Thus, in this
case, either η should be selected in the neighborhood of zero or the scheme Σ0 should be
considered optimal.

Remark 5.3.5.
Note that, given a multi-agent network represented by a bipartite graph G, the optimal
value η? in (5.41) is yielded by η? = λL

1 (2 + λL
1 )−1 ∈ (0, 1).

The results in Prop. 5.3.3 allows to provide a lower bound for the convergence rate
rη = maxi=1...n−1|λ

Fη
i | of model Ση. If ςL ≤ 1 then it trivially holds rη ≥ rη? = 1− λL

1 .
Nevertheless, when ςL > 1, it is possible to prove that the convergence rate depends on
the diameter of the considered network. To do so, it is worth to observe that, if ςL > 1,
by combining (5.44) and (5.45), it occurs

rη ≥ rη? = 1− λL
1
ςL

=
λL
n−1 − λL

1
λL
n−1 + λL

1
. (5.47)

Then, let us recall the following inequality valid for any non-complete graph G with n
vertices Chung (1997)

φ(G) ≤
⌈

arcosh(n− 1)
arcosh

(
(λL
n−1 + λL

1 )/(λL
n−1 − λL

1 )
)⌉ . (5.48)
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where φ(G) is the diameter of the graph G (see Subsec. B.3.1). Combining (5.47)
and (5.48), a lower bound for the convergence rate can be derived depending only on
topological properties:

rη ≥ rη? ≥ sech
(arcosh(n− 1)

φ(G)− 1

)
. (5.49)

Note that for a complete graph with n vertices it holds that λL
1 = λL

n−1 = n(n− 1)−1,
hence η? = n−1 and rη? = 0. This implies that the estimate procedure converges toward
the equilibrium in one single step.

On the convergence of Σρ

Similarly to the previous subparagraph, the presence of self-loops in model (5.20) con-
trolled by parameter ρ allows to modify the spectral domain of F0. However, in this
framework, convergence guarantees and general insights related to this topic are more
complicated to be provided, due to the intrinsic structure of the algebraic model for
scheme Σρ. In the following Lem. 5.3.6, some properties of the spectrum of Fρ are shown
to begin the discussion.

Lemma 5.3.6.
Considering two values ρ1, ρ2 of the parameter ρ, it holds that λFρ1

i > λ
Fρ2
i for i ∈

{1 . . . n− 1} if and only if ρ1 > ρ2 ≥ 0.

Proof. Consider Fρ : R>0 → Rn×n as a continuous function that maps ρ 7→ Fρ =
(2D + ρIn)−1 (2A + ρIn). By the Gershgorin circle theorem, the derivative of Fρ w.r.t.
ρ is positive semidefinite, namely F′ρ = dFρ/dρ = 2 (2D + ρIn)−2 L � 0. Hence, Fρ is a
nondecreasing function of the parameter ρ, namely ρ1 > ρ2 ≥ 0 implies that Fρ1 � Fρ2

and viceversa. As a consequence, it follows that λFρ1
i > λ

Fρ2
i for i ∈ {1, . . . , n− 1} if and

only if ρ1 > ρ2 ≥ 0. This holds strictly for all i ∈ {1, . . . , n− 1} because the unique case
of equality is provided by λFρ1

0 = λ
Fρ2
0 = 1, ∀ρ1, ρ2, given the stochasticity of Fρ and the

fact that L has only a unique zero eigenvalue.

Exploiting the results of Lem. 5.3.6, the following Prop. 5.3.7 states an upper and
lower bound for each eigenvalue of Fρ as a function of the eigenvalues of F0, the penalty
value ρ and the extremal (maximum and minimum) degrees in graph G.

Proposition 5.3.7.
For any ρ > 0, all the eigenvalues λFρ

i , i ∈ {1, . . . , n − 1}, of matrix Fρ admit the
following lower λFρ

i and upper λFρ
i bounds:

λ
Fρ
i = ρ+ 2λF0

i dM
ρ+ 2dM

and λ
Fρ
i = ρ+ 2λF0

i dm
ρ+ 2dm

. (5.50)

Trivially, it holds that λFρ
i = λ

Fρ
i = λ

Fρ
i if and only if the graph G is regular, i.e.,

deg(vi) = d ∀vi ∈ V with d > 0.

Proof. Let F̃ρ(Ω) : Rn×n → Rn×n be a function that maps a diagonal matrix Ω � 0 to the
matrix F̃ρ(Ω) = (2Ω + ρIn)−1 (2ΩF0 + ρIn) . Exploiting (5.40) and the Gershgorin circle
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theorem, it is possible to prove that the condition dMIn � Ω � dmIn, i.e. Ω− dmIn � 0
and dMIn −Ω � 0, implies2ρ(Ω− dmIn)(In − F0) � 0

2ρ(dMIn −Ω)(In − F0) � 0
(5.51)

(2Ω + ρIn)(2dmF0 + ρIn) � (2dm + ρ)(2ΩF0 + ρIn)
(2dM + ρ)(2ΩF0 + ρIn) � (2Ω + ρIn)(2dMF0 + ρIn)

and, thus, F̃ρ(dmIn) � F̃ρ(Ω) � F̃ρ(dMIn). The provided implications are valid for
Ω = D. In this case, F̃ρ(D) = Fρ, hence the eigenvalue bounds in (5.50) can be derived
for any ρ > 0 leveraging Lem. 5.3.6.
Finally, when G is a regular graph, it trivially holds that dm = dM implying λFρ

i = λ
Fρ
i =

λ
Fρ
i , for i ∈ {1, . . . , n− 1}.

Given this premise, in the following it is shown how the parameter ρ can be tuned in
order to improve the convergence rate rρ ∈ [0, 1] of Σρ, which is related to the second
largest eigenvalue (in modulus) of Fρ. In particular, because of the monotonicity of
Λ(Fρ) for a given ρ, the convergence rate corresponds to

rρ = max
i∈{1,...,n−1}

|λFρ
i | = max

(
|λFρ

1 |, |λ
Fρ
n−1|

)
. (5.52)

To minimize rρ in (5.52), a good and viable strategy is thus to select the parameter ρ
as

ρ? = arg min
ρ≥0

{
max

(
|λFρ

1 |, |λ
Fρ
n−1|

)}
(5.53)

The next proposition focuses on the solution of the optimization problem (5.53). Note
that ρ? might be zero: this case corresponds the adoption of scheme (5.9).

Proposition 5.3.8.
The solution of problem (5.53) exists and is unique. Defining the function ςΩ that acts on
matrix Ω with ordered spectrum such that ςΩ : Rn×n → R, Ω 7→ (λΩ1 + λΩn−1)/2, it holds
that

ρ? =

ρ+, ςL > 1
0, ςL ≤ 1

(5.54)

with
2(ςL − 1)dm ≤ ρ+ ≤ 2(ςL − 1)dM . (5.55)

Furthermore, both bounds in (5.55) coincides with ρ+ if and only if G is regular.

Proof. Similarly to relation (5.40), for ρ ≥ 0 it holds that

1
2
((

1− λFρ
n−1

)
+
(
1− λFρ

1

))
= ςLρ = 1− ςFρ . (5.56)

Thanks to Lem. 5.3.6, ςFρ is proven to be a continuous strictly increasing function of
the parameter ρ, thus ensuring the existence of a unique solution for (5.53). This also
implies that ςFρ > ςF0 for ρ > 0.

105



5 Distributed State Estimation from Relative Measurements

Then, if ςF0 ≥ 0, namely ςL ≤ 1, it follows that ςFρ > 0. Therefore, due to (5.56),
the convergence rate results to be rρ = |λFρ

1 | and it is trivially minimized for ρ = 0.
Conversely, if ςF0 < 0, namely ςL > 1, the condition ςFρ = 0, corresponding to the
optimal scenario wherein |λFρ

1 | = |λ
Fρ
n−1| may occur. In particular, for Bolzano’s theorem,

it follows that the condition ςFρ = 0 is fulfilled only for a value of ρ, namely ρ+.
Finally, resting upon Prop. 5.3.7, inequalities (5.55) can be derived by imposing

(λFρ?
1 + λ

Fρ?
n−1)/2 ≤ ςFρ? ≤ (λFρ?

1 + λ
Fρ?
n−1)/2 (5.57)

and exploiting the fact that ςFρ? = 0 only when ςF0 < 0. Trivially, the bounds (5.55) are
met for regular graphs since dm = dM for these topologies.

Remark 5.3.9.
Prop. 5.3.8 suggests when it is useful to adopt the PP-based solution (5.20) basing on the
graph describing the given multi-agent system through ςL. By definition, this quantity
depends on the network connectivity and similarity to bipartite graph. Hence, when
ςL > 1, the corresponding topology tends to circulate the information between node
groups. In this case, the choice ρ∗ = ρ+ allows to improve the information management.
On the other hand, when ςL ≤ 1, either ρ? is set as an arbitrary relatively small value or
the scheme Σ0 has to be preferred, since the addition of self loop in the graph does not
improve (and often worsen) the estimation speed.

To conclude, the next proposition discusses the bounds of the convergence rate for the
optimal selection of ρ in (5.54)

Proposition 5.3.10.
If ςL ≤ 1, the rate of convergence rρ? for scheme Σρ? = Σ0 is yielded by rρ? = 1− λL

1 ∈
(0, 1). Otherwise, if ςL > 1, it is bounded as follows

rρ? ≤ max
(
−λ

Fρ+
n−1 , λ

F
ρ+

1

)
< 1, (5.58)

rρ? ≥ max
(
−min

(
0, λ

F
ρ+

n−1

)
,max

(
0, λ

Fρ+
1

))
≥0. (5.59)

In particular, rρ? = 0 if and only if G is the complete graph.

Proof. The result follows immediately from Prop. 5.3.7, Prop. 5.3.1, Prop. 5.3.8, the fact
that if λF0

n−1 = −1 then λFρ
n−1 ≥ (ρ − 2dM )/(ρ + 2dM ) > −1 for ρ > 0, and the general

fact that 0 < λL
1 ≤ 1 holds for a non-complete connected graph G. Moreover, since

nontrivial eigenvalues of L are all equal to n(n− 1)−1 if and only if G is the complete
graph, the assignment of ρ+ = 2 to the parameter ρ allows to place all the eigenvalues of
Fρ different from 1 in 0, achieving superlinear convergence (r?ρ = 0).

On the convergence of Σε

As already described in Subsec. 5.2.2, scheme Σε presents a little dissimilarity from
schemes Ση and Σρ, since, as ε approaches 0, Σε does not approach the behavior of Σ0.
Nevertheless, this scheme exhibits convergence properties that are deeply related to both
Ση and Σρ, especially to the former scheme. The forthcoming preposition 5.3.11 will
clarify the previous statement.
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Again, let us recall that a good and viable strategy is to select the parameter ε as

ε? = arg min
ε∈(0,2/ρS(L))

{
max

i=1,...,n−1

∣∣∣λFε
i

∣∣∣} , (5.60)

to minimize the convergence rate of scheme Σε. The value of ε? can be analytically
computed as shown in the next proposition. Note that in (5.60) it is assumed that ε (or
ε?) must not be equal to 2/ρS(L): this case corresponds to consider exactly a model with
similar properties of Σ0 when the topology is bipartite (or fully equivalent properties, if
the topology is also regular). Nonetheless, the value 2/ρS(L) assigned to ε drives system
Σε to instability for any topology because it allows the presence of multiple eigenvalues
λ, such that |λ| = 1, for matrix Fε.

Proposition 5.3.11.
Given a multi-agent network represented by graph G, the optimal value ε? in (5.60) is
univocally determined as

ε∗ = ς−1
L (5.61)

where ςL = 1
2(λL

1 + λL
n−1) ∈ R and L is the Laplacian matrix related to G.

Proof. The proof exhibits analogies to the one for Prop. 5.3.3. Because λFε
1 ≥ . . . ≥ λ

Fε
n−1

for all ε ∈ (0, 2/ρS(L)) and the spectrum linearity, problem (5.60) can be rewritten as

ε? = arg min
ε∈(0,2/ρS(L))

{
max

{∣∣∣λFε
1

∣∣∣ , ∣∣∣λFε
n−1

∣∣∣}} , (5.62)

where λFε
1 = 1−ελL

1 and λFε
n−1 = 1−ελL

n−1. Here, conversely to Prop. 5.3.3, no distinction
for ςL is made. Indeed, the solution of (5.62) follows from the relation

−
(
1− ελL

n−1

)
= 1− ελL

1 , (5.63)

under the constraint ε ∈ (0, 2/ρS(L)). Then, leveraging the connectivity of the graph G,
λL

1 > 0 and thus one has that

ε? = 2
λL

1 + λL
n−1

= ς−1
L ∈ (0, 2/ρS(L)). (5.64)

The results in Prop. 5.3.11 allows to provide a lower bound for the convergence rate
rε = maxi=1...n−1|λFε

i | of model Σε. Indeed, it is possible to state that by combining (5.63)
and (5.64), it occurs

rε ≥ rε? = 1− λL
1
ςL

=
λL
n−1 − λL

1
λL
n−1 + λL

1
. (5.65)

Remark 5.3.12.
Note that, given a multi-agent network represented by a bipartite graph G, the optimal
value ε? in (5.60) results to be ε? = 2(λL

1 + 2dM )−1 ∈ (0, 1/dM ). Generally, ε ∈ (0, 1/dM )
is just a sufficient condition to provide stability to Σε, as authors in Olfati-Saber et al.
(2007) point out, since the bipartite case represents a worst case scenario for choosing ε.
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Moreover, for a complete graph with n vertices it holds that λL
1 = λL

n−1 = n, hence
ε? = n−1 and rε? = 0. This implies that the estimate procedure converges toward the
equilibrium in one single step.

5.3.3 Convergence comparison between the developed distributed schemes

Generally, one might wonder which of the three distributed parametric schemes in Table
5.1 should be adopted to achieve the best performances in terms of convergence rate. It is,
indeed, a matter of fact that the latter strongly depends on the spectral properties of the
state matrix involved during the estimation procedure (see Table 5.2). In particular, the
optimal convergence rate is a consequence of the optimal parameter selection implemented,
as summarized in Table 5.3, which is basically computed leveraging the first nonzero
eigenvalue and the spectral radius of the normalized Laplacian or the Laplacian matrices.

Examples in Fig. 5.2 illustrate that, for nonregular frameworks, none of the distributed
schemes among Ση, Σρ and Σε outperforms another. Indeed, even for networks with
the same number of nodes and diameter, the convergence performances depend on the
specific case under analysis. On the other hand, as shown in Subsec. 5.2.3 an equivalence
condition for all the iterative procedures is represented, to some extent, by the adoption
of the same regular topology, i.e. the best convergence rate for the different schemes is
identical for any d-regular set-up.

Given all the propositions proven in the previous paragraph, it is thus possible to state
that, in general, the convergence properties for schemes Ση, Σρ and Σε are similar. Care
has to be taken just for bipartite networks while selecting the parameter in its domain,
otherwise the convergence does not occur, since Σ0 exhibits oscillating dynamics in this
framework.

Scheme Parameter State matrix Input vector
Σ0 F0 = D−1A u0 = 1

2D−1x̃
Ση η ∈ [0, 1) Fη = (ηIn + (1− η)F0) uη = (1− η)u0

Σρ ρ ≥ 0 Fρ =
(

D + ρ

2In
)−1 (

A + ρ

2In
)

uρ =
(

D + ρ

2In
)−1

Du0

Σε ε ∈
(

0, 2
λL
n−1

)
Fε = In − εL uε = ε Du0

Table 5.1. Distributed iterative schemes examined in this chapter.

Scheme Spectral properties of state state matrix
Σ0 {1 = λF0

0 > · · · ≥ λF0
n−1} ⊆ [−1, 1]

Ση {λFη
0 ≥ · · · ≥ λ

Fη
n−1} ⊆ (−1 + 2η, 1) ⊆ (−1, 1]

Σρ {1 = λ
Fρ
0 > · · · ≥ λFρ

n−1} ⊆
((

ρ−2dM
ρ+2dM

)
, 1
)
⊆ (−1, 1]

Σε {λFε
0 ≥ · · · ≥ λ

Fε
n−1} ⊆

(
1− 2ε

λL
n−1

, 1
)
⊆ (−1, 1]

Table 5.2. Spectral properties of the update matrices involved in the distributed iterative
schemes examined, considering η, ρ > 0.
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Scheme Best convergence rate Optimal parameter selection

Σ0 r0 =
{
λL
n−1 − 1, if ςL > 1

1− λL
1 , if ςL ≤ 1

no parameter available

Ση rη? =
{

1− λL
1 /ςL, if ςL > 1

1− λL
1 , if ςL ≤ 1

η? =
{

1− 1/ςL, if ςL > 1
0, if ςL ≤ 1

Σρ rρ? =
{

rρ+ , if ςL > 1
1− λL

1 , if ςL ≤ 1
ρ? =

{
ρ+, if ςL > 1
0, if ςL ≤ 1

Σε rε? = 1− λL
1 /ςL ε? = 1/ςL

Table 5.3. Best convergence rate depending on the optimal parameter selection (ρ+ can be
found in the interval given by (5.55) via bisection method and rρ+ is bounded by
5.50).

1

2 3

4

56

(a) rη? ' 0.3895, η? ' 0.1760,
(c) rρ? ' 0.3932, ρ? ' 1.3607,
(c) rε? ' 0.4330, ε? ' 0.2500,
(c) r0* ' 0.6863.

1

2 3

4

56

(b) rη? ' 0.3177, η? ' 0.2258,
(c) rρ? ' 0.3162, ρ? ' 2.0000,
(c) rε? ' 0.3333, ε? ' 0.2222,
(c) r0* ' 0.7020.

1

2 3

4

56

(c) rη? ' 0.3442, η? ' 0.2727,
(c) rρ? ' 0.3395, ρ? ' 2.2422,
(c) rε? ' 0.3333, ε? ' 0.2222,
(c) r0* ' 0.8482.

Figure 5.2. Convergence rate comparison: simple examples of nonregular topologies with 6
nodes, minimum degree of 3, maximum degree of 4 and diameter of 2. Basically, all
the algorithms offer similar performances but their rate of convergence is topology
dependent, differing in absence of regularity. (a) Convergence of Ση scheme is
faster in this example. (b) Convergence of Σρ scheme is faster in this example. (c)
Convergence of Σε scheme is faster in this example.

Lastly, it is worth to recall that all the three algorithms based on a parameter converge
in one step, if the topology is complete.

5.4 Sensitivity analysis to parametric variations

At the light of the premise given in Subsec. 2.2.1, an expression for the relative sen-
sitivity function is provided for all the distributed iterative schemes, namely S̄η(z) for
Ση, S̄ρ(z) for Σρ and S̄ε(z) for Σε. Moreover, in order to quantify precision of estima-
tion performances and rejection to disturbances at the steady-state of these dynamic
systems, the limits for z → 1 for S̄η(z), S̄ρ(z) and S̄ε(z) are computed. Hereafter, the
adjugate operator is indicated with adj [·] and, with Diag

[
$>

]
, it is denoted the di-

agonal matrix whose i-th diagonal element is given by the i-th component [ω]i of vector ω.
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5.4.1 Computation of the sensitivity values at steady-state

The computation of |S̄ϑ(1)|, with ϑ = η, ρ, ε, is carried out in the following paragraphs
for all the distributed schemes developed.

Sensitivity of Ση

As regards scheme Ση, its discrete transfer function is given by

W(z, η) = (zIn − Fη)−1 1
2(1− η)D−1 =

(
2
(
z − η
1− ηD−A

))−1
(5.66)

thus,

∂W(z, η)
∂η

= −W(z, η)∂W−1(z, η)
∂η

W(z, η) = −2 z − 1
(1− η)2 W(z, η)DW(z, η) (5.67)

and, since W(z, η) is symmetric, it holds that

S̄η(z) = tr
[
W−>(z, η)∂W(z, η)

∂η

]
= −2 z − 1

(1− η)2 tr [DW(z, η)] . (5.68)

Therefore, for Ση one has

S̄η(1) = lim
z→1
− z − 1

(1− η)2 tr
[
((z − η)/(1− η)In − F0)−1

]
(5.69)

= lim
z→1
− z − 1

(1− η)2
tr [adj [(z − η)/(1− η)In − F0]]

(1− η)−n det [zIn − (ηIn + (1− η)F0)] (5.70)

= lim
z→1
− z − 1

(1− η)2−n
tr [adj [In − F0]]

(z − 1)
∏n−1
i=1

(
z − λFη

i

) (5.71)

= − 1
(1− η)2−n

tr
[
adj[T0]adj[In −Λ0]adj[T−1

0 ]
]

(1− η)n−1∏n−1
i=1

(
1− λF0

i

) (5.72)

where T−1
0 (In − Λ0)T0 is the diagonalized Jordan form of (In − F0), such that Λ0 =

Jord
[[
λF0

0 · · · λF0
n−1

]]
is a block-diagonal Jordan matrix. Hence, by the trace properties,

it holds that

S̄η(1) = − 1
(1− η)

tr
[
adj[T−1

0 ]adj[T0]adj[In −Λ0]
]

∏n−1
i=1

(
1− λF0

i

) (5.73)

= − 1
(1− η)

tr
[
Diag

[[∏n−1
i=1

(
1− λF0

i

)
0 . . . 0

]]]
∏n−1
i=1

(
1− λF0

i

) (5.74)

= −(1− η)−1
n−1∏
i=1

(
1− λF0

i

)
/
n−1∏
i=1

(
1− λF0

i

)
(5.75)

= −(1− η)−1 (5.76)

110



5.4 Sensitivity analysis to parametric variations

Sensitivity of Σρ

The discrete transfer function of scheme Σρ is yielded by

W(z, ρ) = (zIn − Fρ)−1 (2D + ρIn)−1 = (2(zD−A) + ρ(z − 1)In)−1 (5.77)

thus,

∂W(z, ρ)
∂ρ

= −W(z, ρ)∂W−1(z, ρ)
∂ρ

W(z, ρ) = −(z − 1)W2(z, ρ) (5.78)

and, since W(z, ρ) is symmetric, it holds that

S̄ρ(z) = tr
[
W−>(z, ρ)∂W(z, ρ)

∂ρ

]
= −(z − 1) tr [W(z, ρ)] . (5.79)

Therefore, for Σρ, one has

S̄ρ(1) = lim
z→1
− (z − 1) tr

[
(2(zD−A) + ρ(z − 1)In)−1

]
(5.80)

= lim
z→1
− (z − 1)tr [adj [2(zD−A) + ρ(z − 1)In]]

det [(2D + ρIn)(zIn − Fρ)]
(5.81)

= lim
z→1
− (z − 1) 2n−1 tr [adj [(zD−A) + ρ/2(z − 1)In]]

(z − 1)2n
∏n
i=1 [deg(vi) + ρ/2]

∏n−1
i=1

(
z − λFρ

i

) (5.82)

= − tr [adj [D−A]]
2
∏n
i=1 [deg(vi) + ρ/2]

∏n−1
i=1

(
1− λFρ

i

) (5.83)

= − tr [adj [L]]
2
∏n
i=1 [deg(vi) + ρ/2]

∏n−1
i=1 λ

Lρ
i

(5.84)

where Lρ =
(

D + ρ

2In
)−1/2

Lρ
(

D + ρ

2In
)−1/2

is the normalized Laplacian induced by
the graph Gρ modified according to the PP-based approach. Remarkably, it also holds

that Lρ =
(

D + ρ

2In
)
−
(

A + ρ

2In
)

= L and hence, similarly to the calculations shown
for the numerator of (5.71)-(5.75), it is possible to obtain

nt(G) =
n−1∏
i=1

λL
i = tr [adj [L]] = tr [adj [Lρ]] =

n−1∏
i=1

λ
Lρ
i = nt(Gρ) (5.85)

resorting to Kirchhoff’s matrix tree theorem (see Subsec. B.3.2) where t(G) is the number
of spanning trees in G. Hence, exploiting (5.85), Theorem 2.1 of Huang and Li (2015)
and the Handshaking lemma (see Subsec. B.3.1), relative sensitivity S̄ρ(1) in (5.84) can
be rewritten as

S̄ρ(1) = − nt(Gρ)
2 · 2 |Eρ| t(Gρ)

(5.86)

= − n

2
∑n
i=1 [deg(vi) + ρ/2] (5.87)

= − 1
2vol(G)/n+ ρ

. (5.88)
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Sensitivity of Σε

For what concerns scheme Σε, its discrete transfer function is given by

W(z, ε) = (zIn − Fε)−1 1
2ε =

(
2
(
z − 1
ε

In + L
))−1

(5.89)

thus,

∂W(z, ε)
∂ε

= −W(z, ε)∂W−1(z, ε)
∂ε

W(z, ε) = 2(z − 1)
ε2

W(z, ε)2 (5.90)

and, since W(z, ε) is symmetric, it holds that

S̄ε(z) = tr
[
W−>(z, ε)∂W(z, ε)

∂ε

]
= 2(z − 1)

ε2
tr [W(z, ε)] . (5.91)

Therefore, for Σε one has

S̄ε(1) = lim
z→1

2(z − 1)
ε2

tr
[

1
2

(
z − 1
ε

In + L
)−1

]
(5.92)

= lim
z→1

z − 1
ε2

tr
[
adj

[
z − 1
ε

In + L
]]

det
[
z − 1
ε

In + L
] (5.93)

= lim
z→1

z − 1
ε2

tr [adj [L]]∏n−1
i=0

(
z − 1
ε

+ λL
i

) (5.94)

= 1
ε2

tr [adj [L]]
1
ε

∏n−1
i=0 λ

L
i

(5.95)

Hence, exploiting again Kirchhoff’s matrix tree theorem as in (5.85), it is then possible
to obtain

S̄ε(1) = 1
ε
. (5.96)

5.4.2 Final remarks about the sensitivity analysis

To conclude this discussion, the computation of the relative sensitivity at steady-state,
i.e. as z → 1, yields

• |S̄η(1)| = (1− η)−1 for Ση;

• |S̄ρ(1)| = (2vol(G)/n+ ρ)−1 for Σρ;

• |S̄ε(1)| = ε−1 for Σε.

Now, let us consider inequality

1 + dM ≤ ρS(L) ≤ 2dM (5.97)
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in Liu and Lu (2010) (with the equality on the r.h.s. holding for bipartite topologies)
and denote with dm the minimum degree in G. It is worth to observe that, for any
connected undirected network with n ≥ 2 nodes, it holds that: |S̄η(1)| ≥ 1 for all
η ∈ [0, 1), |S̄ρ(1)| ≤ n/(2vol(G)) ≤ 1/2 for all ρ ≥ 0 and |S̄ε(1)| > ρS(L)/2 ≥ 1 for all
ε ∈ (0, 2/ρS(L)) ⊆ (0, 1). This fact implies that scheme Σρ is inherently more robust
than the others in a steady state condition as their tunable parameters vary. On the
contrary, scheme Σε is the least reliable iterative procedure as ε is perturbed, since one
has |S̄ε(1)| ≥ 2 for ε ∈ (0, 1/2] and |S̄η(1)| ≤ 2 for η ∈ (0, 1/2], being the interval (0, 1/2]
the most significant for selecting an optimal value of ε?. Indeed, for connected undirected
networks with n > 2 and dM > 2, exploiting (5.97) and the Cheeger’s bound for the
algebraic connectivity given in Chung (1997), it is possible to show that the optimal
values ε? belong to (0, 1/2). Precisely, one has

λL
n−1 = ρS(L) ≥ 1 + dM ≥ 4;

λL
1 >

2dm
n4 ≥

2
n4

⇒ ε? = 2
λL

1 + λL
n−1

<
1
2 (5.98)

Additionally, exploiting Cor. 6.3.2 in the next chapter and relation (5.97) in the bipartite
case, it is possible to prove without any difficulty that for cycle and path graphs (the only
connected topologies with dM = 2) it holds that ε? ∈ (0, 1/2]. Therefore, the domain of
all ε? can be restricted to (0, 1/2], for any connected undirected graph with n ≥ 2 nodes.
Given the similar role of ε and η in schemes Σε and Ση, the same restriction occurs for
the optimal choice of latter parameter, since all η? belong to [0, 1/2] by Prop. 5.3.3 and
Lem. B.3.66. These considerations can be also appreciated in Fig. 5.3.

Figure 5.3. Sensitivity functions: qualitative comparison as the parameters ϑ = η, ρ, ε vary,
considering networks with n ≥ 2 nodes. The red curve representing |S̄ρ| assumes
values that are smaller or equal to 1/2, for all ρ ≥ 0. The yellow curve representing
|S̄ε| assumes values that are greater than 1 for all ε ∈ (0, 1): its most important piece
is, however, described by ε? ∈ (0, 1/2]. The blue curve representing |S̄η| assumes
values that are greater or equal to 1 for all η ∈ [0, 1): its most important piece is,
however, described by η? ∈ [0, 1/2].
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5.5 Numerical results

In this section, numerical results for schemes Σ0, Ση and Σρ, in (5.9), (5.12) and (5.20)
respectively, are shown for different graph topologies, focusing on a particular setup that
is suggestive for potential localization applications, such as the angle calibration for a
planar camera network (see also Ex. 2.1.9). For the sake of clarity, scheme Σε in (5.24)
is not taken into account4 in the following paragraph dedicated to simulation examples
on convergence behaviors and sensitivity to parameter variations.
In this setup, l = 1 has assigned5 and a symmetric configuration has been chosen so that
the estimations are expected to converge toward x?i+1−x?i = 2π/n, for i = 1, . . . , n−1. The
relative measurements are assumed to be corrupted by an additive uniformly distributed
noise in the range [−π/36, π/36]. In each simulation, the number of iterations is fixed to
t̄ = 20 and the performance index

re = 1
t̄− 2tneg

t̄−tneg−1∑
t=tneg

‖x(t+ 1)− x?‖2
‖x(t)− x?‖2

≤ r (5.99)

is used to evaluate the effective convergence rate between estimations and centralized
solutions, whenever convergence occurs. Index (5.99) neglects the first and last tneg = 2
iterations and takes into account the average estimation error ratio over the procedure.
Moreover, the final mean square error

MSE = 1
n

n∑
i=1

(
xi(t̄)− x?i

)2 (5.100)

is also taken into account to assess the estimation performances6 of the iterative schemes.

5.5.1 Case study: nonregular bipartite topology

In this case study the nonregular bipartite network with n = 7 nodes in Fig. 5.4(a)
is considered (see also Subsec. B.3.3). In the first paragraph, a simulation showing
the convergence behavior of both the functional in (5.1) and the expected estimates is
proposed via scheme Σρ; whereas, in the second paragraph, a performance comparison
between schemes Ση and Σρ focused on this application is discussed. Further numerical
results concerning scheme Ση are also available in Fabris et al. (2019b).

4This choice is motivated by various reasons; however, the most relevant are: (i) scheme Ση represents
the normalized version of Σε, thus they share very similar convergence properties; (ii) in Subsec. 5.4.2,
it has been proven that the sensitivity to parameter variation of Σε is the highest w.r.t. the other
schemes.

5This choice is adopted w.l.o.g. and for the sake of clarity in the forthcoming illustrations.
6Each state component appearing in (5.99) and (5.100) has to be considered normalized in difference
by, for instance, subtracting the first coordinate to all the others.
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Distributed estimation through Σρ as ρ varies in [0,+∞)

Bipartite network G in Fig. 5.4(a) is the object of this case study. As it is illustrated in
Fig. 5.4(b), eigenvalues belonging to the spectrum Λ(F0) of state matrix F0 are mapped
into spectrum Λ(Fρ?), when ρ = ρ? is set. Moreover, recalling Lem. 5.3.6 and Prop.
5.3.7, all the the eigenvalues λFρ?

i are located within a certain neighborhood and maintain
their order w.r.t. the elements in Λ(F0). In addition to this fact, knowing the spectrum
of the normalized Laplacian Λ(L), Prop. 5.3.8 entails that penalty parameter ρ? belongs
to the interval [ρ?, ρ?] ' [0.5626, 2.2506]; hence, the convergence rate rρ? can be bounded
in the interval [rρ? , rρ? ] ' [0.5184, 0.7118].
Given the fact that G is bipartite, r0 = 1 trivially holds; then, the convergence of

both cost and estimates by means of system Σ0 does not occur, as depicted by the red
lines in Fig. 5.5(a) and Fig. 5.5(b). Indeed, neither the cost function h approaches
zero nor the estimates converge towards the centralized solution. On the other hand,
this issue is easily overcome when the PP-based scheme is implemented: the choice
of the penalty ρ? ' 1.3469 not only guarantees convergence but it also speeds up the
estimation dynamics, which achieves the best possible convergence rate, as inequality
r0 ≥ rρ > rρ? ' 0.5999 indicates. Another evidence of this fact can be found in the values
assumed by the final mean square errors. For the particular instance generated and
depicted in Fig. 5.5(a) and Fig. 5.5(b), scheme Σ0 yields MSE ' 5.8291; whereas, scheme
Σρ? yields MSE ' 2.7485 · 10−4. To conclude this analysis, the values of the performance
indexes re(Σ0) ' 0.6034 for Σ0 and re(Σρ?) ' 0.0471 for Σρ? are also provided; however,
the former value does not actually carry any useful information, since convergence is not
attained in that specific case.

G
1 2 3 4

5 6 7

(a) Case study network

Λ(F0)

Λ(Fρ?)

−1 −0.5 0 0.5 1

(b) Spectral properties of algorithms

Figure 5.4. (a) A non-regular bipartite graph with 7 nodes is adopted in this case study. (b)
Spectral mapping due to the tuning of penalty parameter ρ?. Eigenvalues (colored
dots) belonging to spectrum Λ(Fρ?) are located inside their relative bounds (colored
boxes). Penalty optimization allows the spectral centroid (black cross) to be placed
in 0 and hence the essential spectral radius (see gray rectangle) is reduced.

Performance comparison between Ση and Σρ

Again, let us consider bipartite network introduced in Fig. 5.4(a). Fig. 5.6 highlights the
most important aspects regarding an overall comparison among the developed distributed
schemes. Firstly, it is worth to note that, for each implementation of schemes Ση and Σρ,
regularizing parameters η and ρ play a key role for their convergence rate, as illustrated
previously. These two quantities can be tuned accordingly to Fig. 5.6(a), by minimizing
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(a) Cost function (b) Estimation dynamics

Figure 5.5. (a) Cost function decrease for systems Σ0 and Σρ? . The minimum for h is not
attained by Σ0 scheme, since graph G is bipartite. (b) Behavior of the iterative
schemes. It is worth to notice that Σ0 dynamics is oscillatory around the estimations
while Σρ? dynamics is converging to the centralized solution.

Regularization MSE(Σ0) MSE(Ση) MSE(Σρ) re(Σ0) re(Ση) re(Σρ)
η = η?, ρ = ρ? 5.8157 7.0147 · 10−5 2.7377 · 10−4 − 0.0375 0.0471
η = η′, ρ = ρ′ 5.8157 0.0082 0.0027 − 0.0494 0.0259

Table 5.4. Performance indexes for iterative schemes Ση and Σρ acting on the bipartite graph
reported in Fig. 5.4(a).

the curves relative to convergence rates rη and rρ. In this particular settings, the optimal
choice is given by η? ' 0.2196 and ρ? ' 1.3469, leading to rη? ' 0.5609 < rρ? ' 0.5999.
This fact can also be observed in the decrease of cost function h (see Fig. 5.6(b)) or
in the estimation dynamics (provided in Fig. 5.6(d)), where schemes Ση′ and Σρ′ , with
η′ := 1.5η? and ρ′ := 1.5ρ? are also taken into consideration to illustrates a potential
deviation from the optimal η? and ρ?.
Secondly, one observes that, in all cases, sensitivity to parameter variations in a steady-
state condition is larger for procedure Ση. Indeed, this fact is the main reason for which,
even though rη? < rρ? and parameter η′ is set by means of the same perturbation applied
to parameter ρ′, convergence rate rη′ ' 0.7462 ends up being greater than rρ′ ' 0.7263. In
other words, when the relative variation from the optimal regularizing parameter exceeds
a certain thresholds, it is guaranteed that scheme Ση exhibits deteriorated convergence
performances w.r.t. those of scheme Σρ. This holds in a general setting, since (i) if
η goes to 1 then rη tends to 1 because estimates are computed resorting only to their
previous values and neglecting the rest of the network, meaning that the estimation result
is provided with a large number of iterations; (ii) if η goes to 0 then rη tends to r0, as
rρ does for ρ going to 0, slowing down the convergence of dynamics as a consequence.
More generally, the latter statement explains the convergence performances of scheme Σ0,
which might be too slow or even presents oscillatory dynamics in the worst case scenario
where bipartite topologies are employed, e.g. in this case study.
Another evidence supporting this fact can be found in Table 5.4 where mean square
errors MSE and the effective estimation rate re are reported for each iterative scheme
involved in this analysis.
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(a) Convergence rate (b) Cost function

(c) Sensitivity to parameter variations (d) Estimation dynamics

Figure 5.6. Overall performance comparison relative to the developed distributed approaches,
given the topology presented in Fig. 5.4(a). (a) Convergence rate minimization
for both schemes Ση and Σρ as η and ρ vary. (b) Decrease of the cost function for
schemes Σ0, Ση, Ση′ , Σρ and Σρ′ . (c) Sensitivity to parameter variations for both
schemes Ση and Σρ as η and ρ vary. (d) Estimation dynamics for schemes Σ0, Ση,
Ση′ , Σρ and Σρ′ .

5.5.2 Overall performance comparison for various topologies

In the following lines, several numerical results are also provided for a large variety of
various topologies. In particular, this simulation section is concluded by validating the
proposed algorithms for other network topologies (see also Subsec. B.3.3). In more
details, Table 5.5 summarizes the parameter settings and all the main results related to
the convergence behaviors. Furthermore, performances for tests accomplished on part
of the graphs evaluated in Fabris et al. (2019b) are shown, e.g. the complete K36, the
circulant C36(1, 2), a Ramanujan R36 and the Cayley Γ36(3), all with n = 36 nodes. In
addition, other three topologies are also investigated:

• the star topology S36 with n = 36, i.e. a tree with 35 nodes characterized by a
degree of 1 linked to a common root with 35 incidences;

• the small-world SW9,27 with n = 36, constituted by two complete graphs K9 and
K27 linked together by one single edge;

• the complete binary trees B+
4 , B+

6 (where B+
nd

has 2nd+1 vertices, hence respectively
with n = 32 and n = 128 nodes) with an extra connection between its root and one
of the leaves.

Lastly, some other graph-related quantities are also reported in Table 5.5, such as the
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Topology K36 C36(1, 2) R36 Γ36(3) SW9,27 S36 B+
4 B+

6

Regular yes yes yes yes no no no no
Bipartite no no no yes no yes no no

Equivalence yes no yes yes no no no no

dens 1 0.1143 0.0857 0.0857 0.6159 0.0556 0.0667 0.0159
φ(G) 1 9 6 6 3 2 8 12
dav(G) 35 4 3 3 21.5556 1.9444 2 2
dm(G) 35 4 3 3 8 1 1 1
dM (G) 35 4 3 3 27 35 3 3

vol(()G) 1260 144 108 108 776 70 62 254

λL
1 36 0.1510 0.3408 0.3542 0.1304 1 0.0476 0.0096
λL

1 1.0286 0.0377 0.1136 0.1181 0.0133 1 0.0261 0.0050
λL
n−1 36 6.2267 5.7326 6 28.0158 36 5.3787 5.5894
λL
n−1 1.0286 1.5567 1.9109 2 1.1456 2 1.9888 1.9980
ςL 36 3.1888 3.0367 3.1771 14.0731 18.5 2.7131 2.7995
ςL 1.0286 0.7972 1.0122 1.0590 0.5795 1.5 1.0074 1.0015

η? 0.0278 0 0.0121 0.0557 0 0.3333 0.0074 0.0015
ρ? 2 0 0.0734 0.3542 0 1.8972 0.0283 0.0059
ε? 0.0278 0.3136 0.3293 0.3148 0.0711 0.0541 0.3686 0.3572
r0 0.0286 0.9623 0.9109 1 0.9867 1 0.9888 0.9980
rη? 1.5543 · 10−15 0.9623 0.8878 0.8885 0.9867 0.3333 0.9741 0.9950
rρ? 0 0.9623 0.8878 0.8885 0.9867 0.4868 0.9741 0.9950
rε? 1.3323 · 10−15 0.9526 0.8878 0.8885 0.9907 0.9459 0.9825 0.9966

re(Σ0) 5.2521 · 10−5 0.2952 0.1842 − 0.7279 − 0.3298 0.4604
re(Ση? ) 7.7972 · 10−16 0.2952 0.1478 0.0258 0.7279 0.0104 0.2871 0.4591
re(Σρ? ) 8.0757 · 10−16 0.2952 0.1478 0.0258 0.7279 0.0289 0.2922 0.4589
re(Σε? ) 7.7015 · 10−16 0.3655 0.1478 0.0258 0.7029 0.6094 0.1957 0.5213

MSE(Σ0) 1.5916 · 10−14 3.9867 0.4352 0.2509 14.4911 18.5854 2.1560 12.2234
MSE(Ση? ) 1.6554 · 10−14 3.9867 0.3474 0.0250 14.4911 6.1042 · 10−9 1.8040 12.1312
MSE(Σρ? ) 1.7156 · 10−14 3.9867 0.3474 0.0250 14.4911 1.1890 · 10−5 1.7974 12.1263
MSE(Σε? ) 1.6391 · 10−14 3.5284 0.3474 0.0250 15.4689 7.0045 1.8190 12.1636

Table 5.5. Summary of the validation test for iterative schemes Ση and Σρ in a heterogeneous
topology framework. The ‘Equivalence’ tag indicates the existence of a full bijection
between the different iterative schemes, according to Subsec. 5.2.3.

average degree dav(G) := n−1∑n
i=1 deg(vi), the density dens(G) = vol(G)/(n(n− 1)) and

the diameter φ(G) (see also Subsec. B.3.1).
From the data reported in Table 5.5, some considerations are in order:

• K36 andR36: the estimation performance is good for Σ0, Ση? , Σρ? and Σε? , although
the latter three methods allows for a faster convergence;

• C36(1, 2): for these specific (regular) graphs the performances of Σ0, Ση? , Σρ? and
Σε? are practically the same7, for both indexes re and MSE (as a further remark, it
is worth to note that for some circulant graphs as the ring graphs the performance
results better by employing approaches Ση, Σρ, Σε);

• Γ36(3) and S36: for the bipartite nature of these graphs, only the PP-based
estimation through Σρ or the consensus schemes Ση, Σε can be applied successfully
(Γ36(3) is regular and S36 is not); however, scheme Σε does not exhibit a good

7The lack of a full equivalence leads Σε? to better performances.
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convergence rate w.r.t. to the other iterative procedures in the star graph case
(proven by the fact that its MSE is higher than the others);

• SW9,27: the update rules Σ0, Ση, Σρ perform equally, with Σε performing slightly
worse from the others for this non-regular graph choice;

• B+
4 and B+

6 : estimation performances are here similar between the four methods,
nonetheless, the regularized procedures Ση, Σρ, Σε obtain better results both in
estimation speed and estimation accuracy, with Σε performing slightly worse.

By recalling Remark 5.3.9, the table highlights how bipartite and complete graphs
improve information spreading through their characteristic connectivity patterns (with
ςL > 1 and adopted estimation scheme Σρ?), while small world networks tend to isolate
information in node clusters (with ςL < 1 and adopted estimation scheme Σ0).

5.6 Chapter summary

In this chapter, the optimal multivariate distributed state estimation problem from relative
measurements, strongly motivated by the large use of multi-agent sensor networks, has
been tackled and solved with different approaches. Specifically, a centralized solution
has been provided, along with a distributed methodology that allows to formalize four
iterative linear procedures. The first distributed scheme resulting from this approach,
i.e. Σ0, does not exhibit a convergent behavior for bipartite topologies; nonetheless, it
represents the cornerstone for the application of three consensus-like schemes (Ση, Σρ,
Σε), which yield general convergence properties to the system of sensors by tuning a
regularization parameter opportunely. In particular, it is shown that the convergence
performances of the three aforementioned distributed and regularized algorithms are
topology-dependent and similar, excluding the general choice among one of the schemes.
However, it is worth to underline that the PP-based scheme Σρ is proven to be the most
robust algorithm, among those presented, in terms of regularization parameter variations,
for any given topology.
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On the Spectral Properties of

κ-ring Graphs
“Do not try and bend the spoon. That’s impossible. Instead, only realize the truth...

there is no spoon.”
Child
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6.1 Overview

Nowadays, Graph Spectral Theory is ubiquitous in a significant amount of diverse scientific
fields Beineke and Wilson (1997), especially in numerous areas related to Engineering, as,
for instance, Machine Learning Bekkerman, Bilenko, and Langford (2012), Data Mining
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Cook and Holder (2007), Multi-agent Networks Mesbahi and Egerstedt (2010) and Social
Networks Wasserman and Faust (1999). Many distributed algorithms for the estimation
and control are implemented among the most heterogeneous kind of topologies, e.g. in
Cui, Wang, Pei, and Zhu (2018); Grönkvist and Hansson (2001); Pourbabak, Luo, Chen,
and Su (2018); Wang and Elia (2013).
Given the dramatic growth in the usage of these networked-based algorithms, the
knowledge about eigenvalues of the Laplacian matrices Zhang (2011) and normalized
Laplacian matrices Chung (1997) have gradually become fundamental to achieve a deep
comprehension on the convergence performances and real effectiveness of such iterative
schemes Makhdoumi and Ozdaglar (2017); Spielman (2007).
This research activity arose from the observations made in the Chap. 5 and Fabris et al.
(2019b), in which the authors have shown how some algebraic entities connected to graphs
are crucial to determine the rate of convergence for the adopted estimation approach. In
particular, this chapter represents a marginal, yet significant, case study for that type of
estimation from relative measurements applied to highly-symmetric distributed networks,
e.g. a planar camera network for surveillance (see ex. 2.1.9) or scene reconstruction in
which each node shares the same field-of-view and sensing capabilities. Nonetheless, this
activity is undoubtedly the most prone to exhibit a theoretical approach to things, rather
than showing MASs applications. For this reason, no problem statement is present.
To conclude this heading, Fig. 6.1 depicts the main aspects arising in this work –

mainly related to Graph Theory and thus Combinatorial Graph Theory – to provide
new results that might be exploited in Combinatorial Optimization and, more generally,
Optimization Theory. Leveraging the graph-theoretic tools, the main objectives for this
study are represented by the analysis of the spectral distribution of the eigenvalues of
the Laplacian matrix induced by a specific class of graphs, named κ-ring graphs.

OT

CGT

NO4MAS

CO

DS&COC
TO

DO
DE
DCS

INVESTIGATION OBJECTIVES

I Network analysis

I Detailed spectral
characterization of a class of
graphs

Figure 6.1. Theoretical fields and investigation objectives arising from this study.

6.1.1 Related works

Many spectral quantities related to graphs have been object of research over the years.
The Fiedler value Fiedler (1973) has been widely investigated since 1969 with the work
on the Cheeger’s bound Cheeger (1969) and, in 1973, it was established that this quantity
reflects how well-connected a graph is, delineating the gist of algebraic connectivity Li,
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6.1 Overview

Guo, and Shiu (2013). Of the same relevance are the notions of spectral radius and
spread Fan, Xu, Wang, and Liang (2008) for the Laplacian matrix. Afterwards, the graph
spectral analysis was extensively exploited to compare performances for decentralized
procedures as average consensus Lovisari and Zampieri (2012) and, more generally, is an
efficient theoretical tool utilized in the vast field of Multi-Agent Systems Franceschelli,
Gasparri, Giua, and Seatzu (2013).
Lastly, it is worth to recall that, in the last three decades, disparate researches on the
eigenvalues of the Laplacian matrix have directed their focus on the bounds of the Fiedler
value and other spectral quantities linked to the Randić matrix Banerjee and Mehatari
(2016); Berman and Zhang (2000); Juvan and Mohar (1993); Kim and Mesbahi (2005);
Rad, Jalili, and Hasler (2011); Rojo (2007); Shu, Hong, and Wen-Ren (2002); Sorgun
(2013).

6.1.2 Contribution and outline of the chapter

As already disclosed, this chapter’s contribution rests upon an exhaustive examination
that aims at the spectral characterization of the graph Laplacian matrix induced by a
certain class of topologies described by means of circulant adjacency matrices. Circulant
matrices are very relevant in various research areas. Generally, they are employed to
model networks of agents that share the same “local panorama” and are utilized – not
only in the field of MASs – to model challenging problems and concepts: intelligent
surveillance of public spaces Liu, Liu, Muhammad, Sangaiah, and Doctor (2018), tracking-
by-detection Henriques, Caseiro, Martins, and Batista (2012), identification of sparse
reciprocal graphical models Alpago, Zorzi, and Ferrante (2018), definition of shift in
Graph Signal Processing Ortega, Frossard, Kovacević, Moura, and Vandergheynst (2018),
modeling of quantum walks Seveso, Benedetti, and Paris (2019), video circulant sampling
schemes Shu and Ahuja (2011), compressive 3D sensing techniques Antholzer, Wolf,
Sandbichler, Dielacher, and Haltmeier (2019) and sensor network monitoring algorithms
Gastpar and Vetterli (2005) represent few state-of-the-art topics that motivate the
research in this work.
More specifically, several dependencies and relationships between the eigenvalues of this
kind of Laplacian matrices under analysis and the Dirichlet kernel have been discovered:
a special effort is directed toward the characterization of algebraic connectivity, spectral
radius and essential spectral radius of the graph Laplacian. The implications of this fact
are then leveraged to investigate the essential spectral radius (ESR) of the Laplacian
matrix related to this class of graphs.

The remainder of the chapter is organized as follows: in Sec. 6.2, some mathematical
preliminaries offer an overview on the circulant topologies and the definition of κ-ring
graph is established. The main results of this work is then presented in Sec. 6.3,
where spectral properties of κ-ring graphs are widely explored and characterized. The
dissertation continues with the discussion in Sec. 6.4, in which a conjecture is proposed.
Finally, conclusions in Sec. 6.5 summarize all the debated issues.
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6 On the Spectral Properties of κ-ring Graphs

6.2 Mathematical preliminaries

This dissertation begins by illustrating some preliminaries about circulant matrices and
circulant graphs, showing consolidated algebraic relations between them. Then, this
section carries on with the introduction of a particular class of circulant graphs, object
of this study.

6.2.1 Circulant matrices and circulant graphs

A circulant matrix is a specific Toeplitz matrix1 where each row is shifted one entry to
the right relative to the previous row vector. In formulas, given the n-dimensional vector
ω :=

[
ω0 · · · ωn−1

]>
∈ Rn, the definition of a circulant matrix F ∈ Rn×n rests upon

the relation right below:

[F]i+1,j+1 = ω(j−i) mod n for i, j = 0, . . . , n− 1; (6.1)

hence, indicating with circ(·) the so-called gallery or shift operator, matrix F can be
defined as follows:

F = circ(ω) :=



ω0 ω1 · · · ωn−2 ωn−1
ωn−1 ω0 · · · ωn−3 ωn−2
... . . . · · · . . . ...
ω2 ω3 · · · ω0 ω1
ω1 ω2 · · · ωn−1 ω0


. (6.2)

Let us denote with Λ(·) the spectral operator that maps a matrix into the correspondent
set of eigenvalues. The spectrum Λ(F) of a circulant matrix F is well-known in literature
Gray (2005) and its (unsorted) elements λF(j) ∈ Λ(F) are provided by

λF(j) =
n−1∑
k=0

[
ωk exp

(
−2kπi

n
j

)]
for j = 0, . . . , n− 1. (6.3)

where exp(·) indicates the exponential function.
Few basic notions of Graph Theory (see also Sec. B.3) are briefly recalled in the following

lines. Let G = (V, E) be a graph composed by the set of vertices V = {v1, . . . , vn} and
the set of edges E ⊆ V × V . An edge eij belongs to V if and only if the couple of vertices
(vi, vj) is connected by a link. By assumption, G is undirected, meaning that an edge
eij can be equivalently indicated by eji, and self-loops are not allowed, namely eii /∈ E
for any i. Furthermore, by hypothesis, G is simple, i.e. there exists at most one edge
eij connecting a couple (vi, vj), and its adjacency matrix is denoted by A ∈ {0, 1}n×n,
such that [A]ij = [A]ji = 1, if eij ∈ E , and [A]ij = [A]ji = 0, otherwise. For each
vertex vi ∈ V, the neighborhood Ni = {vj |eij ∈ E} is determined by the set of edges
that possess vi as end node and its cardinality contributes to the definition of the degree

1i.e. a matrix Ω ∈ RN×N with constant diagonal entries, such that [Ω]ij = [Ω]i−1,j−1 mod N , where
mod indicates the modulus operation.
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6.2 Mathematical preliminaries

deg(vi) = |Ni| =
∑n
j=1[A]ij ≥ 0 of the vertex vi. The latter quantities account for

the notion of degree matrix D ∈ Rn×n≥0 , which presents the following characterization:
[D]ii = deg(vi); [D]ij = 0 holding for all i 6= j. Moreover, G is said regular if and only
if deg(vi) = deg(vj) =: d for all i 6= j. All the previous definitions are fundamental
to recall the concepts Chung (1997) of graph Laplacian L = D − A and normalized
graph Laplacian2 L = D−1/2LD−1/2 = In −RRR , where In denotes the identity matrix of
dimension n and RRR = D−1/2AD−1/2 represents the canonical Randić matrix Gutman,
Furtula, and Bozkurt (2014) associated to graph G.

Now, chosen the vector ω in {0, 1}n, with its first component [ω]1 = ω0 = 0, a circulant
graph of n nodes is a regular undirected simple graph G := Cn(ω) that can be identified
with an adjacency matrix of the form A = circ(ω). Denoting with d the common degree
among the vertices of G and imposing ω := d−1ω, the generic matrix F defined in (6.2)
assumes the structure of a Randić matrix:

F := D−1A = d−1A = d−1/2Ad−1/2 = D−1/2AD−1/2 = RRR . (6.4)

Since in this setting it holds that

L = dL = d(In −RRR ), (6.5)

equality (6.4) allows to establish a direct relationship between the spectral properties of
matrix F to those of the graph Laplacian L. Indeed, as already shown in Fact 5.3.2, it is
possible to leverage the fact that relation

λF(j) = λRRR (j) = 1− λL(j) for j = 0, . . . , n− 1 (6.6)

holds for a generic undirected graph G without isolated nodes to study the spectral
properties of F via the normalized graph Laplacian L and vice versa.

6.2.2 A class of circulant graphs: κ-ring graphs

At the light of all the previous observations, a particular class of circulant graphs is taken
into analysis hereafter, with the specific purpose of investigating its spectral properties.
The elements belonging to the topology in question will be classified as κ-ring graphs
Cn(1, κ), where the constant κ ∈ N>0 represents the maximum length of the path that
leads from one of the n nodes vi to one of its neighbors vj , neglecting the presence of all
the other nodes that are not members of Ni. In other words, for3 κ = 1, . . . , bn/2c − 1,
constant κ can be interpreted as the width of the identical panorama seen from each
vertex, as depicted in Fig. 6.2. In addition, to provide further details in this description,
it is worth to mention that κ-regular graphs are not only circulant but also connected,
Hamiltonian and Eulerian, since this kind of topology is constructed by means of multiple
edge layers beginning with the cycle of length n. Lastly, in Table 6.1, few standard
quantities related to κ-ring graphs are summarized.

2Well-defined if and only if G has no isolated vertices.
3Values κ = 0 and κ = bn/2c are purposely excluded since they lead to degenerate well-known topologies,
such as the void or complete graphs.
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6 On the Spectral Properties of κ-ring Graphs

#Vertices #Edges Diameter Radius Girth Regularity

|V| = n ≥ 4 |E| = nκ φ = dn/2κe r = φ g =
{
n, if κ = 1
3, otherwise

d = 2κ

Table 6.1. Basic topologic quantities of a κ-ring graph with n vertices.
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(a) C9(1, 1)
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(c) C9(1, 3)

Figure 6.2. All the three κ-ring graphs with n = 9 vertices. A layer of edges is added for each
increasing value of κ: (a) first layer in black, (b) second layer in green, (c) third
layer in red.

6.3 Spectral characterization of κ-ring graphs

In this section, the main results on the spectral properties of κ-ring graphs are given.
Firstly, a spectral analysis of the graph Laplacian matrix L via the Dirichlet kernel is
presented. The discussion yields a characterization of its spectrum Λ(L), with particular
attention directed towards the Fiedler value and its spectral radius. Then, the dissertation
continues with a study on the so-called essential spectral radius of matrix F.

6.3.1 Spectral analysis of the graph Laplacian matrix via the Dirichlet kernel

The analysis starts by showing the key insight to examine the spectral properties of
κ-ring graphs through the theoretical support of the Dirichlet kernel D\ : R → R of order
\ ∈ N, which can be defined according to Brunckner, Brunckner, and Thomson (1997) as

D\(x ) :=


sin((\+ 1/2)x )

2 sin(x /2) , if x 6= 2πl, ∀l ∈ Z;

\+ 1/2, otherwise.
(6.7)

A characterization for the eigenvalues of the graph Laplacian matrix L associated to the
κ-ring graphs in terms of D\ is given by the following

Theorem 6.3.1 (Spectral characterization of κ-ring graphs).
Let L be the graph Laplacian matrix associated to a κ-ring graph Cn(1, κ). Setting
θ := π/n, the eigenvalues λL(j) ∈ Λ(L) can be expressed in function of the Dirichlet

126



6.3 Spectral characterization of κ-ring graphs

kernel as

λL(j) = 1 + 2 (κ−Dκ(2θj)) , for j = 0, . . . , bn/2c; (6.8)
λL(n− j) = λL(j), for j = 1, . . . , bn/2c. (6.9)

Furthermore, each eigenvalue λL(j) belongs to [0, 4κ] for all j = 0, . . . , n− 1, eigenvalue
λL

0 := λL(0) = 0 is simple and, if there exists j? ∈ N such that λL(j?) = 4κ with
j? ∈ (0, n), then eigenvalue λL(j?) is simple.

Proof. Exploiting equality (6.3) and setting

[ω]i :=

d−1, if ei1 ∈ E ;
0, otherwise;

(6.10)

the eigenvalues of the Randić matrixRRR = F associated to graph Cn(1, κ) can be rewritten
as follows:

λRRR (j) = 1
d

d/2∑
k=1

[exp(−i2kθj)] + 1
d

n−1∑
k=n−d/2

[exp(−i2kθj)] (6.11)

= 1
d

d/2∑
k=1

[exp(−i2kθj)] + 1
d

d/2∑
k=1

[exp(i2kθj)] (6.12)

= 2
d

1
2

∑
|k|≤d/2

[exp(i2kθj)]− 1
2

 . (6.13)

Recalling that d = 2κ and applying Theorem 15.2 of Brunckner et al. (1997) to (6.13), it
follows that the eigenvalues of the Randić matrix RRR are yielded by

λRRR (j) = κ−1 (Dκ(2θj)− 1/2) . (6.14)

Therefore, leveraging (6.5) and (6.6), equality (6.8) is proven. Moreover, since the
Dirichlet kernel is a 2π-periodic even function, equality (6.9) is also verified.
Lastly, regarding the rest of the statement, authors in Landau and Odlyzko (1981)

have already shown that matrix RRR possesses eigenvalues belonging to the interval [−1, 1],
where λRRR (0) = 1 and, possibly, λRRR (j?) = −1 are both associated to a single eigenvector.
Hence, the thesis follows resorting again to identity (6.6).

The result provided by Theorem 6.3.1 contributes to equalities (6.8)-(6.9), yielding
an interesting interconnection between the Dirichlet kernel and the eigenvalues of the
graph Laplacian matrix L. Denoting with 0 = λL

0 < λL
1 ≤ · · · ≤ λL

n−1 the eigenvalues
of Λ(L), the analysis proceeds by focusing on the extremal (maximum and minimum)
eigenvalues belonging to the restricted spectrum Λ0(L) := Λ(L) \

{
λL

0
}
⊆ (0, 4κ] of L. In

the following lines, Corollary 6.3.2 and Corollary 6.3.3 investigate some properties related
to the Fiedler value λL

1 and the spectral radius λL
n−1 of graph Laplacian L respectively.

More details on the computation of λL
n−1 are given in Sec. A.2.

Corollary 6.3.2 (Expression for the Fiedler value of κ-ring graphs).
The smallest positive eigenvalue λL

1 of the graph Laplacian L associated to the κ-ring
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6 On the Spectral Properties of κ-ring Graphs

graph Cn(1, κ) is computed through indexes j = 1 and j = n− 1, i.e.

λL
1 = λL(1) = λL(n− 1) ∈ (0, 2κ). (6.15)

Proof. Let us restrict w.l.o.g. the analysis to j = 1, . . . , bn/2c by exploiting the symmetry
shown in (6.9). Firstly, it is worth to note that λRRR (1) is strictly positive, in general.
Indeed, since θ = π/n ∈ (0, π/4], the relation

κ−1(Dκ(2θj)− 1/2) > 0⇔ sin(θ(d + 1)) > sin(θ)⇔ 0 < d < n− 1 (6.16)

holds true for any given (n, κ). Therefore, λRRR (1) actually belongs to the interval
(0, 1) ⊂ [−1, 1) and, consequently, λL(1) ∈ (0, 2κ) ⊆ (0, 4κ], by (6.6).

In order to prove that λL(1) < λL(j) for j = 2, . . . , bn/2c, that is λRRR (1) > λRRR (j) for
j = 2, . . . , bn/2c, one has to show that inequalities

Dκ(2θ) > Dκ(2θj)⇔ sin(θ(d + 1))
sin(θ) >

sin(θ(d + 1)j)
sin(θj) (6.17)

hold for all the values of j in question. Considering the second inequality in (6.17),
formula 4.3.89 of Abramowitz and Stegun (1972) allows to expand the sine function as
an infinite sequence of products. Thus, it is possible to obtain

+∞∏
k=1

n2k2 − (d + 1)2

n2k2 − 1 >
+∞∏
k=1

n2k2 − (d + 1)2j2

n2k2 − j2 . (6.18)

Now, to satisfy relation in (6.18), it is sufficient to prove that:
(i) each term of the product on the l.h.s. is strictly positive for all k ∈ N;
(ii) each term of the product on the l.h.s. is strictly greater than the correspondent term
on the r.h.s. for all k ∈ N.
Property (i) is verified, since this requirement boils down to the identity d < nκ− 1 for
all k ∈ N; while, property (ii) is also satisfied as this leads to the identity d > 0 for all
k ∈ N. Hence, relation (6.15) is proven.

Corollary 6.3.3 (Spectral radius properties of κ-ring graphs).
For the largest eigenvalue λL

n−1 of the graph Laplacian L associated to the κ-ring graph
Cn(1, κ) one has

(i) λL
n−1 ∈ [1 + 2κ, 4κ], with the equality for the upper bound holding if and only if n is

even and κ = 1;

(ii) λL
n−1 = λL(j?) = λL(n− j?), where j? ∈ N belongs to [j, j] ⊂ N with

j = 1 + bn/(2κ+ 1)c, j = d(3n/(2κ+ 1)− 1)/2e; (6.19)

(iii) λL
n−1 = λL(bn/2c) = λL(dn/2e) if and only if κ = 1;

(iv) λL
n−1 = λL(2) = λL(n− 2) if κ ≥ κn with κn := 3n/10− 1/2.

Proof. Let us restrict w.l.o.g. the analysis to j = 1, . . . , bn/2c by exploiting the symmetry
shown in (6.9).
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(i) According to (6.5), let λL
n−1 := λL

n−1/(2κ) be the spectral radius of the normalized
graph Laplacian L. Since a connected graph is characterized by λL

n−1 = 2 if and only if
it is bipartite (Lem. 1.7 of Chung (1997)), then equality λL

n−1 = 4κ holds if and only if
the corresponding κ-ring graph Cn(1, κ) is an even cycle. Then, thanks to relation (1) of
Liu and Lu (2010), bounds for λL

n−1 are proven.

(ii) By relation (6.6), the spectral radius λL
n−1 can be found minimizing the j-th

eigenvalue λRRR (j) of the Randić matrix RRR . Firstly, exploiting the fact that relation
λRRRn−1 = (1− λL

n−1) ∈ [−1,−1/(2κ)] holds true by (6.6) applied on property (i), condition
−κ + 1/2 ≤ Dκ(2θj) ≤ 0 must be valid. So, Dκ(2θj) < 0 can be imposed to compute
lower bound j in (6.19) and checking afterwords that j ≤ bn/2c leads to identity
n ≥ (4κ+ 2)/(2κ− 1) ≥ 2. Moreover, it is ensured that

0 ≤ j < j ⇒ Dκ(2θj) < 0, Dκ(2θj) ≤ Dκ(2θj). (6.20)

Secondly, upper bound j is determined considering that the denominator 2 sin(θj) of
Dκ(2θj) is strictly positive for j = 1, . . . , bn/2c, and thus resorting to the following
relaxed minimization problem:

arg min
j=2,...,bn/2c

|(2κ+ 1)θj − (3π/2 + 2πl)| , l ∈ Z

s.t.: j ∈ N. (6.21)

Problem (6.21) is formulated observing that (3π/2 + 2πl) is the argument that minimizes
the numerator sin((2κ + 1)θj) of Dκ(2θj) and is solved by imposing l = 0, since term
2 sin(θj) is strictly increasing in j, for j = 1, . . . , bn/2c. From this approach, j in (6.19)
is rounded so that both the increasing behavior of the denominator of Dκ(2θj) and
constraint in (6.21) are taken into account. In addition, noting that j < 2n/(2κ + 1)
yields the identity d < n− 1, the choice l = 0 is justified and it is guaranteed that

j < j ≤ bn/2c ⇒ Dκ(2θj) < 0, Dκ(2θj) ≤ Dκ(2θj). (6.22)

Lastly, equivalence j ≤ j is satisfied, since j > 1, 0 < (2κ+ 1)θ ≤ π and, by construction,
it holds that π < (2κ+ 1)θj ≤ (2κ+ 1)θj < 2π because j is the first index j ∈ [2, bn/2c]
that entails sin((2κ+ 1)θj) < 0.

(iii) Setting κ = 1, equality λL(j) = 4 sin2(θj) follows by resorting to the basic
trigonometric formulas. Hence, for κ = 1, λL(j) is maximized selecting j? = bn/2c.
Furthermore, κ = 1 is the unique value that does not satisfy relation j < bn/2c and,
on the other hand, j < bn/2c holds true for all κ > 1, since it leads to identities
n > (2κ+ 1)/(2(κ− 1)) > 1 and n > (κ+ 1)/(κ− 1) > 1 for even and odd values of n
respectively.

(iv) Equality λL
n−1 = λL(2) holds if j? = j = 2, i.e. if (3n/(2κ+ 1)− 1)/2 ≤ 2. This

condition is, in fact, equivalent to require that κ ≥ 3n/10− 1/2.
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6.3.2 Essential spectral radius analysis

Since matrix F := D−1A is row-stochastic with eigenvalues4 λF
j = λRRRj = (1− λL

j /(2κ)),
it is possible to define its essential spectral radius (see Sec. B.2) as

esr(F) = λF := max
λ∈Λ(F)\{λF

0 }
|λ| . (6.23)

This quantity is crucial to establish convergence performances in several frameworks, e.g.
for graph-based distributed iterative algorithms (as illustrated in Chap. 5) or random
walk processes Andrade, de Freitas, Robbiano, and Rodríguez (2018); Chung and Zhao
(2010). Generally, relation (6.6) implies that λF = λRRR ; hence, a further study on (6.23)
can be provided starting from the preliminary

Lemma 6.3.4.
Let RRR be the Randić matrix of a κ-ring graph Cn(1, κ) and θ := π/n ∈ (0, π/4]. There
exists a real number κθ ∈ (0, n/2) such that if κ ≥ κθ then λRRR (1) + λRRR (2) ≤ 0, with the
equality holding if and only if κ = κθ. Moreover, letting c2θ := cos(2θ), the value of κθ is
yielded by

κθ = θ−1 arcsin (√x θ) , (6.24)

where x θ is the unique solution belonging to (0, 1) of the polynomial equation

pθ(x ) := x 3 + aθ,2x 2 + aθ,1x + aθ,0 = 0, (6.25)

with aθ,2 = −(c2θ + 5)/2, aθ,1 = (4c2
2θ + 7c2θ + 13)/8, aθ,0 = −(3c2θ + 1)2/16.

Proof. From (6.14), the eigenvalues of the Randić matrix RRR can be rewritten using the
prosthaphaeresis formula for the difference of two sines as

λRRR (j) = sin(κθj) cos((κ+ 1)θj)
κ sin(θj) . (6.26)

Thus, indicating with sx and cx the sine and cosine functions respectively, inequality
λRRR (1) + λRRR (2) ≤ 0 can be rephrased as follows by means of the triple angle identities
c3x = 4c3x − 3cx , s3x = 3sx − 4s3x , the Werner’s formula for the product of two cosines
and the basic trigonometric rules:

(1− c2
2θ)(5− 4s2

κθ)2s2
κθ ≥ (1− s2

κθ)(4c2θ(1− s2
κθ) + 1− c2θ)2. (6.27)

Now, assigning x θ := s2
κθθ
∈ (0, 1), inequality (6.27) can be solved in κ resorting to

equation (6.25) and determining the solutions of pθ(x ) ≥ 0. The application of the
Routh-Hurwitz criterion to pθ(x ), as illustrated in Table 6.2, ensures that x θ has a
strictly positive real part for any value of θ, since each pair of subsequent terms in the
second column exhibits an alternating sign. Analogously, in order to show that x θ has
real part smaller than 1 for all θ, the Routh-Hurwitz criterion can be also applied to
−pθ(y ), obtained imposing y := 1− x . This leads to the analysis of Table 6.3: the fact

4Sorted in a descending order as j = 0, · · · , n− 1, i.e. λF
n−1 ≤, . . . ,≤ λF

1 < λF
0 = 1.
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x 3 1 (4c2
2θ + 7c2θ + 13)/8

x 2 −(c2θ + 5)/2 −(3c2θ + 1)2/16
x 1 (2c3

2θ + 9c2
2θ + 21c2θ + 32)/(4(c2θ + 5)) 0

x 0 −(3c2θ + 1)2/16 0

Table 6.2. Routh array for polynomial pθ(x ).

that each pair of subsequent terms in the second column exhibits an alternating sign
finally ensures that x θ ∈ (0, 1), provided that x θ ∈ R.

y 3 1 (4c2
2θ − c2θ − 3)/8

y 2 −(1− c2θ)/2 −(1− c2
2θ)/16

y 1 (2c2
2θ − c2θ − 2)/4 0

y 0 −(1− c2
2θ)/16 0

Table 6.3. Routh array for polynomial −pθ(y ).

According to method 3.8.2 of Abramowitz and Stegun (1972), equation (6.25) can be
solved by setting

qθ := aθ,1/3− a2
θ,2/9, rθ := (aθ,1aθ,2 − 3aθ,0)/6− a3

θ,2/27, (6.28)

through the computation and observation of the discriminant

∆θ := q3
θ + r2

θ = 7 (1− c2θ)
(
1− c2

2θ
)

(c2θ + 13/14)
1728

(
c2θ −

1
2

)2
≥ 0. (6.29)

Expression in (6.29) is strictly positive if and only if the second quadratic factor is grater
than zero: this occurs for values of c2θ 6= 1/2, i.e. for n 6= 6. In this case, the presence of
only one real solution is guaranteed and it is yielded by

x θ = −aθ,23 + 3
√
rθ +

√
∆θ + 3

√
rθ −

√
∆θ. (6.30)

Otherwise, for n = 6, the discriminant ∆θ vanishes and the solutions for (6.25) are given
by {1/4, 5/4, 5/4}, meaning that x π/6 = 1/4 ∈ (0, 1).

Lastly, the result on the ESR of F for κ-ring graphs is stated as follows:

Theorem 6.3.5 (ESR of κ-ring graphs: equality properties).
For the ESR λRRR of the Randić matrix RRR associated to the κ-ring graph Cn(1, κ) one has

(i) λRRR = 1 if and only if n is even and κ = 1;

(ii) λRRR =
∣∣∣λRRR (j′)

∣∣∣ =
∣∣∣λRRR (n− j′)

∣∣∣, where j′ ∈ N belongs to {1} ∪ [j, j] ⊂ N with (j, j)
yielded by (6.19);

(iii) λRRR = −λRRR (bn/2c) = −λRRR (dn/2e) if and only if κ = 1;

(iv) λRRR = −λRRR (2) = −λRRR (n− 2) if κ ≥ max {κn, κθ}.

Proof. Let us restrict w.l.o.g. the analysis to j = 1, . . . , bn/2c by exploiting the symmetry
shown in (6.9).
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(i) Cor. 6.3.2 and relations (6.5)-(6.6) imply that λRRR ∈ (0, 1); thus, λRRR = 1 if and
only if λRRRn−1 = −1. Exploiting Cor. 6.3.3, the equality is proven.
(ii) The interval in which j′ lays is directly provided by Corollaries 6.3.2-6.3.3.
(iii) The fact that λRRR = −λRRR (bn/2c) if and only if κ = 1 derives from Cor. 6.3.3 and

equality (6.26), which leads to −λRRR (bn/2c) > λRRR (1) for κ = 1.
(iv) The fact that λRRR = −λRRR (2) = −λRRR (n− 2) if κ ≥ max {κn, κθ} is a consequence

of Lem. 6.3.4 and Cor. 6.3.3.

6.4 Discussion

In this section, the results on the spectral properties of κ-ring graphs presented so far
are depicted through numerical examples that illustrate spectral distributions in function
of the number of vertices n, parameter κ and index j. In addition, a final conjecture on
the ESR of the Randić matrix is proposed to conclude the discussion.

6.4.1 Spectral properties of κ-ring graphs

Examples in Fig. 6.3 grant to cover some of the most important aspects of this research,
depicting a representation of the spectrum of the Randić matrix Λ(RRR ) = Λ(F). Specifi-
cally, each diagram in Fig. 6.3 shows how the eigenvalues λF(j) = λRRR (j) of F are located
within interval [−1, 1], as parameter κ changes for a fixed n. Plots 6.3(a)-6.3(h) also
illustrate indexes j = 0, . . . , bn/2c of relation (6.14) in blue, thresholds (κn, κθ) with a
green and a yellow line respectively, and the eigenvalue λF

! := λF(j′) that maximizes
relation (6.23) with a red dot. One can observe the following global facts descending
from all the previous statements presented in Sec. 6.3:

• λF(j) ∈ [−1, 1] for all j = 0, . . . , bn/2c, with −1 and 1 simple eigenvalues;

• λF(1) > λF(j) for all j = 2, . . . , bn/2c;

• for κ = 1, λF
! = λF

n−1 = λF(bn/2c) and λF
n−1 = −1 if n is even;

• λF
n−1 = λF(2) if κ ≥ κn and λF

! = λF(2) if κ ≥ max {κn, κθ}.

Some peculiarities and patterns can be found for:

• n = 5, where κn = 1 tightly verifies property (iv) in Corollary 6.3.3;

• n = 6, where κθ = 1, so that the information about κn becomes necessary to satisfy
property (iv) in Theorem 6.3.5;

• n = 10, where it holds that λF =
√

5/4 = −λF(3) = λF(1) for κ = 2 and
κθ ' 2.5330 is not smaller than κn = 2.5 as, conversely, it does in all the previous
cases.

To sum up, each debated example gravitates, to some extent, around the key relation in
(6.14), describing the spectrum Λ(RRR ) of the Randić matrix: this investigation completely
leverages the central idea of studying the spectral properties of κ-regular graphs via the
Dirichlet kernel definition given in (6.7).
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(a) n = 4 (b) n = 5

(c) n = 6 (d) n = 7

(e) n = 8 (f) n = 9

(g) n = 10 (h) n = 11

Figure 6.3. General eigenvalue distribution of the Randić matrix spectrum Λ(RRR ) = Λ(F) for
the κ-ring graphs Cn(1, κ) with n = 4, . . . , 11, κ = 1, . . . , bn/2c − 1.
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6.4.2 Conjecture on the Randić matrix spectrum for κ-ring graphs

All numerical results provided to support the previous discussion suggest few clues about
one relevant issue for this research. A richer description for the behavior of index j′

allows to achieve a deeper understanding of the ESR λF = λRRR . An insight on this
quantity might be useful to prove novel results of a wider scope in graph theory and its
applications, e.g. convergence rate of distributed algorithms and random walk processes.
So, observing the fact that graph C9(1, 2) in Fig. 6.3(f) is the unique example leading
to λF = 1/2 = −λF(3) > λF(1) ' 0.4698, graph C10(1, 2) in Fig. 6.3(g) is the unique
example leading to λF =

√
5/4 = −λF(3) = λF(1), in each diagrams of Fig. 6.3 it holds

that λF = −λF(bn/2c) if κ = 1 and λF = −λF(2) if κ > max {κn, κθ}, the following
conjecture is drawn after having run many other analogous simulations5:

Conjecture 6.4.1 (Characterization of the essential spectral radius index).
The ESR λF for a κ-ring graph Cn(1, κ) is equal to

∣∣λF(j′)
∣∣ where

j′ =



bn/2c, if κ = 1;
3, if n = 9 and κ = 2;
2, if κ > κθ;
1, otherwise.

(6.31)

6.5 Chapter summary

In this chapter, a class of circulant graphs, defined as κ-ring graphs, is presented
highlighting the relationship between the spectrum of their characteristic matrices and
the Dirichlet kernel. Several properties related to the eigenvalues are described extensively,
with a particular focus on the Fiedler value, the spectral radius of the Laplacian and the
essential spectral radius of the Randić matrix associated to these graphs. Part of the
proven results is also discussed in details with auxiliary diagrams depicting the related
spectral distributions. Along the dissertation, a conjecture on the computation of the
debated essential spectral radius has emerged and its analysis is envisaged.

5Performed as n goes to infinity, until n = 5000, for every value of κ.
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“Everything that has a beginning has an end.”
Oracle
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7.1 Concluding remarks

This thesis introduces the role of mobile multi-agent systems and networked control
trends belonging to this age in Chap. 1. It continues proposing a wide-ranging overview
in Chap. 2, discussing general background, theoretical methodologies and common thread
for the topics of interest in this research field. Lastly, the single contributions of the
manuscript are represented by the core of the PhD activity, which can be summarized into
four research tasks and a comprehensive final discussion. These conclusive considerations
are reported in the following paragraphs.

7.1.1 First research task

Ideas in Chap. 3. dealing with Dynamic Coverage with Limited Sensing Capabilities
compose the first research task. In this work, it is presented the development of a novel
distributed algorithm performing robotic coverage, clustering and dispatch around an
event in static-obstacle structured environments without relying on metric information.
Specifically, the aim is to account for the trade-off between local communication given by
bearing visibility sensors installed on each agent involved, optimal deployment in closed
unknown scenarios and focus of a group of agents on one point of interest. The particular
targets of this study can be summarized as 1. the computation, under certain topological
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assumptions, of a lower bound for the number of required agents, which are provided by
a realistic geometric model (e.g. a round shape) to emphasize physical limitations; 2. the
minimization of the number of nodes and links maintaining a distributed approach over
a connected communication graph; 3. the identification of an activation cluster around
an event with a radial decreasing intensity, sensed by each agent; 4. the attempt to send
the agents belonging to the cluster towards the most intense point in the scenario by
minimizing a weighted isoperimetric functional.

7.1.2 Second research task

Studies in Chap. 4. coping with Optimal Time-Invariant Formation Tracking comprise
the second research task. This work addresses the Optimal Time-invariant Formation
Tracking (OIFT) control problem for second-order multi-agent systems. Most of the
results related to distributed Formation Tracking do not take into account energy
consumption aspects while designing control laws. In order to consider this important
criterion, a new contribution is provided by formalizing and proposing a solution of an
optimization problem that encapsulates trajectory tracking, distance-based formation
control and input energy minimization. To this end, it is shown how to compute the
inverse dynamics obtained with the Projector Operator based Newton’s method for
Trajectory Optimization (PRONTO), exploiting that as a general reference to devise
a novel online distributed control law to drive the agents. To stabilize the formation,
a specific choice of potential functions has been made. This work also gives a general
overview about the equilibria that the system can achieve with such approaches. Finally,
a numerical example involving a cubic formation following a straight path is simulated
to validate the proposed control strategies.

7.1.3 Third research task

Analyses in Chap. 5. regarding the Distributed State Estimation from Relative Mea-
surements constitute the third research task. This activity studies the multivariate
least-squares problem of estimation from relative measurements in an undirected con-
nected graph within the context of multi-agent systems, providing various distributed
iterative schemes based on consensus. These allow to establish a connection between
the convergence behavior of consensus algorithms toward the optimal estimate and the
theory of the stochastic matrices that describe the network system dynamics. The most
challenging aspect of this research resorts on the fact that agents are, by assumption,
only able to access and exchange local information among a given topology.
One contribution is represented by the effort spent to prove that estimates converge to
the correspondent centralized solution. Furthermore, to investigate the robustness and
the differences between the different approaches introduced, a topological study and a
sensitivity analysis are presented and followed by numerical simulations supporting the
theoretical results proven along the dissertation.
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7.1.4 Fourth research task

The fourth and last research task consists of the investigations On the Spectral Properties
of κ-ring Graphs carried out in Chap. 6.
The use of Laplacian and Randić matrices induced by circulant graphs is extensively
adopted in several fields, e.g. distributed scalable algorithms, and their eigenvalues
play a central role on the convergence analysis of the latter. In this work, a specific
class of circulant matrices, inducing the so-called κ-ring graphs, is considered and its
spectral properties are studied, providing a deep insight based on the Dirichlet kernel.
Further associated well-known fundamental quantities in Spectral Graph Theory as the
Fiedler value of the Laplacian and the essential spectral radius of the Randić matrix are
widely discussed along this research, with particular attention on their contextualization.
Numerical examples, restricted to a relevant subset of the topology under analysis,
illustrate the exactness of the proposed results, representing a remarkable starting point
for novel conjectures in this topic.

7.1.5 Discussion

In the recent years, the field of automation has witnessed a tendency to employ networked
control for groups of agents to fulfill complex tasks arising from robotic surveillance to
smart-grid production, from autonomous vehicle servicing to sensor network monitoring
and a variety of space-based applications. Such mobile systems are referred to as
multi-agent systems (MASs). In this thesis, the main research interest concerns how to
design the effective decentralized coordination among autonomous agents, by means of a
limited local sensing, to perform common tasks, aiming at reaching a high-quality overall
performances. This approach has had a transformative impact in several application
domains and, indeed, MASs possess well-known capabilities for autonomous and intelligent
operation based on planning, reactivity, learning, proactivity, mobility, adaptivity and
reasoning. Furthermore, such elements collaborate to seek a solution to problems that
are out of reach for the single entity.
What has led to this rapid progress in the last two decades is a combination of technological
advances in price, scale of the platforms themselves, computational performance and a
novel breakthrough of how the mobile robots should be arranged algorithmically. At
the light of these increasing trends of investigation, it is crucial to reinforce the latest
knowledge to keep up with the research demand. Pursuing this aim, the research activities
proposed in this manuscript broaden the existing boundaries in the following fields:
Optimization Theory (OT), Dynamic Systems and Control (DS&C), Combinatorial Graph
Theory (CGT), Optimal Control (OC), Trajectory Optimization (TO), Combinatorial
Optimization (CO), Distributed Optimization (DO), Distributed Control Systems (DCS)
and Distributed Estimation (DE). A summary of the contributions to each field of the
Ph.D. activity is contained in Table 7.1.

Addressing the main activities in Chapters 3, 4 and 5, a general control design guideline
has been followed, as illustrated in the conceptual scheme of Fig. 7.1.

137



7 Conclusions and future works

Research task OT DS&C CGT OC TO CO DO DCS DE

First, Chap. 3 X X X X X

Second, Chap. 4 X X X X X X X

Third, Chap. 5 X X X X X

Fourth, Chap. 6 X X X

Table 7.1. Disciplines covered (marked with X) for each research task in the manuscript.

Model description

Generation &
classification of

distributed
measurements

Tuning of
hyper-parametersDistributed optimal

control synthesis

Decision of
optimality

criteria

Appearence of
collective
behaviors

Experimental
verification

Specification
assignment +

(Adaptive frameworks)

(Presence of trade-offs)

Figure 7.1. Conceptual scheme for MAS design followed in the major Ph.D. activities. Arrows
indicate dependencies (head points depend on tail ones).

Specifically, given a multi-agent plant and certain specifications, the design starts provid-
ing a model description. Then, by means of the available measurements and information
exchange modality one should develop various kinds of distributed control strategies
(from the synthesis of control laws to the fine tuning of hyper-parameters), according
to the optimality criteria decided. The latter might be modified after the outcome of
experimental verification, e.g. numerical simulations or proofs, showing the collective
behaviors emerging from the MAS under analysis, since either too many solutions or
the lack of them may arise. The same procedure should be followed while assigning
specifications: this aspect, the model describing the network and the establishment
of optimality criteria, require, in general, delicate compromises in order to find a real
and suitable implementation. In particular, the lesson that can be learned from this
manuscript is that the design of multi-agent networks leads, inevitably, to the presence
of potentially multiple trade-offs. Few examples of this statement are given in the sequel.

• In Chap. 3, the number of available mobile agents is fundamental to comply the
task of robotic deployment and focus on an event: this aspect becomes problematic
whenever a large area has to be covered (especially when a dynamic coverage is
demanded). Moreover, the sensing capabilities of each device is crucial for the
coordination of such agents and the possibility for them to arrange easily into
optimal spacial configurations.

• Chap. 4 represents the clearest example of trade-off, in this thesis. Indeed, the aim
of Optimal Time-Invariant Formation Tracking is that of performing both (position
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& velocity) tracking and formation control while minimizing the energy spent by
the system of agents. In a generic scenario, these requirements exhibit the tendency
to play one against the other. Furthermore, the topology arising from the local
information exchange modality and the number of agents is, again, very relevant in
the accomplishment of this task, for any particular case scenario.

• In Chap. 5, many iterative procedures to attain the state estimation from a
collection of relative measurements are developed. It is worth to observe that the
performances of such schemes are inherently different from each other but also
highly related to the kind of network topology involved. This is, for instance, the
key to characterize the convergence rate with which the iterative schemes provide
their estimates. This feature has been deeply investigated in Chap. 6, where the
topology of κ-ring graphs1 is adopted.

7.2 Future developments

For the first research task, future works on complete dynamic coverage in a noisy
framework are envisaged, since uncovered regions could arise while agents are steered.
In the second research task, possible future directions might be represented by the
application of PRONTO to a real OIFT problem with a nonlinear dynamics or the
extension to a time-varying formation framework. Concerning the third research task,
future directions for this work essentially consist in extending the relative state estimation
capabilities over sensor networks in which information is not mutually exchanged among
nodes, i.e. developing a novel version for the algorithms in question leveraging digraphs.
Regarding the fourth research task, future works might be represented by the study of
isoperimetric problems related to κ-ring graphs, e.g. the Cheeger’s inequality, as well as
on the possibility to discover further algebraic interconnections between other topologies
and the Dirichlet kernel.
To conclude, the comprehensive future directions can be summarized as the development
of novel theoretical methods and applications aiming at

• the extension of the proposed activities to frameworks where the information
exchange may be unidirectional or where the network structure may change over
the time;

• the research of new strategies to reduce as far as possible the energy spent by the
systems in the control process to lower production costs, maintenance, environmental
impact and increase the life of the driven plant;

• the study of algebraic conditions that guarantee a distributed optimization over
multi-agent networks consisting of mobile robots from the performance viewpoint;

• the robustness analysis of such methods and the possibility to ensure correct working
conditions by the autonomous system involved, even in situations where uncertainty
becomes extremely relevant.

1Which are described by two quantities only: the number of nudes in the network and the number of
links to exchange information for each connected element.
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“‘Why’ is the only real source of power, without it you are powerless.”
Merovingian

A.1 A short overview on PRONTO

This section provides a short overview on the various efforts in vehicle trajectory explo-
ration and motion planning based on PRONTO and reviews few of its basics. Further
details can be also found in Aguiar et al. (2017).

A.1.1 Introduction: PRONTO-based optimal motion planning

The development of efficient tools to compute optimal trajectories for autonomous
vehicles has been receiving growing attention for robotic applications. These tools allow
the designer to study and analyze – that is, explore – the dynamic performance of
autonomous vehicles and, at the same time, give useful insight on how to improve vehicle
performance. They are also vital in developing motion planning algorithms for single and
multiple vehicles acting in cooperation, specifically when both detailed vehicle models
and complex geometric constraints have to be taken into consideration. Motion Planning
is a core robotics technology that, together with other actuation, control and perception
technologies enables robot autonomy.
This section provides a quick overview about motion planning and vehicle trajectory

exploration based on PRONTO, an indirect numerical method for solving optimal control
problems. The name PRONTO stands for PRojection Operator based Newton’s method
for Trajectory Optimization. The method is also known, for short, as the projection
operator approach. Interesting applications that have been tackled with this method
include, e.g., cooperative motion planning of autonomous underwater vehicles (AUVs)
for environmental surveying and computing minimum-time trajectories for a race car,
exploiting the energy from the surrounding environment for long endurance missions of
UAVs.
In its basic formulation, a motion planner is a theoretical method to generate a

trajectory to connect a given initial state of a robotic system to a desired final state.
Robot state means the position of the robotic system and, possibly, the orientation
(of each vehicle) relative to a reference coordinate system. Depending on the specific
application and problem at hand and the level of complexity of the mathematical model
employed to describe the robotic system, other quantities such as angular and linear
velocities can belong to the system state. Other factors that play a role and increase
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complexity are the presence of obstacles in the environment and the typical need to avoid
contact with these obstacles as well as inter-vehicle collisions in a multi-vehicle situation.

Every constrained optimal motion problem starts from a careful selection of the vehicle
model(s), cost criteria (e.g., energy consumption and maneuvering time) to arrive at a
well formulated optimal control problem and constraints (e.g., actuator saturation and
collision avoidance). The problem formulation requires some experience in order to avoid
defining a problem with too many solutions or with no solution so as to allow numerical
resolution using the selected optimization method.
PRONTO has the unusual peculiarity of working directly in continuous-time, con-

structing a sequence of trajectories with descending cost. More commonly, numerical
optimal control is to discretize the system dynamics, constraints, and cost functional
giving a constrained nonlinear optimization problem that is subsequently solved by using
off-the-shelf constrained nonlinear solvers, specialized to manage the sparsity of the
constraints resulting in the discretization of the continuous-time dynamics. PRONTO
skips this transcription phase, employing instead an infinite-dimensional Newton method
(see also Subsec. 2.2.4) fulfilling second-order convergence.

A.1.2 More basics and geometric interpretation on PRONTO

Some basics and geometric interpretation of PRONTO have already been introduced in
Subsec. 4.3.1. In this paragraph, further details about this numerical tool are provided.
Starting from (4.16)-(4.17), it is easy to see that ξ is a trajectory, ξ ∈ T , if and only

if ξ is a fixed point of P, ξ = P(ξ). Since P(ξ) ∈ T for all ξ in the domain of P, it
holds that P = P(P(ξ)), briefly P = P2, so that P is a (nonlinear) projection operator.
Considering the Fréchet derivative of P and the approximation in (4.21), one observes
that DP is the (continuous) linear projector operator (4.20) in which the dynamics of z
and v is regulated by the following equations

ż = Ā(η(τ))z + B̄(η(τ))v, z(0) = 0N ; (A.1)
v = ν(τ) + K(τ)[β(τ)− z]; (A.2)

representing the linearization for (x,u) at the point ξ. The system matrices Ā(η(τ)) =
fx(x(τ),u(τ)) and B̄(η(τ)) = fu(x(τ),u(τ)) are evaluated on the trajectory η = P(ξ).
The set of bounded linearized trajectories at a given (nonlinear) trajectory ξ ∈ T forms
the tangent space to the manifold, denoted TξT . It is remarkable that, as in the nonlinear
case, tangent trajectories at ξ ∈ P are fixed points: ζ ∈ TξT ⇔ ζ = DP(ξ) · ζ. The
projection operator P provides a local representation of the trajectory manifold: given a
trajectory ξ ∈ T , every nearby trajectory η ∈ T is of the form η = P(ξ+ ζ) for a unique
tangent trajectory ζ ∈ TξT . That is, using P, tangent trajectories can be used as local
coordinates for the trajectory manifold. It is worth to note that the projection operator
depends on the choice of the time-dependent feedback gain K(·), which is typically chosen
to provide local stability of the closed-loop system about a given trajectory. For instance,
if ξ ∈ T and ż = [Ā(ξ(τ))− B̄(ξ(τ))K(τ)]z is exponentially stable then the domain of
the operator P will include a nice L∞ neighborhood of ξ.
At the light of these observations, Alg. 7 can be illustrated as in Fig. A.1.
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Constrained Optimal Motion Planning … 211

ξi

Tξi

(a) trajectory manifold

ξi

Tξi

γζi

P

(c) line search

ξi

Tξi

ζi

(b) search direction

ξi

Tξi

γiζi

ξi+1

(d) update

Fig. 1 The Projection Operator approach: at each iteration, a the linearization of the control system
about the trajectory ξi defines the tangent space to the trajectory manifold T at ξi ; b minimization
over the tangent space of a second-order approximation of the extended cost functional g = h ◦ P
yields a search direction ζi ; c a step size is computed via a line search along ζi with P bending
that line onto the trajectory manifold T ; d the search direction ζi and step size γi are combined
and projected to obtain the updated trajectory ξi+1

are essentially equivalent in the sense that a solution to the first constrained prob-
lem is a solution to the second unconstrained problem, while a solution to the sec-
ond problem is, projected by P , a solution to the first problem. Working with the
cost functional g(ξ) := h(P(ξ)) in an essentially unconstrained manner, one may
develop effective descent methods for trajectory optimization. For instance, a Newton
descent step at ξ ∈ T may be obtained by minimizing the quadratic model func-
tional Dg(ξ) · ζ + 1

2 D
2g(ξ) · (ζ, ζ ) ≈ g(ξ + ζ ) − g(ξ) over the linear subspace of

tangent trajectories ζ ∈ TξT . In fact, one may derive many properties, including first-
and second-order optimality conditions, of the constrained optimal control problem
though an unconstrained analysis of the functional g.

From an abstract point of view, PRONTO looks pretty much like a standard line
search method for unconstrained optimization. The slight differences involved in
searching along the tangent space and projecting back onto the trajectory manifold
in order to generate a descending sequence of trajectories are nicely illustrated by
the conceptual diagrams in Fig. 1.

Algorithm (Projection operator Newton method [11])
given initial trajectory ξ0 ∈ T
for i = 0, 1, 2, . . .

Redesign feedback K (·) forP, if desired/needed

ζi = arg min
ζ∈TξiT

Dh(ξi ) · ζ + 1
2 D2g(ξi ) · (ζ, ζ ) (search direction) (3)

γi = arg min
γ∈(0,1]

g(ξi + γ ζi ) (step size) (4)

Figure A.1. The Projection Operator approach: at each iteration, (a) the linearization of the
control system about the trajectory ξi defines the tangent space to the trajectory
manifold T at ξi; (b) minimization over the tangent space of a second-order
approximation of the extended cost functional g = h◦P yields a search direction ζi;
(c) a step size is computed via a line search along ζi with P bending that line onto the
trajectory manifold T ; (d) the search direction ζi and step size γi are combined and
projected to obtain the updated trajectory ξi+1. [Credits : Aguiar et al. (2017)]

Working with the cost functional g(ξ) := h(P(ξ)) in an essentially unconstrained
manner (see (4.19)), one may develop effective descent methods for trajectory optimization.
For instance, a Newton descent step at ξ ∈ T may be obtained by minimizing the quadratic
functional Dg(ξ) · ζ + 1

2D
2g(ξ) · (ζ, ζ) ' g(ξ + ζ) − g(ξ) over the linear subspace of

tangent trajectories ζ ∈ TξT . In fact, one may derive many properties, including first and
second-order optimality conditions, of the constrained optimal control problem though
an unconstrained analysis of the functional g. Moreover, it is remarkable to observe that

• Dg(ξ) · ζ = Dh(ξ) · ζ

• D2g(ξ) · (ζ, ζ) = D2h(ξ) · (ζ, ζ) + Dh(ξ)D2P(ξ) · (ζ, ζ), where D2P(ξ) is null
whenever the constraint of the problem is represented by a linear dynamics.

To conclude, once one has an acceptable descent direction ζ ∈ TξT (see Step 3 of Alg.
7), a line search using the actual cost functional g = h ◦ P is required and it is obtained
solving the problem in Ex. 2.2.3 for the linearized trajectory. Step 4 in Alg. 7 suggests
an exact line search, but it is more common and effective to use an Armijo-backtracking
line search. Remarkably, in a sufficiently small neighborhood of a second-order sufficient
condition minimizer, the Newton step will be accepted (with unit step size) leading to
quadratic convergence. Lastly, it is worth to notice that the projection operator is used
to bend the line of test points ξi + γζi along the trajectory manifold (see Fig. A.1),
leading to the natural manifold update law in Step 5 of Alg. 7: ξi+1 = P(ξi + γiζi).
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A.2 Computation of λL
n−1 for κ-ring graphs

In Cor. 6.3.3, upper and lower bounds for the index j referring to the spectral radius λL
n−1

of the Laplacian are provided. Let us recall that λL
n−1 = 2κ(1− λRRRn−1) and denote with

D′κ(x ) the first derivative of Dκ(x ) w.r.t. x . The calculus of the quantity in question can
be conveniently implemented whenever κ ∈ (1, κn), by means of the procedure illustrated
in Alg. 9, with a computational complexity1 of O (log2(n/(2κ+ 1))) as the ratio n/κ
goes to infinity.

Algorithm 9 Computation of eigenvalue λRRRn−1 and its relative index j?

1: set (j, j) as the extrema given by relation (6.19);
2: if D′κ(2θj) ≤ 0 then

(
j?, λRRRn−1

)
←
(
j, λRRR (j)

)
;

3: else if D′κ(2θj) ≥ 0 then
(
j?, λRRRn−1

)
←
(
j, λRRR (j)

)
;

4: else
5: found← false;
6: while j − j > 1 and not found do
7: j? ← b(j + j)/2 + 1/2c;
8: if D′κ(2θj?) < 0 then j ← j?;
9: else if D′κ(2θj?) > 0 then j ← j?;

10: else found← true; λRRRn−1 ← λRRR (j?);
11: end if
12: end while
13: if notfound then

(
j?, λRRRn−1

)
← min

j∈{j,j}

{
λRRR (j)

}
;

14: end if
15: end if

The computational complexity of Alg. 9 is justified by the fact that it encodes an
implementation of a binary search procedure Knuth (1998) that operates on a discrete
set with cardinality j − j + 1 < n/(4κ+ 2) + 3/2. Whereas, its correctness can be proven
as follows. Since l = 0 is set to choose j in (6.21), it is guaranteed that Dκ(2θj) < 0
for all j ∈ [j, j]. Hence, exploiting (6.20) and (6.22), interval [j, j] must lay within two
consecutive roots of Dκ(x ). The correctness of the binary search is then verified, as there
exists only one local extremum for Dκ(x ) between a pair of consecutive zeros Wiggins
(2007) and the first derivative of the Dirichlet kernel D′κ(x ) is employed as value to select
intervals which key j? ∈ [j, j] belongs to.

As an example, Fig. A.2 represents eigenvalues λF(j) = λRRRn−1 in function of their index
j for a κ-ring graph with n = 46 vertices. Here, interval [j, j] examined in Cor. 6.3.3 is
highlighted and represented as the union of two separated areas BL

(
λF
n−1

)
, in orange,

and BR
(
λF
n−1

)
, in light-blue, such that BL

(
λF
n−1

)
∪ BR

(
λF
n−1

)
= [j, j] and intersection

BL
(
λF
n−1

)
∩ BR

(
λF
n−1

)
= {j⊕} is composed of the single splitting element

j⊕ := max
{
j,min

{
j − 1, bu5n/(π(2κ+ 1)) + 1/2c

}}
(A.3)

1In terms of number of operations directly proportional to the number of comparisons between the
current estimate of λRRRn−1 and the next potential incumbent.
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where constant u5 := 4.493409457909064175307880936048 is generated and declared in
Wiggins (2007). In addition, it is worth to notice that eigenvalue λF

n−1, depicted with a
red stem, belongs to set BR(λF

n−1) ∪ {j⊕} for all κ adopted in this example and is equal
to −1 for κ = 1, being, in such a case, indexed by j? = bn/2c = 23.
Furthermore, one can observe that:

• index j? (addressing λF
n−1) is inversely proportional to κ;

• set BL
(
λF
n−1

)
\ {j⊕} degenerates quickly as κ increases and its cardinality reduces

to 1 starting from κ = 5;

• index j? may coincide with j⊕ also when sets BL
(
λF
n−1

)
, BR

(
λF
n−1

)
possess cardi-

nality greater or equal to 1 (see κ = 2 and κ = 4);

• for κ > κn = 13.3 set BR
(
λF
n−1

)
degenerates and j? = 2 begins to hold;

• for κ > κθ = 17.5506 relation
∣∣λF

1
∣∣ < ∣∣λF

n−1
∣∣ is satisfied.

Lastly, another important consideration is proposed in order to improve lower bound j
in (6.19). Indeed, the example of binary search initialization illustrated in Fig. A.2, as
many other similar preformed simulations omitted in this work, lead to the following

Conjecture A.2.1 (Bounds for the interval of the spectral radius index).
Relation λL

n−1 = λL(j?) = λL(n− j?) holds with j? ∈ N belonging to [j⊕, j] ⊂ N, where
j⊕ and j are defined as in (A.3) and (6.19) respectively.

If statement of Conjecture A.2.1 held true, the computation of λL
n−1 would be facilitated

and the computational complexity of Alg. 9 would be substantially lowered from
O(log2(n/(2κ+ 1))) to O(log2((3π − 2u5)n/(4πκ))) ' O(log2(0.0348n/κ)) as the ratio
n/κ goes to infinity.
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(a) κ = 1, λF
1 ' 0.9907, λF

n−1 = −1 (b) κ = 2, λF
1 ' 0.9768, λF

n−1 ' −0.5603

(c) κ = 4, λF
1 ' 0.9313, λF

n−1 ' −0.3742 (d) κ = 5, λF
1 ' 0.9002, λF

n−1 ' −0.3458

(e) κ = 13, λF
1 ' 0.5042, λF

n−1 ' −0.1852 (f) κ = 14, λF
1 ' 0.4443, λF

n−1 ' −0.2274

(g) κ = 17, λF
1 ' 0.2648, λF

n−1 ' −0.2449 (h) κ = 18, λF
1 ' 0.2070, λF

n−1 ' −0.2200
Figure A.2. Binary search initialization (not needed for κ = 1) to compute eigenvalue λF

n−1 =
λRRRn−1 for κ-ring graphs with n = 46 vertices, κn = 13.3, κθ ' 17.5506. Orange area
BL(λF

n−1) \ {j⊕} does not contain estimates for λF
n−1 from the beginning.
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“We need guns. Lots of guns.”
Neo
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B.1 Elements of Algebraic Topology and Geometry

This first section of the appendix is highly related to the concepts arising in Chap. 3,
since many topological and geometrical objects are used while modeling. Specifically, all
the following topics can be found in Coxeter (1947); Hatcher (2002); Nakahara (2003).
The remainder of the section is organized as follows. Subsec. B.1.1 illustrates basic
notions of Euclidean Geometry and Topology. Subsec. B.1.2 provides an explanation of
all the complex topological tools (e.g. the simplicial complexes) characterizing procedure
at line 1 in Alg. 3. Subsec. B.1.3 introduces the bases of Group Theory that are necessary
to the gist of homology and the understanding of contribution given by Alg. 4.

B.1.1 Geometrical and topological entities

Definition B.1.1 (Point).
A point pi is an element belonging to the Euclidean space RM of dimension M ≥ 1.
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Definition B.1.2 (Segment).
A segment stij delimited by the pair of points (pi,pj) ∈ RM × RM is defined as the
collection of points described by the set stij = {ηpi + (1− η)pj | pi 6= pj , ∀η ∈ [0, 1]}.

Definition B.1.3 (Polygonal, closed polygonal, planar polygonal).
A polygonal pl[0,L] is defined as the finite collection of segments pl[0,L] = {st1, st2, . . . , stL}={
stk0k1 , stk1k2 , . . . , stkl−1kl

}
, assuming L ≥ 2, and such that a polygonal is closed when-

ever pk0 = pkl , using the notation pl[1,L] in this case. A polygonal is planar if it spans a
two-dimensional subspace of RM .

Definition B.1.4 (Polygon).
For M ≥ 2, a polygon pn[1,L] is defined as the closed set of points delimited and formed
by the interior of the union pn[1,L] =

⋃L
k=1 stk, such that each segment stk belongs to a

closed planar polygonal pl[1,L] that satisfies the following two properties:

• pki 6= pkj for all i, j = 1, . . . , L, with i 6= j;

•
∑
i<j; i,j=1,...,L |sti ∩ stj | = L.

Definition B.1.5 (Regular polygon).
A regular polygon is a polygon that is equiangular (all angles are equal in measure) and
equilateral (all sides have the same length).

Definition B.1.6 (Polytope, edge, vertex).
A polytope is an abstract extension1 of a polygon spanning a subspace Ωκ of RM with
dimension κ ≥ 2, e.g. a polygon is a polytope spanning a two-dimensional subspace.
Moreover, a polytope that spans a subspace of dimension κ = 1 is called edge (e.g. a
segment), and a polytope that spans a subspace of dimension κ = 0 is called vertex (e.g.
a point).

Definition B.1.7 (Convex set).
A convex set Ω is a subset of a Euclidean space RM such that every segment stij with
vertices (pi,pj) ∈ Ω× Ω is a subset of Ω.

Definition B.1.8 (Convex hull).
The convex hull of a set Ω of points in a Euclidean space RM is the smallest convex set
that contains Ω.

Definition B.1.9 (Topological space).
Let X be any set and T = {Ωi|i ∈ ΩI} denote a certain collection of subsets of X . The
pair (X ,T) is a topological space if T satisfies the following requirements:

(i) ∅,X ∈ T.

(ii) If T is any (maybe finite) subcollection of ΩI , the family {Ωj |j ∈ ΩJ} satisfies⋃
j∈ΩJ

Ωj ∈ T.

(iii) If ΩK is any finite subcollection of ΩI , the family {Ωk|k ∈ ΩK} satisfies
⋂

k∈ΩK
Ωk ∈ T.

1The details of this definition fall outside the purpose of the appendix.
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X alone is sometimes called topological space. The Ωi are called the open sets and T is
said to give a topology to X .

Definition B.1.10 (Metric and distance).
A metric on a topological space X is the law chosen for a functionMX : X ×X → [0,+∞)
that maps two arbitrary elements ω1, ω2 ∈ X into their distance dist(ω1, ω2), satisfying
the following conditions:

1. dist(ω1, ω2) ≥ 0 (separation axiom);

2. dist(ω1, ω2) = 0 if and only if ω1 = ω2 (identity of indiscernible elements);

3. dist(ω1, ω2) = dist(ω2, ω1) (symmetry);

4. for all ω0 ∈ X , dist(ω0, ω2) ≤ dist(ω0, ω1) + dist(ω1, ω2) (subadditivity).

Definition B.1.11 (Metric space).
A metric space (X ,MX ) is a topological space X endowed with its metricMX .

Definition B.1.12 (Diameter of a subset).
Given a metric space (X ,MX ), let X0 be a subset of X . The diameter of X0 is defined
as φ(X0) = sup {dist(ω1, ω2)|ω1, ω2 ∈ X0}.

Definition B.1.13 (Interior point and interior of a set).
If Ω is a subset of a topological space X , then ω is an interior point of Ω if there exists a
neighborhood centered at ω which is completely contained in Ω. The interior int(X ) of
X is the set of all interior points of X .

Definition B.1.14 (Limit point).
Let Ω be a subset of a topological space X . A point ω in X is a limit point of Ω if every
neighborhood of ω contains at least one point of Ω different from ω itself.

Definition B.1.15 (Closure of a set).
The closure of a subset Ω of points in a topological space X consists of all points in Ω
together with all limit points of Ω. The closure of Ω may equivalently be defined as the
union of Ω and its boundary, and also as the intersection of all closed sets containing Ω.

B.1.2 Simplices and simplicial complexes

Definition B.1.16 (Simplex).
A κ-simplex is a κ-dimensional polytope which is the convex hull of its κ+ 1 vertices.
More formally, suppose the κ+1 points p0, . . . ,pκ ∈ Rκ are affinely independent, meaning
that vectors p1 − p0, . . . ,pk − p0 are linearly independent. Then, the κ-simplex S(κ)

determined by them is the set of points

S(κ) =
{
ω0p0 + · · ·+ ωκpκ | ωi ≥ 0, 0 ≤ i ≤ κ,

κ∑
i=0

ωi = 1
}

(B.1)

Conventionally, S(−1) = ∅ is settled.
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Example B.1.17 (Simplices of dimensions κ = 0, . . . , 3).
A simplex is a generalization of the notion of a triangle or tetrahedron to arbitrary
dimensions. As illustrated in Fig. 2.10, a single point may be considered a 0-simplex,
and a segment may be considered a 1-simplex. A 2-simplex is a triangle, a 3-simplex is a
tetrahedron. Any simplex can be defined as the smallest convex set containing the given
vertices.

Definition B.1.18 (Faces of a simplex).
The convex hull of any nonempty subset of the κ+ 1 points that define a κ-simplex is
called a face of the simplex.

Remark B.1.19.
Faces are simplices themselves. In particular, if 0 ≤ κ′ ≤ κ, the convex hull of a subset
of size κ′ + 1 (of the κ + 1 defining points) is an κ′-simplex, called an κ′-face of the
κ-simplex. The 0-faces (i.e., the defining points themselves as sets of size 1) are called
the vertices, the 1-faces are called the edges, the κ− 1-faces are called the facets, and the
sole κ-face is the whole κ-simplex itself.

Definition B.1.20 (Cofaces of a simplex).
A simplex S(κj)

j is a coface of a simplex S(κi)
i if S(κi)

i is a face of S(κj)
j .

Definition B.1.21 (Regular simplex).
A regular simplex is a simplex that is also a regular polytope. A regular κ-simplex may
be constructed from a regular (κ− 1)-simplex by connecting a new vertex to all original
vertices by the common edge length.

Definition B.1.22 (Simplicial complex).
As depicted in Fig. B.1, a κ-simplicial complex of dimension κ is a set S(κ) of simplices
in Rκ such that:

• each face S(κ′i)
i of a κi-simplex S(κi)

i belonging to S(κ) is an element of S(κ);

• the intersection of two simplices S(κj)
j ∈ S(κ) and S(κj)

j ∈ S(κ) is the empty set or a
face that is common to both S(κj)

j ∈ S(κ) and S(κj)
j ∈ S(κ);

• the set S(κ) is locally finite, i.e. for all bounded subsets Ω ⊂ Rκ the intersection
between Ω and S(κ) is finite.

Remark B.1.23.
A κ-simplicial complex S(κ) does not necessarily have a finite amount of elements. Its
dimension κ is just an index of the maximum dimension among all the simplices contained
in S(κ).

Definition B.1.24 (Simplicial subcomplex).
If S(κi)

i is a subcollection of a simplicial complex S(κ) that contains all faces of its
elements, where 0 ≤ κ ≤ κi, then S(κi)

i is another simplicial complex called a simplicial
subcomplex.

Definition B.1.25 (κ-skeleton).
The κ-skeleton of a simplicial complex S(κ′) is defined as the simplicial subcomplex S(κ)

that is the union of all the simplices in S(κ′) of dimensions κ ≤ κ′.
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Definition B.1.26 (Abstract simplicial complex).
A family AS(κ) of non-empty finite subsets of a set Ω is an abstract simplicial complex if,
for every set S(κj)

j (abstract coface) in AS(κ), and every non-empty subset S(κi)
i ⊆ S(κj)

j ,
then S

(κi)
i (abstract face) also belongs to AS(κ). Concepts as the abstract simplicial

subcomplex or the abstract skeleton are defined in a similar way to those in definitions
B.1.24 and B.1.25.

Remark B.1.27.
An abstract simplicial complex is a purely combinatorial extension of the geometric
notion of a simplicial complex (see Fig. B.1), consisting of a family of non-empty finite
sets closed under the operation of taking non-empty subsets.

(a) A simplicial complex in R3 (b) An abstract simplicial
complex in Ω = R3 (not a
simplicial complex)

Figure B.1. (a) A simplicial complex of dimension 3, since it is made of vertices, edges, triangles
and tetrahedra. (b) An abstract simplicial complex that is not a simplicial complex,
since it contains simplices whose intersections are neither the empty set nor a
common face.

Definition B.1.28 (Vietoris-Rips complex).
A Vietoris-Rips complex is an abstract simplicial complex that can be defined from any
metric space (X ,MX ) and a constant maximum distance `X by forming a simplex for
every finite set of points X0 in X that has a diameter φ(X0) ≤ `X .

Example B.1.29 (Vietoris-Rips complex).
Fig. B.2 depicts a Vietoris–Rips complex of a set of 42 points in the Euclidean plane.
This complex has simplices of up to four points: the points themselves (black circles),
pairs of points (black edges), triples of points (blue violet triangles), and quadruples of
points (purple tetrahedrons). Circles in aqua marine represent the maximum diameter
`X attainable by the overall set of points.

B.1.3 Notions of Homology Groups

Definition B.1.30 (Group, identity element, inverse element).
A group (G,~) is a set G equipped with a binary operation ~ that combines any two
elements ω1, ω2 ∈ G to form a third element ω1 ~ ω2 in such a way that four conditions
called group axioms are satisfied:
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Figure B.2. A Vietoris–Rips complex of a set of 42 points in the Euclidean plane.

1. For all ω1, ω2 ∈ G, the result of the operation ω1 ~ ω2 also belongs to G (clusure);

2. For all ω0, ω1, ω2 ∈ G it holds that (ω0 ~ ω1) ~ ω2 = ω0 ~ (ω1 ~ ω2) (associativity);

3. There exists a unique element e ∈ G such that, for every element ω0 ∈ G, the
equation e ~ ω0 = ω0 ~ e holds (identity element);

4. For each ω1 ∈ G, there exists an element ω2 ∈ G, commonly denoted ω−1
1 (or −ω1,

if the operation is denoted with +), such that ω1 ~ ω2 = ω2 ~ ω1 = e , where e is
the identity element (inverse element).

Definition B.1.31 (Subgroup).
A subgroup (H,~) of a group (G,~) is if H also forms a group under the operation ~.
This is usually denoted with H ≤ G.

Definition B.1.32 (Left and right cosets of a subgroup in a group).
Let (G,~) and (H,~) be two groups such that H ≤ G. Let also ωG be an element
of G. Then ωGH = {ωG ~ ωH|∀ωH ∈ H} is the left coset of H in G w.r.t. ωG, and
HωG = {ωH ~ ωG|∀ωH ∈ H} is the right coset of H in G w.r.t. ωG.

Definition B.1.33 (Normal subgroup).
Let H be a subgroup of the group G. The subgroup H is said to be normal if, for all
ωG ∈ G the left and right cosets of H in G are equivalent, namely ωGH = HωG.

Definition B.1.34 (Abelian group).
An Abelian group (GA,~) is a group that satisfies the commutativity property, i.e. for
all ω1, ω2 ∈ GA, it holds that ω1 ~ ω2 = ω2 ~ ω1.

Proposition B.1.35 (Abelian subgroups are normal).
Let GA be an Abelian group and ωG an element of GA. Then the left and right cosets
of GA coincide, namely ωGHA = HAωG for every ωG ∈ GA and every Abelian subgroup
such that HA ≤ GA. This implies that every Abelian subgroup (HA,~) is normal.

Definition B.1.36 (Quotient group).
Let (H,~) be a normal subgroup of a group (G,~). Consider the set G/H of all the
left cosets of H in G, that is G/H = {ωGH|∀ωG ∈ G}, and an operation � satisfying
(ωG,1H) ~ (ωG,2H) = (ωG,1 ~ ωG,2)H for all ωG,1, ωG,2 ∈ G. Then, (G/H,�) is said to be
the quotient group of (G,~) by (H,~).
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Example B.1.37 (Quotient group of (Z,+) by (3Z,+)).
Let Z be the set of integer numbers and 3Z be the set in which only the multiples of
the integer numbers by 3 are present, that is 3Z = {. . . ,−9,−6,−3, 0, 3, 6, 9, . . .}. To
compute the quotient group of (Z,+) by (3Z,+) it is possible to proceed as follows. Let us
define all the possible cosets of (3Z,+) in (Z,+): 0̄ = 0Z = Z, 1̄ = 1Z = {1 + ω|ω ∈ 3Z}
and 2̄ = 2Z = {2 + ω|ω ∈ 3Z}. Since the + operation satisfies ω1Z + ω2Z = (ω1 + ω2)Z
for all ω1, ω2 = 0, 1, 2 and since (3Z,+) is normal, the quotient group of (Z,+) by (3Z,+)
is given by (

{
0̄, 1̄, 2̄

}
,+).

Definition B.1.38 (Homomorphism).
Let G and H two algebraic structures of the same type. Assume there exists an operation
f defined on both G as fG and on H as fH. A function Ξ : G→ H is a homomorphism if,
for every κ-tuple ω1, . . . , ωκ of G one has Ξ(fG(ω1, . . . , ωκ)) = fH(Ξ(ω1), . . . ,Ξ(ωκ)).

Remark B.1.39. A homomorphism can be seen as a structure-preserving map between
two algebraic structures of the same type, e.g. two groups endowed with an operation ~.

Definition B.1.40 (Trivial homomorphism).
Let us assume the same hypotheses in Def. B.1.38. The trivial homomorphism Ξ0 is
the map that sends every element of G into the identity element e H of H. In formulas:
Ξ0(fG(ω1, . . . , ωκ)) = e H.
Definition B.1.41 (Chain and boundary operator).
A chain is a sequence of Abelian groups (GAi,~), indexed by i = 1, 2, . . ., and homomor-
phisms ∂i : GAi → GAi−1, called boundary operators, such that the composition of two
subsequent homomorphisms has the trivial homomorphism as a result. In other words, it
holds that ∂i−1 ◦ ∂i = e GAi−1 , where e GAi−1 is the identity element of GAi−1.

Remark B.1.42.
A chain can be represented with the symbolic map defined as the composition of all the
boundary operators:

. . .
∂i+1→ GAi

∂i→ GAi−1 . . .
∂2→ GA1

∂1→ GA0
∂0→ eGA0 . (B.2)

Proposition B.1.43.
Property ∂i−1 ◦ ∂i = e GAi−1 in Def. B.1.41 is equivalent to the requirement that

im {∂i+1} ⊆ ker {∂i} for i = 0, 1, 2, .... (B.3)

Definition B.1.44 (i-th homology group).
Given a topological space X , the i-th homology group Hi(X ) on X is defined as quotient
group Hi(X ) = ker {∂i} /im {∂i+1} in which the chain related to all boundary operators
∂i is established from X .

Remark B.1.45 (Relation between homology groups, boundaries and cycles).
In Def. B.1.44, if im {∂i+1} and ker {∂i} were equal for all i then the chain is said to be
exact. However, this does not generally occur; an homology group measures how much
the chain is far to be exact. Furthemore, the i-th homology group Hi(X ) of a topological
space X gives important information about the i-th dimensional holes in X . For instance,
H0(X ) describes the path-connected components of X .
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Example B.1.46 (Homology groups of a torus).
The topological groups of a torus XT (see Fig. B.3) are given by H0(XT ) = Z, H1(XT ) =
Z× Z , H2(XT ) = Z. This tells us information about its topological structure. Indeed,
H0(XT ) = Z corresponds to a single path-connected component, H1(XT ) corresponds to
two independent one-dimensional components (yellow and dark cyan circles) and H2(XT )
corresponds to a one two-dimensional hole as the interior of the torus.

Definition B.1.47 (Simplicial homologies).
A simplicial i-homology Hi(AS(κ)) is a homology group defined on a topological space
AS(κ) formed by simplices. In particular, for every simplex S

(κj)
j , j = 1, 2, . . ., in

an abstract simplicial complex AS(κ), a specific ordering (v(j)
0 , . . . , v̂

(j)
k , . . . , v

(j)
κj ) can be

assigned to the vertices of S(κj)
j with the aim to characterize its (κj−1)-faces correspondent

to the exclusion of vertices v̂(j)
k . Thanks to this possibility, the boundary operator ∂(j)

κj

acting on the j-th simplex S(κj)
j can be defined as

∂(j)
κj =

κj∑
k=0

(−1)k(v(j)
0 , . . . , v̂

(j)
k , . . . , v(j)

κj ) (B.4)

The choice in (B.4) allows to give proper meaning to the κ-chain complex C(κ) associated
to AS(κ), since C(κ) is established exploiting the Abelian group generated by means of
the (formal) sum

∑
j ωjS

(κj)
j , with ωj ∈ Z, for all j = 1, 2, . . ..

Figure B.3. The torus XT .

B.2 Elements of Linear Spectral Theory

In this second section of the appendix, many basic definitions, propositions, lemmas and
fundamental theorems related to Spectral Theory, yet restricted to the framework of
Linear Algebra, are stated. All the concept here illustrated can be found in Berman and
Plemmons (1994); Fornasini (2013); Meyer (2000) and are widely employed in Chap. 5
and Chap. 6.

Definition B.2.1 (Hermitian matrix).
Let Ω ∈ CN×N be a squared matrix and <, = denote the real and imaginary part of a
complex number respectively. Matrix Ω is said Hermitian if Ω = Ω∗, where ∗ represents
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the conjugate transpose operator, namely <([Ω]ji) = <([Ω]ij) and =([Ω]ji) = −=([Ω]ij),
for i = 1, . . . , N , j = 1, . . . , N .

Definition B.2.2 (Symmetric matrix).
Let Ω ∈ RN×N be a squared matrix. Matrix Ω is said symmetric if Ω = Ω>, where >
represents the transpose operator, namely [Ω]ji = [Ω]ij , for i = 1, . . . , N , j = 1, . . . , N .

Proposition B.2.3 (Relation between Hermitian and symmetric matrices).
Let Ω ∈ RN×N be a squared matrix. Then Ω is also Hermitian.

Definition B.2.4 (Characteristic polynomial, eigenvalue and algebraic multiplicity).
Let VΩ ⊆ CN a vector space of dimension N and fΩ : VΩ → VΩ : ω 7→ Ωω a linear
endomorphism such that Ω ∈ CN×N is a squared matrix. It is said that λ̄ ∈ C is an
eigenvalue of Ω if λ̄ is a root of the complex polynomial

∆(λ) = det(Ω− λIN ), λ ∈ C, (B.5)

called characteristic polynomial associated to fΩ. In other words, an eigenvalue λ̄
satisfies the so-called characteristic equation ∆(λ) = 0. The algebraic multiplicity
multA(λ̄) ∈ N\{0} of λ̄ is the number of times it is repeated as a root of the characteristic
polynomial.

Definition B.2.5 (Spectrum of a matrix).
Let Ω ∈ CN×N be a squared matrix. The set Λ(Ω) =

{
λΩ0 , . . . , λ

Ω
N−1

}
containing all the

eigenvalues2 λΩi of Ω, for i = 0, . . . , N − 1, is called spectrum of Ω.

Definition B.2.6 (Spectral radius).
Let λΩ0 , . . . , λΩN−1 the eigenvalues of a squared matrix Ω ∈ CN×N . The operator ρS :
CN×N → R that maps Ω into the real positive value

ρS(Ω) = max
{
|λΩ0 |, . . . , |λΩN−1|

}
(B.6)

is called spectral radius.

Definition B.2.7 (Left and right eigenvector, eigenpair).
Under the same assumptions of Def. B.2.4, let λΩi be the i-th eigenvalue in Λ(Ω) and
consider the following equations in the unknown ω ∈ CN

Ωω = λΩi ω; (B.7)
ω>Ω = λΩi ω

>. (B.8)

If $Ω
i ∈ VΩ satisfies (B.7), then it is said to be a right eigenvector (or simply, an

eigenvector) associated to the eigenvalue λΩi , forming the i-th eigenpair ($Ω
i , λ

Ω
i ).

Furthermore, if υΩ
i ∈ VΩ satisfies (B.8), then it is said to be a left eigenvector associated

to the eigenvalue λΩi .

Definition B.2.8 (Eigenspace and geometric multiplicity).
Under the same assumptions of Def. B.2.4, the eigenspace associated to the i-th eigenvalue

2Sorted with an arbitrary criterion.
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λΩi is the vector subspace spanned by WΩ
i = {ω ∈ VΩ \ {0N}|ω ∈ ker(Ω− λΩi IN )}, i.e.

the subspace spanned by the eigenvectors associated to λΩi . The integer multG(λΩi ) =
dim(WΩ

i ) ∈ N \ {0} is called the geometric multiplicity of λΩi .

Proposition B.2.9 (Algebraic and geometric multiplicity relationship).
Under the same assumptions of Def. B.2.4, let λΩi be the i-th eigenvalue of Ω. One has

multG(λΩi ) ≤ multA(λΩi ), for i = 0, . . . , N − 1. (B.9)

Definition B.2.10 (Simple and semi-simple eigenvalue).
An eigenvalue is said to be semi-simple if its algebraic multiplicity and geometric
multiplicity are equal. Moreover, it is said simple if its algebraic multiplicity is unitary.

Definition B.2.11 (Definiteness of a matrix).
Let Ω a squared matrix in RN×N (resp. a squared Hermitian matrix in CN×N ). Consider
the quadratic form 〈ω,ω〉Ω = ω>Ωω ∈ R. Let also RN0 (resp. CN0 ) be equal to RN \{0N}
(resp. CN \ {0N}). Matrix Ω is said to be

(i) positive definite if 〈ω,ω〉Ω > 0, i.e. Ω � 0, for all vectors ω ∈ RN0 (resp. ω ∈ CN0 );

(ii) positive semi-definite if 〈ω,ω〉Ω ≥ 0, i.e. Ω � 0, for all vectors ω ∈ RN0 (resp.
ω ∈ CN0 ) and, for some ω ∈ RN0 (resp. ω ∈ CN0 ), it holds that 〈ω,ω〉Ω = 0;

(iii) negative definite if 〈ω,ω〉Ω < 0, i.e. Ω ≺ 0, for all vectors ω ∈ RN0 (resp. ω ∈ CN0 );

(iv) negative semi-definite if 〈ω,ω〉Ω ≤ 0, i.e. Ω � 0, for all vectors ω ∈ RN0 (resp.
ω ∈ CN0 ) and, for some ω ∈ RN0 (resp. ω ∈ CN0 ), it holds that 〈ω,ω〉Ω = 0;

(v) indefinite if none of the above options holds.

Proposition B.2.12 (Spectral definiteness of Hermitian matrices).
Let Ω ∈ CN×N be a Hermitian matrix. Then matrix Ω is

(i) positive definite if and only if all its eigenvalues are strictly positive;

(ii) positive semi-definite if and only if all its eigenvalues are nonnegative and there
exists a null eigenvalue;

(iii) negative definite if and only if all its eigenvalues are strictly negative;

(iv) negative semi-definite if and only if all its eigenvalues are nonpositive and there
exists a null eigenvalue;

(v) indefinite if and only if none of the above options holds.

Corollary B.2.13 (Spectral Theorem applied to Hermitian matrices).
If a squared matrix Ω ∈ CN×N is Hermitian, there exists an orthonormal basis for VΩ,
namely the space that defines the endomorphism generated by Ω, consisting of eigenvectors
of Ω. Moreover, each eigenvalue of Ω is real.

Definition B.2.14 (Gerschgorin disc).
Let Ω ∈ CN×N be a squared matrix with entries [Ω]ij = ωij . The i-th Gerschgorin disc
DG,i(ωii, Rii) is defined as the circle centered at ωii with radius Rii =

∑
j 6=i
|ωij |.
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Theorem B.2.15 (Gerschgorin Circle Theorem).
Let Ω ∈ CN×N be a squared matrix with entries [Ω]ij = ωij. Let us also define the union
of Gerschgorin discs DG,R = ∪Ni=1DG,i for the rows of Ω and the union of Gerschgorin
discs DG,C = ∪Nj=1DG,j for the rows of Ω>, where [Ω>]ji = ωij. Then the spectrum of Ω
is contained in the intersection DG,R ∩DG,C .

Definition B.2.16 (Rayleigh quotient).
For a given complex Hermitian matrix Ω and nonzero vector ω, the Rayleigh quotient is
defined as the map R(Ω,ω) : CN×N × CN → R such that

R(Ω,ω) = 〈ω,ω〉Ω
ω>ω

= ω>Ωω

ω>ω
. (B.10)

Proposition B.2.17 (Fundamental property of the Rayleigh quotient).
Under the same assumptions of Def. B.2.16, let us consider the eigenpair (λΩi ,$Ω

i ).
Then

R(Ω,$Ω
i ) = λΩi . (B.11)

Theorem B.2.18 (Min-max Theorem).
Let Ω ∈ CN×N be an Hermitian matrix with eigenvalues λΩ0 ≤ · · · ≤ λΩN−1 then it holds
that

λΩi = min
Xi

max
ω∈Xi

R(Ω,ω), such that dim(Xi) = i, 0i /∈ Xi (B.12)

and

λΩi = max
Xi

min
ω∈Xi

R(Ω,ω), such that dim(Xi) = N − i+ 1, 0N−i+1 /∈ Xi. (B.13)

In particular, it holds that

λΩ0 ≤ R(Ω,ω) ≤ λΩN−1, ∀ω ∈ CN \ {0N} , (B.14)

where bounds of (B.14) are attained when ω is an eigenvector of the correspondent
marginal eigenvalues λΩ0 and λΩN−1.

Definition B.2.19 (Nonnegative vector).
A vector ω ∈ RN is nonnegative if all its components [ω]i are nonnegative. This property
is denoted with ω ≥ 0.

Definition B.2.20 (Positive vector).
A vector ω ∈ RN is positive if all its components [ω]i are strictly positive. This property
is denoted with ω > 0.

Definition B.2.21 (Nonnegative matrix).
A matrix Ω ∈ RN×N is nonnegative if all its entries [Ω]ij are nonnegative. This property
is denoted with Ω ≥ 0.

Definition B.2.22 (Positive matrix).
A matrix Ω ∈ RN×N is positive if all its entries [Ω]ij are strictly positive. This property
is denoted with Ω > 0.

Definition B.2.23 (Primitive matrix).
A matrix Ω ∈ RN×N is primitive if there exists a positive integer κ such that Ωκ > 0.
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Definition B.2.24 (Irreducible matrix).
A matrix Ω ∈ RN×N is irreducible if in correspondence to each couple of indexes (i, j)
there exists a positive integer κ(i, j) such that [Ωκ(i,j)]ij > 0.

Proposition B.2.25 (Characterization of irreducible matrices).
A matrix Ω ∈ RN×N is irreducible if

∑N
i=1 Ω

i > 0.

Definition B.2.26 (Reducible matrix).
A matrix Ω ∈ RN×N is reducible if there exists a couple of indexes (i, j) such that, for
all κ ∈ N \ {0}, it holds that [Ωκ]ij = 0.

Lemma B.2.27 (Classification of nonnegative matrices).
Let Ω ∈ RN×N be a squared matrix. It holds that,

(i) if Ω is positive then it is also primitive;

(ii) if Ω is primitive then it is also irreducible;

(iii) if Ω is irreducible then it is also nonnegative.

Moreover, the set of reducible matrices in union with the set of irreducible matrices
complete the set of nonnegative matrices.

Theorem B.2.28 (Perron-Frobenius Theorem).
Let Ω ∈ RN×N be a squared matrix with dimension N ≥ 2. If Ω is nonnegative then

(i) there exists a real eigenvalue λΩ0 of Ω such that λΩ0 ≥ |λΩi | ≥ 0 holds, for all the
other eigenvalues λΩi of Ω indexed by i = 1, . . . , N − 1;

(ii) the right and left eigenvectors associated to λΩ0 can be selected nonnegative.

If additionally Ω is irreducible, then

(iii) the eigenvalue λΩ0 is strictly positive and simple3, and the other eigenvalues with
modulus equal to λΩ0 are the complex numbers given by

λΩ0 exp(i2πk/µI), k = 0, . . . , µI − 1, (B.15)

where the integer µI > 1 is called index of imprimitivity;

(iv) the right and left eigenvectors associated to λΩ0 are unique and positive, up to
rescaling.

If additionally Ω is primitive, then

(v) the eigenvalue λΩ0 satisfies λΩ0 > |λΩi | ≥ 0, for i = 1, . . . , N − 1, and the index of
imprimitivity µI is unitary.

3For this reason, λΩ
0 is also called leading eigenvalue, in the Perron-Frobenius Theory. The leading

eigenvalue trivially coincides with the value assumed by spectral radius ρS(Ω).
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Definition B.2.29 (Essential spectral radius).
Let Ω ∈ RN×N be a nonnegative irreducible matrix and λΩ0 = ρS(Ω) be the corresponding
leading eigenvalue. In addition, let us define Λ0(Ω) = Λ(Ω) \ {λΩi : |λΩi | = λΩ0 }. The
essential spectral radius λΩ of Ω is defined as the map esr(Ω) : RN×N → R : Ω 7→ λΩ

such that
λΩ = max

λ∈Λ0(Ω)
|λ|. (B.16)

The eigenvalue that maximizes relation (B.16) is denoted with λΩ! ∈ Λ0(Ω).

Definition B.2.30 (Stochastic matrix).
Let Ω ∈ RN a squared matrix and denote it entries as [Ω]ij = ωij . If the relation

ωij ≥ 0,
N∑
j=1

ωij = 1, for i = 1, . . . , N (B.17)

is satisfied then Ω is said to be a (row)-stochastic matrix. This property is indicated
with Ω ∈ stoc(RN×N ).

Definition B.2.31 (Doubly stochastic matrix).
Let Ω ∈ RN×N a squared matrix and denote it entries as [Ω]ij = ωij . If relation (B.17)
is satisfied by both Ω and Ω>, namely Ω is both row- and column-stochastic, then Ω is
said to be doubly stochastic. This property is indicated with Ω ∈ stoc2(RN×N ).

Theorem B.2.32 (Characterization of stochastic matrices).
If Ω is a stochastic matrix then the spectral radius of Ω is equal to the unity, namely
ρS(Ω) = 1, and its spectrum Λ(Ω) is a subset of the unit disc {ω ∈ C : |ω| ≤ 1}. On
the other hand, a nonnegative matrix Ω ∈ RN×N is stochastic if and only if 1N is an
eigenvector of Ω corresponding to the eigenvalue 1, i.e.

Ω1N = 1N . (B.18)

Furthermore, a nonnegative matrix Ω ∈ RN×N is doubly stochastic if and only if (B.18)
holds together with

1>NΩ = 1>N , (B.19)

namely 1N is also a left eigenvector.

Definition B.2.33 (Convergent and semi-convergent matrix).
Let Ω ∈ CN×N be a squared matrix and consider the limit

Ω∞ = lim
t→+∞

Ωt. (B.20)

Then matrix Ω is said semi-convergent if Ω∞ exists finite. Moreover, denoting with ZN
the N -dimensional squared matrix whose entries are all zeros, i.e. [ZN ]ij = 0 for all
i, j = 1, . . . , N − 1, if Ω∞ = ZN , then matrix Ω is said convergent.

Lemma B.2.34 (Relation between spectral radius and convergence).
For a squared matrix Ω ∈ CN×N , the following statements hold:

(i) Ω is convergent if and only if ρS(Ω) < 1;
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(ii) Ω is semi-convergent if and only if ρS(Ω) ≤ 1: either no eigenvalue has unit
modulus or if λΩ0 is an eigenvalue of Ω such that |λΩ0 | = 1, then it is semi-simple.

B.3 Elements of Graph Theory

In this third section of the appendix, several elements of Graph Theory, along with
their notation, are introduced in order to provide support to the most important aspect
characterizing the multi-agent system modeling throughout the overall chapters. All
the concepts can be found in Chung (1997); Goodrich and Tamassia (2011); Lee et al.
(2014); Marsden (2013); Mesbahi and Egerstedt (2010). A list of the most fundamental
definitions, assumptions and facts for Graph Theory concepts involved in this thesis
follows.

B.3.1 Basic notions of Graph Theory and hypotheses

Definition B.3.1 (Graph).
A graph is a way of representing relationships that exist between pairs of objects. That is,
a graph is a set of objects, called vertices, together with a collection of pairwise connections
between them. Abstractly, a graph G = (V, E) is simply a set V = {v1, . . . , vn} of n
vertices (or nodes) and a collection E = {e1, . . . , eE} ⊆ V × V of E pairs of vertices from
V, called edges (or arcs).

Definition B.3.2 (Simple graph).
A graph G = (V, E) is said to be simple if each edge ek ∈ E , k = 1, . . . , E, is associated to
one and only one pair of vertices eij = (vi, vj). In other words, if ek = eij belongs to E
then it is unique.

Assumption B.3.3.
Henceforward, every graph is assumed to be a simple graph with a finite number n of
vertices.

Definition B.3.4 (Edge orientation).
Whenever a pair of vertices eij = (vi, vj) ∈ V × V is ordered, with vi preceding vj , each
edge eij is oriented such that vertex vi is called origin and vertex vj is called destination.

Definition B.3.5 (Undirected graph).
A graph G = (V, E) is said undirected4 if each edge ek ∈ E , k = 1, . . . , E, does not possess
an orientation, namely eij = eji, for all i, j = 1, . . . , n.

Definition B.3.6 (Directed graph).
A graph Gd = (V, Ed) is said directed (or a digraph) if each edge ek ∈ Ed, k = 1, . . . , E,
possesses an orientation.

Definition B.3.7 (Oriented graph).
Any directed graph Go = (V, Eo) obtained by assigning an arbitrary orientation to each
edge belonging to an undirected graph G is said to be its oriented version (see Fig. B.4).

4With abuse of notation, both generic and undirected graphs are indicated by G = (V, E).
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Fact B.3.8 (Graph representation).
A graph G can be represented on a two-dimensional or three-dimensional space by means
of all its vertices and edges. As shown in Fig. B.4, a vertex can be depicted as a circle, a
dot or a sphere; an oriented edge can be depicted with an arrow going from its origin to
its destination; a non-oriented edge as well as a doubly oriented edge can be depicted as
a line or a double arrow.

G
1 2 3 4

5 6 7

(a) Undirected graph

Go

1 2 3 4

5 6 7

(b) Oriented digraph

Figure B.4. The digraph Go is obtained orienting the undirected graph G.

Definition B.3.9 (Self loop on a vertex).
For any graph G = (V, E), if edge eii belongs to E then eii is defined as the self loop
related to vertex vi.

Definition B.3.10 (Neighborhood of a vertex).
Let G = (V, E) be any graph. Given a vertex vi ∈ V, its neighborhood is defined as the
set Ni = {vj |eij ∈ E}. Each vertex vj ∈ Ni is said to be a neighbor of vi.

Definition B.3.11 (Adjacent vertices).
Two vertices vi and vj are said to adjacent if there exist an edge eij connecting them, i.e.
if vi and vj are neighbors.

Definition B.3.12 (Degree of a vertex).
For an undirected graph G = (V, E), each vertex vi ∈ V is characterized by the natural
quantity deg(vi) called degree and given by the cardinality of the corresponding neighbor-
hood Ni, such that deg(vi) = |Ni|. In other words, the degree of the i-th vertex deg(vi)
is equivalent to the number of neighbors of vertex vi. Furthermore, the minimum and
maximum degrees in G are denoted by dm = dm(G) and dM = dM (G), respectively.

Definition B.3.13 (Volume of an undirected graph).
The volume of an undirected graph G = (V, E) is defined as vol(G) =

∑n
i=1 deg(vi).

Lemma B.3.14 (Handshaking lemma).
If G is an undirected graph with E edges and without self loops, then it holds that

vol(G) = 2E (B.21)

Definition B.3.15 (Weighted graph).
Let W ∈ {Wv,We} be the set of weights, consisting of n vertex weights Wv ⊂ C and
E edge weights We ⊂ C. A weighted graph Gw = (V, E ,W) is, generally, a graph in
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which each vertex vi ∈ V is weighted by wvi ∈ Wv (vertex-weighted graph Gw = Gv),
i = 1, . . . , n or each edge ek ∈ E is weighted by wek ∈ We, k = 1, . . . , E (edge-weighted
graph Gw = Ge).

Assumption B.3.16.
Henceforward, weights of weighted graphs are assumed to be real and non-negative.
Therefore, by convention, |vi| = wvi and |ek| = wek are set for all i = 1, . . . , n, for all
wek ∈ We. Moreover, whenever sets Wv and We are not specified, their weights are equal
to the unit.

Definition B.3.17 (Weighted quantities for undirected graphs).
For an undirected weighted graph Gw = (V, E ,W), the following definitions are considered:

• vertex-degree degv(vi) = |vi|deg(vi);

• edge-degree dege(vi) =
∑deg(vi)
j=1 |eij |;

• weighted-degree degw(vi) = degv(vi) or degw(vi) = dege(vi), specified by the
context;

• weighted volume volw(Gw) =
∑n
i=1 degw(vi).

Definition B.3.18 (Subgraph).
A subgraph GS = (VS , ES) ⊆ (V, E) is another graph of nS = |VS | vertices formed by a
subset of the vertices and edges of a given graph G = (V, E).

Definition B.3.19 (Subgraph complement).
The complement GS = (VS , ES) of a given subgraph GS ⊆ G is defined such that GS∪GS =
G and GS ∩ GS = ∅ hold. As a consequence, the number of vertices nS = |VS | in GS is
such that nS + nS = n.

Definition B.3.20 (Cut of a graph).
Given a subgraph GS and its complement GS , the cut of graph G is defined as the set
∂ES = ∂ES =

{
(vi, vj) | vi ∈ VS & vj ∈ VS

}
⊆ E .

Definition B.3.21 (Cut ratio).
The cut ratio of a vertex-weighted graph Gv partitioned into two subgraphs GS and GS is
defined as hChG (GS) = |∂ES |/min(

∑
vi∈VS |vi|,

∑
vi∈VS

|vi|).

Definition B.3.22 (Conductance of a cut).
The conductance of a vertex-weighted graph Gv partitioned into two subgraphs GS and
GS is defined as hConG (GS) = |∂ES |/min(volv(GS), volv(GS)).

Definition B.3.23 (Bipartition of a cut).
The bipartition for a vertex-weighted graph Gv partitioned into two subgraphs GS and
GS is defined as hG(GS) = |∂ES |/volv(GS) + |∂ES |/volv(GS).

Definition B.3.24 (Cheeger isoperimetric constant of a graph).
The Cheeger isoperimetric constant of a graph Gv is defined as hChG = min

VS⊆V
hChG (GS).

Definition B.3.25 (Conductance of a graph).
The conductance of a graph Gv is defined as hConG = min

VS⊆V
hConG (GS).
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Definition B.3.26 (Bipartition constant of a graph).
The bipartition constant of a graph Gv is defined as hG = min

VS⊆V
hG(GS).

Definition B.3.27 (Adjacent edges).
Two edges (eik, ekj) are said to be adjacent if they share a common vertex vk, i.e. vk is
adjacent to both vi and vj .

Definition B.3.28 (Walk, vertex sequence of a walk).
Given an integer5 L, a walk π̄k0kL from vertex vk0 to vertex vkL is defined as the ordered
sequence π̄k0kL = {ek0k1 , ek1k2 , . . . , ekL−2kL−1 , ekL−1kL}, in which two consecutive elements
are adjacent edges. The ordered sequence {vki}Li=0 is called vertex sequence of the walk.
For L = 0, the walk π̄k0k0 = ∅ is degenerate and v0 is the only vertex belonging to the
associated vertex sequence.

Definition B.3.29 (Path).
A path πij from vertex vi to vertex vj 6= vi is defined as walk from vi to vj in which all
the vertices belonging to the associated vertex sequence are distinct.

Definition B.3.30 (Length (of a walk or a path)).
The length `(·) of a walk or a path is a function that maps a walk or a path into the
number of edges L belonging to the edge sequence that define them. The weighted version
`W (·) of the length is defined as the summation of the edge weights for each element in a
walk or a path.

Definition B.3.31 (Shortest path).
A shortest path between vertices vi and vj is a path π?ij such that its length `(π?ij) is
minimum among all the possible paths between the ending nodes vi and vj .

Definition B.3.32 (Distance).
The distance dist(vi, vj) between any two vertices (vi, vj) in a graph is the length `(π?ij)
of any shortest path π?ij having the two vertices (vi, vj) as its endpoints.

Definition B.3.33 (Diameter).
The diameter of a connected graph G is the maximum distance of a shortest path and is
given by

φ(G) = max
vj∈V

max
vi∈V

`(π?ij). (B.22)

Definition B.3.34 (Radius).
The radius r(G) of a connected graph G is the minimum among all the maximum distances
between a vertex vi to all other vertices, that is

r(G) = min
vj∈V

max
vi∈V

`(π?ij). (B.23)

Definition B.3.35 (Connected and strongly connected graph).
A connected graph G is one in which each pair of distinct vertices forms the endpoints of
a path. Higher forms of connectivity include strong connectivity in directed graphs: for
each two vertices there are paths from one to the other in both directions.

5L may be infinite.
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Definition B.3.36 (Connected component of a graph).
A connected component of a graph G is any maximal connected subgraph belonging to G.

Definition B.3.37 (Circuit).
A circuit is a walk in which its first and last vertices belonging to the associated vertex
sequence coincide.

Definition B.3.38 (Cycle).
A cycle is a circuit in which the only repeated vertices in the associated vertex sequence
are the first and the last vertices.

Definition B.3.39 (Girth).
The girth of a graph G is the length g of a shortest cycle contained in G.

Definition B.3.40 (Acyclic graph).
A graph G is said acyclic if it does not have any cycle.

Definition B.3.41 (Tree and root).
A tree is an undirected graph that is both connected and acyclic, or a directed graph in
which there exists a unique path from one vertex (the root of the tree) to all remaining
vertices.

Definition B.3.42 (Spanning subgraph).
A subgraph GS ⊆ G is spanning when it includes all of the vertices of the given graph G.

Definition B.3.43 (Spanning tree).
A spanning tree is a spanning subgraph that is also a tree.

B.3.2 Algebraic entities and properties related to graphs

Definition B.3.44 (Adjacency matrix).
The adjacency matrix A ∈ Rn×n of a graph G with n vertices is defined as [A]ij = 1 if
eij ∈ E (i.e., vi and vj are neighbors); [A]ij = 0 otherwise.

Definition B.3.45 (Degree matrix).
The degree matrix D ∈ Rn×n of a graph G with n vertices is defined as [D]ii = deg(vi);
[D]ij = 0 for all i 6= j.

Lemma B.3.46 (Number of paths between two vertices).
Let G be any graph with adjacency matrix A = (V, E). The number of paths from vertex
vi ∈ V to vertex vj ∈ V of length κ ∈ N is [Aκ]ij, if i 6= j. Otherwise, [Aκ]ii provides the
number of fundamental cycles of length κ passing through vi.

Definition B.3.47 (Laplacian matrix).
The adjacency matrix L ∈ Rn×n of a graph G with n vertices is defined as L = D−A.

Definition B.3.48 (Incidence matrix).
The incidence matrix E ∈ Rn×E of a graph G with n vertices and E edges is defined
as [E]ij = −1 if the j-th edge sinks at node i; [E]ij = 1 if the j-th edge leaves node i;
[E]ij = 0 otherwise.
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Proposition B.3.49 (Relation between Laplacian and incidence matrices).
Let L be the Laplacian matrix associated to an undirected graph G. Then L is symmetric,
positive semi-definite and it can equivalently defined as L = EE>, considering the
incidence matrix E of the oriented graph Go, in case G be undirected.

Theorem B.3.50 (First eigenvalue and eigenvector of the Laplacian Matrix).
Let 1n ∈ Rn be the vector whose component are all equal to 1. A Laplacian L ∈ Rn×n

associated to any graph G satisfies the following equality

L1n = 01n. (B.24)

In other words, the λL
0 = 0 is the first eigenvalue of L and $L

0 = 1n is its correspondent
eigenvector.

Theorem B.3.51 (Number of connected components of a graph).
Let 0 = λL

0 ≤ . . . ≤ λL
n−1 be the eigenvalues of a Laplacian matrix L associated to an

undirected graph G. Then 0 is an eigenvalue of L and its multiplicity cG > 0 corresponds
with the number of connected components in G, namely

λL
i = 0, for i = 1, . . . , cG . (B.25)

Definition B.3.52 (Algebraic connectivity).
For undirected graph G, the algebraic connectivity is defined as the second eigenvalue λL

1
of the Laplacian matrix L associated to G.

Theorem B.3.53 (Connectedness of a graph).
Let L be the Laplacian matrix of an undirected graph G. Then G is connected if and only
if λL

1 > 0. This quantity provides a measure of the connectedness of G, being 0 if and
only if G is not connected.

Definition B.3.54 (Normalized Laplacian matrix).
The normalized Laplacian matrix L ∈ Rn×n of a graph G is defined as L = D−1/2LD−1/2.

Definition B.3.55 (Randić matrix).
The Randić matrix RRR ∈ Rn×n of a graph G is defined as RRR = D−1/2AD−1/2.

Theorem B.3.56 (Cheeger’s inequalities).
Let G be an undirected graph. Two Cheeger’s inequalities can be derived using the concepts
provided so far:

(hChG )2/(2dM (G)) ≤ λL
1 ≤ 2hChG (B.26)

h2
G/8 ≤ (hConG )2/2 ≤ λL

1 ≤ 2hConG ≤ 2hG (B.27)

Similar inequalities hold whenever G is vertex-weighted just considering a weighted version
of the Laplacian and normalized Laplacian matrices (i.e., by defining degree matrices in
which the diagonal entries are the weights for vertices).

Theorem B.3.57 (Kirchhoff’s matrix tree theorem).
Let t(G) be the number of spanning tree in the connected and undirected graph G with n
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vertices and let L be the corresponding Laplacian matrix of G. Then one has

t(G) = 1
n

n−1∏
i=1

λL
i . (B.28)

B.3.3 Fundamental classes of undirected graphs and their characterization

Definition B.3.58 (Path graph).
A path graph is a graph Pn = (V, E) in which, up to a permutation of the indexes, the
set of edges E coincides with path πij from vertex vi to vertex vj and the set of vertices
V coincides with the vertex sequence associated to πij . Fig. B.5(a) shows a cycle graph.

Definition B.3.59 (Cycle graph).
A cycle graph or circular graph is a graph that consists of a single cycle, or in other words,
some number of vertices (at least 3) arranged in a path graph in which one additional
edge is inserted to connect the two nodes with degree 1. The cycle graph with n vertices
is called Cn(1, 1). Fig. B.5(b) shows a cycle graph.

Definition B.3.60 (Complete graph).
A complete graph is a graph in which every pair of distinct vertices is connected by an
edge. The complete graph with n vertices is called Kn. Fig. B.5(c) shows a complete
graph.

Proposition B.3.61 (Maximum number of edges in an undirected graph).
The complete graph Kn has the maximum number E of edges among all the undirected
graphs with n and it holds that E = n(n− 1)/2.

Definition B.3.62 (Density of an undirected graph).
The density of an undirected graph G with n vertices is defined as the real quantity
dens(G) = vol(G)/(n(n− 1)) ∈ [0, 1].

Definition B.3.63 (Dense and sparse undirected graphs).
Let εD be a real number in the interval [0, 1). An undirected graph G is said to be dense
if dens(G) > εD or sparse if dens(G) ≤ εD. If not specified by the context, it is generally
assumed εD = 0.5.

Definition B.3.64 (Bipartite graph).
A bipartite graph is a graph whose vertices can be divided into two disjoint and independent
sets V1 and V2 such that every edge connects a vertex in V1 to one in V2. Fig. B.4(a)
and Fig. B.5(b) show two bipartite graphs.

Definition B.3.65 (Regular graph).
A d-regular graph is a graph in which all the vertices have the same common degree d,
i.e. deg(vi) = d = deg(vj), for all vi, vj ∈ V.

Lemma B.3.66 (Spectral properties of the normalized Laplacian matrix).
For an undirected graph G on n vertices, it holds that
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1 2 3 4

(a) Path graph P4

1

2 3

4

(b) Cycle graph Cn(1, 1)

1

2 3

4

(c) Complete graph K4

Figure B.5. Different classes of graphs with n = 4 vertices. Setting εD = 0.5, (a) can be
considered sparse and, on the contrary, (b) and (c) dense. (b) is 2-regular and
bipartite. (c) is 3-regular and possesses the maximum number of edges max

|V|=4
E = 6

for an undirected graph with 4 vertices.

(i)
n∑
i=1

λL
i ≤ n (B.29)

with equality holding if and only if G has no isolated vertices.

(ii) For n ≥ 2,
λL

1 ≤
n

n− 1 (B.30)

with equality holding if and only if G is the complete graph on n vertices. Also, for
a graph G without isolated vertices, one has

λL
n−1 ≥

n

n− 1 . (B.31)

(iii) For a graph which is not a complete graph, one has λL
1 ≤ 1.

(iv) If G is connected, then λL
1 > 0. If λL

i = 0 and λL
i+1 6= 0, then G has exactly i+ 1

connected components.

(v) For all i ≤ n− 1, one has
λL
i ≤ 2 (B.32)

with λL
n−1 = 2 if and only if a connected component of G is bipartite and non-trivial.

(vi) The spectrum of a graph is the union of the spectra of its connected components.

B.4 Elements of Rigidity Theory

In this fourth section of the appendix, some basic notions about Graph Rigidity are
introduced to provide support to the online distributed control law devised for the
formation tracking in Chap. 4. Graph Rigidity is the study of formation graphs for which
the only permissible motions, while maintaining proper edge distances, are rigid motions.
Graphs that satisfy these properties are promising candidates for specifying formations
in that they describe the formation shape using only inter-agent distance specifications.
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For a detailed treatise on this, the reader is addressed to Mesbahi and Egerstedt (2010);
Oh et al. (2015); Zhao and Zelazo (2016).

Definition B.4.1 (Framework).
A framework is classically defined as a couple (G,p) where

• G = (V, E) is the formation graph6 with n vertices and E edges;

• p is a collection of absolute positions, such that p =
[
p>1 · · · p>n

]>
, where the

i-th position pi belongs to the M -dimensional Euclidean space RM .

More generally, a framework can be composed of other spacial quantities, e.g. framework
(G, ṗ) considers absolute velocities ṗ =

[
ṗ>1 · · · ṗ>n

]>
instead of absolute positions.

Definition B.4.2 (Equivalent frameworks).
Two frameworks (G,p) and (G,p′) are equivalent if ‖pi − pj‖2 = ‖p′i − p′j‖2 for all the
edges eij ∈ E .

Definition B.4.3 (Congruent frameworks).
Two frameworks (G,p) and (G,p′) are congruent if ‖pi − pj‖2 = ‖p′i − p′j‖2 for all the
couple of nodes (vi, vj) ∈ V × V.

Definition B.4.4 (Globally rigid framework).
A framework (G,p) is globally rigid if every framework that is equivalent to (G,p) is also
congruent to (G,p).

Definition B.4.5 (Rigid framework).
A framework (G,p) is rigid if there exists ε > 0 such that every framework (G,p′) that is
equivalent to (G,p) and satisfies ‖pi − p′i‖2 < ε for all vi ∈ V, is congruent to (G,p).

Proposition B.4.6 (Global rigidity and rigidity).
Global rigidity implies rigidity, but the converse is not true.

Definition B.4.7 (Displacement vector, global displacement vector).
The displacement vector between the i-th and j-th agent positions is defined as eij =
pi − pj ∈ RM . The global displacement vector e is defined as the collection of all
displacement vectors, namely e =

[
e>1 · · · e>E

]>
.

Proposition B.4.8 (Relation between displacement and absolute measurements).
The displacement vectors e =

[
e>1 · · · e>E

]>
are linked to absolute measurements through

the following relation:

e = (E> ⊗ IM )
[
p>1 · · · p>n

]>
= (E> ⊗ IM )p. (B.33)

Definition B.4.9 (Rigidity function).
Let E ∈ RN×E be the incidence matrix associated to the graph of a framework (G,p),
such that N = Mn can be seen as the degrees of freedom for the underlying framework.

6To the purposes of this thesis G is undirected but this assumption can easily be relaxed for a more
general context.
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With the same ordering for the edges of E assigned to the columns of E, the rigidity
function rG : RN → RE associated to the framework (G,p) is defined as

rG(p) = 1
2
[
· · · e>ijeij · · ·

]>
, ∀eij ∈ E . (B.34)

Definition B.4.10 (Rigidity matrix).
One useful tool to characterize the rigidity property of a framework is the rigidity matrix
R ∈ RE×N , which is defined as the Jacobian of the rigidity function w.r.t. the spacial
quantity considered in the relative framework. In formulas, the rigidity matrix for
framework a (G,p) is yielded by

R (p) = ∂rG(p)
∂p . (B.35)

Definition B.4.11 (Diagonal edge operator).
The diagonal edge operator DiagE is defined as the operator DiagE : RE → RE×N : e 7→
DiagE

{
e>ij
}
that maps the set of displacement vectors e>ij ordered as in (B.34) into a

diagonal matrix of dimensions E ×N , such that its k-th diagonal element of dimensions
1×M is exactly given by the k-th displacement vector, for k = 1, . . . , E.

Lemma B.4.12 (Decomposition of the rigidity matrix).
The rigidity matrix can be factorized into the product

R (p) = DiagE
{
e>ij
}(

E> ⊗ IM
)

(B.36)

in which the topological part described by the graph and the dimension of the space is
decoupled from the displacement measurements.

Definition B.4.13 (Infinitesimally rigid framework).
A framework (G,p) is infinitesimally rigid in a M -dimensional space with N degrees of
freedom if

rank(R(p)) = N −M(M + 1)/2. (B.37)

In other works, a framework is infinitesimally rigid if every infinitesimal motion is trivial
(e.g. translations, rotations).

Proposition B.4.14 (Infinitesimal rigidity and rigidity).
Infinitesimal rigidity implies rigidity, but the converse is not true.

Remark B.4.15.
Specifically, the framework (G,p) with n points is infinitesimally rigid in R2 (resp. R3)
if and only if rank(R(p)) = 2n− 3 (resp. rank(R(p)) = 3n− 6). Obviously, in order
to have at least 2n − 3 (resp. 3n − 6) edges in R2 (resp. R3). If the framework is
infinitesimally rigid in R2 (resp. R3) and has exactly 2n− 3 (resp. 3n− 6) edges, then it
is called a minimally infinitesimally rigid framework and it is defined as follows.

Definition B.4.16 (Minimally rigid framework).
A minimally rigid framework is a rigid framework (G,p) such that the removal of any
edge in G results in a nonrigid framework.
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Lemma B.4.17 (Identification of minimally rigid frameworks).
If the framework (G,p) is minimally and infinitesimally rigid in the M -dimensional space,
then the matrix R(p)R(p)> is positive definite.

Example B.4.18 (Categories of ridigity).
Fig. B.6 illustrates some differences between the rigidity categories discussed so far.

1

2 3

4

(a) (Globally) rigid

1

2 3

4

(b) Minimally and infinitesimally
rigid (not globally rigid)

1

2 3

4

(c) Not rigid

Figure B.6. Various rigidity aspects for different configurations of a graph with 4 nodes describ-
ing a squared shape in R2.

B.5 Elements of Calculus of Variations

In this fifth and last section of the appendix, some basic notions for the Calculus of
Variations (CV) are introduced to classify how the online distributed control law in Chap.
4 has been devised and illustrate the deep roots in which the numerical optimization
framework PRONTO is based on. For further details, see also Van Brunt (2004); Vinter
(2010).

Definition B.5.1 (Functional).
A functional is a law or application h that associates every element x ∈ X ⊆ X̄ to a real
number.

Example B.5.2 (Mean of a function).
Let X̄ be the set of real valued functions, such that a function x : R → R is an element
of X ⊂ X̄. The average value h̄ of a function x on the interval [ω0, ω1] ⊂ R

h̄(x) = 1
ω1 − ω0

∫ ω1

ω0
x(ω)dω (B.38)

is a functional.

Definition B.5.3 (Variation of an element).
The variation δx of an element x ∈ X ⊆ X̄ is defined as the collection of the variations
for all its components δxi, such that δx = (δx1, δx2, . . .) is arbitrary chosen in X̄.

Remark B.5.4.
The variation δxi of the i-th component is specified from the field of application, e.g. if
X̄ = RM then δx is an arbitrary vector in RM .
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Definition B.5.5 (Gateaux differential and Gateaux differentiability).
Let ϑ be a real number chosen in a neighborhood of the origin. The Gateaux differential
δh(x, δx) of functional h w.r.t. (x, δx) is defined as

δh(x, δx) = lim
ϑ→0

h(x + ϑδx)− h(x)
ϑ

= d

dϑ
h(x + ϑδx)

∣∣∣∣
ϑ=0

(B.39)

If the limit in (B.39) exists for all δx ∈ X̄, then h is said Gateaux differetiable at x.

Remark B.5.6.
The Gateaux differential extends the concept of differential in a generalized domain
X ⊂ X̄ starting from the idea of directional derivative of a real function. This means
that the Gateaux differential may not exist in some pathological cases similar to the
situations where all the directional derivatives of a real function are well-defined but its
differential does not exist.

Definition B.5.7 (Fréchet differentiability).
Let X̄ and Y be normed vector spaces such that 0X̄ is the identity element of X̄, assuming
that x ∈ X ⊆ X̄ is such that functional h is an application from X to Y . If there exists
a bounded linear operator Y : X̄ → Y satisfying

‖h(x + δx)− h(x)− Yδx‖Y
‖δx‖X̄

= 0, as ‖δx‖X̄ → 0X̄ (B.40)

then h is said Fréchet differentiable at x.

Remark B.5.8.
The definition of Fréchet differentiability represents the starting point to extend the
concept of differential for a real function. Indeed, the Fréchet differentiability transfers the
gist of best linear approximation to the domain of functionals. However, the framework
in which the Fréchet differentiation is defined is less general than that of Gateaux
differentiation, since a metric and the existence of a bounded linear operator are required
in the former.

Definition B.5.9 (Fréchet differential).
If a functional h is Fréchet differentiable at x then the bounded linear operator Y defines
the best linear approximation Yδx for h, i.e. its Fréchet differential. This is also denoted
with Yδx = Dx · δx.

Proposition B.5.10 (Relation between Gateaux and Fréchet differentiability).
If h is Fréchet differentiable at x, it is also Gateaux differentiable there, and δh(x, δx) is
just the linear operator Dx applied on δx.

Definition B.5.11 (Variation of a functional).
The variation δh(x, δx) of a functional h relative to the variation δx can be defined using
either the Gateaux differential in B.39 or the Fréchet differential in Def. B.5.9. Also,
δh(x, δx) is called Gateaux (or Fréchet) derivative of h.

Definition B.5.12 (Generalized integral action).
Let h2κ : X(ω0, ω1)→ R be a functional of the form

h2κ = h

(
x, dx
dω
, . . . ,

dκx
dωκ

)
=
∫ ω1

ω0
l

(
x(ω), dx(ω)

dω
, . . . ,

dκx(ω)
dωκ

, ω

)
dω (B.41)
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where X(ω0, ω1) contains the real valued function x : R → Ω ⊆ RM × · · · × RM︸ ︷︷ ︸
n times

, and

its derivatives up to the order κ ≥ 0, and such that l : R(κ+1)nM+1 → R be a (regular)

function in its variables. Let us also assume that values d
jx(ω0)
dωj

and djx(ω1)
dωj

are fixed
and given for j = 0, 1, . . . , κ. Functional h2κ in B.41 is called generalized integral action
of order 2κ.

Remark B.5.13.
The second order integral action h2 is a well-known functional studied in Mechanics, since
it represents the Hamiltonian action, defined as the definite integral of the Lagrangian.

Proposition B.5.14 (Variation of the generalized integral action).
The variation δh2κ of the generalized integral action h2κ is given by

δh2κ =
κ∑
j=0

∫ ω1

ω0

n∑
i=1

(−1)j d
j

dωj
∂l(x,x(1), . . . ,x(κ), ω)

∂x(j)
i

· δx(j)
i dω. (B.42)

Definition B.5.15 (Stationary functional).
A functional h on X(ω0,ω1) with fixed7 extrema ω0,ω1 ∈ Ω, is said to be stationary at
x̄ ∈ X(ω0,ω1) if, for any variation δx ∈ X̄, the following condition holds:

δh(x̄, δx) = 0. (B.43)

Equation (B.43) is also known as first-order necessary optimality condition.

Lemma B.5.16 (Generalization of the Euler-Lagrange equations).
Let us considering the functional h2κ in Def. B.5.12. Necessary and sufficient condition
for x̄ ∈ X(ω0, ω1) to be stationary point of h2κ is that the following system of differential
equations be satisfied:

κ∑
j=0

(−1)j d
j

dωj
∂l(x,x(1), . . . ,x(κ), ω)

∂x(j)
i

= 0M , for i = 1, . . . , n. (B.44)

Expressions in (B.44) are called generalized Euler-Lagrange equations.

Remark B.5.17.
Lemma B.5.16 gives information on the stationarity of a functional of the type h2κ and
represents a first-order necessary optimality condition to be satisfied in order to minimize
or maximize h2κ. There exist second-order necessary and sufficient optimality conditions
to satisfy with the purpose to explore the nature of the stationary points for h2κ.

7This generally implies that δx(ωi) = 0X̄ for i = 1, 2.
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