DEPARTMENT OF INFORMATION ENGINEERING

PhD final exam for the 32nd cycle

DISTRIBUTED OPTIMIZATION STRATEGIES FOR MOBILE MULTI-AGENT SYSTEMS

Ph.D. candidate: Marco Fabris Supervisor: Prof. Angelo Cenedese

Multi-agent systems (MASs)

A **MAS** is a set of agents situated in a common environment, eventually, building or participating to an organization.

Multi-agent systems (MASs)

A **MAS** is a set of agents situated in a common environment, eventually, building or participating to an organization.

Questions and motivations:

- How to solve tasks that are arduous for the individual?
- How do network components interact within a network?
- How does the network architecture influence the global behavior of the system?

Distributed

Multi-agent systems (MASs)

A **MAS** is a set of agents situated in a common environment, eventually, building or participating to an organization.

Questions and motivations:

- How to solve tasks that are arduous for the individual?
- How do network components interact within a network?
- How does the network architecture influence the global behavior of the system?

Distributed

Distinctive features: autonomy, scalability, security, robustness to failure.

Outline

- 1 Overview on my reasearch activity
- 2 Research thrust (i): Distributed strategies for coverage and focus on event with limited sensing capabilities
- 3 Research thrust (ii): Optimal time-invariant formation control
- 4 Research thrust (iii): Distributed estimation from relative measurements
- 5 Research thrust (iv): Algebraic characterization of certain circulant networks
- 6 Conclusions

Overview on my reasearch activity

Distributed strategies for coverage and focus on event with limited sensing capabilities

Optimal time-invariant formation control

Distributed estimation from relative measurements

iii Algebraic characterization of certain circulant networks

Networked optimization for MASs: common thread

multi-agent leads to multidisciplinary framework

■ Analysis and synthesis of feedback systems: design of feedback control laws, sensitivity analysis to parameter variations, fulfillment of optimality principles.

- Analysis and synthesis of feedback systems: design of feedback control laws, sensitivity analysis to parameter variations, fulfillment of optimality principles.
- **Graph-based motion planning and clustering**: greedy algorithms for navigation, edge expansion techniques for partitioning.

- Analysis and synthesis of feedback systems: design of feedback control laws, sensitivity analysis to parameter variations, fulfillment of optimality principles.
- **Graph-based motion planning and clustering**: greedy algorithms for navigation, edge expansion techniques for partitioning.
- **Iterative methods for optimization**: descent algorithms, approaches for convex optimization.

- Analysis and synthesis of feedback systems: design of feedback control laws, sensitivity analysis to parameter variations, fulfillment of optimality principles.
- **Graph-based motion planning and clustering**: greedy algorithms for navigation, edge expansion techniques for partitioning.
- **Iterative methods for optimization**: descent algorithms, approaches for convex optimization.
- **Swarm-robotic-oriented strategies**: geometrical policies for mobile robotics, employ of topological tools.

Overall contribution of the thesis

- formalization of problems having practical consequences in the advancement in the field of MASs
- development of novel analysis and design tools and enrichment of existing mathematical methods
- application of optimization-based strategies to achieve required specifications, drawing inspiration from current literature
- proofs of theoretical statements settled in this framework
- virtual implementation and numerical simulation of the devised techniques to assess case studies

Distributed strategies for coverage and focus on event with limited sensing capabilities

- Design and test of a distributed multi-agent algorithm;
- 3 tasks to be consecutively accomplished in a given unknown scenario:

- Design and test of a **distributed multi-agent algorithm**;
- 3 tasks to be consecutively accomplished in a given unknown scenario:
 - Robotic coverage resorting to bearing measurements only

- Design and test of a distributed multi-agent algorithm;
- 3 tasks to be consecutively accomplished in a given unknown scenario:
 - Robotic **coverage** resorting to bearing measurements only

2 Cluster selection of a group of agents to perform the detection of

- Design and test of a distributed multi-agent algorithm;
- 3 tasks to be consecutively accomplished in a given unknown scenario:
 - Robotic **coverage** resorting to bearing measurements only

Cluster selection of a group of agents to perform the detection of

3 Agents' dispatch towards the detected event

Assumptions & models 1/2

Models are partly inspired and borrowed by the those used in

[Kumar et al., "Sensor Coverage Robot Swarms Using Local Sensing without Metric Information", ICRA, Seattle, WA, 2015]

Assumptions & models 1/2

Models are partly inspired and borrowed by the those used in

[Kumar et al., "Sensor Coverage Robot Swarms Using Local Sensing without Metric Information", ICRA, Seattle, WA, 2015]

■ Agents: sensing & control

- local visibility-based sensing only
- touch/contact sensors revealing impacts
- sensors to detect events
- navigation by means of bearing-based controllers

Assumptions & models 1/2

Models are partly inspired and borrowed by the those used in

[Kumar et al., "Sensor Coverage Robot Swarms Using Local Sensing without Metric Information", ICRA, Seattle, WA, 2015]

■ Agents: sensing & control

- local visibility-based sensing only
- touch/contact sensors revealing impacts
- sensors to detect events
- navigation by means of bearing-based controllers

■ Virtual environment

- synthetic scenario based on simple geometric features
- spawn location for agents represented by a base station

Assumptions & models 2/2

- Topological tools
 - ▶ undirected **graphs** ←→ agent interactions
 - ightharpoonup simplexes and simplicial complex \longleftrightarrow coverage structure

Assumptions & models 2/2

- Topological tools
 - ▶ undirected graphs ←→ agent interactions
 - **▶ simplexes** and simplicial complex ←→ coverage structure

- Deployment policies
 - vertex set structure + agent visibility graph =
 Vietoris-Rips complex to be preserved while deploying
 - hexagonal packing = optimal packing to accomplish in order to maximize the covered surface and minimize the number of deployed agents

Algorithm design: overview

Algorithm 1 Outline of the main procedure

17: end while

```
1: \mathcal{G} \leftarrow \text{COVERAGE}();
 2: for each agent a_i, s.t. i = 1, ..., n do
            |v_i| \leftarrow f_{EV}(\mathbf{p}_i);
 4: end for
 5: for all e_{ij} \in \mathcal{E} do
 6: |e_{ij}| \leftarrow (|v_i| + |v_j|)/2;
 7. end for
 8: v^* \leftarrow \text{Max-Consensus}(\mathcal{G}, \text{BS});
 9: \mathcal{G}_{CL} \leftarrow \{v^{\star}\}
10: CLUSTERING(v^*,1);
11: for all nodes v_i \in \mathcal{G}_{CL} do
            [c_{di}, f_{di}] \leftarrow [0, \mathbf{false}];
13: end for
14: while c_d^{\star} < MaxIter and f_d^{\star} = false do
        v^* \leftarrow \text{Max-Consensus}(\mathcal{G}_{CL}, v^*);
15:
             [c_d^{\star}, f_d^{\star}] \leftarrow \text{DISPATCH}(v^{\star}, c_d^{\star} + 1, \text{true});
16:
```

Algorithm design: coverage stage

Algorithm 1 Outline of the main procedure

```
(1: \mathcal{G} \leftarrow \text{Coverage}();
 2: for each agent a_i, s.t. i = 1, ..., n do
            |v_i| \leftarrow f_{EV}(\mathbf{p}_i);
 4: end for
 5: for all e_{ij} \in \mathcal{E} do
 6: |e_{ij}| \leftarrow (|v_i| + |v_j|)/2;
 7. end for
 8: v^* \leftarrow \text{Max-Consensus}(\mathcal{G}, \text{BS});
 9: \mathcal{G}_{CL} \leftarrow \{v^{\star}\}
10: CLUSTERING(v^*,1);
11: for all nodes v_i \in \mathcal{G}_{CL} do
            [c_{di}, f_{di}] \leftarrow [0, \mathbf{false}];
13: end for
14: while c_d^{\star} < MaxIter and f_d^{\star} = false do
15: v^* \leftarrow \text{MAX-CONSENSUS}(\mathcal{G}_{CL}, v^*);
            \begin{bmatrix} c_d^{\star}, f_d^{\star} \end{bmatrix} \leftarrow \text{DISPATCH}(v^{\star}, c_d^{\star} + 1, \text{true});
16:
17: end while
```

deployment

Algorithm design: cluster selection stage

Algorithm 1 Outline of the main procedure

```
1: \mathcal{G} \leftarrow \text{COVERAGE}();
 2: for each agent a_i, s.t. i = 1, ..., n do
            |v_i| \leftarrow f_{EV}(\mathbf{p}_i);
 4: end for
 5: for all e_{ij} \in \mathcal{E} do
         |e_{ij}| \leftarrow (|v_i| + |v_i|)/2;
 7 end for
 8: v^* \leftarrow \text{Max-Consensus}(\mathcal{G}, \text{BS});
 9: \mathcal{G}_{CL} \leftarrow \{v^*\}
10: Clustering(v^*,1):
11: for all nodes v_i \in \mathcal{G}_{CL} do
            [c_{di}, \mathbf{f}_{di}] \leftarrow [0, \mathbf{false}];
13: end for
14: while c_d^{\star} < MaxIter and f_d^{\star} = false do
         v^* \leftarrow \text{Max-Consensus}(\mathcal{G}_{CL}, v^*);
15:
             [c_d^{\star}, f_d^{\star}] \leftarrow \text{DISPATCH}(v^{\star}, c_d^{\star} + 1, \text{true});
17: end while
```


event detection

Algorithm design: dispatch stage

Algorithm 1 Outline of the main procedure

1: $\mathcal{G} \leftarrow \text{COVERAGE}()$;

```
2: for each agent a_i, s.t. i = 1, ..., n do
           |v_i| \leftarrow f_{EV}(\mathbf{p}_i);
 4 end for
 5: for all e_{ij} \in \mathcal{E} do
        |e_{ij}| \leftarrow (|v_i| + |v_j|)/2;
 7: end for
 8: v^* \leftarrow Max-Consensus(\mathcal{G},BS);
 9: G<sub>CL</sub> ← {v<sup>*</sup>}
10: Clustering(v^*,1);
11: for all nodes v_i \in \mathcal{G}_{CL} do
      [c_{di}, f_{di}] \leftarrow [0, \mathbf{false}];
13: end for
14: while c_d^{\star} < MaxIter and f_d^{\star} = false do
15:
       v^* \leftarrow \text{MAX-CONSENSUS}(\mathcal{G}_{CL}, v^*);
            \begin{bmatrix} c_d^{\star}, f_d^{\star} \end{bmatrix} \leftarrow \text{DISPATCH}(v^{\star}, c_d^{\star} + 1, \text{true});
16:
17: end while
```

focus on event

References for RT (i)

- R. Ramaithitima, M. Whitzer, S. Bhattacharya, V. Kumar, 2015, "Sensor Coverage Robot Swarms Using Local Sensing without Metric Information"
- G. Oliva, R. Setola, 2013, "Distributed k-means Algorithm"
- M. Lukic, I. Stojmenovic, 2013 "Energy-balanced matching and sequence dispatch of robots to events"
- A. Zomorodian, 2010, "Fast Construction of the Vietoris-Rips Complex"
- M. Mesbahi and M. Egerstedt, 2010, "Graph Theoretic Methods in Multiagent Networks"
- Q. Du, V. Faber and M. Gunzburger, 1999, "Centroidal Voronoi Tessellations: Applications and Algorithms"
- F. R. K. Chung, 1997, "Spectral Graph Theory"

Optimal time-invariant formation control

Analysis and design of a **distributed** minimal-energy potential-based control law for a **formation tracking** problem, involving a second-order linear multi-agent system.

Problem setup: agents' dynamics

Assumptions

ullet n>1 agents in an M-dimensional space, where N:=Mn is set

Problem setup: agents' dynamics

Assumptions

- ullet n>1 agents in an M-dimensional space, where N:=Mn is set
- ullet each agent i is aware of its absolute position $\mathbf{p}_i \in \mathbb{R}^M$ and velocity $\dot{\mathbf{p}}_i$

Problem setup: agents' dynamics

Assumptions

- ullet n>1 agents in an M-dimensional space, where N:=Mn is set
- ullet each agent i is aware of its absolute position $\mathbf{p}_i \in \mathbb{R}^M$ and velocity $\dot{\mathbf{p}}_i$
- ullet each agent i is controlled in acceleration $\ddot{\mathbf{p}}_i$

Assumptions

- ullet n>1 agents in an M-dimensional space, where N:=Mn is set
- ullet each agent i is aware of its absolute position $\mathbf{p}_i \in \mathbb{R}^M$ and velocity $\dot{\mathbf{p}}_i$
- ullet each agent i is controlled in acceleration $\ddot{\mathbf{p}}_i$
- the whole state and the input are given by $\mathbf{x} \in \mathbb{R}^{2N}$, $\mathbf{u} \in \mathbb{R}^N$ respectively s.t.

$$\mathbf{x} = \begin{bmatrix} \mathbf{p}_1^\top & \cdots & \mathbf{p}_n^\top & \dot{\mathbf{p}}_1^\top & \cdots & \dot{\mathbf{p}}_n^\top \end{bmatrix}^\top = \begin{bmatrix} \mathbf{p}^\top & \dot{\mathbf{p}}^\top \end{bmatrix}^\top \\ \mathbf{u} = \begin{bmatrix} \ddot{\mathbf{p}}_1^\top & \cdots & \ddot{\mathbf{p}}_n^\top \end{bmatrix}^\top & = \ddot{\mathbf{p}} \end{bmatrix}$$

Assumptions

- ullet n>1 agents in an M-dimensional space, where N:=Mn is set
- ullet each agent i is aware of its absolute position $\mathbf{p}_i \in \mathbb{R}^M$ and velocity $\dot{\mathbf{p}}_i$
- ullet each agent i is controlled in acceleration $\ddot{f p}_i$
- the whole state and the input are given by $\mathbf{x} \in \mathbb{R}^{2N}$, $\mathbf{u} \in \mathbb{R}^N$ respectively s.t.

$$\mathbf{x} = \begin{bmatrix} \mathbf{p}_1^\top & \cdots & \mathbf{p}_n^\top & \dot{\mathbf{p}}_1^\top & \cdots & \dot{\mathbf{p}}_n^\top \end{bmatrix}^\top = \begin{bmatrix} \mathbf{p}^\top & \dot{\mathbf{p}}^\top \end{bmatrix}^\top \\ \mathbf{u} = \begin{bmatrix} \ddot{\mathbf{p}}_1^\top & \cdots & \ddot{\mathbf{p}}_n^\top \end{bmatrix}^\top & = \ddot{\mathbf{p}} \end{bmatrix}$$

ullet Info on centroid $\mathbf{x}_c = \begin{bmatrix} \mathbf{p}_c^ op & \dot{\mathbf{p}}_c^ op \end{bmatrix}^ op$ is available, s.t. $\mathbf{p}_c := n^{-1} \sum_{i=1}^n \mathbf{p}_i$

Assumptions

- ullet n>1 agents in an M-dimensional space, where N:=Mn is set
- ullet each agent i is aware of its absolute position $\mathbf{p}_i \in \mathbb{R}^M$ and velocity $\dot{\mathbf{p}}_i$
- ullet each agent i is controlled in acceleration $\ddot{\mathbf{p}}_i$
- the whole state and the input are given by $\mathbf{x} \in \mathbb{R}^{2N}$, $\mathbf{u} \in \mathbb{R}^N$ respectively s.t.

$$\begin{aligned} \mathbf{x} &= \begin{bmatrix} \mathbf{p}_1^\top & \cdots & \mathbf{p}_n^\top & \dot{\mathbf{p}}_1^\top & \cdots & \dot{\mathbf{p}}_n^\top \end{bmatrix}^\top = \begin{bmatrix} \mathbf{p}^\top & \dot{\mathbf{p}}^\top \end{bmatrix}^\top \\ \mathbf{u} &= \begin{bmatrix} \ddot{\mathbf{p}}_1^\top & \cdots & \ddot{\mathbf{p}}_n^\top \end{bmatrix}^\top &= \ddot{\mathbf{p}} \end{aligned}$$

- ullet Info on centroid $\mathbf{x}_c = \begin{bmatrix} \mathbf{p}_c^ op & \dot{\mathbf{p}}_c^ op \end{bmatrix}^ op$ is available, s.t. $\mathbf{p}_c := n^{-1} \sum_{i=1}^n \mathbf{p}_i$
- The dynamics can be represented by means of the linear system

$$egin{cases} \dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} \ \mathbf{x}_c = \mathbf{C}\mathbf{x} \end{cases}$$

$$\text{with } (\mathbf{A},\mathbf{B},\mathbf{C}) = \begin{pmatrix} \begin{bmatrix} \mathbf{Z}_N & \mathbf{I}_N \\ \mathbf{Z}_N & \mathbf{Z}_N \end{bmatrix}, \begin{bmatrix} \mathbf{Z}_N \\ \mathbf{I}_N \end{bmatrix}, \frac{1}{n} \begin{bmatrix} \mathbf{I}_M & \dots & \mathbf{I}_M & \mathbf{Z}_M & \dots & \mathbf{Z}_M \\ \mathbf{Z}_M & \dots & \mathbf{Z}_M & \mathbf{I}_M & \dots & \mathbf{I}_M \end{bmatrix} \end{pmatrix}$$

Assumptions

- \bullet n>1 agents in an M-dimensional space, where N:=Mn is set
- ullet each agent i is aware of its absolute position $\mathbf{p}_i \in \mathbb{R}^M$ and velocity $\dot{\mathbf{p}}_i$
- ullet each agent i is controlled in acceleration $\ddot{\mathbf{p}}_i$
- the whole state and the input are given by $\mathbf{x} \in \mathbb{R}^{2N}$, $\mathbf{u} \in \mathbb{R}^N$ respectively s.t.

$$\begin{aligned} \mathbf{x} &= \begin{bmatrix} \mathbf{p}_1^\top & \cdots & \mathbf{p}_n^\top & \dot{\mathbf{p}}_1^\top & \cdots & \dot{\mathbf{p}}_n^\top \end{bmatrix}^\top = \begin{bmatrix} \mathbf{p}^\top & \dot{\mathbf{p}}^\top \end{bmatrix}^\top \\ \mathbf{u} &= \begin{bmatrix} \ddot{\mathbf{p}}_1^\top & \cdots & \ddot{\mathbf{p}}_n^\top \end{bmatrix}^\top &= \ddot{\mathbf{p}} \end{aligned}$$

- ullet Info on centroid $\mathbf{x}_c = \begin{bmatrix} \mathbf{p}_c^ op & \dot{\mathbf{p}}_c^ op \end{bmatrix}^ op$ is available, s.t. $\mathbf{p}_c := n^{-1} \sum_{i=1}^n \mathbf{p}_i$
- The dynamics can be represented by means of the linear system

$$egin{cases} \dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} \ \mathbf{x}_c = \mathbf{C}\mathbf{x} \end{cases}$$

$$\text{with } (\mathbf{A},\mathbf{B},\mathbf{C}) = \begin{pmatrix} \begin{bmatrix} \mathbf{Z}_N & \mathbf{I}_N \\ \mathbf{Z}_N & \mathbf{Z}_N \end{bmatrix}, \begin{bmatrix} \mathbf{Z}_N \\ \mathbf{I}_N \end{bmatrix}, \frac{1}{n} \begin{bmatrix} \mathbf{I}_M & \dots & \mathbf{I}_M & \mathbf{Z}_M & \dots & \mathbf{Z}_M \\ \mathbf{Z}_M & \dots & \mathbf{Z}_M & \mathbf{I}_M & \dots & \mathbf{I}_M \end{bmatrix} \end{pmatrix}$$

ullet Desire path tracked by the system centroid: $\mathbf{x}_{c,des} = egin{bmatrix} \mathbf{p}_{c,des}^{ op} & \dot{\mathbf{p}}_{c,des}^{ op} \end{bmatrix}^{ op}$

Let $\mathcal T$ be the trajectory manifold of $\dot{\mathbf x} = \mathbf A \mathbf x + \mathbf B \mathbf u$. We aim at solving

$$\min_{\boldsymbol{\xi} \in \mathcal{T}} \, h\left(\boldsymbol{\xi}\right), \quad \mathbf{x} := \begin{bmatrix} \mathbf{p}^\top & \dot{\mathbf{p}}^\top \end{bmatrix}^\top, \quad \mathbf{u} := \ddot{\mathbf{p}}$$

s.t.
$$h(\mathbf{x}(\cdot), \mathbf{u}(\cdot)) := \int_0^T l(\mathbf{x}(\tau), \mathbf{u}(\tau), \tau) d\tau + m(\mathbf{x}(T)).$$

Let ${\mathcal T}$ be the trajectory manifold of $\dot{\mathbf x} = \mathbf A \mathbf x + \mathbf B \mathbf u$. We aim at solving

$$\begin{aligned} \min_{\xi \in \mathcal{T}} \, h\left(\xi\right), \quad \mathbf{x} := \begin{bmatrix} \mathbf{p}^\top & \dot{\mathbf{p}}^\top \end{bmatrix}^\top, \quad \mathbf{u} := \ddot{\mathbf{p}} \\ \text{s.t.} \quad h(\mathbf{x}(\cdot), \mathbf{u}(\cdot)) := \int_0^T \boxed{l\left(\mathbf{x}(\tau), \mathbf{u}(\tau), \tau\right)} d\tau + m\left(\mathbf{x}(T)\right). \end{aligned}$$

$$l(\mathbf{x}(\tau), \mathbf{u}(\tau), \tau) := l^{tr}(\mathbf{x}_c(\tau)) + l^{in}(\mathbf{u}(\tau)) + l_d^{fo}(\mathbf{p}(\tau)) + l^{al}(\dot{\mathbf{p}}(\tau)) \ge 0$$

Let ${\mathcal T}$ be the trajectory manifold of $\dot{\mathbf x} = \mathbf A \mathbf x + \mathbf B \mathbf u$. We aim at solving

$$\min_{\xi \in \mathcal{T}} \ h\left(\xi\right), \quad \mathbf{x} := \begin{bmatrix} \mathbf{p}^{\top} & \dot{\mathbf{p}}^{\top} \end{bmatrix}^{\top}, \quad \mathbf{u} := \ddot{\mathbf{p}}$$
 s.t.
$$h(\mathbf{x}(\cdot), \mathbf{u}(\cdot)) := \int_{0}^{T} l\left(\mathbf{x}(\tau), \mathbf{u}(\tau), \tau\right) d\tau + \boxed{m\left(\mathbf{x}(T)\right)}.$$

$$l(\mathbf{x}(\tau), \mathbf{u}(\tau), \tau) := l^{tr}(\mathbf{x}_c(\tau)) + l^{in}(\mathbf{u}(\tau)) + l^{fo}_d(\mathbf{p}(\tau)) + l^{al}(\dot{\mathbf{p}}(\tau)) \ge 0$$

$$m(\mathbf{x}(T)) := l^{tr}(\mathbf{x}_c(T)) + l_d^{fo}(\mathbf{p}(T)) + l^{al}(\dot{\mathbf{p}}(T)) \ge 0$$

Let \mathcal{T} be the trajectory manifold of $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$. We aim at solving

$$\min_{\boldsymbol{\xi} \in \mathcal{T}} h\left(\boldsymbol{\xi}\right), \quad \mathbf{x} := \begin{bmatrix} \mathbf{p}^{\top} & \dot{\mathbf{p}}^{\top} \end{bmatrix}^{\top}, \quad \mathbf{u} := \ddot{\mathbf{p}}$$
s.t.
$$h(\mathbf{x}(\cdot), \mathbf{u}(\cdot)) := \int_{0}^{T} l\left(\mathbf{x}(\tau), \mathbf{u}(\tau), \tau\right) d\tau + m\left(\mathbf{x}(T)\right).$$

$$l(\mathbf{x}(\tau), \mathbf{u}(\tau), \tau) := l^{tr}(\mathbf{x}_c(\tau)) + l^{in}(\mathbf{u}(\tau)) + l^{fo}_d(\mathbf{p}(\tau)) + l^{al}(\dot{\mathbf{p}}(\tau)) \ge 0$$
$$m(\mathbf{x}(T)) := l^{tr}(\mathbf{x}_c(T)) + l^{fo}_d(\mathbf{p}(T)) + l^{al}(\dot{\mathbf{p}}(T)) \ge 0$$

OIFT: Optimal time-Invariant Formation Tracking (for a second-order MAS)

$$l(\mathbf{x}(\tau), \mathbf{u}(\tau), \tau) = l^{tr}(\mathbf{x}_c(\tau)) + l^{in}(\mathbf{u}(\tau)) + l_d^{fo}(\mathbf{p}(\tau)) + l^{al}(\dot{\mathbf{p}}(\tau)).$$

$$l(\mathbf{x}(\tau), \mathbf{u}(\tau), \tau) = \underbrace{l^{tr}(\mathbf{x}_c(\tau))}_{l^{tr}(\mathbf{x}_c(\tau))} + l^{in}(\mathbf{u}(\tau)) + l^{fo}_d(\mathbf{p}(\tau)) + l^{al}(\dot{\mathbf{p}}(\tau)).$$

$$l^{tr}(\mathbf{x}_c(\tau)) := \frac{1}{2} \sum_{i=1}^n \|\mathbf{x}_c(\tau) - \mathbf{x}_{c,des}(\tau)\|_{\mathbf{Q}_{c,\dot{c},i}}^2$$

$$l(\mathbf{x}(\tau), \mathbf{u}(\tau), \tau) = l^{tr}(\mathbf{x}_c(\tau)) + \underbrace{l^{in}(\mathbf{u}(\tau))} + l_d^{fo}(\mathbf{p}(\tau)) + l^{al}(\dot{\mathbf{p}}(\tau)).$$

$$l^{tr}(\mathbf{x}_c(\tau)) := \frac{1}{2} \sum_{i=1}^n \|\mathbf{x}_c(\tau) - \mathbf{x}_{c,des}(\tau)\|_{\mathbf{Q}_{c,\dot{c},i}}^2$$

$$l^{in}(\mathbf{u}(\tau)) := \frac{1}{2} \sum_{i=1}^{n} \|\mathbf{u}_{i}(\tau)\|_{\mathbf{R}_{i}}^{2}$$

$$l(\mathbf{x}(\tau), \mathbf{u}(\tau), \tau) = l^{tr}(\mathbf{x}_c(\tau)) + l^{in}(\mathbf{u}(\tau)) + \left(\frac{l_d^{fo}(\mathbf{p}(\tau))}{l_d^{fo}(\mathbf{p}(\tau))} + l^{al}(\dot{\mathbf{p}}(\tau)) \right).$$

$$l^{tr}(\mathbf{x}_c(\tau)) := \frac{1}{2} \sum_{i=1}^n \|\mathbf{x}_c(\tau) - \mathbf{x}_{c,des}(\tau)\|_{\mathbf{Q}_{c,\dot{c},i}}^2$$

$$l^{in}(\mathbf{u}(\tau)) := \frac{1}{2} \sum_{i=1}^{n} \|\mathbf{u}_i(\tau)\|_{\mathbf{R}_i}^2$$

$$l_d^{fo}(\mathbf{p}(\tau)) := \frac{k_F}{4} \sum_{i=1}^n \sum_{\forall j \neq i} \sigma_{d_{ij}}(r_{ij}^2(\tau)), \quad r_{ij} = \|\mathbf{p}_i - \mathbf{p}_j\|$$

$$l(\mathbf{x}(au),\mathbf{u}(au), au) = l^{tr}(\mathbf{x}_c(au)) + l^{in}(\mathbf{u}(au)) + l^{fo}_d(\mathbf{p}(au)) + l^{al}(\dot{\mathbf{p}}(au)).$$

$$l^{tr}(\mathbf{x}_c(\tau)) := \frac{1}{2} \sum_{i=1}^n \|\mathbf{x}_c(\tau) - \mathbf{x}_{c,des}(\tau)\|_{\mathbf{Q}_{c,\dot{c},i}}^2$$

$$l^{in}(\mathbf{u}(\tau)) := \frac{1}{2} \sum_{i=1}^{n} \|\mathbf{u}_i(\tau)\|_{\mathbf{R}_i}^2$$

$$l_d^{fo}(\mathbf{p}(\tau)) := \frac{k_F}{4} \sum_{i=1}^n \sum_{\forall j \neq i} \sigma_{d_{ij}}(r_{ij}^2(\tau)), \quad r_{ij} = \|\mathbf{p}_i - \mathbf{p}_j\|$$

$$l^{al}(\dot{\mathbf{p}}(\tau)) := \frac{k_A}{4} \sum_{i=1}^n \sum_{\forall j \neq i} \|\dot{\mathbf{p}}_i - \dot{\mathbf{p}}_j\|_{q_{A_{ij}}}^2$$

Problem setup: potential-based formations

Formations are achieved through a distance-based control law. Setting $s_{ij}:=r_{ij}^2$, the structure of term $l_d^{fo}(\mathbf{p})$ depends on the potential function

$$\sigma_{d_{ij}}(s_{ij}) := \begin{cases} k_{r_{ij}} (1 - s_{ij}/d_{ij}^2)^3 & \text{for } 0 \le s_{ij} \le d_{ij}^2 \\ k_{a_{ij}} (\sqrt{s_{ij}}/d_{ij} - 1)^3 & \text{for } s_{ij} \ge d_{ij}^2 \end{cases} \in \mathscr{C}^2(\mathbb{R})$$

Problem setup: potential-based formations

Formations are achieved through a distance-based control law. Setting $s_{ij}:=r_{ij}^2$, the structure of term $l_d^{fo}(\mathbf{p})$ depends on the potential function

$$\sigma_{d_{ij}}(s_{ij}) := \begin{cases} k_{r_{ij}} (1 - s_{ij}/d_{ij}^2)^3 & \text{ for } 0 \leq s_{ij} \leq d_{ij}^2 \\ k_{a_{ij}} (\sqrt{s_{ij}}/d_{ij} - 1)^3 & \text{ for } s_{ij} \geq d_{ij}^2 \end{cases} \in \mathscr{C}^2(\mathbb{R})$$

- The minimum for $\sigma_{d_{ij}}$ is attained at $r_{ij}=d_{ij}\Rightarrow d_{ij}$ is the desired formation distance between (i,j)
- $\sigma'_{d_{ij}}(s_{ij}) \le 0$ for $0 \le s_{ij} \le d_{ij}^2$
- $\sigma'_{d_{ij}}(s_{ij}) \ge 0$ for $s_{ij} \ge d_{ij}^2$
- $\sigma''_{d_{ij}}(s_{ij}) \ge 0$ for all s_{ij}

Control law design: variational approach

Let us define $\bar{Q}_c := \sum_{j=1}^n \bar{Q}_{c,j}/n$ and $\bar{Q}_{\dot{c}} := \sum_{j=1}^n \bar{Q}_{\dot{c},j}/n$, with $\bar{Q}_{\dot{c}}$ non singular. Assuming to adopt a distributed PD controller $\mathbf{u} = \begin{bmatrix} \mathbf{u}_1^\top & \cdots & \mathbf{u}_n^\top \end{bmatrix}^\top$ govern the dynamics of the MAS, it is possible to prove that functional h is stationary under the distributed control law

$$\begin{split} \mathbf{u}_i &:= -\mathbf{R}_i^{-1} \left[k_{P,i}^{tr} \overline{\mathbf{Q}}_c(\mathbf{p}_c - \mathbf{p}_{c,des}) + k_{D,i}^{tr} \overline{\mathbf{Q}}_{\dot{c}}(\dot{\mathbf{p}}_c - \dot{\mathbf{p}}_{c,des}) \right] \\ &- \mathbf{R}_i^{-1} \left[k_{P,i}^{fo} k_F \sum_{j \in \mathcal{N}_i} \sigma_{dij}'(r_{ij}^2) \mathbf{e}_{ij} + k_{D,i}^{al} k_A \sum_{j \in \mathcal{N}_i} q_{Aij} \dot{\mathbf{e}}_{ij} \right] \\ &- \mathbf{R}_i^{-1} k_D^{fo} k_F \sum_{j \in \mathcal{N}_i} \left[2 \sigma_{dij}''(r_{ij}^2) \mathbf{e}_{ij} \mathbf{e}_{ij}^\top + \chi_{>0} (\sigma_{dij}'(r_{ij}^2)) \sigma_{dij}'(r_{ij}^2) \mathbf{I}_M \right] \dot{\mathbf{e}}_{ij} \end{split}$$

where $\mathbf{e}_{ij} := \mathbf{p}_i - \mathbf{p}_j$, $(k_{P,i}^{tr}, k_{D,i}^{tr}, k_{P,i}^{fo}, k_{D,i}^{al}, k_D^{fo})$ are feeback gains, \mathcal{N}_i is the neighborhood of agent i and $\chi_{>0}$ is the characteristic function for positive numbers.

Centralized vs Distributed comparison 1/2

The numerical tool PRONTO has been used to provide an optimality reference for the OIFT in the centralized case.

(a) PRONTO: Position trajectories

(b) Distributed: Position trajectories

(e) PRONTO: Settling time

(f) Distributed: Settling time

Centralized vs Distributed comparison 2/2

The numerical tool PRONTO has been used to provide an optimality reference for the OIFT in the centralized case.

(a) PRONTO: Position trajectories

 $\begin{array}{c}
20 \\
15 \\
10 \\
20 \\
10 \\
0
\end{array}$ $\begin{array}{c}
20 \\
10 \\
0
\end{array}$ $\begin{array}{c}
20 \\
10 \\
0
\end{array}$ $\begin{array}{c}
10 \\
0 \\
0
\end{array}$

(b) Distributed: Position trajectories

(c) PRONTO: Input energy consumption

(d) Distributed: Input energy consumption 26 of 52

References for RT (ii)

- Z. Sun, S. Mou, M. Deghat, B.D.O. Anderson, A.S. Morse, 2014, "Finite Time Distance-based Rigid Formation Stabilization and Flocking"
- J. Santiaguillo-Salinas and E. Aranda-Bricaire, 2017, "Time-varying formation tracking with collision avoidance for multi-agent systems"
- A. P. Aguiar, F. A. Bayer, J. Hauser, A. J. Häusler, G. Notarstefano, A. M. Pascoal, A. Rucco, and A. Saccon, 2017, "Constrained Optimal Motion Planning for Autonomous Vehicles Using PRONTO"
- K.-K. Oh, M.-C. Park, and H.-S. Ahn, 2015, "A survey of multi-agent formation control"
- M. Mesbahi and M. Egerstedt, 2010, "Graph Theoretic Methods in Multiagent Networks"
- J. Hauser and A. Saccon, 2006, "A barrier function method for the optimization of trajectory functionals with constraints"
- M. D'Orsogna, Y.-l. Chuang, A. Bertozzi, and L. Chayes, 2006, "Pattern Formation Stability and Collapse in 2D Driven Particle Systems"

Distributed estimation from relative measurements

Contributions

Formalization and comparison of three iterative linear algorithms for the distributed state estimation from relative measurements (RMs) in a MAS.

Contributions

Formalization and comparison of three iterative linear algorithms for the distributed state estimation from relative measurements (RMs) in a MAS.

Problem statement. Minimize the diffusive squared error:

$$\underset{\{\mathbf{x}_1,\dots,\mathbf{x}_n\}}{\arg\min} \ \frac{1}{2} \sum_{v_i \in \mathcal{V}} \sum_{v_i \in \mathcal{N}_i} (\mathbf{x}_i - \mathbf{x}_j + \tilde{\mathbf{x}}_{ij})^\top (\mathbf{x}_i - \mathbf{x}_j + \tilde{\mathbf{x}}_{ij})$$

where \mathbf{x}_i is the state of node $v_i \in \mathcal{V}$, \mathcal{N}_i is the neighborhood of v_i and $\tilde{\mathbf{x}}_{ij} = \tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_j$ is the noisy RM.

Distributed solutions 1/2

Let us consider the problem in only 1 dimension, w.l.o.g. and let

$$\tilde{\mathbf{x}} := \begin{bmatrix} \sum_{v_j \in \mathcal{V}_1} (\tilde{x}_{j1} - \tilde{x}_{1j}) & \dots & \sum_{v_j \in \mathcal{V}_n} (\tilde{x}_{jn} - \tilde{x}_{nj}) \end{bmatrix}^{\top}.$$

Distributed solutions 1/2

Let us consider the problem in only 1 dimension, w.l.o.g. and let

$$\tilde{\mathbf{x}} := \begin{bmatrix} \sum_{v_j \in \mathcal{V}_1} (\tilde{x}_{j1} - \tilde{x}_{1j}) & \dots & \sum_{v_j \in \mathcal{V}_n} (\tilde{x}_{jn} - \tilde{x}_{nj}) \end{bmatrix}^{\top}.$$

General **distributed solution**: linear state-space system driven by an exogenous input $\mathbf{u}_{\vartheta} = \mathbf{u}_{\vartheta}(\tilde{\mathbf{x}})$ dependent on the RMs and a state update provided by \mathbf{F}_{ϑ} dependent on the network topology.

$$\Sigma_{\vartheta}: \quad \mathbf{x}(t+1) = \mathbf{F}_{\vartheta}\mathbf{x}(t) + \mathbf{u}_{\vartheta}, \qquad \vartheta \in \{0, \eta, \rho, \epsilon\}$$

Distributed solutions 1/2

Let us consider the problem in only 1 dimension, w.l.o.g. and let

$$\tilde{\mathbf{x}} := \begin{bmatrix} \sum_{v_j \in \mathcal{V}_1} (\tilde{x}_{j1} - \tilde{x}_{1j}) & \dots & \sum_{v_j \in \mathcal{V}_n} (\tilde{x}_{jn} - \tilde{x}_{nj}) \end{bmatrix}^{\top}.$$

General **distributed solution**: linear state-space system driven by an exogenous input $\mathbf{u}_{\vartheta} = \mathbf{u}_{\vartheta}(\tilde{\mathbf{x}})$ dependent on the RMs and a state update provided by \mathbf{F}_{ϑ} dependent on the network topology.

$$\Sigma_{\vartheta}: \quad \mathbf{x}(t+1) = \mathbf{F}_{\vartheta}\mathbf{x}(t) + \mathbf{u}_{\vartheta}, \qquad \vartheta \in \{0, \eta, \rho, \epsilon\}$$

Scheme	Parameter	State matrix	Input vector
Σ_0		$\mathbf{F}_0 = \mathbf{D}^{-1}\mathbf{A}$	$\mathbf{u}_0 = \frac{1}{2} \mathbf{D}^{-1} \tilde{\mathbf{x}}$
Σ_{η}	$\eta \in [0,1)$	$\mathbf{F}_{\eta} = (\eta \mathbf{I}_n + (1 - \eta) \mathbf{F}_0)$	$\mathbf{u}_{\eta} = (1 - \eta)\mathbf{u}_0$
$\Sigma_{ ho}$	$\rho \geq 0$	$\mathbf{F}_{ ho} = \left(\mathbf{D} + rac{ ho}{2}\mathbf{I}_{n} ight)^{-1} \left(\mathbf{A} + rac{ ho}{2}\mathbf{I}_{n} ight)$	$\mathbf{u}_{ ho} = \left(\mathbf{D} + rac{ ho}{2}\mathbf{I}_n ight)^{-1}\mathbf{D}\mathbf{u}_0$
Σ_{ϵ}	$\epsilon \in \left(0, \frac{2}{\lambda_{n-1}^{\mathbf{L}}}\right)$	$\mathbf{F}_{\epsilon} = \mathbf{I}_n - \epsilon \mathbf{L}$	$\mathbf{u}_{\epsilon} = \epsilon \; \mathbf{D} \mathbf{u}_0$

Distributed solutions 2/2

For $\vartheta \in \{\eta, \rho, \epsilon\}$ the solution of Σ_ϑ converges to the **centralized solution**

$$\mathbf{x}^{\star} = \frac{1}{2} \mathbf{L}^{\dagger} \tilde{\mathbf{x}}$$

where \mathbf{L}^{\dagger} is the pseudo-inverse of the Laplacian matrix associated to \mathcal{G} .

Distributed solutions 2/2

For $\vartheta \in \{\eta, \rho, \epsilon\}$ the solution of Σ_{ϑ} converges to the **centralized solution**

$$\mathbf{x}^{\star} = \frac{1}{2} \mathbf{L}^{\dagger} \tilde{\mathbf{x}}$$

where \mathbf{L}^{\dagger} is the pseudo-inverse of the Laplacian matrix associated to $\mathcal{G}.$

Performances: measured by $r \in [0,1]$, the lower r the faster the convergence towards the centralized solution. Summary:

Distributed solutions 2/2

For $\vartheta \in \{\eta, \rho, \epsilon\}$ the solution of Σ_{ϑ} converges to the **centralized solution**

$$\mathbf{x}^{\star} = \frac{1}{2} \mathbf{L}^{\dagger} \tilde{\mathbf{x}}$$

where \mathbf{L}^{\dagger} is the pseudo-inverse of the Laplacian matrix associated to $\mathcal{G}.$

Performances: measured by $r \in [0,1]$, the lower r the faster the convergence towards the centralized solution. Summary:

Scheme	Best convergence rate	Optimal parameter selection	
Σ_0	$\mathbf{r}_0 = \begin{cases} \lambda_{n-1}^{\mathcal{L}} - 1, & \text{if } \varsigma_{\mathcal{L}} > 1\\ 1 - \lambda_1^{\mathcal{L}}, & \text{if } \varsigma_{\mathcal{L}} \le 1 \end{cases}$	no parameter available	
Σ_{η}	$\mathbf{r}_{\eta^{\star}} = \begin{cases} 1 - \lambda_{1}^{\mathcal{L}}/\varsigma_{\mathcal{L}}, & \text{if } \varsigma_{\mathcal{L}} > 1\\ 1 - \lambda_{1}^{\mathcal{L}}, & \text{if } \varsigma_{\mathcal{L}} \le 1 \end{cases}$	$\eta^* = \begin{cases} 1 - 1/\varsigma_{\mathcal{L}}, & \text{if } \varsigma_{\mathcal{L}} > 1\\ 0, & \text{if } \varsigma_{\mathcal{L}} \le 1 \end{cases}$	
$\Sigma_{ ho}$	$\mathbf{r}_{\rho^{\star}} = \begin{cases} \mathbf{r}_{\rho^{+}}, & \text{if } \varsigma_{\mathcal{L}} > 1\\ 1 - \lambda_{1}^{\mathcal{L}}, & \text{if } \varsigma_{\mathcal{L}} \leq 1 \end{cases}$	$\rho^* = \begin{cases} \rho^+, & \text{if } \varsigma_{\mathcal{L}} > 1\\ 0, & \text{if } \varsigma_{\mathcal{L}} \le 1 \end{cases}$	
Σ_{ϵ}	$\mathbf{r}_{\epsilon^{\star}} = 1 - \lambda_1^{\mathbf{L}} / \varsigma_{\mathbf{L}}$	$\epsilon^{\star} = 1/\varsigma_{\mathbf{L}}$	

where $\mathcal{L} = \mathbf{D}^{1/2}\mathbf{L}\mathbf{D}^{1/2}$ and $\varsigma_{\mathrm{L}} = (\lambda_1^{\mathrm{L}} + \lambda_{n-1}^{\mathrm{L}})/2$.

Sensitivity analysis 1/2

Consider a discrete linear state-space system $(\mathbf{A},\mathbf{B},\mathbf{C},\mathbf{D})_{\vartheta}$ with transfer function $\mathbf{W}(z,\vartheta)=\mathbf{C}(\mathbf{I}z-\mathbf{A})^{-1}\mathbf{B}+\mathbf{D}$ depending on parameter ϑ .

$$\text{Sensitivity: } S_{\vartheta}(z) = \frac{\partial \ln(\det[\mathbf{W}(z,\vartheta)])}{\partial \ln(\vartheta)}. \text{ Relative sensitivity: } \bar{S}_{\vartheta}(z) = \frac{S_{\vartheta}(z)}{\vartheta}.$$

Sensitivity analysis 1/2

Consider a discrete linear state-space system $(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})_{\vartheta}$ with transfer function $\mathbf{W}(z, \vartheta) = \mathbf{C}(\mathbf{I}z - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$ depending on parameter ϑ .

Sensitivity:
$$S_{\vartheta}(z) = \frac{\partial \ln(\det[\mathbf{W}(z,\vartheta)])}{\partial \ln(\vartheta)}$$
. Relative sensitivity: $\bar{S}_{\vartheta}(z) = \frac{S_{\vartheta}(z)}{\vartheta}$.

Meaning of the relative sensitivity for 1-dimensional W:

$$W(z, \vartheta + \Delta \vartheta) \simeq W(z, \vartheta) + \frac{\partial W(z, \vartheta)}{\partial \vartheta} \Delta \vartheta$$
$$= W(z, \vartheta) (1 + \bar{S}_{\vartheta}(z) \Delta \vartheta)$$

Sensitivity analysis 1/2

Consider a discrete linear state-space system $(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})_{\vartheta}$ with transfer function $\mathbf{W}(z, \vartheta) = \mathbf{C}(\mathbf{I}z - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$ depending on parameter ϑ .

Sensitivity:
$$S_{\vartheta}(z) = \frac{\partial \ln(\det[\mathbf{W}(z,\vartheta)])}{\partial \ln(\vartheta)}$$
. Relative sensitivity: $\bar{S}_{\vartheta}(z) = \frac{S_{\vartheta}(z)}{\vartheta}$.

Meaning of the relative sensitivity for 1-dimensional W:

$$W(z, \vartheta + \Delta \vartheta) \simeq W(z, \vartheta) + \frac{\partial W(z, \vartheta)}{\partial \vartheta} \Delta \vartheta$$
$$= W(z, \vartheta) (1 + \bar{S}_{\vartheta}(z) \Delta \vartheta)$$

Simplification for the relative sensitivity formula:

$$\bar{S}_{\vartheta}(z) = \operatorname{tr}\left[\mathbf{W}(z,\vartheta)^{-\top} \frac{\partial \mathbf{W}(z,\vartheta)}{\partial \vartheta}\right]$$

Sensitivity analysis 2/2

$$\left|\bar{S}_{\eta}(1)\right| = \frac{1}{\eta - 1}, \qquad \left|\bar{S}_{\rho}(1)\right| = \frac{1}{2\text{vol}(\mathcal{G}) + \rho}, \qquad \left|\bar{S}_{\epsilon}(1)\right| = \frac{1}{\epsilon}$$

 \bullet Graph ${\mathcal G}$ has n=7 nodes and it is bipartite

- ullet Graph ${\mathcal G}$ has n=7 nodes and it is bipartite
- \bullet Due to bipartiteness, Σ_0 is not expected to converge towards \mathbf{x}^\star

- ullet Graph ${\mathcal G}$ has n=7 nodes and it is bipartite
- Due to bipartiteness, Σ_0 is not expected to converge towards \mathbf{x}^\star
- \bullet Simulations on Σ_ϵ are not considered due to high sensitivity

- ullet Graph ${\mathcal G}$ has n=7 nodes and it is bipartite
- ullet Due to bipartiteness, Σ_0 is not expected to converge towards \mathbf{x}^\star
- \bullet Simulations on Σ_{ϵ} are not considered due to high sensitivity
- Bounds for the eigenvalues of F_{ρ} can be provided, given ρ : helps to figure out the rate of convergence

Case study: bipartite network 2/2

Tuning of parameters

Sensitivity comparison

Performances

Estimation dynamics

References for RT (iii)

- Parikh, N., Boyd, S., et al., 2014. "Proximal algorithms. Foundations and Trends in Optimization"
- Huang, J., Li, S., 2015, "On the Normalised Laplacian Spectrum, Degree-Kirchhoff Index and Spanning Trees of Graphs"
- Barooah, P., Hespanha, J.P., 2009, "Error scaling laws for linear optimal estimation from relative measurements"
- Barooah, P., Hespanha, J.P., 2007. "Estimation on graphs from relative measurements"
- Chung F.R., Graham F.C., 1997 "Spectral Graph Theory"
- Landau H., Odlyzko A., 1981 "Bounds for Eigenvalues of Certain Stochastic Matrices"

Algebraic characterization of certain circulant networks

Contributions

• General aim: investigate stability, performances of graph-based protocols and the communication exchange over networks.

Contributions

- General aim: investigate stability, performances of graph-based protocols and the communication exchange over networks.
- In particular, circulant networks are widely employed in the design of distributed consensus-like algorithms. E.g., camera networks whose nodes share a common field of view:

Contributions

- General aim: investigate stability, performances of graph-based protocols and the communication exchange over networks.
- In particular, circulant networks are widely employed in the design of distributed consensus-like algorithms. E.g., camera networks whose nodes share a common field of view:

 A spectral characterization of the Laplacian matrix related to a class of circulant graphs is provided through the Dirichlet kernel.

$$\mathbf{F} = \mathrm{circ}(\boldsymbol{\varpi}) := \begin{bmatrix} \varpi_0 & \varpi_1 & \dots & \varpi_{n-2} & \varpi_{n-1} \\ \varpi_{n-1} & \varpi_0 & \dots & \varpi_{n-3} & \varpi_{n-2} \\ \vdots & \ddots & \dots & \ddots & \vdots \\ \varpi_2 & \varpi_3 & \dots & \varpi_0 & \varpi_1 \\ \varpi_1 & \varpi_2 & \dots & \varpi_{n-1} & \varpi_0 \end{bmatrix} \in \mathbb{R}^{n \times n}$$

$$\mathbf{F} = \mathrm{circ}(\boldsymbol{\varpi}) := \begin{bmatrix} \varpi_0 & \varpi_1 & \dots & \varpi_{n-2} & \varpi_{n-1} \\ \varpi_{n-1} & \varpi_0 & \dots & \varpi_{n-3} & \varpi_{n-2} \\ \vdots & \ddots & \dots & \ddots & \vdots \\ \varpi_2 & \varpi_3 & \dots & \varpi_0 & \varpi_1 \\ \varpi_1 & \varpi_2 & \dots & \varpi_{n-1} & \varpi_0 \end{bmatrix} \in \mathbb{R}^{n \times n}$$

Circulant matrix spectrum

$$\lambda^{\mathbf{F}}(j) = \sum_{k=0}^{n-1} \left[\varpi_k \exp\left(-\frac{2k\pi \mathbf{i}}{n}j\right) \right] \quad \text{for } j = 0, \dots, n-1$$

$$\mathbf{F} = \mathrm{circ}(\boldsymbol{\varpi}) := \begin{bmatrix} \varpi_0 & \varpi_1 & \dots & \varpi_{n-2} & \varpi_{n-1} \\ \varpi_{n-1} & \varpi_0 & \dots & \varpi_{n-3} & \varpi_{n-2} \\ \vdots & \ddots & \dots & \ddots & \vdots \\ \varpi_2 & \varpi_3 & \dots & \varpi_0 & \varpi_1 \\ \varpi_1 & \varpi_2 & \dots & \varpi_{n-1} & \varpi_0 \end{bmatrix} \in \mathbb{R}^{n \times n}$$

Circulant matrix spectrum

$$\lambda^{\mathbf{F}}(j) = \sum_{k=0}^{n-1} \left[\varpi_k \exp\left(-\frac{2k\pi \mathbf{i}}{n}j\right) \right] \quad \text{for } j = 0, \dots, n-1$$

Randić matrix relation + d-regularity

$$\mathbf{F} := \mathbf{D}^{-1} \mathbf{A} = \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2} =: \mathscr{R}$$

$$\mathbf{F} = \mathrm{circ}(\boldsymbol{\varpi}) := \begin{bmatrix} \varpi_0 & \varpi_1 & \dots & \varpi_{n-2} & \varpi_{n-1} \\ \varpi_{n-1} & \varpi_0 & \dots & \varpi_{n-3} & \varpi_{n-2} \\ \vdots & \ddots & \dots & \ddots & \vdots \\ \varpi_2 & \varpi_3 & \dots & \varpi_0 & \varpi_1 \\ \varpi_1 & \varpi_2 & \dots & \varpi_{n-1} & \varpi_0 \end{bmatrix} \in \mathbb{R}^{n \times n}$$

Circulant matrix spectrum

$$\lambda^{\mathbf{F}}(j) = \sum_{k=0}^{n-1} \left[\varpi_k \exp\left(-\frac{2k\pi \mathbf{i}}{n}j\right) \right] \quad \text{for } j = 0, \dots, n-1$$

Randić matrix relation + d-regularity

$$\mathbf{F} := \mathbf{D}^{-1} \mathbf{A} = \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2} =: \mathscr{R}$$

Laplacian matrix relation + d-regularity

$$\mathbf{L} := \mathbf{D} - \mathbf{A} = \mathrm{d} \mathcal{L} = \mathrm{d} (\mathbf{I}_n - \mathscr{R})$$

$$\mathbf{F} = \mathrm{circ}(\boldsymbol{\varpi}) := \begin{bmatrix} \varpi_0 & \varpi_1 & \dots & \varpi_{n-2} & \varpi_{n-1} \\ \varpi_{n-1} & \varpi_0 & \dots & \varpi_{n-3} & \varpi_{n-2} \\ \vdots & \ddots & \dots & \ddots & \vdots \\ \varpi_2 & \varpi_3 & \dots & \varpi_0 & \varpi_1 \\ \varpi_1 & \varpi_2 & \dots & \varpi_{n-1} & \varpi_0 \end{bmatrix} \in \mathbb{R}^{n \times n}$$

Circulant matrix spectrum

$$\lambda^{\mathbf{F}}(j) = \sum_{k=0}^{n-1} \left[\varpi_k \exp\left(-\frac{2k\pi \mathbf{i}}{n}j\right) \right] \quad \text{for } j = 0, \dots, n-1$$

Randić matrix relation + d-regularity

$$\mathbf{F} := \mathbf{D}^{-1} \mathbf{A} = \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2} =: \mathscr{R}$$

Laplacian matrix relation + d-regularity

$$\mathbf{L} := \mathbf{D} - \mathbf{A} = \mathrm{d} \mathcal{L} = \mathrm{d} (\mathbf{I}_n - \mathscr{R})$$

Spectral equivalence between normalize Laplacian and Randić matrices

$$\lambda^{\mathbf{F}}(j) = \lambda^{\mathscr{R}}(j) = 1 - \lambda^{\mathcal{L}}(j)$$
 for $j = 0, \dots, n - 1$

Preliminaries: κ -ring graphs

 $\kappa\text{-ring}$ graphs $C_n(1,\kappa)$ are a class of circulant graphs constructed by multiple circulant edge layers

# Vertices	#Edges	Diameter	Radius		Girth	Regularity
$ \mathcal{V} = n \ge 4$	$ \mathcal{E} = n\kappa$	$\phi = \lceil n/2^{\kappa} \rceil$	$r = \phi$	$g = \begin{cases} $	n , if $\kappa = 1$ 3, otherwise	$d = 2\kappa$

Main results: spectral characterization

Definition (Dirichlet kernel)

$$\mathcal{D}_{\kappa}: \mathbb{R} \to \mathbb{R} \text{ of order } \kappa \in \mathbb{N} \text{ such that } \\ \mathcal{D}_{\kappa}(x) := \begin{cases} \frac{\sin((\kappa+1/2)x)}{2\sin(x/2)}, & \text{if } x \neq 2\pi l, \ \forall l \in \mathbb{Z}; \\ \kappa+1/2, & \text{otherwise.} \end{cases}$$

Main results: spectral characterization

Definition (Dirichlet kernel)

$$\mathcal{D}_{\kappa}: \mathbb{R} \to \mathbb{R} \text{ of order } \kappa \in \mathbb{N} \text{ such that } \\ \mathcal{D}_{\kappa}(x) := \begin{cases} \frac{\sin((\kappa+1/2)x)}{2\sin(x/2)}, & \text{if } x \neq 2\pi l, \ \forall l \in \mathbb{Z}; \\ \kappa+1/2, & \text{otherwise.} \end{cases}$$

Theorem (Spectral characterization of κ -ring graphs)

 ${f L}$ graph Laplacian of κ -ring graph $C_n(1,\kappa)$, $\theta:=\pi/n$. Eigenvalues $\lambda^{{f L}}(j)\in\Lambda({f L})$ can be expressed in function of the Dirichlet kernel as

$$\lambda^{\mathbf{L}}(j) = 1 + 2 \left(\kappa - \mathcal{D}_{\kappa}(2\theta j)\right), \qquad \text{for } j = 0, \dots, \lfloor n/2 \rfloor;$$
$$\lambda^{\mathbf{L}}(n - j) = \lambda^{\mathbf{L}}(j), \qquad \text{for } j = 1, \dots, \lfloor n/2 \rfloor.$$

 $\lambda^{\mathbf{L}}(j) \in [0, 4\kappa], \ \forall j = 0, \dots, n-1, \ \lambda^{\mathbf{L}}_0 := \lambda^{\mathbf{L}}(0) = 0 \text{ is simple and,}$ if $\exists j^{\star} \in \mathbb{N} \text{ s.t. } \lambda^{\mathbf{L}}(j^{\star}) = 4\kappa, \ j^{\star} \in (0, n), \text{ then } \lambda^{\mathbf{L}}(j^{\star}) \text{ is simple.}$

Main results: Spectral characterization

Proof. Exploiting the spectrum of the circulant matrices and setting

$$[\boldsymbol{\varpi}]_i := egin{cases} \mathrm{d}^{-1}, & \text{if } e_{i1} \in \mathcal{E}; \ 0, & \text{otherwise}; \end{cases}$$

Main results: Spectral characterization

Proof. Exploiting the spectrum of the circulant matrices and setting

$$[\boldsymbol{\varpi}]_i := egin{cases} \mathrm{d}^{-1}, & \text{if } e_{i1} \in \mathcal{E}; \ 0, & \text{otherwise}; \end{cases}$$

eigenvalues of the Randić matrix ${\mathscr R}$ can be rewritten as

$$\lambda^{\mathscr{R}}(j) = \frac{1}{\mathrm{d}} \sum_{k=1}^{\mathrm{d}/2} [\exp(-\mathbf{i}2k\theta j)] + \frac{1}{\mathrm{d}} \sum_{k=n-\mathrm{d}/2}^{n-1} [\exp(-\mathbf{i}2k\theta j)]$$

$$= \frac{1}{\mathrm{d}} \sum_{k=1}^{\mathrm{d}/2} [\exp(-\mathbf{i}2k\theta j)] + \frac{1}{\mathrm{d}} \sum_{k=1}^{\mathrm{d}/2} [\exp(\mathbf{i}2k\theta j)]$$

$$= \frac{2}{\mathrm{d}} \left(\frac{1}{2} \sum_{|k| \le \mathrm{d}/2} [\exp(\mathbf{i}2k\theta j)] - \frac{1}{2} \right)$$

$$= \kappa^{-1} (\mathcal{D}_{\kappa}(2\theta j) - 1/2)$$
protocol performances improve as κ increases!

Main results: Spectral characterization

Proof. Exploiting the spectrum of the circulant matrices and setting

$$[\boldsymbol{\varpi}]_i := egin{cases} \mathrm{d}^{-1}, & \text{if } e_{i1} \in \mathcal{E}; \ 0, & \text{otherwise}; \end{cases}$$

eigenvalues of the Randić matrix ${\mathscr R}$ can be rewritten as

$$\lambda^{\mathscr{R}}(j) = \frac{1}{d} \sum_{k=1}^{d/2} [\exp(-\mathbf{i}2k\theta j)] + \frac{1}{d} \sum_{k=n-d/2}^{n-1} [\exp(-\mathbf{i}2k\theta j)]$$

$$= \frac{1}{d} \sum_{k=1}^{d/2} [\exp(-\mathbf{i}2k\theta j)] + \frac{1}{d} \sum_{k=1}^{d/2} [\exp(\mathbf{i}2k\theta j)]$$

$$= \frac{2}{d} \left(\frac{1}{2} \sum_{|k| \le d/2} [\exp(\mathbf{i}2k\theta j)] - \frac{1}{2} \right)$$

$$= \kappa^{-1} (\mathcal{D}_{\kappa}(2\theta j) - 1/2)$$
protocol performances improve as κ increases!

Leveraging the d-regularity, the rest of the statement can be proven resorting to Landau H., Odlyzko A., 1981 "Bounds for Eigenvalues of Certain Stochastic Matrices". \square

Main results: Fiedler value

The previous theorem offers a deep insight on the connection between the Dirichlet kernel and the eigenvalues of ${\bf L}.$

The analysis continues focusing on the extremal eigenvalues of the restricted spectrum $\Lambda_0(\mathbf{L}) := \Lambda(\mathbf{L}) \setminus \left\{\lambda_0^{\mathbf{L}}\right\} \subseteq (0, 4\kappa]$, denoting the eigenvalues of $\Lambda(\mathbf{L})$ with $0 = \lambda_0^{\mathbf{L}} < \lambda_1^{\mathbf{L}} \leq \ldots \leq \lambda_{n-1}^{\mathbf{L}}$. Only the result on the Fiedler value is reported in what follows.

Main results: Fiedler value

The previous theorem offers a deep insight on the connection between the Dirichlet kernel and the eigenvalues of ${\bf L}.$

The analysis continues focusing on the extremal eigenvalues of the restricted spectrum $\Lambda_0(\mathbf{L}) := \Lambda(\mathbf{L}) \setminus \left\{\lambda_0^{\mathbf{L}}\right\} \subseteq (0, 4\kappa]$, denoting the eigenvalues of $\Lambda(\mathbf{L})$ with $0 = \lambda_0^{\mathbf{L}} < \lambda_1^{\mathbf{L}} \leq \ldots \leq \lambda_{n-1}^{\mathbf{L}}$. Only the result on the Fiedler value is reported in what follows.

Corollary (Fiedler value of κ -ring graphs)

The smallest positive eigenvalue $\lambda_1^{\mathbf{L}}$ of the graph Laplacian \mathbf{L} associated to the κ -ring graph $C_n(1,\kappa)$ is given by

$$\lambda_1^{\mathbf{L}} := \min_{j=1...n-1} \lambda^{\mathbf{L}}(j) = \lambda^{\mathbf{L}}(1) = \lambda^{\mathbf{L}}(n-1) \in (0, 2\kappa).$$

Eigenvalue $\lambda_1^{\mathbf{L}}$ gives us information on the right limit $\lambda_1^{\mathbf{F}}$ of the unit circle allowing to determine protocol performances.

References for RT (iv)

- Fabris M., Michieletto G., Cenedese A., 2019 "On the Distributed Estimation from Relative Measurement: a Graph-based Convergence Analysis"
- Andrade E., Freitas M.A.A., Robbiano M., Rodríguez J. 2018 "New Lower Bounds for the Randić Spread"
- Wiggins A., 2007 "The Minimum of the Dirichlet kernel"
- Chung F.R., Graham F.C., 1997 "Spectral Graph Theory"
- Brunckner A.M., Brunckner J.B., Thomson B.S., 1997 "Real Analysis"
- Landau H., Odlyzko A., 1981 "Bounds for Eigenvalues of Certain Stochastic Matrices"
- Fiedler M., 1973 "Algebraic Connectivity of Graphs"
- Abramowitz M., Stegun I.A., 1972 "Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables"

Conclusions

Distributed strategies for coverage and focus on event with limited sensing capabilities

INVESTIGATION OBJECTIVES

- ► Automatic and dynamic deployment
- ▶ Event detection
- ightharpoonup Clustering
- ▶ Robotic dispatch
- ➤ Virtual modeling & simulation

i Distributed strategies for coverage and focus on event with limited sensing capabilities

ii Optimal time-invariant formation control

INVESTIGATION OBJECTIVES

- \blacktriangleright Formation flocking
- $\blacktriangleright\,$ Distributed control design
- ▶ Trajectory exploration
- ► Comparison of performances

i Distributed strategies for coverage and focus on event with limited sensing capabilities

ii Optimal time-invariant formation control

INVESTIGATION OBJECTIVES

- ▶ Networked estimation
- $\blacktriangleright\,$ Distributed algorithm design
- ► Performance analysis & comparison

iii Distributed estimation from relative measurements

i Distributed strategies for coverage and focus on event with limited sensing capabilities

Algebraic characterization of certain circulant networks

ii Optimal time-invariant formation control

INVESTIGATION OBJECTIVES

- ▶ Network analysis
- ➤ Detailed spectral characterization of a class of graphs

iii Distributed estimation from relative measurements

General approach to NO4MAS: design & validation

Arrows express dependencies.

Publications 1/2

- RT (ii) <u>acceptance</u> of conference paper "Optimal Time-Invariant Formation Tracking for a Second-Order Multi-Agent System", to ECC 2019.
- RT (iii) <u>acceptance</u> of conference paper "On the Distributed Estimation from Relative Measurements: a Graph-Based Convergence Analysis", to ECC 2019.
- Collaboration with Ph.D. student Luca Varotto: acceptance of conference paper "Distributed Localization of Visual Sensor Networks based on Dual Quaternions", to ECC 2019.
- RT (i): <u>acceptance</u> of conference paper "Distributed Strategies for Dynamic Coverage with Limited Sensing Capabilities", to MED 2019.

Publications 2/2

- RT (iii): <u>acceptance</u> of conference paper "A Proximal Point Approach for Distributed System State Estimation", to IFAC 2020.
- RT (iv): writing of journal article "On the Relation between the Eigenvalues Induced by a Class of Circulant Graphs and the Dirichlet Kernel", to Linear Algebra and its Applications.
- RT (iii): writing of journal article "Regularized Graph-based Iterative Approaches for the Distributed Estimation from Relative Measurements", to Transaction on Control of Network Systems.
- RT (ii): writing as journal article "Optimal Time-Invariant Distributed Formation Tracking for a Second-Order Multi-Agent System", to European Journal of Control.

Future directions

- Currently: working as a post-doc under the supervision of Daniel Zelazo at the Technion in Haifa, Israel. Research topic: cyber-security for multi-agent systems.
- 2 From April 2020: submission of the pending articles.

Acknowledgements

Special thanks to Alberto Moro and Matteo Boscolo Fiore for the support given on RT (i).

Special thanks to the Fondazione Aldo Gini, that provided fundings for my visiting scholarship at the University of Colorado-Boulder under the supervision of prof. John Hauser.

Special thanks to all the SPARCS members: prof. Angelo Cenedese, Riccardo Antonello, Giulia Michieletto, Luca Varotto, Alessandra Zampieri, Nicola Lissandrini and Federico Ciresola.

Thank you for the attention