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Multi-agent systems (MASs)

A MAS is a set of agents situated in a common environment, eventually,
building or participating to an organization.
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Multi-agent systems (MASs)

A MAS is a set of agents situated in a common environment, eventually,

Questions and motivations:

m How to solve tasks that are
arduous for the individual?

m How do network components
interact within a network?

m How does the network
architecture influence the global Contralzed Distrbuted
behavior of the system?



Multi-agent systems (MASs)

A MAS is a set of agents situated in a common environment, eventually,

Questions and motivations:

m How to solve tasks that are
arduous for the individual?

m How do network components
interact within a network?

m How does the network
architecture influence the global Contralzed Distrbuted
behavior of the system?

Distinctive features: autonomy, scalability, security, robustness to failure.
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Overview on my reasearch activity

Research thrust (i): Distributed strategies for coverage and
focus on event with limited sensing capabilities

Research thrust (ii): Optimal time-invariant formation control

Research thrust (iii): Distributed estimation from relative
measurements

Research thrust (iv): Algebraic characterization of certain
circulant networks

@ Conclusions
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Research thrusts (RTs) & applications

H Distributed strategies for
coverage and focus on
event with limited
sensing capabilities

A=
W,

Base station/ End user application

Sensing Range




Research thrusts (RTs) & applications

= H Optimal time-invariant
formation control
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Research thrusts (RTs) & applications
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Research thrusts (RTs) & applications

[l Algebraic characterization of
certain circulant networks



Networked optimization for MASs: common thread

Optimal Control, Trajectory Optimization
1

Optimization
Theory

Dynamic Systems
& Control

Combinatorial Opti- Distributed Estimation,

mization, Distributed - - - = = Distributed Control

Optimization Systems

Combinatorial

Graph Theory NO4JMAS

multi-agent leads to multidisciplinary framework



Methods and methodologies

m Analysis and synthesis of feedback systems: design of feedback
control laws, sensitivity analysis to parameter variations, fulfillment of
optimality principles.
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Methods and methodologies

m Analysis and synthesis of feedback systems: design of feedback
control laws, sensitivity analysis to parameter variations, fulfillment of
optimality principles.

m Graph-based motion planning and clustering: greedy algorithms
for navigation, edge expansion techniques for partitioning.

m Iterative methods for optimization: descent algorithms,
approaches for convex optimization.

m Swarm-robotic-oriented strategies: geometrical policies for mobile
robotics, employ of topological tools.
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Overall contribution of the thesis

m formalization of problems having practical consequences in the
advancement in the field of MASs

m development of novel analysis and design tools and
enrichment of existing mathematical methods

m application of optimization-based strategies to achieve
required specifications, drawing inspiration from current
literature

m proofs of theoretical statements settled in this framework

m virtual implementation and numerical simulation of the
devised techniques to assess case studies



Distributed strategies for coverage and focus
on event with limited sensing capabilities
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Contributions

e Design and test of a distributed multi-agent algorithm;
e 3 tasks to be consecutively accomplished in a given unknown scenario:
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e Design and test of a distributed multi-agent algorithm;
e 3 tasks to be consecutively accomplished in a given unknown scenario:

Robotic coverage resorting to bearing measurements only

Cluster selection of a group of agents to perform the detection of
an event -y

detected event
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Agents’ dispatch towards the
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Models are partly inspired and borrowed by the those used in
[Kumar et al., “Sensor Coverage Robot Swarms Using Local Sensing without Metric Information”, ICRA, Seattle, WA, 2015]
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Assumptions & models 1/2

Models are partly inspired and borrowed by the those used in
[Kumar et al., “Sensor Coverage Robot Swarms Using Local Sensing without Metric Information”, ICRA, Seattle, WA, 2015]

m Agents: sensing & control

» local visibility-based
sensing only

> touch/contact sensors
revealing impacts

» sensors to detect events

» navigation by means of
bearing-based controllers

m Virtual environment

» synthetic scenario based on
simple geometric features

» spawn location for agents
represented by a base
station

0 2 4 6 8 / 0 12 14 16 18 20 22

BASE STATION



Assumptions & models 2/2

m Topological tools

» undirected graphs <— agent interactions
» simplexes and simplicial complex «— coverage structure
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Assumptions & models 2/2

m Topological tools

» undirected graphs <— agent interactions
» simplexes and simplicial complex «— coverage structure

m Deployment policies

» vertex set structure 4+ agent
visibility graph =
Vietoris-Rips complex to be
preserved while deploying

» hexagonal packing =
optimal packing to
accomplish in order to
maximize the covered surface
and minimize the number of
deployed agents




Algorithm design: overview

Algorithm 1 Outline of the main procedure

G +COVERAGE();
: for each agent a;, s.t. i = 1,...,n do
[vi| < fev(Pi);
end for
for all e;; € € do
leij| <= (lvil + lv;1)/2:
end for
: v* <~MAX-CONSENSUS(G,BS);
9: Gor + {v*}
10: CLUSTERING(v*,1);
11: for all nodes v; € Gor, do
12: lcdi, fai] < [0, false];
13: end for
14: while ¢ < MazIter and f; = false do
15: v* <~ MAX-CONSENSUS(Gcr, v*);
16: [c;, f,ﬂ +DISPATCH(v*,cj + 1,true);
17: end while
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Algorithm design: coverage stage

Algorithm 1 Outline of the main procedure

(1: G +COVERAGE(); )

for each agent a;, s.t. 1 = 1,...,n do
[vi| < fev(Pi);

end for

for all ¢;; € € do T
leiz] = (Jvil + ;1) /23

end for

v* +~MAX-CONSENSUS(G,BS); °sr

9: Gor + {v*}

10: CLUSTERING(v*,1);

2
3
4
5
6
7
8

11: for all nodes v; € Gor, do oaf

12: lcdi, fai] < [0, false];

13: end for ”

14: while ¢} < MaxIter and f; = false do e

15: v* <~ MAX-CONSENSUS(Gcr, v*);

16: [c;,f,ﬂ +DISPATCH(v*,cj + 1,true); .

17: end while

deployment



Algorithm design: cluster selection

Algorithm 1 Outline of the main procedure

: G +COVERAGE(); S e sl
: for each agent a;, s.t. 2 =1,...,n do
[vil < fev(Pi);
: end for
: for all e;; € € do
leij| <= (lvil + |v;1)/2;
end for
v* <~MAX-CONSENSUS(G,BS);
: Gor + {v'}
: CLUSTERING(v*,1); )
: for all nodes v; € Gor, do
[eas, fai] < [0, false];
: end for
: while ¢; < MaxIter and f;; = false do
v* <~ MAX-CONSENSUS(Gcr, v*);
[ci: ] < DISPATCH(v* ¢} + 1.true); Tev(a,y) — fev(e,y)
: end while
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event detection
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Algorithm design: dispatch stage

Algorithm 1 Outline of the main procedure

1: G +COVERAGE();

2: for each agent a;, s.t. i = 1,...,n do
3 [vi] = fev(Pi); 15
4: end for

5: for all e;; € € do 10
6 lews| = (Joil + |vs])/2:

7: end for

8: v* +~MAX-CONSENSUS(G,BS); 0
9: Gor {U*}

10: CLUSTERING(v*,1); N
11: for all nodes v; € Gor, do
12: [Cdi» fdi] — [O7 false];
13: end for 15 k
14: while ¢ < MaxIter and f; = false do SESHON~9

15: v* <~ MAX-CONSENSUS(Gor,v*); s 20 15 10 5 0 5 10 15 20 2
i6: [ch, f3] < DISPATCH(v" cj + L true);

17: end while

-10

focus on event
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Optimal time-invariant formation control
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Contributions

Analysis and design of a distributed P1_ 4 P2
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Problem setup: agents’ dynamics

Assumptions
e n > 1 agents in an M-dimensional space, where N := Mn is set
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e 1 > 1 agents in an M-dimensional space, where N := Mn is set
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Problem setup: agents’ dynamics

Assumptions

e 1 > 1 agents in an M-dimensional space, where N := Mn is set

e cach agent i is aware of its absolute position p; € RM and velocity p;
e each agent i is controlled in acceleration p;

e the whole state and the input are given by x € RV, u € RV respectively
s.t.
x=[p] - p; B] - by =[p P
u=[p] - B)] = b
e Info on centroid x. = [pCT pCT]T is available, s.t. p. :=n"" > Pi
e The dynamics can be represented by means of the linear system
{x = Ax +Bu

x. = Cx

with (A,B,C):([ZN IN],[ZN]}[IM oLy Zag zMD

Zny Zn In nl|\Zy ... Ly Ing ... Iy
. .. o T - T T
e Desire path tracked by the system centroid: X, ges = [pc’deS pades]



Problem setup: cost functional minimization 1/2

Let 7 be the trajectory manifold of x = Ax + Bu. We aim at solving

in h — T .T1 T — 5
min €, x:=[p" p'] , u=p
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Problem setup: cost functional minimization 1/2

Let 7 be the trajectory manifold of x = Ax + Bu. We aim at solving

. — T .T1 T =
Igg;l €, x=[p" p'] , u=p

i )= [ i ) dr +m (x(T)).

[(x(7),u(r),7) =17 (xe(r)) + I (u(r)) + 1 (p(7)) + 1 ((7)) = 0

m(x(T)) := 1" (xc(T)) + L[ (p(T)) + 1%(D(T)) > 0

OIFT: Optimal time-Invariant Formation Tracking
(for a second-order MAS)




Problem setup: cost functional minimization 2/2

Each term involved in the instantaneous cost [ and in the final cost m
characterizes one specific task. Let us examine the instantaneous cost

[ 1(x(7),u(7),7) = I (xe(7)) + 1™ (u(7)) + 1 (p(7)) + 12 (B(7)). ]
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Problem setup: cost functional minimization 2/2

Each term involved in the instantaneous cost [ and in the final cost m
characterizes one specific task. Let us examine the instantaneous cost
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Problem setup: cost functional minimization 2/2

Each term involved in the instantaneous cost [ and in the final cost m
characterizes one specific task. Let us examine the instantaneous cost

1(x(7),u(r),7) = 1" (xc(7)) + 1™ (u(7)) + 15°(p(7)) +E“l(p(7)ﬂ.

Vs

1 n
1" (xc(7)) = 5 ; %e(7) = Xedes(T) G, ...
'd in 1 n 2 N\
i(a(r) = 5 3 i)l
'd fo kF n 2 ~\
Iy (p(7)) = 1 ZWZ;EUCZ“(TU(T))’ Tij = lpi — Pj”
. = ] ? J

al /e ka & .
() == ,ZWZ#, IPi — Pj||§Aij
(. = ‘7 ¢ J




Problem setup: potential-based formations

Formations are achieved through a distance-based control law. Setting

2-2]., the structure of term lﬁo(p) depends on the potential function
( ) kirij(l — Sij/dlzj)g for 0 < Sij < d%
04;;(Sij) =
A ]{Zaij (1 /Sij/dij — 1)3 for Sij > d?]

Sij =T

€ ¢(R)
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Problem setup: potential-based formations

Formations are achieved through a distance-based control law. Setting

2-2]., the structure of term lﬁo(p) depends on the potential function

kp (1 —si5/d2)3  for 0 < s;; < d2,
Od;; (Sij) = { z]( 5]/ l]) , orU < 5]2— iJ c %Q(R)
kaij (1 /Sij/dij — ].) for Sij > dij

Sij =T

e The minimum for oy, is attained
at r;; = dij = djj is the desired 0a,(sij)  ——— .
formation distance between (i, j) 0g,(sij) ——]| ,

[} O'zlij (Sij) S 0 for 0 S Sij S dgj

(] 0’(’12,], (Sij) >0 for Sij > dzzj

[ ] O'gij (Si]’) > 0 for all Sij

23 of 52



Control law design: variational approach

Let us define Q. := Z?Zl Qcj/n and Q; := Z?Zl Qc.j/n, with Q: non .
singular. Assuming to adopt a distributed PD controller u = [ulT u;lr]

govern the dynamics of the MAS, it is possible to prove that functional h
is stationary under the distributed control law

u; = _Ri_l [kgiac(pc - pc,des) + ktDTﬂQc(pc - pc,des):|

-R;! [kf;osz > og,(rf)ei + kE ka3 ‘JAijéij]

JEN; JEN;
Rk b)) [20;;” (r2)eije]; + xs0(al, (%))l (rgj)IM} &)
JEN;

where e;; := p; — pj, (kB kB, kL k9 i k1?) are feeback gains, A is
the neighborhood of agent i and ¢ is the characteristic function for
positive numbers.



Centralized vs Distributed comparison 1/2

The numerical tool PRONTO has been used to provide an optimality
reference for the OIFT in the centralized case.

2 [m| y [m] z [m] y [m]
(a) PRONTO: Position trajectories (b) Distributed: Position trajectories
1
[FFormation regime] 08 [FFormation regime]
|—Tracking regime - |—Tracking regime
(t) 0.6 (1)
0.4 ttling
- 1% settling
—~ 02 -0.1% settling
% ctting
=02
-0.4
-0.6
-0.8
Al Al T L
012345678 91011121314151617181920 012345678 91011121314151617181920
sl sl

(e) PRONTO: Settling time (f) Distributed: Settling time 25 of 52



Centralized vs Distributed comparison 2/2

The numerical tool PRONTO has been used to provide an optimality

reference for the OIFT in the centralized case.

z [m] y [m]

(a) PRONTO: Position trajectories

-1

z [m]

(b) Distributed: Position trajectories

—logy(I™ (7)) —logyo (1™ (7)) é}’ —logo (1" (7)) —logyo ("' (7))
i
6: “WKCT\R\\
\\ el V/\
\\ 7%’ \\
3r NAAA! n
AL VA, [
e ot R VWW
7

T Isl

012345678 91011121314151617181920

(¢c) PRONTO: Input energy consumption

012345678 91011121314151617181920

7 [s]

(d) Distributed: Input energy consumption 26 of 52
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Distributed estimation from relative
measurements
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Contributions

Formalization and comparison of three iterative linear algorithms for the
distributed state estimation from relative measurements (RMs) in a MAS.
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Contributions

Formalization and comparison of three iterative linear algorithms for the
distributed state estimation from relative measurements (RMs) in a MAS.
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Problem statement. Minimize the diffusive squared error:
1 o \T -
argmin — > > (%, — X +X;5) | (% — X5 + Xy5)
{xl,...,xn} v €V Uje./\/i

where x; is the state of node v; € V, N; is the neighborhood of v;
and x;; = X; — X; is the noisy RM.



Distributed solutions 1/2

Let us consider the problem in only 1 dimension, w.l.0.g. and let
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Distributed solutions 1/2

Let us consider the problem in only 1 dimension, w.l.0.g. and let
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General distributed solution: linear state-space system driven by an
exogenous input uy = uy(X) dependent on the RMs and a state update
provided by Fy dependent on the network topology.

Ly x(t+1)=Fyx(t) +uy, J€{0,n,p ¢}



Distributed solutions 1/2

Let us consider the problem in only 1 dimension, w.l.0.g. and let

2= | X @n—Fy) .. X (Tjn — Iny) T_
| |

= |vjen v;E€EVn

General distributed solution: linear state-space system driven by an
exogenous input uy = uy(X) dependent on the RMs and a state update
provided by Fy dependent on the network topology.

Ly x(t+1)=Fyx(t) +uy, J€{0,n,p ¢}

Scheme | Parameter State matrix Input vector
Yo Fo= D TA uy = %Dilf(
>, nel0,1) F,= (I, + (1 -n)Fy) u, = (1 —n)ug
=T =T
s, |p=0 F,= <D + gln) (A + ’2—)In> u, = (D + gln> Duy
= €€ (0, xf—) F.=1I,— L u, = ¢ Duy
n—1




Distributed solutions 2/2

For & € {n, p, €} the solution of Xy converges to the centralized solution
1
x* = -Lix
2

where LT is the pseudo-inverse of the Laplacian matrix associated to G.
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Performances: measured by r € [0, 1], the lower r the faster the
convergence towards the centralized solution. Summary:



Distributed solutions 2/2

For & € {n, p, €} the solution of Xy converges to the centralized solution
1
= _Lfx
2
where LT is the pseudo-inverse of the Laplacian matrix associated to G.

Performances: measured by r € [0, 1], the lower r the faster the
convergence towards the centralized solution. Summary:

Scheme | Best convergence rate Optimal parameter selection

A\E ,ifse>1

Yo rg=¢ "t . e no parameter available
1-A1, ifege <1

. L= /ee, if e > 1 L [1—1/ce, ifse>1

Iypx = =
L e F V| P70, it < 1

‘ = + .

X Tpr = o li CL..> ! pr= P ; .1f =1
1-AT, itge <1 0, ifge <1

EE 6*:1*/\/§L E*:1/§L

where £ = DY/2LDY2 and ¢, = (AL + AL _})/2.



Sensitivity analysis 1/2

Consider a discrete linear state-space system (A, B, C,D)y with transfer
function W(z,9) = C(Iz — A)~!B + D depending on parameter ¥.
01n(det[W(z,9)])

Sy(2)
D In(d) '

)

Sensitivity: Sy(z) = . Relative sensitivity: Sy(z) =
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Consider a discrete linear state-space system (A, B, C,D)y with transfer
function W(z,9) = C(Iz — A)~!B + D depending on parameter ¥.
01n(det[W(z,9)])

Sy(2)
D In(d) '

)

Sensitivity: Sy(z) = . Relative sensitivity: Sy(z) =
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Consider a discrete linear state-space system (A, B, C,D)y with transfer
function W(z,9) = C(Iz — A)~!B + D depending on parameter ¥.
01n(det[W(z,9)])

Sy(2)
D In(d) '

)

Sensitivity: Sy(z) = . Relative sensitivity: Sy(z) =

Meaning of the relative sensitivity for 1-dimensional W:

W (2,9 + AY) ~ W(z,9) + awa(;’ﬁ)m

=W (2,9)(1 + Sy(2)Ad)

Simplification for the relative sensitivity formula:

Sy(z) = tr W(z,ﬁ)—TW
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Case study: bipartite network 1/2

e Graph G has n = 7 nodes and it is bipartite

e Due to bipartiteness, Y is not expected to
converge towards x*

e Simulations on X, are not considered due to
high sensitivity

e Bounds for the eigenvalues of I, can be

provided, given p: helps to figure out the rate
of convergence
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Case study: bipartite network 2/2

Tuning of parameters

Eryroe o) - (0 mp)--0" )

P

1S, 1S, (D1 (0", 8) - (% 8p) -1 7]

Sensitivity comparison

logy(h)

Performances
2 FDistributed S,
1.5 I (—Distributed %,
1t -Distributed X,/
05k Distributed %,
ok Distributed X,
-0.5+
1k
-1.5¢ -
-2 e ——

iterations

Estimation dynamics
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and the communication exchange over networks.

e In particular, circulant networks are widely employed in the design of

distributed consensus-like algorithms. E.g., camera networks whose nodes
share a common field of view:
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e A spectral characterization of the Laplacian matrix related to a class of
circulant graphs is provided through the Dirichlet kernel.
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Preliminaries: circulant graphs

Circulant matrix [ wy w1 ... Wp-9 Wpi]
Wnp—-1 WO ... Wp-3 TWn-2
F = circ(w) := : : SHING
wy w3 ... Wy w1
| w1 wy ... TWnp—1 wo 1

Circulant matrix spectrum

n—1 2ki
NOEDY [wkexp<— mjﬂ forj=0,...,n—1
k=0 n

Randi¢ matrix relation + d-regularity
F:=D'A=D1?AD 2= &
Laplacian matrix relation 4+ d-regularity
L=D-A=d4dcC=d(1, - £)
Spectral equivalence between normalize Laplacian and Randi¢ matrices
M) =AZ(j) =1—-ANE(j) forj=0,....,n—1



Preliminaries: k-ring graphs

k-ring graphs C,,(1, k) are a class of circulant graphs constructed
by multiple circulant edge layers

#Vertices | #Edges | Diameter |Radius Girth Regularity

VI =n> 46| = nk|6 = [n/2]| £ = ¢ gz{

if k=1
n, if K d— 9k

3, otherwise
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Main results: spectral characterization

Definition (Dirichlet kernel)

Di,:R—>R o_f order k € N such that
sin((n+1/2)2) 6 Lo viez

Du(z) := 2sin(=/2)
k+1/2, otherwise.

Theorem (Spectral characterization of x-ring graphs)

L graph Laplacian of s-ring graph C,,(1, ), 6 := m/n. Eigenvalues
AL(4) € A(L) can be expressed in function of the Dirichlet kernel as

M (5) =1+ 2(k — Du(269)), for j =0,...,|n/2];
M (n —5) = AL()), for j=1,...,|n/2].

A(5) €[0,4k], Vj =0,...,n — 1, Ak := AL(0) = 0 is simple and,
if 35* € Ns.t. A(5*) = 4k, j* € (0,n), then AL(5*) is simple.
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Main results: Spectral characterization

Proof. Exploiting the spectrum of the circulant matrices and setting
dfl, if e;1 € &;
[]i == .
0, otherwise;
eigenvalues of the Randi¢ matrix &2 can be rewritten as

1 d/2 n—1

1
— Y fexp(—i2k0))] + = > [exp(—i2k6))
d iz S ——y

1 d4/2 1 d/2
= — > [exp(—i2kbj)] + = > [exp(i2k6j)]
4= d

k=1
2 (1 1
=5 X [exp(i2k0j)] — 5
d(2|k|<d/2 2

Dy(205) —1/2)

A7 (5)

protocol performances
improve as k increases!

Leveraging the d-regularity, the rest of the statement can be proven
resorting to Landau H., Odlyzko A., 1981 “Bounds for Eigenvalues
of Certain Stochastic Matrices”. [J



Main results: Fiedler value

The previous theorem offers a deep insight on the connection between the
Dirichlet kernel and the eigenvalues of L.

The analysis continues focusing on the extremal eigenvalues of the
restricted spectrum Ag(L) := A(L) \ {\}'} C (0,4k], denoting the
eigenvalues of A(L) with 0 = \F < Ab <. . <AL .

Only the result on the Fiedler value is reported in what follows.



Main results: Fiedler value

The previous theorem offers a deep insight on the connection between the
Dirichlet kernel and the eigenvalues of L.

The analysis continues focusing on the extremal eigenvalues of the
restricted spectrum Ag(L) := A(L) \ {\}'} C (0,4k], denoting the
eigenvalues of A(L) with 0 = \F < Ab <. . <AL .

Only the result on the Fiedler value is reported in what follows.

Corollary (Fiedler value of k-ring graphs)

The smallest positive eigenvalue )\% of the graph Laplacian L
associated to the k-ring graph C,(1, k) is given by

A= min 1)\L(j) =\ (1) = \E(n — 1) € (0,2k).
J=1..n—

Eigenvalue A gives us information on the right limit A¥ of the unit circle
allowing to determine protocol performances.



References for RT (iv)

Fabris M., Michieletto G., Cenedese A., 2019 “On the
Distributed Estimation from Relative Measurement: a
Graph-based Convergence Analysis”

Andrade E., Freitas M.A.A., Robbiano M., Rodriguez J. 2018
“New Lower Bounds for the Randi¢ Spread”

Wiggins A., 2007 “The Minimum of the Dirichlet kernel”
Chung F.R., Graham F.C., 1997 “Spectral Graph Theory"
Brunckner A.M., Brunckner J.B., Thomson B.S., 1997 “Real
Analysis”

Landau H., Odlyzko A., 1981 “Bounds for Eigenvalues of
Certain Stochastic Matrices”

Fiedler M., 1973 "Algebraic Connectivity of Graphs”

Abramowitz M., Stegun |.A., 1972 “"Handbook of
Mathematical Functions with Formulas, Graphs and
Mathematical Tables”



Conclusions

45 of 52



Main research goals

B Distributed strategies for
coverage and focus on event
with limited sensing capabilities

NO4MAS

INVESTIGATION OBJECTIVES

» Automatic and dynamic
deployment

Event detection
Clustering

Robotic dispatch

v vV v Y

Virtual modeling &
simulation




Main research goals

H Distributed strategies for
coverage and focus on event
with limited sensing capabilities

NO4MAS

H Optimal time-invariant
formation control

INVESTIGATION OBJECTIVES

» Formation flocking
» Distributed control design
» Trajectory exploration

» Comparison of performances




Main research goals

H Distributed strategies for
coverage and focus on event
with limited sensing capabilities

NO4MAS

H Optimal time-invariant
formation control

INVESTIGATION OBJECTIVES

» Networked estimation
» Distributed algorithm design

» Performance analysis &
comparison

[l Distributed estimation from

relative measurements

46 of 52



Main research goals

H Distributed strategies for
coverage and focus on event
with limited sensing capabilities

NO4MAS

Algebraic characterization of
certain circulant networks

H Optimal time-invariant
formation control

INVESTIGATION OBJECTIVES

» Network analysis

» Detailed spectral
characterization of a class of
graphs

[ Distributed estimation from
relative measurements

46 of 52



General approach to NO4MAS: design & validation

[ Key aspects in the NO4MAS approach ]

\ Model description
s )
- Appearence of Generation & (Adaptive frameworks)
] Experimental | collective classification of [ [~~~ """""" H
verification behaviors distributed '
measurements !
¥
Tuning of
Specification r_i_\ Distributed optimal [+ hyper-parameters [
assignment control synthesis
\
(Presence of trade-offs) Decioon o

optimality
criteria

Arrows express dependencies.
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Future directions

Currently: working as a post-doc under the supervision of
Daniel Zelazo at the Technion in Haifa, Israel. Research topic:
cyber-security for multi-agent systems.

From April 2020: submission of the pending articles.
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