1/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

Simone Del Favero

PhD Thesis dissertation

Title: Analysis and Development of Consensus–based Estimation Schemes. Advisor: Sandro Zampieri

e-mail: simone.delfavero@dei.unipd.it

INIVERSITY OF PADOVA

2/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother Outline of the talk

1 Sensor Networks and Consensus

2 An application: Localization and Tracking

3 Distributed Sensors Calibration

4 Analysis of a Randomized Kalman Filter

3/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

1 Sensor Networks and Consensus

An application: Localization and Tracking

3 Distributed Sensors Calibration

4 Analysis of a Randomized Kalman Filter

5 Distributed Kalman Smoother

4/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

Sensor Networks

5/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

What is Consensus?

The solutions we consider are based on Consensus Algorithms.

What is Consensus?

Network of

- N agents
- Communication graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$
- i-th node neighbors: $\mathcal{N}(i)$
- Every node stores a variable: node i stores x_i.

6/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

Definition

We call Recursive Distributed Algorithm adapted to the graph \mathcal{G} any recursive algorithm where the *i* node's update law of depends only on the state of *i* and in its neighbors $j \in \mathcal{N}(i)$

$$x_i(t+1) = p_{ii}x_i(t) + \sum_{j \in \mathcal{N}(i)} p_{ij}x_j(t)$$

6/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

Definition

We call Recursive Distributed Algorithm adapted to the graph \mathcal{G} any recursive algorithm where the *i* node's update law of depends only on the state of *i* and in its neighbors $j \in \mathcal{N}(i)$

$$x(t+1) = P(t)x(t)$$

 $P_{i,j} \neq 0 \Rightarrow (j,i) \in \mathcal{E}$

7/32

Sensor Networks and Consensus

Definition

A Recursive Distributed Algorithm adapted to the graph \mathcal{G} is said to asymptotically achieve consensus if

$$x_i(t) \to \alpha \qquad \forall i \in \mathcal{N}$$

Definition

A Recursive Distributed Algorithm adapted to the graph $\mathcal G$ is said to asymptotically achieve average consensus if

$$)
ightarrow rac{1}{N} \sum_{i \in \mathcal{N}} x_i(0)$$

$$\forall i \in \mathcal{N}$$

8/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

Sensor Networks and Consensus

2 An application: Localization and Tracking

B Distributed Sensors Calibration

4 Analysis of a Randomized Kalman Filter

5 Distributed Kalman Smoother

9/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

An important application

Aim of the work:

To address some modeling and algorithmic issues of localization and target tracking in wireless sensors networks

10/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother First, evaluate the distances nodes-the moving object. Then, reconstruct absolute moving object position

Map Based Most likely location that matches with pre-learned

maps.

Range based Triangulation (similarly to GPS)

11/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother Localization and tracking, the idea:

 Nodes measure the radio signal strength of the received packet

 It depends on the distance tx-rx.

12/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

Sensor Calibration

Ideally:

- Estimate o_i: ô_i
- Use \hat{o}_i to compensate the offset: $o_i \hat{o}_i = 0$

What we propose is:

 $o_i - \hat{o}_i = \alpha$ $\alpha \cong 0$ equal for all nodes

All nodes overestimate or underestimate the distance similarly.

The errors, in the triangulation process, cancel out partially.

13/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

Sensor Calibration as a Consensus Problem

Asking

$$o_i - \hat{o}_i = \alpha$$
 equal for all nodes

means to cast our sensor calibration problem into a consensus problem

Consider the consensus algorithm

$$(o_i-\hat{o}_i)^+=(o_i-\hat{o}_i)+\sum_{j\in\mathcal{V}(i)}p_{ij}((o_j-\hat{o}_j)-(o_i-\hat{o}_i))$$

That leads to

$$\hat{o}^+_i = \hat{o}_i - \sum_{j \in \mathcal{V}(i)} p_{ij}(ar{P}^{ji}_{rx} - ar{P}^{ij}_{rx} + \hat{o}_j - \hat{o}_i)$$

14/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

Experimental Results

Links divided in 2 categories:

- Training links (black)
- Validation links (gray)

Estimate time evolution

15/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distribute Kalman Smoother

 $\Delta \bar{P}^{ij} = \bar{P}^{ij} - \bar{P}^{ji} = o_i - o_j$

	Before	After
<1	50%	88 %
>2dB	35 <mark>%</mark>	0.6 %

Effects of systematic errors when estimating distances $1dB \mapsto \cong 2m \pm 0.28m$. $6dB \mapsto$ uncertainty for 0.9m to 4.4m for an actual distance of 2m.

16/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother 1 Sensor Networks and Consensus

An application: Localization and Tracking

B Distributed Sensors Calibration

4 Analysis of a Randomized Kalman Filter

5 Distributed Kalman Smoother

17/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

Kalman Filter:

Carli et al.

R. Carli, A. Chiuso, L. Schenato and S. Zampieri (2008). *Distributed Kalman filtering using consensus strategies* IEEE Journal on Selected Areas in Communications, 26(4), pp. 622-633.

Standard

Let us consider a simple case: scalar random walk

$$\begin{cases} x(t+1) &= x(t) + w(t) \\ y_i(t) &= x(t) + v_i(t) \end{cases}$$

The local Kalman Filter looks like

$$\hat{x}_i(t+1) = (1-\ell)\hat{x}_i(t) + \ell y_i(t+1)$$

A distributed algorithm

2 phases algorithm

$$\hat{x}_i^{ ext{loc}}(t+1) = (1-\ell)\hat{x}_i(t) + \ell y_i(t+1)$$

 $\hat{x}_i(t) = lpha_{ii}(t)\hat{x}_i^{ ext{loc}}(t) + \sum_{j\in\mathcal{N}(i)} lpha_{ij}(t)\hat{x}_{ ext{loc}_j}(t)$

17/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

Kalman Filter:

Carli et al.

R. Carli, A. Chiuso, L. Schenato and S. Zampieri (2008). *Distributed Kalman filtering using consensus strategies* IEEE Journal on Selected Areas in Communications, 26(4), pp. 622-633.

Standard

Let us consider a simple case: scalar random walk

$$\begin{cases} x(t+1) = x(t) + w(t) \\ y_i(t) = x(t) + v_i(t) \end{cases}$$

The local Kalman Filter looks like

$$\hat{x}_i(t+1) = (1-\ell)\hat{x}_i(t) + \ell y_i(t+1)$$

A distributed algorithm

2 phases algorithm (rewritten using matrices)

$$\hat{x}^{
m loc}(t+1) = (1-\ell)\hat{x}(t) + \ell y(t+1)$$
 $\hat{x}(t) = P(t)\hat{x}^{
m loc}(t)$

18/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

Results on Convergence, P random matrix

1

Broadcast:

At each time one node randomly wakes up and broadcasts its information to all its neighbors.

19/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

Algorithm Analysis

i-th Node Estimation Error : $\tilde{x}_i(t) = x(t) - \hat{x}_i(t)$.

Estimation Error Variance:

 $\Sigma(t+1) = (1-\ell)^2 \mathbb{E}\left[P(t)\Sigma(t)P^{\mathsf{T}}(t)\right] + \ell^2 r \mathbb{E}\left[P(t)P^{\mathsf{T}}(t)\right] + q\mathbb{1}\mathbb{1}^{\mathsf{T}}.$

The quantity we are interested to

 $\lim_{t\to\infty}\Sigma(t)$

No close form expression for such a quantity. We propose an upperbound:

$$\frac{1}{N}\sum_{j=0}^{N-1}l^2r\frac{\lambda_j\left(\mathbb{E}\left[P(t)P^{T}(t)\right]\right)}{1-(1-l)^2\lambda_j\left(\mathbb{E}\left[P(t)P^{T}(t)\right]\right)}+\frac{q}{1-(1-l)^2}$$

19/32

Sensor Networks and Consensus

An application : Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

Algorithm Analysis

i-th Node Estimation Error : $\tilde{x}_i(t) = x(t) - \hat{x}_i(t)$.

Estimation Error Variance:

 $\Sigma(t+1) = (1-\ell)^2 \mathbb{E}\left[P(t)\Sigma(t)P^{\mathsf{T}}(t)\right] + \ell^2 r \mathbb{E}\left[P(t)P^{\mathsf{T}}(t)\right] + q\mathbb{1}\mathbb{1}^{\mathsf{T}}.$

The quantity we are interested to

$$\frac{1}{N}\lim_{t\to\infty}\mathrm{tr}\Sigma(t)$$

No close form expression for such a quantity. We propose an upperbound:

$$\frac{1}{N}\sum_{j=0}^{N-1}l^2r\frac{\lambda_j\left(\mathbb{E}\left[P(t)P^{\mathsf{T}}(t)\right]\right)}{1-(1-l)^2\lambda_j\left(\mathbb{E}\left[P(t)P^{\mathsf{T}}(t)\right]\right)}+\frac{q}{1-(1-l)^2}$$

20/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

Design

Minimizing this quantity with respect to the link selection probability is a convex optimization problem. On the contrary, the original cost function is not convex with respect to the link selection probability.

21/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother 1 Sensor Networks and Consensus

An application: Localization and Tracking

3 Distributed Sensors Calibration

4 Analysis of a Randomized Kalman Filter

5 Distributed Kalman Smoother

22/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

Aim:

Estimation of different but correlated quantities. Kalman smoother on a Gauss Markov Random Field

23/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

23/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

24/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

Algorithm Step 1: Initialization

Second partition is active.

Node $\mathcal{K}(j)$, the middle node of the group, computes an estimate of its state based only the measurements collected by the nodes of its group $Z_{L(j-1,j)}$.

$$x_{\mathcal{K}(j)}^{0} = \mathbb{E}[x_{\mathcal{K}(j)} \mid Z_{L(j-1,j)}]$$

24/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

Algorithm Step 1: Initialization

Second partition is active.

Node K(j), the middle node of the group, computes an estimate of its state based only the measurements collected by the nodes of its group $Z_{L(j-1,j)}$.

$$x_{\mathcal{K}(j)}^{0} = \mathbb{E}[x_{\mathcal{K}(j)} \mid Z_{L(j-1,j)}]$$

24/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

Algorithm Step 1: Initialization

Second partition is active.

Node K(j), the middle node of the group, computes an estimate of its state based only the measurements collected by the nodes of its group $Z_{L(j-1,j)}$.

$$x_{\mathcal{K}(j)}^{0} = \mathbb{E}[x_{\mathcal{K}(j)} \mid Z_{L(j-1,j)}]$$

25/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

Algorithm: Step 2:

First partition is active.

Node L(j) (middle node) estimate of its state based only measurements collected in its group $Z_{K(j,j+1)}$ and assuming that $x_{K(j)}$ and $x_{K(j+1)}$ were exactly $X_{K(j)}^{\ell}$ and $X_{K(j+1)}^{\ell}$.

$$X_{L(j)}^{\ell+1} = \mathbb{E}[x_{L(j)} \mid Z_{K(j,j+1)}, X_{K(j,j+1)} = X_{K(j,j+1)}^{\ell}]$$

25/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

Algorithm: Step 2:

First partition is active.

Node L(j) (middle node) estimate of its state based only measurements collected in its group $Z_{K(j,j+1)}$ and assuming that $x_{K(j)}$ and $x_{K(j+1)}$ were exactly $X_{K(j)}^{\ell}$ and $X_{K(j+1)}^{\ell}$.

$$X_{L(j)}^{\ell+1} = \mathbb{E}[x_{L(j)} \mid Z_{K(j,j+1)}, X_{K(j,j+1)} = X_{K(j,j+1)}^{\ell}]$$

25/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

Algorithm: Step 2:

First partition is active.

Node L(j) (middle node) estimate of its state based only measurements collected in its group $Z_{K(j,j+1)}$ and assuming that $x_{K(j)}$ and $x_{K(j+1)}$ were exactly $X_{K(j)}^{\ell}$ and $X_{K(j+1)}^{\ell}$.

$$X_{L(j)}^{\ell+1} = \mathbb{E}[x_{L(j)} \mid Z_{K(j,j+1)}, X_{K(j,j+1)} = X_{K(j,j+1)}^{\ell}]$$

25/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

Algorithm: Step 2:

First partition is active.

Node L(j) (middle node) estimate of its state based only measurements collected in its group $Z_{K(j,j+1)}$ and assuming that $x_{K(j)}$ and $x_{K(j+1)}$ were exactly $X_{K(j)}^{\ell}$ and $X_{K(j+1)}^{\ell}$.

 $X_{L(j)}^{\ell+1} = \mathbb{E}[x_{L(j)} \mid Z_{K(j,j+1)}, X_{K(j,j+1)} = X_{K(j,j+1)}^{\ell}]$

26/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

Algorithm:

Step 3:

Second partition is active.

Node $\mathcal{K}(j)$ (middle node) estimate of its state based only measurements collected in its group $Z_{L(j-1,j)}$ and assuming that $x_{L(j-1)}$ and $x_{L(j)}$ were exactly $X_{L(j-1)}^{\ell}$ and $X_{L(j)}^{\ell}$.

$$X_{K(j)}^{\ell+2} = \mathbb{E}[x_{K(j)} \mid Z_{L(j-1,j)}, X_{L(j-1,j)} = X_{L(j-1,j)}^{\ell}]$$

26/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

Algorithm: Step 3:

Second partition is active.

Node K(j) (middle node) estimate of its state based only measurements collected in its group $Z_{L(j-1,j)}$ and assuming that $x_{L(j-1)}$ and $x_{L(j)}$ were exactly $X_{L(j-1)}^{\ell}$ and $X_{L(j)}^{\ell}$.

$$X_{\mathcal{K}(j)}^{\ell+2} = \mathbb{E}[x_{\mathcal{K}(j)} \mid Z_{L(j-1,j)}, X_{L(j-1,j)} = X_{L(j-1,j)}^{\ell}]$$

26/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

Algorithm: Step 3:

Second partition is active.

Node K(j) (middle node) estimate of its state based only measurements collected in its group $Z_{L(j-1,j)}$ and assuming that $x_{L(j-1)}$ and $x_{L(j)}$ were exactly $X_{L(j-1)}^{\ell}$ and $X_{L(j)}^{\ell}$.

$$X_{\mathcal{K}(j)}^{\ell+2} = \mathbb{E}[x_{\mathcal{K}(j)} \mid Z_{L(j-1,j)}, X_{L(j-1,j)} = X_{L(j-1,j)}^{\ell}]$$

27/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

${\sf Algorithm}:$

Step 4:

if there has been a significant improvement in the estimate

 $|x_{\mathcal{K}(j)}^{\ell+2} - x_{\mathcal{K}(j)}^{\ell}| \ge \varepsilon$

then set $\ell = \ell + 2$ and go to step 2. else the optimal estimate is achieved $X_{\mathcal{K}(j)}^{\ell+2} = \mathbb{E}[x_{\mathcal{K}(j)} \mid Z]$. Move to Step 5.

Step 5:

For any node *i* of the *j*-th group(Markov Property).

$$\mathbb{E}[x_i \mid Z] = \mathbb{E}[x_i \mid Z_{\mathcal{K}(j,j+1)}, X_{\mathcal{K}(j,j+1)}].$$

Compute all the other estimates of the *j*-th group as

$$\mathbb{E}[x_{i} \mid Z_{\mathcal{K}(j,j+1)}, X_{\mathcal{K}(j,j+1)} = X_{\mathcal{K}(j,j+1)}^{\ell+2}].$$

27/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

${\sf Algorithm}:$

Step 4:

if there has been a significant improvement in the estimate

$$|x_{\mathcal{K}(j)}^{\ell+2} - x_{\mathcal{K}(j)}^{\ell}| \ge \varepsilon$$

then set $\ell = \ell + 2$ and go to step 2. else the optimal estimate is achieved $X_{\mathcal{K}(j)}^{\ell+2} = \mathbb{E}[x_{\mathcal{K}(j)} \mid Z]$. Move to Step 5.

Step 5:

For any node *i* of the *j*-th group(Markov Property).

$$\mathbb{E}[x_i \mid Z] = \mathbb{E}[x_i \mid Z_{\mathcal{K}(j,j+1)}, X_{\mathcal{K}(j,j+1)}].$$

Compute all the other estimates of the *j*-th group as

$$\mathbb{E}[x_i \mid Z_{\mathcal{K}(j,j+1)}, X_{\mathcal{K}(j,j+1)} = X_{\mathcal{K}(j,j+1)}^{\ell+2}].$$

28/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

Convergence Results:

$$\delta_{K}^{\ell} = X_{K}^{\ell} - \mathbb{E}[X_{K}|Z]$$

Theorem:

1 the error dynamics of the distributed smoothing algorithm at the nodes $\{K(j)\}$ are regulated by the equation

$$\delta_{K}^{\ell+2} = R\delta_{K}^{\ell}$$

2 *R* is asymptotically stable, i.e. all its eigenvalues are inside the open complex unit circle

29/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

Convergence Results:

$$\Xi_{j} = \mathbb{V} \left(x_{\mathcal{K}(j)}, X_{\mathcal{L}(j-1,j)} \mid Z_{\mathcal{L}(j-1,j)} \right) \mathbb{V} \left(X_{\mathcal{L}(j-1,j)} \mid Z_{\mathcal{L}(j-1,j)} \right)^{-1}$$

$$\Pi_{j} = \mathbb{V} \left(x_{\mathcal{L}(j)}, X_{\mathcal{K}(j,j+1)} \mid Z_{\mathcal{K}(j,j+1)} \right) \mathbb{V} \left(X_{\mathcal{K}(j,j+1)} \mid Z_{\mathcal{K}(j,j+1)} \right)^{-1}$$

$$E_{j} = \Xi_{j} \begin{pmatrix} \Pi_{j} & 0_{n \times n} \\ 0_{n \times n} & \Pi_{i+1} \end{pmatrix} \qquad E_{1} = \Xi_{1} \Pi_{1} \qquad E_{p+1} = \Xi_{p+1} \Pi_{p},$$

30/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

Specialization to the random walk case: Scalar Random Walk

$$\begin{array}{l} x_{k+1} = x_k + w_k \\ z_k = x_k + v_k \end{array} \qquad k = 1, \dots N$$

 w_k and v_k mutually independet white Gaussian noises

$$\mathbb{V}\mathbf{w}_k = \lambda \qquad \mathbb{V}\mathbf{v}_k = \sigma$$

Theorem

All the eigenvalues of R have the same asymptotic behavior,

$$\lambda(R(J)) \sim \operatorname{const} \cdot \nu^{-J}, \quad \text{ as } J \to +\infty$$

where

$$u = 1 + \frac{\lambda}{2\sigma} + \frac{1}{2}\sqrt{\frac{4\lambda}{\sigma} + \frac{\lambda^2}{\sigma^2}} \ge 1$$

31/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother Summing Up

1 Sensor Networks and Consensus

2 An application: Localization and Tracking

3 Distributed Sensors Calibration

4 Analysis of a Randomized Kalman Filter

5 Distributed Kalman Smoother

32/32

Sensor Networks and Consensus

An application: Localization and Tracking

Distributed Sensors Calibration

Randomized Kalman Filter

Distributed Kalman Smoother

Publications

Journal papers:

Appeared	Consensus-based distributed sensor calibration and least-square parameter identification in WSNs.	
	Saverio Bolognani, Simone Del Favero, Luca Schenato, Damiano Varagnolo. International Journal of Robust and Nonlinear Control	
Submetted	A majorization inequality and its application to distributed Kalman filtering. S. Del Favero. and S. Zampieri. <i>Submetted to Automatica</i>	
Submetted	Unconstrained and inequality constrained distributed kalm <mark>an smoother.</mark> G. Pillonetto, S. Del Favero and B. Bell <i>Submetted to Automatica</i>	
Conference papers:		
Accepted	Distributed Inequality Constrained Kalman Smoother. S. Del Favero, G. Pillonetto and B. Bell. 19th MTNS, Budapest, Hungary, 5-9 July 2010	
Appeared	red Distributed estimation through randomized gossip Kalman filter.	
	S. Del Favero and S. Zampieri. Combined 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai 2009 December 16-18.	
Appeared	A distributed solution to estimation problems in wireless sensor networks	
	leveraging broadcast communication. Simone Del Favero, Federico Librino, Michele Zorzi, Francesco Zorzi and Albert Harris III. WONS 2009, The Sixth International Conference on Wireless On-demand Network Systems and Services, February 2-4, 2009. Snowbird, Utah, USA	
Appeared	Distributed Sensor Calibration and Least-Square Parameter Identification in WSNs Using Consensus Algorithms.	
	Javerio Dolognani, Simone Del Favero, Luca Schenato, Damiano	
	Control, and Computing September 23 - September 26, 2008 Allerton Retreat Center, Monticello, Illinois	