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What is Consensus?

The solutions we consider are based on Consensus
Algorithms.
What is Consensus?

Network of

N agents

Communication graph
G = (N , E)

i-th node neighbors: N (i)

Every node stores a
variable:
node i stores xi .
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De�nition

We call Recursive Distributed
Algorithm adapted to the
graph G any recursive
algorithm where the i node's
update law of depends only on
the state of i and in its
neighbors j ∈ N (i)

xi (t+1) = piixi (t)+
∑

j∈N (i)

pijxj(t)
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De�nition

We call Recursive Distributed
Algorithm adapted to the
graph G any recursive
algorithm where the i node's
update law of depends only on
the state of i and in its
neighbors j ∈ N (i)

x(t+1) = P(t)x(t) Pi ,j 6= 0⇒ (j , i) ∈ E
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De�nition
A Recursive Distributed
Algorithm adapted to the graph
G is said to asymptotically
achieve consensus if

xi (t)→ α ∀i ∈ N
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De�nition
A Recursive Distributed Algorithm
adapted to the graph G is said to
asymptotically achieve average
consensus if

xi (t)→ 1

N

∑
i∈N

xi (0) ∀i ∈ N
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An important application

Aim of the work:
To address some modeling and algorithmic issues of
localization and target tracking in wireless sensors networks
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First, evaluate the distances nodes-the moving object.
Then, reconstruct absolute moving object position

Map Based

Most likely location that
matches with pre-learned
maps.

Range based

Triangulation (similarly to
GPS)
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Localization and tracking,
the idea:

Nodes measure the
radio signal strength of
the received packet

It depends on the
distance tx-rx.
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Sensor Calibration

Ideally:

Estimate oi : ôi

Use ôi to compensate the o�set: oi − ôi = 0

What we propose is:

oi − ôi = α α ∼= 0 equal for all nodes

All nodes overestimate or underestimate the distance
similarly.
The errors, in the triangulation process, cancel out partially.
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Sensor Calibration as a Consensus Problem

Asking

oi − ôi = α equal for all nodes

means to cast our sensor calibration problem into a
consensus problem

Consider the consensus algorithm

(oi − ôi )
+ = (oi − ôi ) +

∑
j∈V(i)

pij((oj − ôj)− (oi − ôi ))

That leads to

ô+
i = ôi −

∑
j∈V(i)

pij(P̄
ji
rx − P̄ ij

rx + ôj − ôi )
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Experimental Results

Links divided in 2 categories:

Training links (black)

Validation links (gray)
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Experimental Results:

Asymmetric error before and after o�set correction

∆P̄ ij = P̄ ij − P̄ ji = oi − oj
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<1 50% 88 %
>2dB 35% 0.6 %

E�ects of systematic errors
when estimating distances

1dB 7−→ ∼= 2m ± 0.28m.
6dB 7−→ uncertainty for 0.9m to
4.4m for an actual distance of 2m.
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Kalman Filter:

Carli et al.
R. Carli, A. Chiuso, L. Schenato and S. Zampieri (2008). Distributed Kalman

�ltering using consensus strategies IEEE Journal on Selected Areas in
Communications, 26(4), pp. 622-633.

Standard
Let us consider a simple case: scalar random walk{

x(t + 1) = x(t) + w(t)
yi (t) = x(t) + vi (t)

The local Kalman Filter looks like

x̂i (t + 1) = (1− `)x̂i (t) + `yi (t + 1)

A distributed algorithm
2 phases algorithm

x̂ loci (t + 1) = (1− `)x̂i (t) + `yi (t + 1)

x̂i (t) = αii (t)x̂ loci (t) +
∑

j∈N (i)

αij(t)x̂locj
(t)
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Kalman Filter:

Carli et al.
R. Carli, A. Chiuso, L. Schenato and S. Zampieri (2008). Distributed Kalman

�ltering using consensus strategies IEEE Journal on Selected Areas in
Communications, 26(4), pp. 622-633.

Standard
Let us consider a simple case: scalar random walk{

x(t + 1) = x(t) + w(t)
yi (t) = x(t) + vi (t)

The local Kalman Filter looks like

x̂i (t + 1) = (1− `)x̂i (t) + `yi (t + 1)

A distributed algorithm
2 phases algorithm (rewritten using matrices)

x̂ loc(t + 1) = (1− `)x̂(t) + `y(t + 1)

x̂(t) = P(t)x̂ loc(t)
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Results on Convergence, P random matrix

Broadcast:
At each time one node random-
ly wakes up and broadcasts its
information to all its neighbors.

P(t) =



3/4 0 0 1/4 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1/4 3/4 0
0 0 0 1/4 0 3/4


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Algorithm Analysis

i-th Node Estimation Error : x̃i (t) = x(t)− x̂i (t).

Estimation Error Variance:

Σ(t+1) = (1−`)2E
[
P(t)Σ(t)PT (t)

]
+`2rE

[
P(t)PT (t)

]
+q11T .

The quantity we are interested to

lim
t→∞

Σ(t)

No close form expression for such a quantity.
We propose an upperbound:

1

N

N−1∑
j=0

l2r
λj
(
E
[
P(t)PT (t)

])
1− (1− l)2λj (E [P(t)PT (t)])

+
q

1− (1− l)2
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Algorithm Analysis

i-th Node Estimation Error : x̃i (t) = x(t)− x̂i (t).

Estimation Error Variance:

Σ(t+1) = (1−`)2E
[
P(t)Σ(t)PT (t)

]
+`2rE

[
P(t)PT (t)

]
+q11T .

The quantity we are interested to

1

N
lim
t→∞

trΣ(t)

No close form expression for such a quantity.
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Design
Minimizing this quantity with respect to the link selection
probability is a convex optimization problem.
On the contrary, the original cost function is not convex with
respect to the link selection probability.
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Aim:
Estimation of di�erent but correlated quantities.
Kalman smoother on a Gauss Markov Random Field

x1 x2 x3 x4 x5 x6 x7 x8 x9

z1 z2 z3 z4 z5 z6 z7 z8 z9
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N nodes, p groups of J elements. N = pJ + 1.

K (1) K (2) K (3)

x1 x2 x3 x4 x5 x6 x7 x8 x9

z1 z2 z3 z4 z5 z6 z7 z8 z9
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N nodes, p groups of J elements. N = pJ + 1.

K (1) L(1) K (2) L(2) K (3)

x1 x2 x3 x4 x5 x6 x7 x8 x9

z1 z2 z3 z4 z5 z6 z7 z8 z9
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Algorithm
Step 1: Initialization

Second partition is active.
Node K (j), the middle node of the group, computes an
estimate of its state based only the measurements collected
by the nodes of its group ZL(j−1,j).

x0K(j) = E[xK(j) | ZL(j−1,j)]

x1 x2 x3 x4 x5 x6 x7 x8 x9

z1 z2 z3 z4 z5 z6 z7 z8 z9
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Algorithm:

Step 2:

First partition is active.
Node L(j) (middle node) estimate of its state based only
measurements collected in its group ZK(j ,j+1) and assuming

that xK(j) and xK(j+1) were exactly X `
K(j) and X `

K(j+1).

X `+1
L(j) = E[xL(j) | ZK(j ,j+1) , XK(j ,j+1) = X `

K(j ,j+1) ]

x1 x2 x3 x4 x5 x6 x7 x8 x9

z1 z2 z3 z4 z5 z6 z7 z8 z9
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Algorithm:

Step 2:

First partition is active.
Node L(j) (middle node) estimate of its state based only
measurements collected in its group ZK(j ,j+1) and assuming

that xK(j) and xK(j+1) were exactly X `
K(j) and X `

K(j+1).

X `+1
L(j) = E[xL(j) | ZK(j ,j+1) , XK(j ,j+1) = X `

K(j ,j+1) ]

x1 x2 x3 x4 x5 x6 x7 x8 x9

z1 z2 z3 z4 z5 z6 z7 z8 z9

x3 x7
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Algorithm:

Step 2:

First partition is active.
Node L(j) (middle node) estimate of its state based only
measurements collected in its group ZK(j ,j+1) and assuming

that xK(j) and xK(j+1) were exactly X `
K(j) and X `

K(j+1).

X `+1
L(j) = E[xL(j) | ZK(j ,j+1) , XK(j ,j+1) = X `

K(j ,j+1) ]

x1 x2 x3 x4 x5 x6 x7 x8 x9

z1 z2 z3 z4 z5 z6 z7 z8 z9

x3 x7

XK(1) = X `
K(1) XK(2) = X `

K(2) XK(3) = X `
K(3)



3 Dic 2009

25/32

Sensor Networks
and Consensus

An application:
Localization and
Tracking

Distributed
Sensors
Calibration

Randomized
Kalman Filter

Distributed
Kalman
Smoother

Algorithm:

Step 2:

First partition is active.
Node L(j) (middle node) estimate of its state based only
measurements collected in its group ZK(j ,j+1) and assuming

that xK(j) and xK(j+1) were exactly X `
K(j) and X `

K(j+1).

X `+1
L(j) = E[xL(j) | ZK(j ,j+1) , XK(j ,j+1) = X `

K(j ,j+1) ]
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Algorithm:

Step 3:

Second partition is active.
Node K (j) (middle node) estimate of its state based only
measurements collected in its group ZL(j−1,j) and assuming

that xL(j−1) and xL(j) were exactly X `
L(j−1) and X `

L(j).

X `+2
K(j) = E[xK(j) | ZL(j−1,j) , XL(j−1,j) = X `

L(j−1,j) ]

x1 x2 x3 x4 x5 x6 x7 x8 x9

z1 z2 z3 z4 z5 z6 z7 z8 z9
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Algorithm:

Step 3:

Second partition is active.
Node K (j) (middle node) estimate of its state based only
measurements collected in its group ZL(j−1,j) and assuming

that xL(j−1) and xL(j) were exactly X `
L(j−1) and X `

L(j).

X `+2
K(j) = E[xK(j) | ZL(j−1,j) , XL(j−1,j) = X `

L(j−1,j) ]

x1 x2 x3 x4 x5 x6 x7 x8 x9

z1 z2 z3 z4 z5 z6 z7 z8 z9

x1 x5 x9

X `+2

L(1) = X `+1

L(1) X `+2

L(2) = X `+1

L(2)
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Algorithm:

Step 3:

Second partition is active.
Node K (j) (middle node) estimate of its state based only
measurements collected in its group ZL(j−1,j) and assuming

that xL(j−1) and xL(j) were exactly X `
L(j−1) and X `

L(j).

X `+2
K(j) = E[xK(j) | ZL(j−1,j) , XL(j−1,j) = X `

L(j−1,j) ]
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Algorithm:

Step 4:

if there has been a signi�cant improvement in the estimate

|x`+2
K(j) − x`

K(j)| ≥ ε

then set ` = `+ 2 and go to step 2.
else the optimal estimate is achieved X `+2

K(j) = E[xK(j) | Z ].

Move to Step 5.

Step 5:

For any node i of the j-th group(Markov Property).

E[ xi | Z ] = E[xi | ZK(j ,j+1),XK(j ,j+1)].

Compute all the other estimates of the j-th group as

E[xi | ZK(j ,j+1) , XK(j ,j+1) = X `+2
K(j ,j+1)].
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Convergence Results:

δ`
K = X `

K − E[XK |Z ]

Theorem:

1 the error dynamics of the distributed smoothing
algorithm at the nodes {K (j)} are regulated by the
equation

δ`+2
K = Rδ`

K

2 R is asymptotically stable, i.e. all its eigenvalues are
inside the open complex unit circle
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Convergence Results:

Ξj = V
(
xK(j),XL(j−1,j) | ZL(j−1,j)

)
V
(
XL(j−1,j) | ZL(j−1,j)

)−1
Πj = V

(
xL(j),XK(j ,j+1) | ZK(j ,j+1)

)
V
(
XK(j ,j+1) | ZK(j ,j+1)

)−1
Ej = Ξj

(
Πj 0n×n
0n×n Πi+1

)
E1 = Ξ1Π1 Ep+1 = Ξp+1Πp,




. . .

. . .
. . .

E2

Ep

E1

Ep+1

R =
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Specialization to the random walk case:

Scalar Random Walk

xk+1 = xk + wk

zk = xk + vk
k = 1, . . .N

wk and vk mutually independet white Gaussian noises

Vwk = λ Vvk = σ

Theorem
All the eigenvalues of R have the same asymptotic behavior,

λ(R(J)) ∼ const · ν−J , as J → +∞

where

ν = 1 +
λ

2σ
+

1

2

√
4λ

σ
+
λ2

σ2
≥ 1
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