
Department of Information Engineering

PhD final exam for the 32nd cycle

Distributed Optimization Strategies
for Mobile Multi-Agent Systems

Ph.D. candidate: Marco Fabris
Supervisor: Prof. Angelo Cenedese

Mar 16th, 2020



Multi-agent systems (MASs)
A MAS is a set of agents situated in a common environment, eventually,
building or participating to an organization.

Questions and motivations:

How to solve tasks that are
arduous for the individual?

How do network components
interact within a network?

How does the network
architecture influence the global
behavior of the system?

Distinctive features: autonomy, scalability, security, robustness to failure.

2 of 52



Multi-agent systems (MASs)
A MAS is a set of agents situated in a common environment, eventually,
building or participating to an organization.

Questions and motivations:

How to solve tasks that are
arduous for the individual?

How do network components
interact within a network?

How does the network
architecture influence the global
behavior of the system?

Distinctive features: autonomy, scalability, security, robustness to failure.

2 of 52



Multi-agent systems (MASs)
A MAS is a set of agents situated in a common environment, eventually,
building or participating to an organization.

Questions and motivations:

How to solve tasks that are
arduous for the individual?

How do network components
interact within a network?

How does the network
architecture influence the global
behavior of the system?

Distinctive features: autonomy, scalability, security, robustness to failure.
2 of 52



Outline

1 Overview on my reasearch activity

2 Research thrust (i): Distributed strategies for coverage and
focus on event with limited sensing capabilities

3 Research thrust (ii): Optimal time-invariant formation control

4 Research thrust (iii): Distributed estimation from relative
measurements

5 Research thrust (iv): Algebraic characterization of certain
circulant networks
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Research thrusts (RTs) & applications

i Distributed strategies for
coverage and focus on
event with limited
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ii Optimal time-invariant
formation control

iii Distributed estimation from
relative measurements

iii Algebraic characterization of
certain circulant networks
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Networked optimization for MASs: common thread
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Methods and methodologies

Analysis and synthesis of feedback systems: design of feedback
control laws, sensitivity analysis to parameter variations, fulfillment of
optimality principles.

Graph-based motion planning and clustering: greedy algorithms
for navigation, edge expansion techniques for partitioning.

Iterative methods for optimization: descent algorithms,
approaches for convex optimization.

Swarm-robotic-oriented strategies: geometrical policies for mobile
robotics, employ of topological tools.

+−

CONTROLLER PLANT

outref err in

CONTROLLER PLANT

outref in

(a)

(b)

G

GS GS

1

2

3

4

5

6

7

7 of 52



Methods and methodologies

Analysis and synthesis of feedback systems: design of feedback
control laws, sensitivity analysis to parameter variations, fulfillment of
optimality principles.

Graph-based motion planning and clustering: greedy algorithms
for navigation, edge expansion techniques for partitioning.

Iterative methods for optimization: descent algorithms,
approaches for convex optimization.

Swarm-robotic-oriented strategies: geometrical policies for mobile
robotics, employ of topological tools.

+−

CONTROLLER PLANT

outref err in

CONTROLLER PLANT

outref in

(a)

(b)

G

GS GS

1

2

3

4

5

6

7

7 of 52



Methods and methodologies

Analysis and synthesis of feedback systems: design of feedback
control laws, sensitivity analysis to parameter variations, fulfillment of
optimality principles.

Graph-based motion planning and clustering: greedy algorithms
for navigation, edge expansion techniques for partitioning.

Iterative methods for optimization: descent algorithms,
approaches for convex optimization.

Swarm-robotic-oriented strategies: geometrical policies for mobile
robotics, employ of topological tools.

+−

CONTROLLER PLANT

outref err in

CONTROLLER PLANT

outref in

(a)

(b)

G

GS GS

1

2

3

4

5

6

7

7 of 52



Methods and methodologies

Analysis and synthesis of feedback systems: design of feedback
control laws, sensitivity analysis to parameter variations, fulfillment of
optimality principles.

Graph-based motion planning and clustering: greedy algorithms
for navigation, edge expansion techniques for partitioning.

Iterative methods for optimization: descent algorithms,
approaches for convex optimization.

Swarm-robotic-oriented strategies: geometrical policies for mobile
robotics, employ of topological tools.

+−

CONTROLLER PLANT

outref err in

CONTROLLER PLANT

outref in

(a)

(b)

G

GS GS

1

2

3

4

5

6

7

7 of 52



Overall contribution of the thesis

formalization of problems having practical consequences in the
advancement in the field of MASs

development of novel analysis and design tools and
enrichment of existing mathematical methods

application of optimization-based strategies to achieve
required specifications, drawing inspiration from current
literature

proofs of theoretical statements settled in this framework

virtual implementation and numerical simulation of the
devised techniques to assess case studies
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Distributed strategies for coverage and focus

on event with limited sensing capabilities
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Contributions

• Design and test of a distributed multi-agent algorithm;
• 3 tasks to be consecutively accomplished in a given unknown scenario:

simply-connected, as we demonstrate through experimental
results in complex, indoor environments with obstacles.

We adopt a simplicial complex representation (in par-
ticular, a Rips complex) as the richer and more formal
description of the sensor coverage, without using metric
information, to solve the problem of deployment of robots
in an unknown environment without global localization.
The robots only have onboard sensors to measure bearings
to neighboring robots in their local coordinates and touch
sensors for collision avoidance. Such limited sensing data
essentially allows deployment of robots in a dark room, with
the robots using their camera to identify their neighbors by
illuminated (LED) markers on each other. Since our approach
is fundamentally topological, the proposed method is highly
robust to sensor noise. We attain complete sensor coverage
of the entire finite environment assuming sufficient number
of available robots, along with guarantees on coverage,
exploration and a notion of local optimality.
B. Problem Description

We consider the problem of efficiently exploring an un-
known indoor environment with a rapidly expanding swarm
of robots with limited and noisy local sensing with no global
localization or sensing capabilities. In particular, the only
sensory capabilities that we assume on each robot are those
of an omni-directional camera with a limited radial range
of vision and a touch sensor to detect contact/collision with
obstacles and other robots. We call the disk around a robot,
representing a sensing radius of the omni-directional camera,
the robot’s disk of visibility, within which the bearing to
the neighboring robots and their identities can be detected.
However, the camera does not provide a range measurement
due to projection of the spacial world on to the camera plane.
Thus, obstacles are detected through touch sensors near the
base of the robots, and cannot be detected using the camera.
The robots can also communicate with each other and with
a central router through wireless communication. The robots
are assumed to holonomic (i.e. can be driven in arbitrary
direction). We assume that there are sufficiently large number
of robots available, which are being deployed from one or
multiple sources (e.g. entrance to an environment).

The contribution of this paper is to design a distributable
control algorithm for the robots such that they deploy them-
selves to attain hole-less coverage of the entire environment
using their disks of visibility. That means, at least one
robot should be able to see each and every point in the
environment after the coverage is attained. However, the only
information that they have are the bearing to their neighbors
in their respective local coordinate frames and a directional
touch information with obstacles. This means that there is
absolutely no metric information available.

II. PRELIMINARIES
A. Notations

We denote by W ⊂ R2 the obstacle-free region where the
robots are being deployed and the sensor coverage of which
needs to be attained. If there are n robots deployed in W ,
we assign IDs to them, 1, 2, · · · , n, and represent their joint
configuration by X = [x1, x2, · · · , xn], xi ∈W .

Hole

Fig. 1. Illustration of a swarm of robots entering an environment and
attaining coverage. The hole shown on the right figure is something we
would like to avoid.

A robot, i, can measure the bearing to a neighbor, j ∈ Ni,
in its local coordinates, where Ni = {j | ‖xi−xj‖ ≤ rv} are
the neighbors of i. We call this measurement θij ∈ [−π, π).
If it measures the bearing to another robot, k as θik, then we
define θijk =

(
(θik − θij) mod 2π

)
−π — i.e., the bearing

to k relative to the bearing to j (and the angle converted to
a value in [−π, π)).

B. Vietoris–Rips Complex of Camera Sensing Footprints

We do not assume that the robots can localize themselves
and the only way of sensing/identifying neighbors is by
using the camera. Thus, if the disks of visibility of two
robots merely overlap, there is no way of detecting that fact
(Figure 2(a)). We need to use a stronger notion of overlap
— two robots know that their disks of visibility overlap if
and only if they are in each other’s disks of visibility and
their line of sight is not blocked (Figure 2(b)).

1 2

(a) Robots can’t see each other,
and hence have no way of de-
tecting that their disks of visi-
bility overlap.

1 2

(b) Robots can see each other, and
hence know that their disks of vis-
ibility overlap. Visibility is repre-
sented by the dotted magenta line.

Fig. 2. Detection of overlap of disks of visibility using only local visibility-
based sensing.

We can thus consider a simplicial complex [17] repre-
sentation of the free space that the camera footprints cover.
The description of the abstract simplicial complex goes as
follows (Figure 3): We add one 0-simplex to the complex for
every deployed robot in the environment (the 0-simplices are
identified by the robot IDs). A 1-simplex is added between
two 0-simplices if the corresponding robots are in each
other’s disk of visibility (i.e., are within distance of rv from
each other) and can see each other. A 2-simplex is added
to the complex for every 3-tuple of robots that can all see
each other (and hence their disks of visibility has a non-
empty intersection). We do not construct any 3 or higher
dimensional simplices since on a planar environment with
obstacles, we are only concerned with the H1 homology.
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Fig. 3. Nine robots, their disks of visibility and the corresponding abstract
simplicial complex, Rrv .
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1 Robotic coverage resorting to bearing measurements only

2 Cluster selection of a group of agents to perform the detection of
an event

3 Agents’ dispatch towards the detected event
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Assumptions & models 1/2
Models are partly inspired and borrowed by the those used in
[Kumar et al., “Sensor Coverage Robot Swarms Using Local Sensing without Metric Information”, ICRA, Seattle, WA, 2015]
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direction). We assume that there are sufficiently large number
of robots available, which are being deployed from one or
multiple sources (e.g. entrance to an environment).

The contribution of this paper is to design a distributable
control algorithm for the robots such that they deploy them-
selves to attain hole-less coverage of the entire environment
using their disks of visibility. That means, at least one
robot should be able to see each and every point in the
environment after the coverage is attained. However, the only
information that they have are the bearing to their neighbors
in their respective local coordinate frames and a directional
touch information with obstacles. This means that there is
absolutely no metric information available.

II. PRELIMINARIES
A. Notations

We denote by W ⊂ R2 the obstacle-free region where the
robots are being deployed and the sensor coverage of which
needs to be attained. If there are n robots deployed in W ,
we assign IDs to them, 1, 2, · · · , n, and represent their joint
configuration by X = [x1, x2, · · · , xn], xi ∈W .

Hole

Fig. 1. Illustration of a swarm of robots entering an environment and
attaining coverage. The hole shown on the right figure is something we
would like to avoid.

A robot, i, can measure the bearing to a neighbor, j ∈ Ni,
in its local coordinates, where Ni = {j | ‖xi−xj‖ ≤ rv} are
the neighbors of i. We call this measurement θij ∈ [−π, π).
If it measures the bearing to another robot, k as θik, then we
define θijk =

(
(θik − θij) mod 2π

)
−π — i.e., the bearing

to k relative to the bearing to j (and the angle converted to
a value in [−π, π)).

B. Vietoris–Rips Complex of Camera Sensing Footprints

We do not assume that the robots can localize themselves
and the only way of sensing/identifying neighbors is by
using the camera. Thus, if the disks of visibility of two
robots merely overlap, there is no way of detecting that fact
(Figure 2(a)). We need to use a stronger notion of overlap
— two robots know that their disks of visibility overlap if
and only if they are in each other’s disks of visibility and
their line of sight is not blocked (Figure 2(b)).

1 2

(a) Robots can’t see each other,
and hence have no way of de-
tecting that their disks of visi-
bility overlap.

1 2

(b) Robots can see each other, and
hence know that their disks of vis-
ibility overlap. Visibility is repre-
sented by the dotted magenta line.

Fig. 2. Detection of overlap of disks of visibility using only local visibility-
based sensing.

We can thus consider a simplicial complex [17] repre-
sentation of the free space that the camera footprints cover.
The description of the abstract simplicial complex goes as
follows (Figure 3): We add one 0-simplex to the complex for
every deployed robot in the environment (the 0-simplices are
identified by the robot IDs). A 1-simplex is added between
two 0-simplices if the corresponding robots are in each
other’s disk of visibility (i.e., are within distance of rv from
each other) and can see each other. A 2-simplex is added
to the complex for every 3-tuple of robots that can all see
each other (and hence their disks of visibility has a non-
empty intersection). We do not construct any 3 or higher
dimensional simplices since on a planar environment with
obstacles, we are only concerned with the H1 homology.
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Fig. 3. Nine robots, their disks of visibility and the corresponding abstract
simplicial complex, Rrv .
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This simplicial complex is, by definition, the Vietoris-
Rips complex [11] (or simply the Rips complex) on the
set of robots (constructed up to dimension 2 – i.e., we
do not construct the 3 and higher simplices), with distance
between pairs of robots being the length of the unobstructed
line segment connecting them (and a distance being infinity
if such a line segment does not exist due to presence of
obstacles) and the parameter for the Rips complex being rv .
For a particular joint configuration of the robots, X , we call
this simplicial complex Rrv (X). We denote the 0-simplices
in Rrv (X) by the corresponding robot ID (e.g., ‘i’), the
1-simplices by pairs of IDs of the robots that make them
up (e.g., {i, j}), and 2-simplices by three tuples (such as
{i, j, k}). Formally, Rrv (X) is a chain complex [17] and
constitutes of a sequence of modules (or vector spaces)
along with boundary maps: 0

0−→ C2
∂2−→ C1

∂1−→ C0
0−→ 0,

where Cd is an abstract module (or vector space) generated
(or spanned) by the d-dimensional simplices. Whenever
the robots’ configuration, X , is obvious or implied by the
context, we will write Rrv to denote the corresponding
complex for simplicity. In Section III-A we will identify two
sub-complexes of Rrv , namely the frontier subcomplex, F ,
and obstacle subcomplex, O, which together constitute the
fence subcomplex [11], K = F ∪O.

It is important to note that Rrv can be constructed with
local visibility information only, as described earlier, and
does not require the entire configuration, X , of the robots
to be known in a centralized manner. Furthermore, as will
be evident in the next section, we do not need to construct
the entire simplicial complex in a centralized fashion for
most of the algorithmic components. It’s only when we
compute generators for the relative homology H2(Rrv ,K),
for optimization purposes, that we will need to store Rrv in
a centralized manner.
C. Contact/Touch Sensing Model

As mentioned earlier, the only sensors on board each
robot are the omnidirectional camera and a collection of
touch/contact sensors at the base of the robots. The camera
is used to measure bearing with other robots inside the
disk of visibility and is incapable of measuring range. The
touch sensors are binary sensors, and are triggered when in
contact with an obstacle/wall or another robot (Figure 4).
The presence of multiple touch sensors (NT counts of them)
at the base also provides a rough estimate of direction of
contact (within an error of τ = π

NT
when a single touch

sensor is activated).

Fig. 4. The touch/contact sensors (gray protrusions) at the base of a robot
(red). Contact with an obstacle or another robot triggers one or more touch
sensors providing a rough estimate of the direction of contact.

D. Local Bearing-Based Controller
The robots are controlled using the bearing-based visual

homing controller presented in [18]. This controller utilizes

a gradient decent approach where desired bearing angles to
landmarks are used to drive robots. The distances between a
robot and its respective landmarks are not known. The only
information known are the bearing angles, as is consistent
with the assumptions in our paper. With the proper selection
of the cost functional for the optimization process, the
gradient of the path from start to goal (the velocity control
command for robot i) is given by vi = K

∑
j∈Li(θij,des−θij),

where, Li is the list of robots that are neighbors of i,
and which can be used as landmarks, θij,des is the desired
bearings with landmark j, and K is a gain. Note that
this velocity can be computed in the instantaneous local
coordinate frame of the robot i. This controller converges
to the goal configuration when the number of landmarks is
greater than or equal to two and not co-linear with the goal
location. In our implementation, the controller incorporates
adaptive gain scaling in order to obtain faster convergence.
We also use adaptive landmark detection depending on a
robot’s neighbor list while moving.

E. Relative H2 Homology
We periodically compute a non-trivial 2-cycle of the

relative complex (Rrv ,K) so that we can identify redun-
dant/extra robots that can be removed from the complex
without sacrificing sensor coverage. This is a direct applica-
tion of the result in [11]. We assume some familiarity with
algebraic topology and homology theory for the discussion
in this section [17]. Given the simplicial complex, Rrv , and
the fence subcomplex, K = F ∪ O, one can construct a
relative chain complex, C∗(Rrv ,K). This, in essence, is
the complex obtained by quotienting out the subcomplex
K (i.e., collapsing K to a single point, or introducing a
new 0-simplex, Q, and connecting 2-simplices {i, j, Q} to
every {i, j} ∈ K – as illustrated in Figure 5). Due to a
result from [11], if we can find a non-trivia relative cycle in
C2(Rrv ,K) such that it passes through all the 0-simplices
in the fence, K, then the 0-simplices (the robots) making up
that cycle is sufficient for maintaining the sensor coverage.
All other robots can be reallocated.
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(a) A Rips complex, Rrv , with the
frontier subcomplex, F , marked in
cyan, and the obstacle subcomplex,
O, marked in brown.
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(b) Topology of the space where the
entire fence complex, F ∪ O, have
been connected through 2-simplices
to an external 0-simplex, namely Q.

Fig. 5. An example where a redundant robot (#10) can be identified from
a non-trivial cycle in the space constructed by connecting all the fence
simplices to a single external 0-simplex.

III. ALGORITHM DESIGN
The outline of our swarm coverage algorithm is presented

in Algorithm 1. We begin by deploying robot 1 into the
unknown environment using an open-loop control so that it
maintains visual contact with the source/base. Then, in line 3,
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i j

k

k1 k2

(a) Exception case where a 1-simplex,
{i, j}, has all adjacent 1-simplices
lying on the same side, but is not a
fence simplex. This can be detected
from the perspective of robot k.

i

j
θjo

θio
i

j

(b) Detecting that a 1-simplex, {i, j},
is in O ⊆ Rrv (thick brown line).

ij

k

(c) Convex corner case where a
pair of 1-simplices, {i, j1} and
{i, j2}, are recognized as obstacle
1-simplices (thick brown lines).

j2
ij1

(d) If the robot i is to be “pushed”
along a path in the graph to expand
frontier {i, j1}, it performs a “test
drive” to ensure an obstacle is not
right in front of it.

Fig. 6. Identifying simplices for fence subcomplex K = F ∪O.

obstacles) in their convex hull is in the visibility disk of
at least one robot (aside from possibly small non-convex
sub-features present in that convex corner, which we
ignore). Thus, these 1-simplices are marked as obstacle
1-simplices to be pushed into O.

iii. Otherwise, at least one of the robots can be ex-
panded/moved to the unexplored region, and thus {i, j}
is placed in F along with the corresponding robots
(Figure 7, left).

iv. Additionally, if {i, j} ∈ F due to ‘iii.’, and i belongs
to the path for planned deployment, we perform a “test
drive” in the planned deployment direction for a small
distance to ensure sufficient space availability for new
deployment near obstacles (Figure 6(d)).

The complete illustration of the process of identifying 1-
simplices as part of F or O is given in Figures 7 and 9(a).
We next describe the COMPUTEEXCEPTION and DEPLOY-
MENTANGLE procedures.

1) The Exception Case: The aforesaid approach in de-
tecting fence 1-simplices using UnCovij may give false
positives in some cases when a 1-simplex, {i, j}, is com-
pletely covered by 2 simplices, of which {i, j} do not form
a boundary, as shown in Figure 6(a). Nevertheless, this
special case can be easily detected from the perspective of
a common neighbor, k, of i, j. If it is detected that θkij =
θkik1 + θkk1k2 + · · ·+ θkkrj (for some k1, · · · , kr ∈ Nk), such
that all the summands have the same sign as the summation,
then clearly {i, j} lies inside 2-simplices of which {i, j} do
not form a boundary but k is a vertex. Then {i, j} is marked
as an exception 1-simplex.

2) Identifying Locations for Robot Placement (Hexagonal
Packing): Given a 1-simplex {i, j} ∈ F and the uncovered
direction σ ∈ {+1,−1}, we need to find, in the local
coordinates of i and j, the location for the new robot position.
Figure 8(a) illustrates the uncovered side of 1-simplex {i, j}
in i’s local coordinate. Our strategy for choosing the position
to deploy next robot is to try and achieve a hexagonal
packing [19] (which is the most optimal packing on an
obstacle-free pane) of robots as much as possible, only
to be interrupted by the presence of obstacles or control’s
error. This essentially boils down to sending robots at an
angle of 60◦(= π

3 ) with respect to ij into the free region.
Algorithm 4 describes our DEPLOYMENTANGLE function
which first determines (lines 3-6) the “closest” other fence
1-simplices attached to i and j (e.g., {i, k} in Figure 8(b)).
If there is no other fence 1-simplex attached to i, we set

Algorithm 4 [θij,new, θ
j
i,new] = DEPLOYMENTANGLE (i, j,UnCovij)

Input: Robots i, j; the side of ij that is open/uncovered.
Output: New location for deployment in local coordinates of i, j,

or, {i, j} is marked an obstacle simplex.

1: θij,new ← ∅, θji,new ← ∅
2: for σ in UnCovij do
3: Si ← {l | {i, l} ∈ Rrv and sign(θij,l) = σ}
4: ki ← argmink′∈Si

|θij,k′ |
5: Sj ← {l | {j, l} ∈ Rrv and sign(θji,l) = −σ}
6: kj ← argmink′∈Sj

|θji,k′ |
7: if |θij,ki | <

π
3

(or |θji,kj | <
π
3

) then
8: Mark {i, ki} (or {j, kj}) as an obstacle simplex.
9: else

10: θij,new ← σmin{π
3
, |
θij,ki

2
|}

11: θji,new ← −σmin{π
3
, |
θ
j
i,kj

2
|}

12: end if
13: end for

θinew = θij + σij
π
3 — the 60◦ angle for deployment in

a hexagonal packing. Otherwise we set the angle to the
minimum between the one for hexagonal packaging (π3 ) and
the the one that bisects θijki . Likewise for θjnew.

i

j
u

θju
i Valid bearing 

for new robot

new

(a) The free side of {i, j}
where sign(θij,new) = σ.

i

j

k
θjk
i

θj,new
i

(b) The bearing to the new location,

θij,new=min{π
3
,
θijk
2
}, in i’s local coord.

Fig. 8. Determining bearing to the new location.

If i is not attached to a frontier 1-simplex (e.g., i is
a frontier robot in a narrow passage with a single file of
robots), then we simply choose the direction away from the
neighbors of i as the bearing to the new location (in the local
coordinates of i) for deployment of the new robot.
B. Identifying Path in 1-skeleton for “Pushing” Robots

The strategy in our algorithm for robot deployment in
every control cycle is to keep the structure of the existing
simplicial complex (and hence the positions of the existing
robots in W ) unchanged. New robots are deployed through
the complex simply by “pushing” through paths (i.e., making
each robot on a path move forward to take the place of the
one in front of it) in the 1-skeleton (graph) of the complex
(Figure 9). For computing this path, a centralized knowledge
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Assumptions & models 1/2
Models are partly inspired and borrowed by the those used in
[Kumar et al., “Sensor Coverage Robot Swarms Using Local Sensing without Metric Information”, ICRA, Seattle, WA, 2015]

simply-connected, as we demonstrate through experimental
results in complex, indoor environments with obstacles.

We adopt a simplicial complex representation (in par-
ticular, a Rips complex) as the richer and more formal
description of the sensor coverage, without using metric
information, to solve the problem of deployment of robots
in an unknown environment without global localization.
The robots only have onboard sensors to measure bearings
to neighboring robots in their local coordinates and touch
sensors for collision avoidance. Such limited sensing data
essentially allows deployment of robots in a dark room, with
the robots using their camera to identify their neighbors by
illuminated (LED) markers on each other. Since our approach
is fundamentally topological, the proposed method is highly
robust to sensor noise. We attain complete sensor coverage
of the entire finite environment assuming sufficient number
of available robots, along with guarantees on coverage,
exploration and a notion of local optimality.
B. Problem Description

We consider the problem of efficiently exploring an un-
known indoor environment with a rapidly expanding swarm
of robots with limited and noisy local sensing with no global
localization or sensing capabilities. In particular, the only
sensory capabilities that we assume on each robot are those
of an omni-directional camera with a limited radial range
of vision and a touch sensor to detect contact/collision with
obstacles and other robots. We call the disk around a robot,
representing a sensing radius of the omni-directional camera,
the robot’s disk of visibility, within which the bearing to
the neighboring robots and their identities can be detected.
However, the camera does not provide a range measurement
due to projection of the spacial world on to the camera plane.
Thus, obstacles are detected through touch sensors near the
base of the robots, and cannot be detected using the camera.
The robots can also communicate with each other and with
a central router through wireless communication. The robots
are assumed to holonomic (i.e. can be driven in arbitrary
direction). We assume that there are sufficiently large number
of robots available, which are being deployed from one or
multiple sources (e.g. entrance to an environment).

The contribution of this paper is to design a distributable
control algorithm for the robots such that they deploy them-
selves to attain hole-less coverage of the entire environment
using their disks of visibility. That means, at least one
robot should be able to see each and every point in the
environment after the coverage is attained. However, the only
information that they have are the bearing to their neighbors
in their respective local coordinate frames and a directional
touch information with obstacles. This means that there is
absolutely no metric information available.

II. PRELIMINARIES
A. Notations

We denote by W ⊂ R2 the obstacle-free region where the
robots are being deployed and the sensor coverage of which
needs to be attained. If there are n robots deployed in W ,
we assign IDs to them, 1, 2, · · · , n, and represent their joint
configuration by X = [x1, x2, · · · , xn], xi ∈W .

Hole

Fig. 1. Illustration of a swarm of robots entering an environment and
attaining coverage. The hole shown on the right figure is something we
would like to avoid.

A robot, i, can measure the bearing to a neighbor, j ∈ Ni,
in its local coordinates, where Ni = {j | ‖xi−xj‖ ≤ rv} are
the neighbors of i. We call this measurement θij ∈ [−π, π).
If it measures the bearing to another robot, k as θik, then we
define θijk =

(
(θik − θij) mod 2π

)
−π — i.e., the bearing

to k relative to the bearing to j (and the angle converted to
a value in [−π, π)).

B. Vietoris–Rips Complex of Camera Sensing Footprints

We do not assume that the robots can localize themselves
and the only way of sensing/identifying neighbors is by
using the camera. Thus, if the disks of visibility of two
robots merely overlap, there is no way of detecting that fact
(Figure 2(a)). We need to use a stronger notion of overlap
— two robots know that their disks of visibility overlap if
and only if they are in each other’s disks of visibility and
their line of sight is not blocked (Figure 2(b)).

1 2

(a) Robots can’t see each other,
and hence have no way of de-
tecting that their disks of visi-
bility overlap.

1 2

(b) Robots can see each other, and
hence know that their disks of vis-
ibility overlap. Visibility is repre-
sented by the dotted magenta line.

Fig. 2. Detection of overlap of disks of visibility using only local visibility-
based sensing.

We can thus consider a simplicial complex [17] repre-
sentation of the free space that the camera footprints cover.
The description of the abstract simplicial complex goes as
follows (Figure 3): We add one 0-simplex to the complex for
every deployed robot in the environment (the 0-simplices are
identified by the robot IDs). A 1-simplex is added between
two 0-simplices if the corresponding robots are in each
other’s disk of visibility (i.e., are within distance of rv from
each other) and can see each other. A 2-simplex is added
to the complex for every 3-tuple of robots that can all see
each other (and hence their disks of visibility has a non-
empty intersection). We do not construct any 3 or higher
dimensional simplices since on a planar environment with
obstacles, we are only concerned with the H1 homology.

1 2

3

4

5

9

6

7

8

1
2

3

4

5 6

7

8

9

Fig. 3. Nine robots, their disks of visibility and the corresponding abstract
simplicial complex, Rrv .
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This simplicial complex is, by definition, the Vietoris-
Rips complex [11] (or simply the Rips complex) on the
set of robots (constructed up to dimension 2 – i.e., we
do not construct the 3 and higher simplices), with distance
between pairs of robots being the length of the unobstructed
line segment connecting them (and a distance being infinity
if such a line segment does not exist due to presence of
obstacles) and the parameter for the Rips complex being rv .
For a particular joint configuration of the robots, X , we call
this simplicial complex Rrv (X). We denote the 0-simplices
in Rrv (X) by the corresponding robot ID (e.g., ‘i’), the
1-simplices by pairs of IDs of the robots that make them
up (e.g., {i, j}), and 2-simplices by three tuples (such as
{i, j, k}). Formally, Rrv (X) is a chain complex [17] and
constitutes of a sequence of modules (or vector spaces)
along with boundary maps: 0

0−→ C2
∂2−→ C1

∂1−→ C0
0−→ 0,

where Cd is an abstract module (or vector space) generated
(or spanned) by the d-dimensional simplices. Whenever
the robots’ configuration, X , is obvious or implied by the
context, we will write Rrv to denote the corresponding
complex for simplicity. In Section III-A we will identify two
sub-complexes of Rrv , namely the frontier subcomplex, F ,
and obstacle subcomplex, O, which together constitute the
fence subcomplex [11], K = F ∪O.

It is important to note that Rrv can be constructed with
local visibility information only, as described earlier, and
does not require the entire configuration, X , of the robots
to be known in a centralized manner. Furthermore, as will
be evident in the next section, we do not need to construct
the entire simplicial complex in a centralized fashion for
most of the algorithmic components. It’s only when we
compute generators for the relative homology H2(Rrv ,K),
for optimization purposes, that we will need to store Rrv in
a centralized manner.
C. Contact/Touch Sensing Model

As mentioned earlier, the only sensors on board each
robot are the omnidirectional camera and a collection of
touch/contact sensors at the base of the robots. The camera
is used to measure bearing with other robots inside the
disk of visibility and is incapable of measuring range. The
touch sensors are binary sensors, and are triggered when in
contact with an obstacle/wall or another robot (Figure 4).
The presence of multiple touch sensors (NT counts of them)
at the base also provides a rough estimate of direction of
contact (within an error of τ = π

NT
when a single touch

sensor is activated).

Fig. 4. The touch/contact sensors (gray protrusions) at the base of a robot
(red). Contact with an obstacle or another robot triggers one or more touch
sensors providing a rough estimate of the direction of contact.

D. Local Bearing-Based Controller
The robots are controlled using the bearing-based visual

homing controller presented in [18]. This controller utilizes

a gradient decent approach where desired bearing angles to
landmarks are used to drive robots. The distances between a
robot and its respective landmarks are not known. The only
information known are the bearing angles, as is consistent
with the assumptions in our paper. With the proper selection
of the cost functional for the optimization process, the
gradient of the path from start to goal (the velocity control
command for robot i) is given by vi = K

∑
j∈Li(θij,des−θij),

where, Li is the list of robots that are neighbors of i,
and which can be used as landmarks, θij,des is the desired
bearings with landmark j, and K is a gain. Note that
this velocity can be computed in the instantaneous local
coordinate frame of the robot i. This controller converges
to the goal configuration when the number of landmarks is
greater than or equal to two and not co-linear with the goal
location. In our implementation, the controller incorporates
adaptive gain scaling in order to obtain faster convergence.
We also use adaptive landmark detection depending on a
robot’s neighbor list while moving.

E. Relative H2 Homology
We periodically compute a non-trivial 2-cycle of the

relative complex (Rrv ,K) so that we can identify redun-
dant/extra robots that can be removed from the complex
without sacrificing sensor coverage. This is a direct applica-
tion of the result in [11]. We assume some familiarity with
algebraic topology and homology theory for the discussion
in this section [17]. Given the simplicial complex, Rrv , and
the fence subcomplex, K = F ∪ O, one can construct a
relative chain complex, C∗(Rrv ,K). This, in essence, is
the complex obtained by quotienting out the subcomplex
K (i.e., collapsing K to a single point, or introducing a
new 0-simplex, Q, and connecting 2-simplices {i, j, Q} to
every {i, j} ∈ K – as illustrated in Figure 5). Due to a
result from [11], if we can find a non-trivia relative cycle in
C2(Rrv ,K) such that it passes through all the 0-simplices
in the fence, K, then the 0-simplices (the robots) making up
that cycle is sufficient for maintaining the sensor coverage.
All other robots can be reallocated.
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(a) A Rips complex, Rrv , with the
frontier subcomplex, F , marked in
cyan, and the obstacle subcomplex,
O, marked in brown.
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(b) Topology of the space where the
entire fence complex, F ∪ O, have
been connected through 2-simplices
to an external 0-simplex, namely Q.

Fig. 5. An example where a redundant robot (#10) can be identified from
a non-trivial cycle in the space constructed by connecting all the fence
simplices to a single external 0-simplex.

III. ALGORITHM DESIGN
The outline of our swarm coverage algorithm is presented

in Algorithm 1. We begin by deploying robot 1 into the
unknown environment using an open-loop control so that it
maintains visual contact with the source/base. Then, in line 3,
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i j
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k1 k2

(a) Exception case where a 1-simplex,
{i, j}, has all adjacent 1-simplices
lying on the same side, but is not a
fence simplex. This can be detected
from the perspective of robot k.

i

j
θjo

θio
i

j

(b) Detecting that a 1-simplex, {i, j},
is in O ⊆ Rrv (thick brown line).

ij

k

(c) Convex corner case where a
pair of 1-simplices, {i, j1} and
{i, j2}, are recognized as obstacle
1-simplices (thick brown lines).

j2
ij1

(d) If the robot i is to be “pushed”
along a path in the graph to expand
frontier {i, j1}, it performs a “test
drive” to ensure an obstacle is not
right in front of it.

Fig. 6. Identifying simplices for fence subcomplex K = F ∪O.

obstacles) in their convex hull is in the visibility disk of
at least one robot (aside from possibly small non-convex
sub-features present in that convex corner, which we
ignore). Thus, these 1-simplices are marked as obstacle
1-simplices to be pushed into O.

iii. Otherwise, at least one of the robots can be ex-
panded/moved to the unexplored region, and thus {i, j}
is placed in F along with the corresponding robots
(Figure 7, left).

iv. Additionally, if {i, j} ∈ F due to ‘iii.’, and i belongs
to the path for planned deployment, we perform a “test
drive” in the planned deployment direction for a small
distance to ensure sufficient space availability for new
deployment near obstacles (Figure 6(d)).

The complete illustration of the process of identifying 1-
simplices as part of F or O is given in Figures 7 and 9(a).
We next describe the COMPUTEEXCEPTION and DEPLOY-
MENTANGLE procedures.

1) The Exception Case: The aforesaid approach in de-
tecting fence 1-simplices using UnCovij may give false
positives in some cases when a 1-simplex, {i, j}, is com-
pletely covered by 2 simplices, of which {i, j} do not form
a boundary, as shown in Figure 6(a). Nevertheless, this
special case can be easily detected from the perspective of
a common neighbor, k, of i, j. If it is detected that θkij =
θkik1 + θkk1k2 + · · ·+ θkkrj (for some k1, · · · , kr ∈ Nk), such
that all the summands have the same sign as the summation,
then clearly {i, j} lies inside 2-simplices of which {i, j} do
not form a boundary but k is a vertex. Then {i, j} is marked
as an exception 1-simplex.

2) Identifying Locations for Robot Placement (Hexagonal
Packing): Given a 1-simplex {i, j} ∈ F and the uncovered
direction σ ∈ {+1,−1}, we need to find, in the local
coordinates of i and j, the location for the new robot position.
Figure 8(a) illustrates the uncovered side of 1-simplex {i, j}
in i’s local coordinate. Our strategy for choosing the position
to deploy next robot is to try and achieve a hexagonal
packing [19] (which is the most optimal packing on an
obstacle-free pane) of robots as much as possible, only
to be interrupted by the presence of obstacles or control’s
error. This essentially boils down to sending robots at an
angle of 60◦(= π

3 ) with respect to ij into the free region.
Algorithm 4 describes our DEPLOYMENTANGLE function
which first determines (lines 3-6) the “closest” other fence
1-simplices attached to i and j (e.g., {i, k} in Figure 8(b)).
If there is no other fence 1-simplex attached to i, we set

Algorithm 4 [θij,new, θ
j
i,new] = DEPLOYMENTANGLE (i, j,UnCovij)

Input: Robots i, j; the side of ij that is open/uncovered.
Output: New location for deployment in local coordinates of i, j,

or, {i, j} is marked an obstacle simplex.

1: θij,new ← ∅, θji,new ← ∅
2: for σ in UnCovij do
3: Si ← {l | {i, l} ∈ Rrv and sign(θij,l) = σ}
4: ki ← argmink′∈Si

|θij,k′ |
5: Sj ← {l | {j, l} ∈ Rrv and sign(θji,l) = −σ}
6: kj ← argmink′∈Sj

|θji,k′ |
7: if |θij,ki | <

π
3

(or |θji,kj | <
π
3

) then
8: Mark {i, ki} (or {j, kj}) as an obstacle simplex.
9: else

10: θij,new ← σmin{π
3
, |
θij,ki

2
|}

11: θji,new ← −σmin{π
3
, |
θ
j
i,kj

2
|}

12: end if
13: end for

θinew = θij + σij
π
3 — the 60◦ angle for deployment in

a hexagonal packing. Otherwise we set the angle to the
minimum between the one for hexagonal packaging (π3 ) and
the the one that bisects θijki . Likewise for θjnew.

i

j
u

θju
i Valid bearing 

for new robot

new

(a) The free side of {i, j}
where sign(θij,new) = σ.

i

j

k
θjk
i

θj,new
i

(b) The bearing to the new location,

θij,new=min{π
3
,
θijk
2
}, in i’s local coord.

Fig. 8. Determining bearing to the new location.

If i is not attached to a frontier 1-simplex (e.g., i is
a frontier robot in a narrow passage with a single file of
robots), then we simply choose the direction away from the
neighbors of i as the bearing to the new location (in the local
coordinates of i) for deployment of the new robot.
B. Identifying Path in 1-skeleton for “Pushing” Robots

The strategy in our algorithm for robot deployment in
every control cycle is to keep the structure of the existing
simplicial complex (and hence the positions of the existing
robots in W ) unchanged. New robots are deployed through
the complex simply by “pushing” through paths (i.e., making
each robot on a path move forward to take the place of the
one in front of it) in the 1-skeleton (graph) of the complex
(Figure 9). For computing this path, a centralized knowledge
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Assumptions & models 1/2
Models are partly inspired and borrowed by the those used in
[Kumar et al., “Sensor Coverage Robot Swarms Using Local Sensing without Metric Information”, ICRA, Seattle, WA, 2015]

simply-connected, as we demonstrate through experimental
results in complex, indoor environments with obstacles.

We adopt a simplicial complex representation (in par-
ticular, a Rips complex) as the richer and more formal
description of the sensor coverage, without using metric
information, to solve the problem of deployment of robots
in an unknown environment without global localization.
The robots only have onboard sensors to measure bearings
to neighboring robots in their local coordinates and touch
sensors for collision avoidance. Such limited sensing data
essentially allows deployment of robots in a dark room, with
the robots using their camera to identify their neighbors by
illuminated (LED) markers on each other. Since our approach
is fundamentally topological, the proposed method is highly
robust to sensor noise. We attain complete sensor coverage
of the entire finite environment assuming sufficient number
of available robots, along with guarantees on coverage,
exploration and a notion of local optimality.
B. Problem Description

We consider the problem of efficiently exploring an un-
known indoor environment with a rapidly expanding swarm
of robots with limited and noisy local sensing with no global
localization or sensing capabilities. In particular, the only
sensory capabilities that we assume on each robot are those
of an omni-directional camera with a limited radial range
of vision and a touch sensor to detect contact/collision with
obstacles and other robots. We call the disk around a robot,
representing a sensing radius of the omni-directional camera,
the robot’s disk of visibility, within which the bearing to
the neighboring robots and their identities can be detected.
However, the camera does not provide a range measurement
due to projection of the spacial world on to the camera plane.
Thus, obstacles are detected through touch sensors near the
base of the robots, and cannot be detected using the camera.
The robots can also communicate with each other and with
a central router through wireless communication. The robots
are assumed to holonomic (i.e. can be driven in arbitrary
direction). We assume that there are sufficiently large number
of robots available, which are being deployed from one or
multiple sources (e.g. entrance to an environment).

The contribution of this paper is to design a distributable
control algorithm for the robots such that they deploy them-
selves to attain hole-less coverage of the entire environment
using their disks of visibility. That means, at least one
robot should be able to see each and every point in the
environment after the coverage is attained. However, the only
information that they have are the bearing to their neighbors
in their respective local coordinate frames and a directional
touch information with obstacles. This means that there is
absolutely no metric information available.

II. PRELIMINARIES
A. Notations

We denote by W ⊂ R2 the obstacle-free region where the
robots are being deployed and the sensor coverage of which
needs to be attained. If there are n robots deployed in W ,
we assign IDs to them, 1, 2, · · · , n, and represent their joint
configuration by X = [x1, x2, · · · , xn], xi ∈W .

Hole

Fig. 1. Illustration of a swarm of robots entering an environment and
attaining coverage. The hole shown on the right figure is something we
would like to avoid.

A robot, i, can measure the bearing to a neighbor, j ∈ Ni,
in its local coordinates, where Ni = {j | ‖xi−xj‖ ≤ rv} are
the neighbors of i. We call this measurement θij ∈ [−π, π).
If it measures the bearing to another robot, k as θik, then we
define θijk =

(
(θik − θij) mod 2π

)
−π — i.e., the bearing

to k relative to the bearing to j (and the angle converted to
a value in [−π, π)).

B. Vietoris–Rips Complex of Camera Sensing Footprints

We do not assume that the robots can localize themselves
and the only way of sensing/identifying neighbors is by
using the camera. Thus, if the disks of visibility of two
robots merely overlap, there is no way of detecting that fact
(Figure 2(a)). We need to use a stronger notion of overlap
— two robots know that their disks of visibility overlap if
and only if they are in each other’s disks of visibility and
their line of sight is not blocked (Figure 2(b)).

1 2

(a) Robots can’t see each other,
and hence have no way of de-
tecting that their disks of visi-
bility overlap.

1 2

(b) Robots can see each other, and
hence know that their disks of vis-
ibility overlap. Visibility is repre-
sented by the dotted magenta line.

Fig. 2. Detection of overlap of disks of visibility using only local visibility-
based sensing.

We can thus consider a simplicial complex [17] repre-
sentation of the free space that the camera footprints cover.
The description of the abstract simplicial complex goes as
follows (Figure 3): We add one 0-simplex to the complex for
every deployed robot in the environment (the 0-simplices are
identified by the robot IDs). A 1-simplex is added between
two 0-simplices if the corresponding robots are in each
other’s disk of visibility (i.e., are within distance of rv from
each other) and can see each other. A 2-simplex is added
to the complex for every 3-tuple of robots that can all see
each other (and hence their disks of visibility has a non-
empty intersection). We do not construct any 3 or higher
dimensional simplices since on a planar environment with
obstacles, we are only concerned with the H1 homology.
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Fig. 3. Nine robots, their disks of visibility and the corresponding abstract
simplicial complex, Rrv .
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This simplicial complex is, by definition, the Vietoris-
Rips complex [11] (or simply the Rips complex) on the
set of robots (constructed up to dimension 2 – i.e., we
do not construct the 3 and higher simplices), with distance
between pairs of robots being the length of the unobstructed
line segment connecting them (and a distance being infinity
if such a line segment does not exist due to presence of
obstacles) and the parameter for the Rips complex being rv .
For a particular joint configuration of the robots, X , we call
this simplicial complex Rrv (X). We denote the 0-simplices
in Rrv (X) by the corresponding robot ID (e.g., ‘i’), the
1-simplices by pairs of IDs of the robots that make them
up (e.g., {i, j}), and 2-simplices by three tuples (such as
{i, j, k}). Formally, Rrv (X) is a chain complex [17] and
constitutes of a sequence of modules (or vector spaces)
along with boundary maps: 0

0−→ C2
∂2−→ C1

∂1−→ C0
0−→ 0,

where Cd is an abstract module (or vector space) generated
(or spanned) by the d-dimensional simplices. Whenever
the robots’ configuration, X , is obvious or implied by the
context, we will write Rrv to denote the corresponding
complex for simplicity. In Section III-A we will identify two
sub-complexes of Rrv , namely the frontier subcomplex, F ,
and obstacle subcomplex, O, which together constitute the
fence subcomplex [11], K = F ∪O.

It is important to note that Rrv can be constructed with
local visibility information only, as described earlier, and
does not require the entire configuration, X , of the robots
to be known in a centralized manner. Furthermore, as will
be evident in the next section, we do not need to construct
the entire simplicial complex in a centralized fashion for
most of the algorithmic components. It’s only when we
compute generators for the relative homology H2(Rrv ,K),
for optimization purposes, that we will need to store Rrv in
a centralized manner.
C. Contact/Touch Sensing Model

As mentioned earlier, the only sensors on board each
robot are the omnidirectional camera and a collection of
touch/contact sensors at the base of the robots. The camera
is used to measure bearing with other robots inside the
disk of visibility and is incapable of measuring range. The
touch sensors are binary sensors, and are triggered when in
contact with an obstacle/wall or another robot (Figure 4).
The presence of multiple touch sensors (NT counts of them)
at the base also provides a rough estimate of direction of
contact (within an error of τ = π

NT
when a single touch

sensor is activated).

Fig. 4. The touch/contact sensors (gray protrusions) at the base of a robot
(red). Contact with an obstacle or another robot triggers one or more touch
sensors providing a rough estimate of the direction of contact.

D. Local Bearing-Based Controller
The robots are controlled using the bearing-based visual

homing controller presented in [18]. This controller utilizes

a gradient decent approach where desired bearing angles to
landmarks are used to drive robots. The distances between a
robot and its respective landmarks are not known. The only
information known are the bearing angles, as is consistent
with the assumptions in our paper. With the proper selection
of the cost functional for the optimization process, the
gradient of the path from start to goal (the velocity control
command for robot i) is given by vi = K

∑
j∈Li(θij,des−θij),

where, Li is the list of robots that are neighbors of i,
and which can be used as landmarks, θij,des is the desired
bearings with landmark j, and K is a gain. Note that
this velocity can be computed in the instantaneous local
coordinate frame of the robot i. This controller converges
to the goal configuration when the number of landmarks is
greater than or equal to two and not co-linear with the goal
location. In our implementation, the controller incorporates
adaptive gain scaling in order to obtain faster convergence.
We also use adaptive landmark detection depending on a
robot’s neighbor list while moving.

E. Relative H2 Homology
We periodically compute a non-trivial 2-cycle of the

relative complex (Rrv ,K) so that we can identify redun-
dant/extra robots that can be removed from the complex
without sacrificing sensor coverage. This is a direct applica-
tion of the result in [11]. We assume some familiarity with
algebraic topology and homology theory for the discussion
in this section [17]. Given the simplicial complex, Rrv , and
the fence subcomplex, K = F ∪ O, one can construct a
relative chain complex, C∗(Rrv ,K). This, in essence, is
the complex obtained by quotienting out the subcomplex
K (i.e., collapsing K to a single point, or introducing a
new 0-simplex, Q, and connecting 2-simplices {i, j, Q} to
every {i, j} ∈ K – as illustrated in Figure 5). Due to a
result from [11], if we can find a non-trivia relative cycle in
C2(Rrv ,K) such that it passes through all the 0-simplices
in the fence, K, then the 0-simplices (the robots) making up
that cycle is sufficient for maintaining the sensor coverage.
All other robots can be reallocated.
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(a) A Rips complex, Rrv , with the
frontier subcomplex, F , marked in
cyan, and the obstacle subcomplex,
O, marked in brown.
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(b) Topology of the space where the
entire fence complex, F ∪ O, have
been connected through 2-simplices
to an external 0-simplex, namely Q.

Fig. 5. An example where a redundant robot (#10) can be identified from
a non-trivial cycle in the space constructed by connecting all the fence
simplices to a single external 0-simplex.

III. ALGORITHM DESIGN
The outline of our swarm coverage algorithm is presented

in Algorithm 1. We begin by deploying robot 1 into the
unknown environment using an open-loop control so that it
maintains visual contact with the source/base. Then, in line 3,
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i j

k

k1 k2

(a) Exception case where a 1-simplex,
{i, j}, has all adjacent 1-simplices
lying on the same side, but is not a
fence simplex. This can be detected
from the perspective of robot k.

i

j
θjo

θio
i

j

(b) Detecting that a 1-simplex, {i, j},
is in O ⊆ Rrv (thick brown line).

ij

k

(c) Convex corner case where a
pair of 1-simplices, {i, j1} and
{i, j2}, are recognized as obstacle
1-simplices (thick brown lines).

j2
ij1

(d) If the robot i is to be “pushed”
along a path in the graph to expand
frontier {i, j1}, it performs a “test
drive” to ensure an obstacle is not
right in front of it.

Fig. 6. Identifying simplices for fence subcomplex K = F ∪O.

obstacles) in their convex hull is in the visibility disk of
at least one robot (aside from possibly small non-convex
sub-features present in that convex corner, which we
ignore). Thus, these 1-simplices are marked as obstacle
1-simplices to be pushed into O.

iii. Otherwise, at least one of the robots can be ex-
panded/moved to the unexplored region, and thus {i, j}
is placed in F along with the corresponding robots
(Figure 7, left).

iv. Additionally, if {i, j} ∈ F due to ‘iii.’, and i belongs
to the path for planned deployment, we perform a “test
drive” in the planned deployment direction for a small
distance to ensure sufficient space availability for new
deployment near obstacles (Figure 6(d)).

The complete illustration of the process of identifying 1-
simplices as part of F or O is given in Figures 7 and 9(a).
We next describe the COMPUTEEXCEPTION and DEPLOY-
MENTANGLE procedures.

1) The Exception Case: The aforesaid approach in de-
tecting fence 1-simplices using UnCovij may give false
positives in some cases when a 1-simplex, {i, j}, is com-
pletely covered by 2 simplices, of which {i, j} do not form
a boundary, as shown in Figure 6(a). Nevertheless, this
special case can be easily detected from the perspective of
a common neighbor, k, of i, j. If it is detected that θkij =
θkik1 + θkk1k2 + · · ·+ θkkrj (for some k1, · · · , kr ∈ Nk), such
that all the summands have the same sign as the summation,
then clearly {i, j} lies inside 2-simplices of which {i, j} do
not form a boundary but k is a vertex. Then {i, j} is marked
as an exception 1-simplex.

2) Identifying Locations for Robot Placement (Hexagonal
Packing): Given a 1-simplex {i, j} ∈ F and the uncovered
direction σ ∈ {+1,−1}, we need to find, in the local
coordinates of i and j, the location for the new robot position.
Figure 8(a) illustrates the uncovered side of 1-simplex {i, j}
in i’s local coordinate. Our strategy for choosing the position
to deploy next robot is to try and achieve a hexagonal
packing [19] (which is the most optimal packing on an
obstacle-free pane) of robots as much as possible, only
to be interrupted by the presence of obstacles or control’s
error. This essentially boils down to sending robots at an
angle of 60◦(= π

3 ) with respect to ij into the free region.
Algorithm 4 describes our DEPLOYMENTANGLE function
which first determines (lines 3-6) the “closest” other fence
1-simplices attached to i and j (e.g., {i, k} in Figure 8(b)).
If there is no other fence 1-simplex attached to i, we set

Algorithm 4 [θij,new, θ
j
i,new] = DEPLOYMENTANGLE (i, j,UnCovij)

Input: Robots i, j; the side of ij that is open/uncovered.
Output: New location for deployment in local coordinates of i, j,

or, {i, j} is marked an obstacle simplex.

1: θij,new ← ∅, θji,new ← ∅
2: for σ in UnCovij do
3: Si ← {l | {i, l} ∈ Rrv and sign(θij,l) = σ}
4: ki ← argmink′∈Si

|θij,k′ |
5: Sj ← {l | {j, l} ∈ Rrv and sign(θji,l) = −σ}
6: kj ← argmink′∈Sj

|θji,k′ |
7: if |θij,ki | <

π
3

(or |θji,kj | <
π
3

) then
8: Mark {i, ki} (or {j, kj}) as an obstacle simplex.
9: else

10: θij,new ← σmin{π
3
, |
θij,ki

2
|}

11: θji,new ← −σmin{π
3
, |
θ
j
i,kj

2
|}

12: end if
13: end for

θinew = θij + σij
π
3 — the 60◦ angle for deployment in

a hexagonal packing. Otherwise we set the angle to the
minimum between the one for hexagonal packaging (π3 ) and
the the one that bisects θijki . Likewise for θjnew.
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for new robot
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(a) The free side of {i, j}
where sign(θij,new) = σ.

i

j

k
θjk
i

θj,new
i

(b) The bearing to the new location,

θij,new=min{π
3
,
θijk
2
}, in i’s local coord.

Fig. 8. Determining bearing to the new location.

If i is not attached to a frontier 1-simplex (e.g., i is
a frontier robot in a narrow passage with a single file of
robots), then we simply choose the direction away from the
neighbors of i as the bearing to the new location (in the local
coordinates of i) for deployment of the new robot.
B. Identifying Path in 1-skeleton for “Pushing” Robots

The strategy in our algorithm for robot deployment in
every control cycle is to keep the structure of the existing
simplicial complex (and hence the positions of the existing
robots in W ) unchanged. New robots are deployed through
the complex simply by “pushing” through paths (i.e., making
each robot on a path move forward to take the place of the
one in front of it) in the 1-skeleton (graph) of the complex
(Figure 9). For computing this path, a centralized knowledge

3412

Agents: sensing & control

I local visibility-based
sensing only

I touch/contact sensors
revealing impacts

I sensors to detect events
I navigation by means of

bearing-based controllers

BASE STATION

Virtual environment

I synthetic scenario based on
simple geometric features

I spawn location for agents
represented by a base
station

11 of 52



Assumptions & models 2/2
Topological tools

I undirected graphs ←→ agent interactions
I simplexes and simplicial complex ←→ coverage structure

simply-connected, as we demonstrate through experimental
results in complex, indoor environments with obstacles.

We adopt a simplicial complex representation (in par-
ticular, a Rips complex) as the richer and more formal
description of the sensor coverage, without using metric
information, to solve the problem of deployment of robots
in an unknown environment without global localization.
The robots only have onboard sensors to measure bearings
to neighboring robots in their local coordinates and touch
sensors for collision avoidance. Such limited sensing data
essentially allows deployment of robots in a dark room, with
the robots using their camera to identify their neighbors by
illuminated (LED) markers on each other. Since our approach
is fundamentally topological, the proposed method is highly
robust to sensor noise. We attain complete sensor coverage
of the entire finite environment assuming sufficient number
of available robots, along with guarantees on coverage,
exploration and a notion of local optimality.
B. Problem Description

We consider the problem of efficiently exploring an un-
known indoor environment with a rapidly expanding swarm
of robots with limited and noisy local sensing with no global
localization or sensing capabilities. In particular, the only
sensory capabilities that we assume on each robot are those
of an omni-directional camera with a limited radial range
of vision and a touch sensor to detect contact/collision with
obstacles and other robots. We call the disk around a robot,
representing a sensing radius of the omni-directional camera,
the robot’s disk of visibility, within which the bearing to
the neighboring robots and their identities can be detected.
However, the camera does not provide a range measurement
due to projection of the spacial world on to the camera plane.
Thus, obstacles are detected through touch sensors near the
base of the robots, and cannot be detected using the camera.
The robots can also communicate with each other and with
a central router through wireless communication. The robots
are assumed to holonomic (i.e. can be driven in arbitrary
direction). We assume that there are sufficiently large number
of robots available, which are being deployed from one or
multiple sources (e.g. entrance to an environment).

The contribution of this paper is to design a distributable
control algorithm for the robots such that they deploy them-
selves to attain hole-less coverage of the entire environment
using their disks of visibility. That means, at least one
robot should be able to see each and every point in the
environment after the coverage is attained. However, the only
information that they have are the bearing to their neighbors
in their respective local coordinate frames and a directional
touch information with obstacles. This means that there is
absolutely no metric information available.

II. PRELIMINARIES
A. Notations

We denote by W ⊂ R2 the obstacle-free region where the
robots are being deployed and the sensor coverage of which
needs to be attained. If there are n robots deployed in W ,
we assign IDs to them, 1, 2, · · · , n, and represent their joint
configuration by X = [x1, x2, · · · , xn], xi ∈W .

Hole

Fig. 1. Illustration of a swarm of robots entering an environment and
attaining coverage. The hole shown on the right figure is something we
would like to avoid.

A robot, i, can measure the bearing to a neighbor, j ∈ Ni,
in its local coordinates, where Ni = {j | ‖xi−xj‖ ≤ rv} are
the neighbors of i. We call this measurement θij ∈ [−π, π).
If it measures the bearing to another robot, k as θik, then we
define θijk =

(
(θik − θij) mod 2π

)
−π — i.e., the bearing

to k relative to the bearing to j (and the angle converted to
a value in [−π, π)).

B. Vietoris–Rips Complex of Camera Sensing Footprints

We do not assume that the robots can localize themselves
and the only way of sensing/identifying neighbors is by
using the camera. Thus, if the disks of visibility of two
robots merely overlap, there is no way of detecting that fact
(Figure 2(a)). We need to use a stronger notion of overlap
— two robots know that their disks of visibility overlap if
and only if they are in each other’s disks of visibility and
their line of sight is not blocked (Figure 2(b)).

1 2

(a) Robots can’t see each other,
and hence have no way of de-
tecting that their disks of visi-
bility overlap.

1 2

(b) Robots can see each other, and
hence know that their disks of vis-
ibility overlap. Visibility is repre-
sented by the dotted magenta line.

Fig. 2. Detection of overlap of disks of visibility using only local visibility-
based sensing.

We can thus consider a simplicial complex [17] repre-
sentation of the free space that the camera footprints cover.
The description of the abstract simplicial complex goes as
follows (Figure 3): We add one 0-simplex to the complex for
every deployed robot in the environment (the 0-simplices are
identified by the robot IDs). A 1-simplex is added between
two 0-simplices if the corresponding robots are in each
other’s disk of visibility (i.e., are within distance of rv from
each other) and can see each other. A 2-simplex is added
to the complex for every 3-tuple of robots that can all see
each other (and hence their disks of visibility has a non-
empty intersection). We do not construct any 3 or higher
dimensional simplices since on a planar environment with
obstacles, we are only concerned with the H1 homology.
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Fig. 3. Nine robots, their disks of visibility and the corresponding abstract
simplicial complex, Rrv .
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Topological tools

I undirected graphs ←→ agent interactions
I simplexes and simplicial complex ←→ coverage structure

simply-connected, as we demonstrate through experimental
results in complex, indoor environments with obstacles.

We adopt a simplicial complex representation (in par-
ticular, a Rips complex) as the richer and more formal
description of the sensor coverage, without using metric
information, to solve the problem of deployment of robots
in an unknown environment without global localization.
The robots only have onboard sensors to measure bearings
to neighboring robots in their local coordinates and touch
sensors for collision avoidance. Such limited sensing data
essentially allows deployment of robots in a dark room, with
the robots using their camera to identify their neighbors by
illuminated (LED) markers on each other. Since our approach
is fundamentally topological, the proposed method is highly
robust to sensor noise. We attain complete sensor coverage
of the entire finite environment assuming sufficient number
of available robots, along with guarantees on coverage,
exploration and a notion of local optimality.
B. Problem Description

We consider the problem of efficiently exploring an un-
known indoor environment with a rapidly expanding swarm
of robots with limited and noisy local sensing with no global
localization or sensing capabilities. In particular, the only
sensory capabilities that we assume on each robot are those
of an omni-directional camera with a limited radial range
of vision and a touch sensor to detect contact/collision with
obstacles and other robots. We call the disk around a robot,
representing a sensing radius of the omni-directional camera,
the robot’s disk of visibility, within which the bearing to
the neighboring robots and their identities can be detected.
However, the camera does not provide a range measurement
due to projection of the spacial world on to the camera plane.
Thus, obstacles are detected through touch sensors near the
base of the robots, and cannot be detected using the camera.
The robots can also communicate with each other and with
a central router through wireless communication. The robots
are assumed to holonomic (i.e. can be driven in arbitrary
direction). We assume that there are sufficiently large number
of robots available, which are being deployed from one or
multiple sources (e.g. entrance to an environment).

The contribution of this paper is to design a distributable
control algorithm for the robots such that they deploy them-
selves to attain hole-less coverage of the entire environment
using their disks of visibility. That means, at least one
robot should be able to see each and every point in the
environment after the coverage is attained. However, the only
information that they have are the bearing to their neighbors
in their respective local coordinate frames and a directional
touch information with obstacles. This means that there is
absolutely no metric information available.

II. PRELIMINARIES
A. Notations

We denote by W ⊂ R2 the obstacle-free region where the
robots are being deployed and the sensor coverage of which
needs to be attained. If there are n robots deployed in W ,
we assign IDs to them, 1, 2, · · · , n, and represent their joint
configuration by X = [x1, x2, · · · , xn], xi ∈W .

Hole

Fig. 1. Illustration of a swarm of robots entering an environment and
attaining coverage. The hole shown on the right figure is something we
would like to avoid.

A robot, i, can measure the bearing to a neighbor, j ∈ Ni,
in its local coordinates, where Ni = {j | ‖xi−xj‖ ≤ rv} are
the neighbors of i. We call this measurement θij ∈ [−π, π).
If it measures the bearing to another robot, k as θik, then we
define θijk =

(
(θik − θij) mod 2π

)
−π — i.e., the bearing

to k relative to the bearing to j (and the angle converted to
a value in [−π, π)).

B. Vietoris–Rips Complex of Camera Sensing Footprints

We do not assume that the robots can localize themselves
and the only way of sensing/identifying neighbors is by
using the camera. Thus, if the disks of visibility of two
robots merely overlap, there is no way of detecting that fact
(Figure 2(a)). We need to use a stronger notion of overlap
— two robots know that their disks of visibility overlap if
and only if they are in each other’s disks of visibility and
their line of sight is not blocked (Figure 2(b)).

1 2

(a) Robots can’t see each other,
and hence have no way of de-
tecting that their disks of visi-
bility overlap.

1 2

(b) Robots can see each other, and
hence know that their disks of vis-
ibility overlap. Visibility is repre-
sented by the dotted magenta line.

Fig. 2. Detection of overlap of disks of visibility using only local visibility-
based sensing.

We can thus consider a simplicial complex [17] repre-
sentation of the free space that the camera footprints cover.
The description of the abstract simplicial complex goes as
follows (Figure 3): We add one 0-simplex to the complex for
every deployed robot in the environment (the 0-simplices are
identified by the robot IDs). A 1-simplex is added between
two 0-simplices if the corresponding robots are in each
other’s disk of visibility (i.e., are within distance of rv from
each other) and can see each other. A 2-simplex is added
to the complex for every 3-tuple of robots that can all see
each other (and hence their disks of visibility has a non-
empty intersection). We do not construct any 3 or higher
dimensional simplices since on a planar environment with
obstacles, we are only concerned with the H1 homology.

1 2

3

4

5

9

6

7

8

1
2

3

4

5 6

7

8

9

Fig. 3. Nine robots, their disks of visibility and the corresponding abstract
simplicial complex, Rrv .
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Deployment policies

I vertex set structure + agent
visibility graph =
Vietoris-Rips complex to be
preserved while deploying

I hexagonal packing =
optimal packing to
accomplish in order to
maximize the covered surface
and minimize the number of
deployed agents 12 of 52



Algorithm design: overview

agents are provided with contact sensors that are triggered

when touching any barrier in the scenario or another agent,

able to roughly estimate the direction of an impact ([13],

Sec. II-C) within an error ∆τ = π/NT , where NT is the

number of contact points in each touch sensor. Finally, each

agent is provided by an event sensor in order to sense an

estimate f̂EV (p) of the event intensity.

Each agent is controlled using the bearing-based visual

homing controller ([13], Sec. II-D), meaning that the velocity

ṗi of robot ai is given by ṗi = kp
∑

vj∈Mi
(θij,des − θij),

where Mi ⊂ Ni is the list of robots that are neighbors of

ai and which can be used as landmarks, θij,des is the desired

bearing with landmark aj and kp is a feedback gain.

Base station: A base station is a point BS = p1 ∈
CS2 that generates all robots during coverage and it also

represents the position of the first agent a1. Because of this

choice, we assume that a1 cannot be removed while seeking

potential redundant agents in the network (see Subsec. III-A).

III. ALGORITHM DESIGN

A general overview of the main procedure is illustrated in

Alg. 1 and described as follows.

• Coverage: Firstly, agents are deployed until full cover-

age is attained (line 1).

• Clustering: Subsequently, they sense an event EV in the

scenario and a cluster GCL ⊆ G with preselected car-

dinality nCL = |GCL| is created (line 10). The cluster

formation begins from a leader vertex v⋆ that measures

the highest intensity: this node can be elected by means

of max-consensus algorithms [17] (line 8). Then, the

cluster grows with a greedy approach, maintaining its

connectivity.

• Dispatch: Finally, agents belonging to GCL perform a

dispatch (line 16) according to the minimization of an

isoperimetric functional hG(GCL) with the purpose to

drive the cluster’s elements close to the event origin

EV as far as possible, maintaining the connections

constituted right after the coverage. This minimization

takes place iterating on cluster GCL, where a maximum

number of iterations2 MaxIter is fixed and each ses-

sion can disable the flag f⋆d, breaking the dispatch loop.

We also decide to adaptively choose the leader node

v⋆ (line 15), since, at each cycle, the event sensing for

cluster nodes may vary while they move.

A. Coverage stage

As proposed in [13], let us denote the Vietoris-Rips

Complex of the set of the deployed agents3 with Rrv , the

frontier subcomplex with F ⊆ Rrv , the obstacle subcomplex

with O ⊆ Rrv and the fence subcomplex with K = F ∪O.

To accomplish this stage, we implement the COVERAGE

function at line 1 in Alg.1 adopting their hexagonal-packing-

based coverage algorithm. However, since the relative ho-

mology H2(Rrv ,K) is required to be stored in a centralized

2Iterations are counted by variables cdi, stored in each node vi ∈ VCL.
3Abuse of notation: a simplicial complex depends on the algorithm status.

manner —————————————————————

—————-
Algorithm 1 Outline of the main procedure

1: G ←COVERAGE();
2: for each agent ai, s.t. i = 1, ..., n do

3: |vi| ← f̂EV (pi);
4: end for
5: for all eij ∈ E do
6: |eij | ← (|vi|+ |vj |)/2;
7: end for
8: v⋆ ←MAX-CONSENSUS(G,BS);
9: GCL ← {v

⋆}
10: CLUSTERING(v⋆,1);
11: for all nodes vi ∈ GCL do
12: [cdi, fdi]← [0, false];
13: end for
14: while c⋆d < MaxIter and f⋆d = false do
15: v⋆ ←MAX-CONSENSUS(GCL, v

⋆);
16:

[

c⋆d, f⋆d
]

←DISPATCH(v⋆,c⋆d + 1,true);
17: end while

manner ([13], Sec. II-B), that procedure is not completely

distributed. To account for this aspect, we introduce an im-

provement to this scheme: conversely to the homology-based

approach utilized in [13], Sec. II-E, we pinpoint a redundant

agent in the network exploiting reciprocal bearing measure-

ment values. This allows us to rule out agents belonging

to the interior of a 1-simplex (a segment) or 2-simplex (a

triangle) taking advantage of simple angle properties4. In

Alg. 2, we examine these two different cases considering

each triplet of distinct agents ak = (ak1
, ak2

, ak3
) that forms

a 2-simplex and determine whether an agent is redundant to

coverage purposes.

Algorithm 2 Redundant agent search

for k = 1, 2, ... s.t. ak is a 2-simplex do

θk ←
[

θk1

k2k3
θk2

k1k3
θk3

k1k2

]

;

if ∃i ∈ {1, 2, 3} s.t. |[θk]i| = π and ki 6= 1 then
label aki

as 1-simplex-redundant;
end if
Nk∩ ← Nk1

∩Nk2
∩Nk3

;
for j = 1, ..., |Nk∩| s.t. akj

∈ Nk∩ do

if

∣

∣

∣
θ
kj

k1k2
+ θ

kj

k2k3
+ θ

kj

k3k1

∣

∣

∣
= 2π and kj 6= 1 then

label akj
as 2-simplex-redundant;

end if
end for

end for

B. Clustering stage

In this intermediate stage, illustrated in Alg. 3, we suppose

that each node in the network has already sensed the event

intensity, and hence each edge weight in the graph G has

already been assigned by a specific function of the measure-

ments (e.g. the function5 at line 6 in Alg. 1): it follows that

each neighborhood Ni in G can be sorted in a descending

4The remarkable facts that the summation result of the three convex
angles in any triangle is equivalent to a straight angle allows us to
identify 1-simplex-redundant agents. Moreover, 2-simplex-redundant agents
are spotted whenever three explementary angles with the same vertex exist.

5This weighting function has to be chosen according to condition written
on the r.h.s. at line 10 in Alg. 3

13 of 52



Algorithm design: coverage stage

agents are provided with contact sensors that are triggered

when touching any barrier in the scenario or another agent,

able to roughly estimate the direction of an impact ([13],

Sec. II-C) within an error ∆τ = π/NT , where NT is the

number of contact points in each touch sensor. Finally, each

agent is provided by an event sensor in order to sense an

estimate f̂EV (p) of the event intensity.

Each agent is controlled using the bearing-based visual

homing controller ([13], Sec. II-D), meaning that the velocity

ṗi of robot ai is given by ṗi = kp
∑

vj∈Mi
(θij,des − θij),

where Mi ⊂ Ni is the list of robots that are neighbors of

ai and which can be used as landmarks, θij,des is the desired

bearing with landmark aj and kp is a feedback gain.

Base station: A base station is a point BS = p1 ∈
CS2 that generates all robots during coverage and it also

represents the position of the first agent a1. Because of this

choice, we assume that a1 cannot be removed while seeking

potential redundant agents in the network (see Subsec. III-A).

III. ALGORITHM DESIGN

A general overview of the main procedure is illustrated in

Alg. 1 and described as follows.

• Coverage: Firstly, agents are deployed until full cover-

age is attained (line 1).

• Clustering: Subsequently, they sense an event EV in the

scenario and a cluster GCL ⊆ G with preselected car-

dinality nCL = |GCL| is created (line 10). The cluster

formation begins from a leader vertex v⋆ that measures

the highest intensity: this node can be elected by means

of max-consensus algorithms [17] (line 8). Then, the

cluster grows with a greedy approach, maintaining its

connectivity.

• Dispatch: Finally, agents belonging to GCL perform a

dispatch (line 16) according to the minimization of an

isoperimetric functional hG(GCL) with the purpose to

drive the cluster’s elements close to the event origin

EV as far as possible, maintaining the connections

constituted right after the coverage. This minimization

takes place iterating on cluster GCL, where a maximum

number of iterations2 MaxIter is fixed and each ses-

sion can disable the flag f⋆d, breaking the dispatch loop.

We also decide to adaptively choose the leader node

v⋆ (line 15), since, at each cycle, the event sensing for

cluster nodes may vary while they move.

A. Coverage stage

As proposed in [13], let us denote the Vietoris-Rips

Complex of the set of the deployed agents3 with Rrv , the

frontier subcomplex with F ⊆ Rrv , the obstacle subcomplex

with O ⊆ Rrv and the fence subcomplex with K = F ∪O.

To accomplish this stage, we implement the COVERAGE

function at line 1 in Alg.1 adopting their hexagonal-packing-

based coverage algorithm. However, since the relative ho-

mology H2(Rrv ,K) is required to be stored in a centralized

2Iterations are counted by variables cdi, stored in each node vi ∈ VCL.
3Abuse of notation: a simplicial complex depends on the algorithm status.

manner —————————————————————

—————-
Algorithm 1 Outline of the main procedure

1: G ←COVERAGE();
2: for each agent ai, s.t. i = 1, ..., n do

3: |vi| ← f̂EV (pi);
4: end for
5: for all eij ∈ E do
6: |eij | ← (|vi|+ |vj |)/2;
7: end for
8: v⋆ ←MAX-CONSENSUS(G,BS);
9: GCL ← {v

⋆}
10: CLUSTERING(v⋆,1);
11: for all nodes vi ∈ GCL do
12: [cdi, fdi]← [0, false];
13: end for
14: while c⋆d < MaxIter and f⋆d = false do
15: v⋆ ←MAX-CONSENSUS(GCL, v

⋆);
16:

[

c⋆d, f⋆d
]

←DISPATCH(v⋆,c⋆d + 1,true);
17: end while

manner ([13], Sec. II-B), that procedure is not completely

distributed. To account for this aspect, we introduce an im-

provement to this scheme: conversely to the homology-based

approach utilized in [13], Sec. II-E, we pinpoint a redundant

agent in the network exploiting reciprocal bearing measure-

ment values. This allows us to rule out agents belonging

to the interior of a 1-simplex (a segment) or 2-simplex (a

triangle) taking advantage of simple angle properties4. In

Alg. 2, we examine these two different cases considering

each triplet of distinct agents ak = (ak1
, ak2

, ak3
) that forms

a 2-simplex and determine whether an agent is redundant to

coverage purposes.

Algorithm 2 Redundant agent search

for k = 1, 2, ... s.t. ak is a 2-simplex do

θk ←
[

θk1

k2k3
θk2

k1k3
θk3

k1k2

]

;

if ∃i ∈ {1, 2, 3} s.t. |[θk]i| = π and ki 6= 1 then
label aki

as 1-simplex-redundant;
end if
Nk∩ ← Nk1

∩Nk2
∩Nk3

;
for j = 1, ..., |Nk∩| s.t. akj

∈ Nk∩ do

if

∣

∣

∣
θ
kj

k1k2
+ θ

kj

k2k3
+ θ

kj

k3k1

∣

∣

∣
= 2π and kj 6= 1 then

label akj
as 2-simplex-redundant;

end if
end for

end for

B. Clustering stage

In this intermediate stage, illustrated in Alg. 3, we suppose

that each node in the network has already sensed the event

intensity, and hence each edge weight in the graph G has

already been assigned by a specific function of the measure-

ments (e.g. the function5 at line 6 in Alg. 1): it follows that

each neighborhood Ni in G can be sorted in a descending

4The remarkable facts that the summation result of the three convex
angles in any triangle is equivalent to a straight angle allows us to
identify 1-simplex-redundant agents. Moreover, 2-simplex-redundant agents
are spotted whenever three explementary angles with the same vertex exist.

5This weighting function has to be chosen according to condition written
on the r.h.s. at line 10 in Alg. 3
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Algorithm design: cluster selection stage

agents are provided with contact sensors that are triggered

when touching any barrier in the scenario or another agent,

able to roughly estimate the direction of an impact ([13],

Sec. II-C) within an error ∆τ = π/NT , where NT is the

number of contact points in each touch sensor. Finally, each

agent is provided by an event sensor in order to sense an

estimate f̂EV (p) of the event intensity.

Each agent is controlled using the bearing-based visual

homing controller ([13], Sec. II-D), meaning that the velocity

ṗi of robot ai is given by ṗi = kp
∑

vj∈Mi
(θij,des − θij),

where Mi ⊂ Ni is the list of robots that are neighbors of

ai and which can be used as landmarks, θij,des is the desired

bearing with landmark aj and kp is a feedback gain.

Base station: A base station is a point BS = p1 ∈
CS2 that generates all robots during coverage and it also

represents the position of the first agent a1. Because of this

choice, we assume that a1 cannot be removed while seeking

potential redundant agents in the network (see Subsec. III-A).

III. ALGORITHM DESIGN

A general overview of the main procedure is illustrated in

Alg. 1 and described as follows.

• Coverage: Firstly, agents are deployed until full cover-

age is attained (line 1).

• Clustering: Subsequently, they sense an event EV in the

scenario and a cluster GCL ⊆ G with preselected car-

dinality nCL = |GCL| is created (line 10). The cluster

formation begins from a leader vertex v⋆ that measures

the highest intensity: this node can be elected by means

of max-consensus algorithms [17] (line 8). Then, the

cluster grows with a greedy approach, maintaining its

connectivity.

• Dispatch: Finally, agents belonging to GCL perform a

dispatch (line 16) according to the minimization of an

isoperimetric functional hG(GCL) with the purpose to

drive the cluster’s elements close to the event origin

EV as far as possible, maintaining the connections

constituted right after the coverage. This minimization

takes place iterating on cluster GCL, where a maximum

number of iterations2 MaxIter is fixed and each ses-

sion can disable the flag f⋆d, breaking the dispatch loop.

We also decide to adaptively choose the leader node

v⋆ (line 15), since, at each cycle, the event sensing for

cluster nodes may vary while they move.

A. Coverage stage

As proposed in [13], let us denote the Vietoris-Rips

Complex of the set of the deployed agents3 with Rrv , the

frontier subcomplex with F ⊆ Rrv , the obstacle subcomplex

with O ⊆ Rrv and the fence subcomplex with K = F ∪O.

To accomplish this stage, we implement the COVERAGE

function at line 1 in Alg.1 adopting their hexagonal-packing-

based coverage algorithm. However, since the relative ho-

mology H2(Rrv ,K) is required to be stored in a centralized

2Iterations are counted by variables cdi, stored in each node vi ∈ VCL.
3Abuse of notation: a simplicial complex depends on the algorithm status.

manner —————————————————————

—————-
Algorithm 1 Outline of the main procedure

1: G ←COVERAGE();
2: for each agent ai, s.t. i = 1, ..., n do

3: |vi| ← f̂EV (pi);
4: end for
5: for all eij ∈ E do
6: |eij | ← (|vi|+ |vj |)/2;
7: end for
8: v⋆ ←MAX-CONSENSUS(G,BS);
9: GCL ← {v

⋆}
10: CLUSTERING(v⋆,1);
11: for all nodes vi ∈ GCL do
12: [cdi, fdi]← [0, false];
13: end for
14: while c⋆d < MaxIter and f⋆d = false do
15: v⋆ ←MAX-CONSENSUS(GCL, v

⋆);
16:

[

c⋆d, f⋆d
]

←DISPATCH(v⋆,c⋆d + 1,true);
17: end while

manner ([13], Sec. II-B), that procedure is not completely

distributed. To account for this aspect, we introduce an im-

provement to this scheme: conversely to the homology-based

approach utilized in [13], Sec. II-E, we pinpoint a redundant

agent in the network exploiting reciprocal bearing measure-

ment values. This allows us to rule out agents belonging

to the interior of a 1-simplex (a segment) or 2-simplex (a

triangle) taking advantage of simple angle properties4. In

Alg. 2, we examine these two different cases considering

each triplet of distinct agents ak = (ak1
, ak2

, ak3
) that forms

a 2-simplex and determine whether an agent is redundant to

coverage purposes.

Algorithm 2 Redundant agent search

for k = 1, 2, ... s.t. ak is a 2-simplex do

θk ←
[

θk1

k2k3
θk2

k1k3
θk3

k1k2

]

;

if ∃i ∈ {1, 2, 3} s.t. |[θk]i| = π and ki 6= 1 then
label aki

as 1-simplex-redundant;
end if
Nk∩ ← Nk1

∩Nk2
∩Nk3

;
for j = 1, ..., |Nk∩| s.t. akj

∈ Nk∩ do

if

∣

∣

∣
θ
kj

k1k2
+ θ

kj

k2k3
+ θ

kj

k3k1

∣

∣

∣
= 2π and kj 6= 1 then

label akj
as 2-simplex-redundant;

end if
end for

end for

B. Clustering stage

In this intermediate stage, illustrated in Alg. 3, we suppose

that each node in the network has already sensed the event

intensity, and hence each edge weight in the graph G has

already been assigned by a specific function of the measure-

ments (e.g. the function5 at line 6 in Alg. 1): it follows that

each neighborhood Ni in G can be sorted in a descending

4The remarkable facts that the summation result of the three convex
angles in any triangle is equivalent to a straight angle allows us to
identify 1-simplex-redundant agents. Moreover, 2-simplex-redundant agents
are spotted whenever three explementary angles with the same vertex exist.

5This weighting function has to be chosen according to condition written
on the r.h.s. at line 10 in Alg. 3
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Algorithm design: dispatch stage

agents are provided with contact sensors that are triggered

when touching any barrier in the scenario or another agent,

able to roughly estimate the direction of an impact ([13],

Sec. II-C) within an error ∆τ = π/NT , where NT is the

number of contact points in each touch sensor. Finally, each

agent is provided by an event sensor in order to sense an

estimate f̂EV (p) of the event intensity.

Each agent is controlled using the bearing-based visual

homing controller ([13], Sec. II-D), meaning that the velocity

ṗi of robot ai is given by ṗi = kp
∑

vj∈Mi
(θij,des − θij),

where Mi ⊂ Ni is the list of robots that are neighbors of

ai and which can be used as landmarks, θij,des is the desired

bearing with landmark aj and kp is a feedback gain.

Base station: A base station is a point BS = p1 ∈
CS2 that generates all robots during coverage and it also

represents the position of the first agent a1. Because of this

choice, we assume that a1 cannot be removed while seeking

potential redundant agents in the network (see Subsec. III-A).

III. ALGORITHM DESIGN

A general overview of the main procedure is illustrated in

Alg. 1 and described as follows.

• Coverage: Firstly, agents are deployed until full cover-

age is attained (line 1).

• Clustering: Subsequently, they sense an event EV in the

scenario and a cluster GCL ⊆ G with preselected car-

dinality nCL = |GCL| is created (line 10). The cluster

formation begins from a leader vertex v⋆ that measures

the highest intensity: this node can be elected by means

of max-consensus algorithms [17] (line 8). Then, the

cluster grows with a greedy approach, maintaining its

connectivity.

• Dispatch: Finally, agents belonging to GCL perform a

dispatch (line 16) according to the minimization of an

isoperimetric functional hG(GCL) with the purpose to

drive the cluster’s elements close to the event origin

EV as far as possible, maintaining the connections

constituted right after the coverage. This minimization

takes place iterating on cluster GCL, where a maximum

number of iterations2 MaxIter is fixed and each ses-

sion can disable the flag f⋆d, breaking the dispatch loop.

We also decide to adaptively choose the leader node

v⋆ (line 15), since, at each cycle, the event sensing for

cluster nodes may vary while they move.

A. Coverage stage

As proposed in [13], let us denote the Vietoris-Rips

Complex of the set of the deployed agents3 with Rrv , the

frontier subcomplex with F ⊆ Rrv , the obstacle subcomplex

with O ⊆ Rrv and the fence subcomplex with K = F ∪O.

To accomplish this stage, we implement the COVERAGE

function at line 1 in Alg.1 adopting their hexagonal-packing-

based coverage algorithm. However, since the relative ho-

mology H2(Rrv ,K) is required to be stored in a centralized

2Iterations are counted by variables cdi, stored in each node vi ∈ VCL.
3Abuse of notation: a simplicial complex depends on the algorithm status.

manner —————————————————————

—————-
Algorithm 1 Outline of the main procedure

1: G ←COVERAGE();
2: for each agent ai, s.t. i = 1, ..., n do

3: |vi| ← f̂EV (pi);
4: end for
5: for all eij ∈ E do
6: |eij | ← (|vi|+ |vj |)/2;
7: end for
8: v⋆ ←MAX-CONSENSUS(G,BS);
9: GCL ← {v

⋆}
10: CLUSTERING(v⋆,1);
11: for all nodes vi ∈ GCL do
12: [cdi, fdi]← [0, false];
13: end for
14: while c⋆d < MaxIter and f⋆d = false do
15: v⋆ ←MAX-CONSENSUS(GCL, v

⋆);
16:

[

c⋆d, f⋆d
]

←DISPATCH(v⋆,c⋆d + 1,true);
17: end while

manner ([13], Sec. II-B), that procedure is not completely

distributed. To account for this aspect, we introduce an im-

provement to this scheme: conversely to the homology-based

approach utilized in [13], Sec. II-E, we pinpoint a redundant

agent in the network exploiting reciprocal bearing measure-

ment values. This allows us to rule out agents belonging

to the interior of a 1-simplex (a segment) or 2-simplex (a

triangle) taking advantage of simple angle properties4. In

Alg. 2, we examine these two different cases considering

each triplet of distinct agents ak = (ak1
, ak2

, ak3
) that forms

a 2-simplex and determine whether an agent is redundant to

coverage purposes.

Algorithm 2 Redundant agent search

for k = 1, 2, ... s.t. ak is a 2-simplex do

θk ←
[

θk1

k2k3
θk2

k1k3
θk3

k1k2

]

;

if ∃i ∈ {1, 2, 3} s.t. |[θk]i| = π and ki 6= 1 then
label aki

as 1-simplex-redundant;
end if
Nk∩ ← Nk1

∩Nk2
∩Nk3

;
for j = 1, ..., |Nk∩| s.t. akj

∈ Nk∩ do

if

∣

∣

∣
θ
kj

k1k2
+ θ

kj

k2k3
+ θ

kj

k3k1

∣

∣

∣
= 2π and kj 6= 1 then

label akj
as 2-simplex-redundant;

end if
end for

end for

B. Clustering stage

In this intermediate stage, illustrated in Alg. 3, we suppose

that each node in the network has already sensed the event

intensity, and hence each edge weight in the graph G has

already been assigned by a specific function of the measure-

ments (e.g. the function5 at line 6 in Alg. 1): it follows that

each neighborhood Ni in G can be sorted in a descending

4The remarkable facts that the summation result of the three convex
angles in any triangle is equivalent to a straight angle allows us to
identify 1-simplex-redundant agents. Moreover, 2-simplex-redundant agents
are spotted whenever three explementary angles with the same vertex exist.

5This weighting function has to be chosen according to condition written
on the r.h.s. at line 10 in Alg. 3

focus on event
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Contributions

Analysis and design of a distributed
minimal-energy potential-based control
law for a formation tracking problem,
involving a second-order linear
multi-agent system.

dp1 p2

p3

pc,des

pc
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Problem setup: agents’ dynamics
Assumptions

• n > 1 agents in an M -dimensional space, where N := Mn is set

• each agent i is aware of its absolute position pi ∈ RM and velocity ṗi
• each agent i is controlled in acceleration p̈i
• the whole state and the input are given by x ∈ R2N , u ∈ RN respectively

s.t.
x =

[
p>1 · · · p>n ṗ>1 · · · ṗ>n

]>
=
[
p> ṗ>

]>
u =

[
p̈>1 · · · p̈>n

]> = p̈

• Info on centroid xc =
[
p>c ṗ>c

]>
is available, s.t. pc := n−1

∑n
i=1 pi

• The dynamics can be represented by means of the linear system{
ẋ = Ax + Bu

xc = Cx

with (A,B,C) =

([
ZN IN
ZN ZN

]
,

[
ZN
IN

]
,

1

n

[
IM . . . IM ZM . . . ZM
ZM . . . ZM IM . . . IM

])
• Desire path tracked by the system centroid: xc,des =

[
p>c,des ṗ>c,des

]>
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]>
is available, s.t. pc := n−1

∑n
i=1 pi

• The dynamics can be represented by means of the linear system{
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]>
=
[
p> ṗ>
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Problem setup: cost functional minimization 1/2

Let T be the trajectory manifold of ẋ = Ax + Bu. We aim at solving

min
ξ∈T

h (ξ) , x :=
[
p> ṗ>

]>
, u := p̈

min
ξ∈T

h (ξ) , x :=
[
p> ṗ>

]>
, u := p̈

l(x(τ),u(τ), τ) := ltr(xc(τ)) + lin(u(τ)) + lfod (p(τ)) + lal(ṗ(τ)) ≥ 0

m(x(T )) := ltr(xc(T )) + lfod (p(T )) + lal(ṗ(T )) ≥ 0

s.t. h(x(·),u(·)) :=

∫
T

0
l (x(τ),u(τ), τ) dτ +m (x(T )) .

OIFT: Optimal time-Invariant Formation Tracking
(for a second-order MAS)
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Problem setup: cost functional minimization 2/2

Each term involved in the instantaneous cost l and in the final cost m
characterizes one specific task. Let us examine the instantaneous cost

ltr(xc(τ)) :=
1

2

n∑
i=1
‖xc(τ)− xc,des(τ)‖2Qc,ċ,i

ltr(xc(τ)) :=
1

2

n∑
i=1
‖xc(τ)− xc,des(τ)‖2Qc,ċ,i

lin(u(τ)) :=
1

2

n∑
i=1
‖ui(τ)‖2Ri

lin(u(τ)) :=
1

2

n∑
i=1
‖ui(τ)‖2Ri

lfod (p(τ)) :=
kF
4

n∑
i=1

∑
∀j 6=i

σdij (r
2
ij(τ)), rij = ‖pi − pj‖lfod (p(τ)) :=

kF
4

n∑
i=1

∑
∀j 6=i

σdij (r
2
ij(τ)), rij = ‖pi − pj‖

lal(ṗ(τ)) :=
kA
4

n∑
i=1

∑
∀j 6=i
‖ṗi − ṗj‖2qAij

l(x(τ),u(τ), τ) = ltr(xc(τ)) + lin(u(τ)) + lfod (p(τ)) + lal(ṗ(τ)).
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Problem setup: potential-based formations

Formations are achieved through a distance-based control law. Setting

sij := r2ij , the structure of term lfod (p) depends on the potential function

σdij (sij) :=

{
krij (1− sij/d2ij)3 for 0 ≤ sij ≤ d2ij
kaij (
√
sij/dij − 1)3 for sij ≥ d2ij

∈ C 2(R)

sij
d2ij

krij

kaij

4d2ij−3krij
d2ij

6krij
d4ij

σdij
(sij)

σ′
dij

(sij)

σ′′
dij

(sij)

• The minimum for σdij is attained
at rij = dij ⇒ dij is the desired
formation distance between (i, j)

• σ′dij (sij) ≤ 0 for 0 ≤ sij ≤ d2ij

• σ′dij (sij) ≥ 0 for sij ≥ d2ij

• σ′′dij (sij) ≥ 0 for all sij
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Control law design: variational approach
Let us define Q̄c :=

∑n
j=1 Q̄c,j/n and Q̄ċ :=

∑n
j=1 Q̄ċ,j/n, with Q̄ċ non

singular. Assuming to adopt a distributed PD controller u =
[
u>1 · · · u>n

]>
in order to

govern the dynamics of the MAS, it is possible to prove that functional h
is stationary under the distributed control law

ui := −R−1i
[
ktrP,iQc(pc − pc,des) + ktrD,iQċ(ṗc − ṗc,des)

]
−R−1i

[
kfoP,ikF

∑
j∈Ni

σ′dij (r
2
ij)eij + kalD,ikA

∑
j∈Ni

qAij ėij

]
−R−1i kfoD kF

∑
j∈Ni

[
2σ′′dij (r

2
ij)eije

>
ij + χ>0(σ

′
dij

(r2ij))σ
′
dij

(r2ij)IM

]
ėij

where eij := pi − pj , (ktrP,i, k
tr
D,i, k

fo
P,i, k

al
D,i, k

fo
D ) are feeback gains, Ni is

the neighborhood of agent i and χ>0 is the characteristic function for
positive numbers.
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Centralized vs Distributed comparison 1/2
The numerical tool PRONTO has been used to provide an optimality
reference for the OIFT in the centralized case.

(a) PRONTO: Position trajectories (b) Distributed: Position trajectories

(c) PRONTO: Input energy consumption (d) Distributed: Input energy consumption

(e) PRONTO: Settling time (f) Distributed: Settling time

Figure 2: Comparison between the offline solution provided by PRONTO and
the system dynamics governed by the distributed controller. (a)-(b): trajecto-
ries of the positions, in dark green; trajectory of the centroid position, in light
green; desired straight path, in black; cubic shape formation, depicted progres-
sively with ordered shades blue-indigo-purple-red, beginning with blue. (c)-(d):
total input energy, in magenta, and average input energy, in green, spent by the
system; dashed lines show their time-averaged values. (e)-(f): settling times at
10%, 1%, 0.1%, (i.e. η = 0.1, 0.01, 0.001 respectively) depicted by the vertical
lines, and established evaluating a quantitative weighted trade-off between forma-
tion/alignment and tracking instantaneous costs.
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Contributions

Formalization and comparison of three iterative linear algorithms for the
distributed state estimation from relative measurements (RMs) in a MAS.

simply-connected, as we demonstrate through experimental
results in complex, indoor environments with obstacles.

We adopt a simplicial complex representation (in par-
ticular, a Rips complex) as the richer and more formal
description of the sensor coverage, without using metric
information, to solve the problem of deployment of robots
in an unknown environment without global localization.
The robots only have onboard sensors to measure bearings
to neighboring robots in their local coordinates and touch
sensors for collision avoidance. Such limited sensing data
essentially allows deployment of robots in a dark room, with
the robots using their camera to identify their neighbors by
illuminated (LED) markers on each other. Since our approach
is fundamentally topological, the proposed method is highly
robust to sensor noise. We attain complete sensor coverage
of the entire finite environment assuming sufficient number
of available robots, along with guarantees on coverage,
exploration and a notion of local optimality.
B. Problem Description

We consider the problem of efficiently exploring an un-
known indoor environment with a rapidly expanding swarm
of robots with limited and noisy local sensing with no global
localization or sensing capabilities. In particular, the only
sensory capabilities that we assume on each robot are those
of an omni-directional camera with a limited radial range
of vision and a touch sensor to detect contact/collision with
obstacles and other robots. We call the disk around a robot,
representing a sensing radius of the omni-directional camera,
the robot’s disk of visibility, within which the bearing to
the neighboring robots and their identities can be detected.
However, the camera does not provide a range measurement
due to projection of the spacial world on to the camera plane.
Thus, obstacles are detected through touch sensors near the
base of the robots, and cannot be detected using the camera.
The robots can also communicate with each other and with
a central router through wireless communication. The robots
are assumed to holonomic (i.e. can be driven in arbitrary
direction). We assume that there are sufficiently large number
of robots available, which are being deployed from one or
multiple sources (e.g. entrance to an environment).

The contribution of this paper is to design a distributable
control algorithm for the robots such that they deploy them-
selves to attain hole-less coverage of the entire environment
using their disks of visibility. That means, at least one
robot should be able to see each and every point in the
environment after the coverage is attained. However, the only
information that they have are the bearing to their neighbors
in their respective local coordinate frames and a directional
touch information with obstacles. This means that there is
absolutely no metric information available.

II. PRELIMINARIES
A. Notations

We denote by W ⊂ R2 the obstacle-free region where the
robots are being deployed and the sensor coverage of which
needs to be attained. If there are n robots deployed in W ,
we assign IDs to them, 1, 2, · · · , n, and represent their joint
configuration by X = [x1, x2, · · · , xn], xi ∈W .

Hole

Fig. 1. Illustration of a swarm of robots entering an environment and
attaining coverage. The hole shown on the right figure is something we
would like to avoid.

A robot, i, can measure the bearing to a neighbor, j ∈ Ni,
in its local coordinates, where Ni = {j | ‖xi−xj‖ ≤ rv} are
the neighbors of i. We call this measurement θij ∈ [−π, π).
If it measures the bearing to another robot, k as θik, then we
define θijk =

(
(θik − θij) mod 2π

)
−π — i.e., the bearing

to k relative to the bearing to j (and the angle converted to
a value in [−π, π)).

B. Vietoris–Rips Complex of Camera Sensing Footprints

We do not assume that the robots can localize themselves
and the only way of sensing/identifying neighbors is by
using the camera. Thus, if the disks of visibility of two
robots merely overlap, there is no way of detecting that fact
(Figure 2(a)). We need to use a stronger notion of overlap
— two robots know that their disks of visibility overlap if
and only if they are in each other’s disks of visibility and
their line of sight is not blocked (Figure 2(b)).

1 2

(a) Robots can’t see each other,
and hence have no way of de-
tecting that their disks of visi-
bility overlap.

1 2

(b) Robots can see each other, and
hence know that their disks of vis-
ibility overlap. Visibility is repre-
sented by the dotted magenta line.

Fig. 2. Detection of overlap of disks of visibility using only local visibility-
based sensing.

We can thus consider a simplicial complex [17] repre-
sentation of the free space that the camera footprints cover.
The description of the abstract simplicial complex goes as
follows (Figure 3): We add one 0-simplex to the complex for
every deployed robot in the environment (the 0-simplices are
identified by the robot IDs). A 1-simplex is added between
two 0-simplices if the corresponding robots are in each
other’s disk of visibility (i.e., are within distance of rv from
each other) and can see each other. A 2-simplex is added
to the complex for every 3-tuple of robots that can all see
each other (and hence their disks of visibility has a non-
empty intersection). We do not construct any 3 or higher
dimensional simplices since on a planar environment with
obstacles, we are only concerned with the H1 homology.
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Fig. 3. Nine robots, their disks of visibility and the corresponding abstract
simplicial complex, Rrv .
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G = (V, E)

Problem statement. Minimize the diffusive squared error:mization cost

arg min
{x1,...,xn}

1

2

∑
vi∈V

∑
vj∈Ni

(xi − xj + x̃ij)
>(xi − xj + x̃ij). (1)

Setting N := nM , the cost function in (1), hereafter denoted by h = h(x),

where x =
[
x>1 . . . x>n

]> ∈ RN , has a standard quadratic form, i.e., the
minimization problem is convex.

3. Solutions for the state estimation from relative measurements
X

To solve the state estimation problem defined in 1, we present in the
following paragraphs different approaches, both centralized and decentral-
ized. In particular, a discussion devoted to the different distributed iterative
schemes is yielded as a starting point for a comparison between this kind of
algorithms. Moreover, in the final part, the convergence of these multivari-
ate approaches is debated, contributing to a relevant simplification for the
convergence rate analysis.

3.1. Centralized vs Distributed Solution X

As always, derive the centralized and distributed solutions from the least-
squares cost functional. Moreover, show how the multivariate version of the
distributed solution can be decoupled and thus the iterative scheme can be
parallelized as a multitude of iterative schemes.

In order to derive a centralized solution to minimization problem in (1),
we account for the gradient of h whose i-th component is given by

∇xih = 2deg(vi)xi − 2
∑

vj∈Ni
xj −

∑
vj∈Ni

(x̃ji − x̃ij). (2)

such that, indicating with 0N the null vector of dimension N , condition

∇x =
[
∇>x1

· · · ∇>xn
]>

= 0N (3)

be satisfied. It is worth to note that equation (3) can be rewritten as

∇xlh = 0n, for l = 1 . . .M (4)

5

where xi is the state of node vi ∈ V, Ni is the neighborhood of vi
and x̃ij = x̃i − x̃j is the noisy RM.
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Contributions

Formalization and comparison of three iterative linear algorithms for the
distributed state estimation from relative measurements (RMs) in a MAS.
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Setting N := nM , the cost function in (1), hereafter denoted by h = h(x),

where x =
[
x>1 . . . x>n

]> ∈ RN , has a standard quadratic form, i.e., the
minimization problem is convex.

3. Solutions for the state estimation from relative measurements
X

To solve the state estimation problem defined in 1, we present in the
following paragraphs different approaches, both centralized and decentral-
ized. In particular, a discussion devoted to the different distributed iterative
schemes is yielded as a starting point for a comparison between this kind of
algorithms. Moreover, in the final part, the convergence of these multivari-
ate approaches is debated, contributing to a relevant simplification for the
convergence rate analysis.

3.1. Centralized vs Distributed Solution X

As always, derive the centralized and distributed solutions from the least-
squares cost functional. Moreover, show how the multivariate version of the
distributed solution can be decoupled and thus the iterative scheme can be
parallelized as a multitude of iterative schemes.

In order to derive a centralized solution to minimization problem in (1),
we account for the gradient of h whose i-th component is given by

∇xih = 2deg(vi)xi − 2
∑

vj∈Ni
xj −

∑
vj∈Ni

(x̃ji − x̃ij). (2)

such that, indicating with 0N the null vector of dimension N , condition

∇x =
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∇>x1

· · · ∇>xn
]>

= 0N (3)

be satisfied. It is worth to note that equation (3) can be rewritten as

∇xlh = 0n, for l = 1 . . .M (4)

5

where xi is the state of node vi ∈ V, Ni is the neighborhood of vi
and x̃ij = x̃i − x̃j is the noisy RM. 29 of 52



Distributed solutions 1/2
Let us consider the problem in only 1 dimension, w.l.o.g. and let

x̃ :=

[ ∑
vj∈V1

(x̃j1 − x̃1j) . . .
∑

vj∈Vn
(x̃jn − x̃nj)

]>
.

General distributed solution: linear state-space system driven by an

exogenous input uϑ = uϑ(x̃) dependent on the RMs and a state update

provided by Fϑ dependent on the network topology.

Σϑ : x(t+ 1) = Fϑx(t) + uϑ, ϑ ∈ {0, η, ρ, ε}
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Distributed solutions 2/2
For ϑ ∈ {η, ρ, ε} the solution of Σϑ converges to the centralized solution

x? =
1

2
L†x̃

where L† is the pseudo-inverse of the Laplacian matrix associated to G.

Performances: measured by r ∈ [0, 1], the lower r the faster the

convergence towards the centralized solution. Summary:

where L = D1/2LD1/2 and ςL = (λL1 + λLn−1)/2.
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Sensitivity analysis 1/2
Consider a discrete linear state-space system (A,B,C,D)ϑ with transfer

function W(z, ϑ) = C(Iz −A)−1B + D depending on parameter ϑ.

Sensitivity: Sϑ(z) =
∂ ln(det[W(z, ϑ)])

∂ ln(ϑ)
. Relative sensitivity: S̄ϑ(z) =

Sϑ(z)

ϑ
.

Meaning of the relative sensitivity for 1-dimensional W :

W (z, ϑ+ ∆ϑ) 'W (z, ϑ) +
∂W (z, ϑ)

∂ϑ
∆ϑ

= W (z, ϑ)(1 + S̄ϑ(z)∆ϑ)

Simplification for the relative sensitivity formula:

S̄ϑ(z) = tr

[
W(z, ϑ)−>

∂W(z, ϑ)

∂ϑ

]
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Sensitivity analysis 2/2

∣∣S̄η(1)
∣∣ =

1

η − 1
,

∣∣S̄ρ(1)
∣∣ =

1

2vol(G) + ρ
,

∣∣S̄ε(1)
∣∣ =

1

ε

33 of 52



Case study: bipartite network 1/2

• Graph G has n = 7 nodes and it is bipartite

G
1 2 3 4

5 6 7

• Due to bipartiteness, Σ0 is not expected to

converge towards x?

• Simulations on Σε are not considered due to

high sensitivity
• Bounds for the eigenvalues of Fρ can be

provided, given ρ: helps to figure out the rate

of convergence

Λ(F0)

Λ(Fρ?)

−1 −0.5 0 0.5 1
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Case study: bipartite network 2/2

PerformancesTuning of parameters

Sensitivity comparison Estimation dynamics
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Algebraic characterization of certain circulant

networks
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Contributions

• General aim: investigate stability, performances of graph-based protocols
and the communication exchange over networks.

• In particular, circulant networks are widely employed in the design of
distributed consensus-like algorithms. E.g., camera networks whose nodes
share a common field of view:

• A spectral characterization of the Laplacian matrix related to a class of
circulant graphs is provided through the Dirichlet kernel.
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circulant graphs is provided through the Dirichlet kernel.
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Preliminaries: circulant graphs
Circulant matrix

F = circ($) :=


$0 $1 . . . $n−2 $n−1
$n−1 $0 . . . $n−3 $n−2

...
. . . · · · . . .

...
$2 $3 . . . $0 $1

$1 $2 . . . $n−1 $0

 ∈ Rn×n

Circulant matrix spectrum

λF(j) =
n−1∑
k=0

[
$k exp

(
−2kπi

n
j

)]
for j = 0, . . . , n− 1

Randić matrix relation + d-regularity

F := D−1A = D−1/2AD−1/2 =: RRR

Laplacian matrix relation + d-regularity

L := D−A = dL = d(In −RRR )

Spectral equivalence between normalize Laplacian and Randić matrices

λF(j) = λRRR (j) = 1− λL(j) for j = 0, . . . , n− 1
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Preliminaries: κ-ring graphs
κ-ring graphs Cn(1, κ) are a class of circulant graphs constructed

by multiple circulant edge layers

1

23

4

5

6

7 8

9

C9(1, 1)

1

23

4

5

6

7 8

9

C9(1, 2)

1

23

4

5

6

7 8

9

C9(1, 3)

κ ∈ N>0 represents the maximum length of the path that leads from one of the
n nodes vi to one of its neighbors vj, neglecting the presence of all the other
nodes that are not members of Ni. In other words, for2 κ = 1 . . . bn/2c − 1,
constant κ can be interpreted as the width of the identical panorama seen
from each vertex, as depicted in Fig. 1. In addition, to provide further de-
tails in this description, it is worth to mention that κ-regular graphs are not
only circulant but also connected, Hamiltonian and Eulerian, since this kind
of topology is constructed by means of multiple edge layers beginning with
the cycle of length n. Lastly, in Table 1, few standard quantities related to
κ-ring graphs are summarized.
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(a) C9(1, 1)
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(b) C9(1, 2)
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7 8
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(c) C9(1, 3)

Figure 1: All the three κ-ring graphs with n = 9 vertices. A layer of edges is added
for each increasing value of κ: 1(a) first layer (black), 1(b) second layer (green),
1(c) third layer (red).

#Vertices #Edges Diameter Radius Girth Regularity

|V| = n ≥ 4 |E| = nκ φ = dn/2κe r = φ g =

{
n, if κ = 1

3, otherwise
d = 2κ

Table 1: Basic topologic quantities of a κ-ring graph with n vertices.

2Values κ = 0 and κ = bn/2c are purposely excluded since they lead to degenerate
well-known topologies, such as the void or complete graphs.

5
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Main results: spectral characterization

Definition (Dirichlet kernel)

Dκ : R→ R of order κ ∈ N such that

Dκ(x ) :=


sin((κ+ 1/2)x )

2 sin(x /2)
, if x 6= 2πl, ∀l ∈ Z;

κ+ 1/2, otherwise.

Theorem (Spectral characterization of κ-ring graphs)

L graph Laplacian of κ-ring graph Cn(1, κ), θ := π/n. Eigenvalues
λL(j) ∈ Λ(L) can be expressed in function of the Dirichlet kernel as

λL(j) = 1 + 2 (κ−Dκ(2θj)) , for j = 0, . . . , bn/2c;
λL(n− j) = λL(j), for j = 1, . . . , bn/2c.

λL(j) ∈ [0, 4κ], ∀j = 0, . . . , n− 1, λL0 := λL(0) = 0 is simple and,
if ∃j? ∈ N s.t. λL(j?) = 4κ, j? ∈ (0, n), then λL(j?) is simple.
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Main results: Spectral characterization
Proof. Exploiting the spectrum of the circulant matrices and setting

[$]i :=

{
d−1, if ei1 ∈ E ;

0, otherwise;

eigenvalues of the Randić matrix RRR can be rewritten as

λRRR (j) =
1

d

d/2∑
k=1

[exp(−i2kθj)] +
1

d

n−1∑
k=n−d/2

[exp(−i2kθj)]

=
1

d

d/2∑
k=1

[exp(−i2kθj)] +
1

d

d/2∑
k=1

[exp(i2kθj)]

=
2

d

(
1

2

∑
|k|≤d/2

[exp(i2kθj)]− 1

2

)
= κ−1 (Dκ(2θj)− 1/2)

protocol performances
improve as κ increases!

Leveraging the d-regularity, the rest of the statement can be proven
resorting to Landau H., Odlyzko A., 1981 “Bounds for Eigenvalues
of Certain Stochastic Matrices”. �
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Main results: Fiedler value
The previous theorem offers a deep insight on the connection between the
Dirichlet kernel and the eigenvalues of L.

The analysis continues focusing on the extremal eigenvalues of the

restricted spectrum Λ0(L) := Λ(L) \
{
λL0
}
⊆ (0, 4κ], denoting the

eigenvalues of Λ(L) with 0 = λL0 < λL1 ≤ . . . ≤ λLn−1.

Only the result on the Fiedler value is reported in what follows.

Corollary (Fiedler value of κ-ring graphs)

The smallest positive eigenvalue λL1 of the graph Laplacian L
associated to the κ-ring graph Cn(1, κ) is given by

λL1 := min
j=1...n−1

λL(j) = λL(1) = λL(n− 1) ∈ (0, 2κ).

Eigenvalue λL1 gives us information on the right limit λF1 of the unit circle
allowing to determine protocol performances.
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General approach to NO4MAS: design & validation

Arrows express dependencies.

Model description

Generation &
classification of

distributed
measurements

Tuning of
hyper-parametersDistributed optimal

control synthesis

Decision of
optimality

criteria

Appearence of
collective
behaviors

Experimental
verification

Specification
assignment +

(Adaptive frameworks)

(Presence of trade-offs)

Key aspects in the NO4MAS approach
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Future directions

1 Currently: working as a post-doc under the supervision of
Daniel Zelazo at the Technion in Haifa, Israel. Research topic:
cyber-security for multi-agent systems.

2 From April 2020: submission of the pending articles.
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